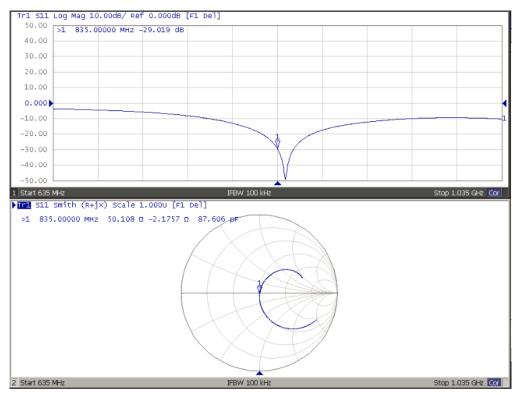


D835V2, Serial No.4d112 Extended Dipole Calibrations

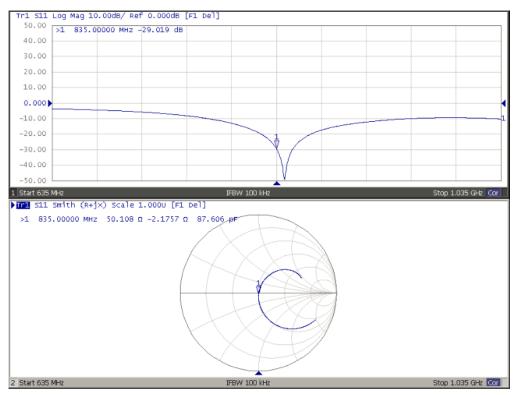
Per IEEE Std 1528-2013, the dipole should have a return loss better than -20dB at the test frequency to reduce uncertainty in the power measurement.

Per KDB 865664 D01, if dipoles are verified in return loss(<-20dB, within 20% of prior calibration), and in impedance (within 5 ohm of prior calibration), the annual calibration is not necessary and the calibration interval can be extended.

Justification of the extended calibration


		D835	V2 Serial No.4 835 Head	ld112		
Date of Measurement	Return-Loss (dB)	Delta (%)	Real Impedance (ohm)	Delta (ohm)	Imaginary Impedance (ohm)	Delta (ohm)
10.22.2015	-27.27		49.108		-4.2018	
10.21.2016	-29.019	6.41	50.108	1	-2.1757	2.0261

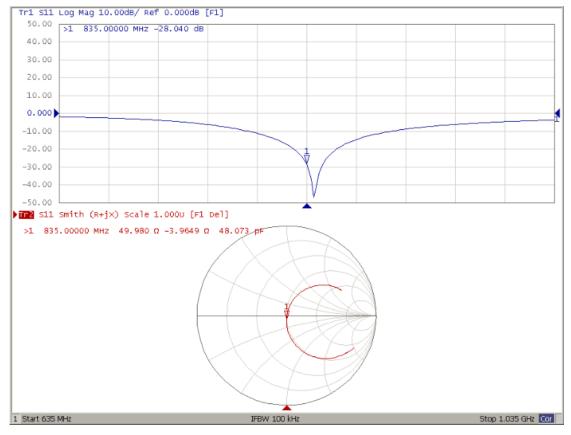
		D835	V2 Serial No.4 835 Body	d112		
Date of Measurement	Return-Loss (dB)	Delta (%)	Real Impedance (ohm)	Delta (ohm)	Imaginary Impedance (ohm)	Delta (ohm)
10.22.2015	-23.036		46.184		-4.7866	
10.21.2016	-23.131	0.56	47.003	0.819	-2.9072	1.8794


The return loss is < -20dB, within 20% of prior calibration; the impedance is within 5 ohm of prior calibration. Therefore the verification result should support extended calibration.

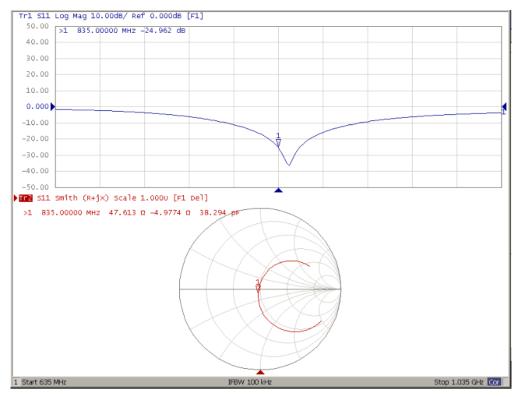
Dipole Verification Data D835V2 Serial No.4d112 835MHz-Head

835MHz - Body

Justification of the extended calibration

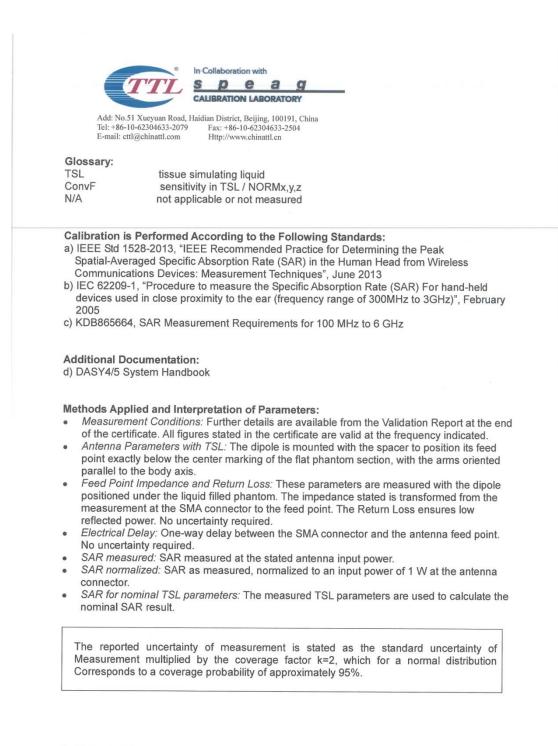

		D835	V2 Serial No.4	d112		
			835 Head			
Date of Measurement	Return-Loss (dB)	Delta (%)	Real Impedance (ohm)	Delta (ohm)	Imaginary Impedance (ohm)	Delta (ohm)
10.22.2015	-27.27		49.108		-4.2018	
10.21.2016	-29.019	6.41	50.108	1	-2.1757	2.0261
10.20.2017	-28.040	3.37	49.98	0.128	-3.965	1.789

		D835	V2 Serial No.4	ld112		
			835 Body			
Date of Measurement	Return-Loss (dB)	Delta (%)	Real Impedance (ohm)	Delta (ohm)	Imaginary Impedance (ohm)	Delta (ohm)
10.22.2015	-23.036		46.184		-4.7866	
10.21.2016	-23.131	0.56	47.003	0.819	-2.9072	1.8794
10.20.2017	-24.962	7.92	47.613	0.61	-4.977	2.07


The return loss is < -20dB, within 20% of prior calibration; the impedance is within 5 ohm of prior calibration. Therefore the verification result should support extended calibration.

Dipole Verification Data D835V2 Serial No.4d112 835MHz-Head

835MHz - Body


	TL sp	oration with	CNAS
Add: No.51 Xueyu Tel: +86-10-62304 E-mail: cttl@china	an Road, Haidian Dis 633-2079 Fax: -	Strict, Beijing, 100191, China +86-10-62304633-2504 //www.chinattl.cn	CALIBRATION No. L0570
Client ECI			15-97167
CALIBRATION C	ERTIFICAT	ΓE	
Object	D1750	V2 - SN: 1044	
Calibration Procedure(s)		1-2-003-01 tition Procedures for dipole validation kits	
Calibration date:	Novem	ber 3, 2015	
All calibrations have been	conducted in	the closed laboratory facility: environmen	t temperature(22+3)°C and
humidity<70%.		the closed laboratory facility: environmen or calibration)	it temperature(22±3)℃ and
humidity<70%. Calibration Equipment used Primary Standards	(M&TE critical f		tt temperature(22±3)℃ and Scheduled Calibration
humidity<70%. Calibration Equipment used Primary Standards Power Meter NRP2	(M&TE critical for ID # 101919	or calibration) Cal Date(Calibrated by, Certificate No.) 01-Jul-15 (CTTL, No.J15X04256)	Scheduled Calibration Jun-16
humidity<70%. Calibration Equipment used Primary Standards Power Meter NRP2 Power sensor NRP-Z91	(M&TE critical fo ID # 101919 101547	or calibration) Cal Date(Calibrated by, Certificate No.) 01-Jul-15 (CTTL, No.J15X04256) 01-Jul-15 (CTTL, No.J15X04256)	Scheduled Calibration Jun-16 Jun-16
humidity<70%. Calibration Equipment used Primary Standards Power Meter NRP2 Power sensor NRP-Z91 Reference Probe EX3DV4	(M&TE critical fo ID # 101919 101547 SN 3617	Cal Date(Calibrated by, Certificate No.) 01-Jul-15 (CTTL, No.J15X04256) 01-Jul-15 (CTTL, No.J15X04256) 26-Aug-15(SPEAG,No.EX3-3617_Aug15)	Scheduled Calibration Jun-16 Jun-16 Aug -16
humidity<70%. Calibration Equipment used Primary Standards Power Meter NRP2 Power sensor NRP-Z91	(M&TE critical fo ID # 101919 101547	or calibration) Cal Date(Calibrated by, Certificate No.) 01-Jul-15 (CTTL, No.J15X04256) 01-Jul-15 (CTTL, No.J15X04256)	Scheduled Calibration Jun-16 Jun-16 Aug -16
humidity<70%. Calibration Equipment used Primary Standards Power Meter NRP2 Power sensor NRP-Z91 Reference Probe EX3DV4	(M&TE critical fo ID # 101919 101547 SN 3617	Cal Date(Calibrated by, Certificate No.) 01-Jul-15 (CTTL, No.J15X04256) 01-Jul-15 (CTTL, No.J15X04256) 26-Aug-15(SPEAG,No.EX3-3617_Aug15)	Scheduled Calibration Jun-16 Jun-16 Aug -16
humidity<70%. Calibration Equipment used Primary Standards Power Meter NRP2 Power sensor NRP-Z91 Reference Probe EX3DV4 DAE4	ID # 101919 101547 SN 3617 SN 777	Cal Date(Calibrated by, Certificate No.) 01-Jul-15 (CTTL, No.J15X04256) 01-Jul-15 (CTTL, No.J15X04256) 26-Aug-15(SPEAG,No.EX3-3617_Aug15) 26-Aug-15(SPEAG,No.DAE4-777_Aug15) Cal Date(Calibrated by, Certificate No.)	Scheduled Calibration Jun-16 Jun-16 Aug -16 Aug -16
humidity<70%. Calibration Equipment used Primary Standards Power Meter NRP2 Power sensor NRP-Z91 Reference Probe EX3DV4 DAE4 Secondary Standards	(M&TE critical fi ID # 101919 101547 SN 3617 SN 777 ID # MY49071430	Cal Date(Calibrated by, Certificate No.) 01-Jul-15 (CTTL, No.J15X04256) 01-Jul-15 (CTTL, No.J15X04256) 26-Aug-15(SPEAG,No.EX3-3617_Aug15) 26-Aug-15(SPEAG,No.DAE4-777_Aug15) Cal Date(Calibrated by, Certificate No.) 02-Feb-15 (CTTL, No.J15X00729)	Scheduled Calibration Jun-16 Jun-16 Aug -16 Aug -16 Scheduled Calibration
humidity<70%. Calibration Equipment used Primary Standards Power Meter NRP2 Power sensor NRP-Z91 Reference Probe EX3DV4 DAE4 Secondary Standards Signal Generator E4438C	(M&TE critical fi ID # 101919 101547 SN 3617 SN 777 ID # MY49071430	Cal Date(Calibrated by, Certificate No.) 01-Jul-15 (CTTL, No.J15X04256) 01-Jul-15 (CTTL, No.J15X04256) 26-Aug-15 (CTTL, No.J15X04256) 26-Aug-15 (SPEAG,No.EX3-3617_Aug15) 26-Aug-15 (SPEAG,No.DAE4-777_Aug15) Cal Date(Calibrated by, Certificate No.) 02-Feb-15 (CTTL, No.J15X00729)	Scheduled Calibration Jun-16 Jun-16 Aug -16 Aug -16 Scheduled Calibration Feb-16
humidity<70%. Calibration Equipment used Primary Standards Power Meter NRP2 Power sensor NRP-Z91 Reference Probe EX3DV4 DAE4 Secondary Standards Signal Generator E4438C Network Analyzer E5071C	(M&TE critical fi 101919 101547 SN 3617 SN 777 ID # MY49071430 MY46110673	Cal Date(Calibrated by, Certificate No.) 01-Jul-15 (CTTL, No.J15X04256) 01-Jul-15 (CTTL, No.J15X04256) 26-Aug-15(SPEAG,No.EX3-3617_Aug15) 26-Aug-15(SPEAG,No.DAE4-777_Aug15) Cal Date(Calibrated by, Certificate No.) 02-Feb-15 (CTTL, No.J15X00728)	Scheduled Calibration Jun-16 Jun-16 Aug -16 Aug -16 Scheduled Calibration Feb-16 Feb-16
humidity<70%. Calibration Equipment used Primary Standards Power Meter NRP2 Power sensor NRP-Z91 Reference Probe EX3DV4 DAE4 Secondary Standards Signal Generator E4438C Network Analyzer E5071C	(M&TE critical f ID # 101919 101547 SN 3617 SN 777 ID # MY49071430 MY46110673 Name	Cal Date(Calibrated by, Certificate No.) 01-Jul-15 (CTTL, No.J15X04256) 01-Jul-15 (CTTL, No.J15X04256) 26-Aug-15(SPEAG,No.EX3-3617_Aug15) 26-Aug-15(SPEAG,No.DAE4-777_Aug15) Cal Date(Calibrated by, Certificate No.) 02-Feb-15 (CTTL, No.J15X00729) 03-Feb-15 (CTTL, No.J15X00728) Function	Scheduled Calibration Jun-16 Jun-16 Aug -16 Aug -16 Scheduled Calibration Feb-16 Feb-16
humidity<70%. Calibration Equipment used Primary Standards Power Meter NRP2 Power sensor NRP-Z91 Reference Probe EX3DV4 DAE4 Secondary Standards Signal Generator E4438C	(M&TE critical f ID # 101919 101547 SN 3617 SN 777 ID # MY49071430 MY46110673 Name Zhao Jing	Cal Date(Calibrated by, Certificate No.) 01-Jul-15 (CTTL, No.J15X04256) 01-Jul-15 (CTTL, No.J15X04256) 26-Aug-15(SPEAG,No.EX3-3617_Aug15) 26-Aug-15(SPEAG,No.DAE4-777_Aug15) Cal Date(Calibrated by, Certificate No.) 02-Feb-15 (CTTL, No.J15X00729) 03-Feb-15 (CTTL, No.J15X00728) Function SAR Test Engineer	Scheduled Calibration Jun-16 Jun-16 Aug -16 Aug -16 Scheduled Calibration Feb-16 Feb-16

Certificate No: Z15-97167

Page 1 of 8

Certificate No: Z15-97167

Page 2 of 8

 Add: No.51 Xueyuan Road, Haidian District, Beijing, 100191, China

 Tel: +86-10-62304633-2079
 Fax: +86-10-62304633-2504

 E-mail: cttl@chinattl.com
 Http://www.chinattl.cn

Measurement Conditions

DASY system configuration, as far as not given on page 1.

DASY Version	DASY52	52.8.8.1222	
Extrapolation	Advanced Extrapolation		
Phantom	Triple Flat Phantom 5.1C		
Distance Dipole Center - TSL	10 mm	with Spacer	
Zoom Scan Resolution	dx, dy, dz = 5 mm		
Frequency	1750 MHz ± 1 MHz		

Head TSL parameters

The following parameters and calculations were applied.

	Temperature	Permittivity	Conductivity
Nominal Head TSL parameters	22.0 °C	40.1	1.37 mho/m
Measured Head TSL parameters	(22.0 ± 0.2) °C	39.7 ± 6 %	1.40 mho/m ± 6 %
Head TSL temperature change during test	<1.0 °C		

SAR result with Head TSL

SAR averaged over 1 cm^3 (1 g) of Head TSL	Condition	
SAR measured	250 mW input power	9.48 mW / g
SAR for nominal Head TSL parameters	normalized to 1W	37.3 mW /g ± 20.8 % (k=2)
SAR averaged over 10 cm ³ (10 g) of Head TSL	Condition	
SAR measured	250 mW input power	5.09 mW / g
SAR for nominal Head TSL parameters	normalized to 1W	20.1 mW /g ± 20.4 % (k=2)

Body TSL parameters

The following parameters and calculations were applied.

	Temperature	Permittivity	Conductivity
Nominal Body TSL parameters	22.0 °C	53.4	1.49 mho/m
Measured Body TSL parameters	(22.0 ± 0.2) °C	54.4 ± 6 %	1.47 mho/m ± 6 %
Body TSL temperature change during test	<1.0 °C		

SAR result with Body TSL

SAR averaged over 1 cm^3 (1 g) of Body TSL	Condition	
SAR measured	250 mW input power	9.30 mW / g
SAR for nominal Body TSL parameters	normalized to 1W	37.6 mW /g ± 20.8 % (k=2)
SAR averaged over 10 cm ³ (10 g) of Body TSL	Condition	
SAR measured	250 mW input power	5.02 mW / g
SAR for nominal Body TSL parameters	normalized to 1W	20.2 mW /g ± 20.4 % (k=2)

Certificate No: Z15-97167

Page 3 of 8

- '	TT	, <u>S</u>	p	e	а	g
		CAL	IBRATIC	ON LAP	ORATO	DRY

 Iel: +86-10-62304633-2079
 Fax: +86-10-62304633

 E-mail: cttl@chinattl.com
 Http://www.chinattl.cn

Appendix

Antenna Parameters with Head TSL

Impedance, transformed to feed point	48.9Ω+ 1.17jΩ
Return Loss	- 35.8dB

Antenna Parameters with Body TSL

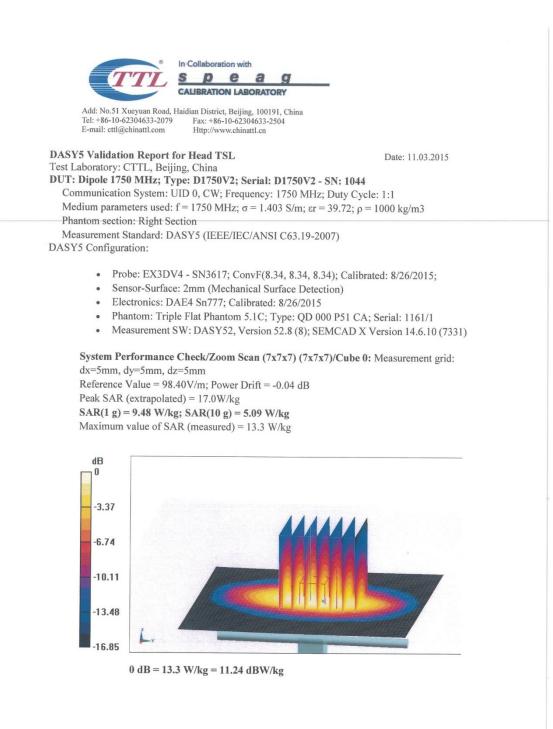
Impedance, transformed to feed point	45.5Ω+ 0.58jΩ	
Return Loss	- 26.5dB	

General Antenna Parameters and Design

Electrical Delay (one direction)	1.319 ns

After long term use with 100W radiated power, only a slight warming of the dipole near the feedpoint can be measured.

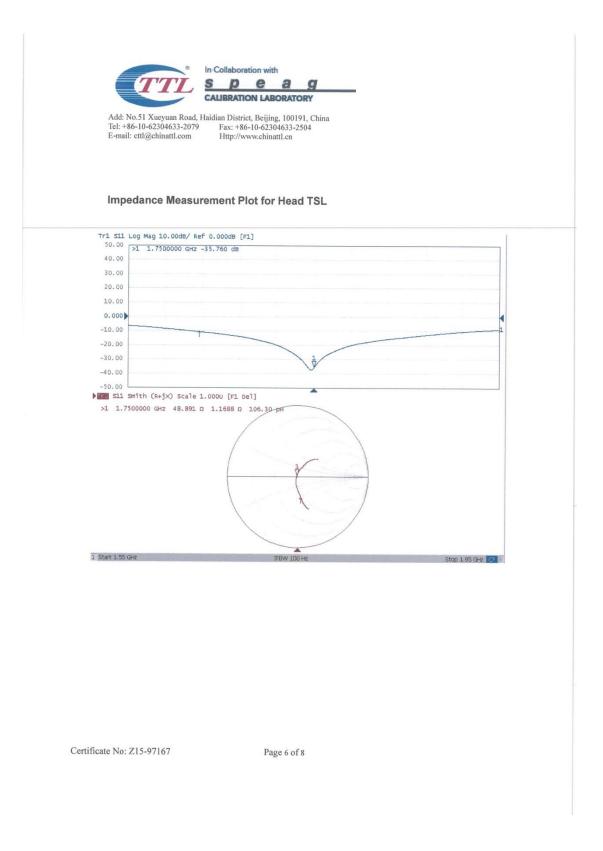
The dipole is made of standard semirigid coaxial cable. The center conductor of the feeding line is directly connected to the second arm of the dipole. The antenna is therefore short-circuited for DC-signals. On some of the dipoles, small end caps are added to the dipole arms in order to improve matching when loaded according to the position as explained in the "Measurement Conditions" paragraph. The SAR data are not affected by this change. The overall dipole length is still according to the Standard. No excessive force must be applied to the dipole arms, because they might bend or the soldered connections near the feedpoint may be damaged.


Additional EUT Data

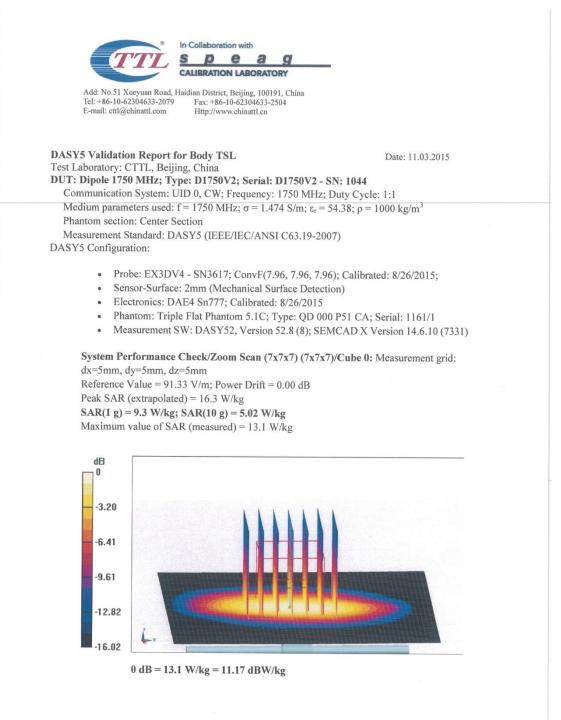
Manufactured by	SPEAG

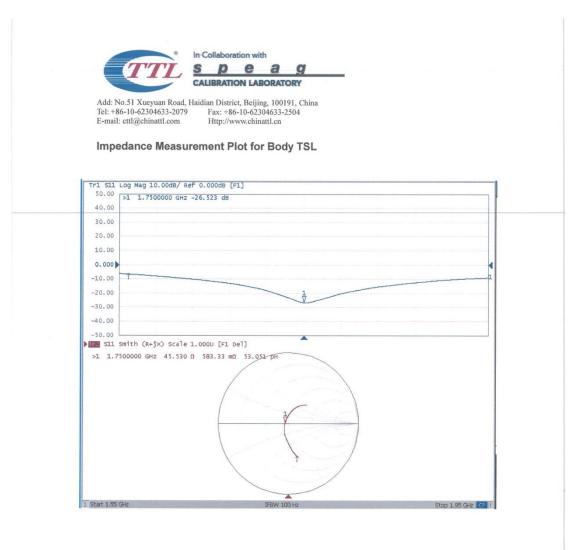
Certificate No: Z15-97167

Page 4 of 8



Certificate No: Z15-97167


Page 5 of 8



Certificate No: Z15-97167

Page 7 of 8

Certificate No: Z15-97167

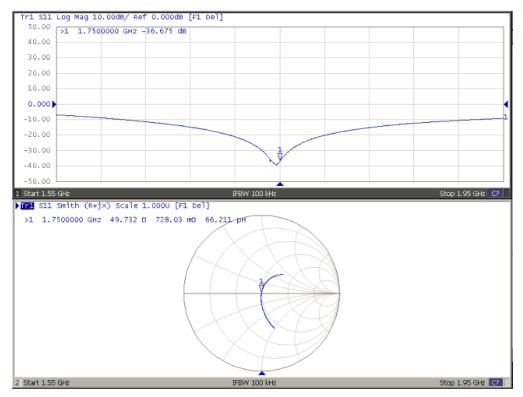
Page 8 of 8

D1750V2, Serial No.1044 Extended Dipole Calibrations

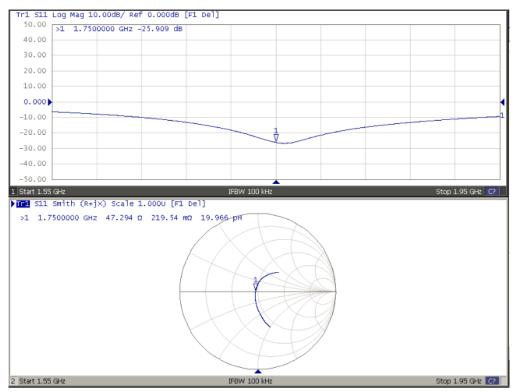
Per IEEE Std 1528-2013, the dipole should have a return loss better than -20dB at the test frequency to reduce uncertainty in the power measurement.

Per KDB 865664 D01, if dipoles are verified in return loss(<-20dB, within 20% of prior calibration), and in impedance (within 5 ohm of prior calibration), the annual calibration is not necessary and the calibration interval can be extended.

Justification of the extended calibration


D1750V2 Serial No.1044 1750 Head						
Date of Measurement	Return-Loss (dB)	Delta (%)	Real Impedance (ohm)	Delta (ohm)	Imaginary Impedance (ohm)	Delta (ohm)
11.03.2015	-36.76		48.891		1.1688	
11.02.2016	-36.675	0.23	49.732	0.841	0.738	0.431

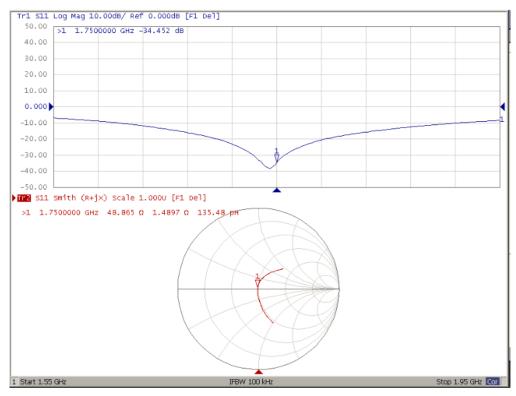
D1750V2 Serial No.1044 1750Body						
Date of Measurement	Return-Loss (dB)	Delta (%)	Real Impedance (ohm)	Delta (ohm)	Imaginary Impedance (ohm)	Delta (ohm)
11.03.2015	-26.523		45.53		0.583	
11.02.2016	-25.909	2.31	47.294	1.764	0.219	0.364


The return loss is < -20dB, within 20% of prior calibration; the impedance is within 5 ohm of prior calibration. Therefore the verification result should support extended calibration.

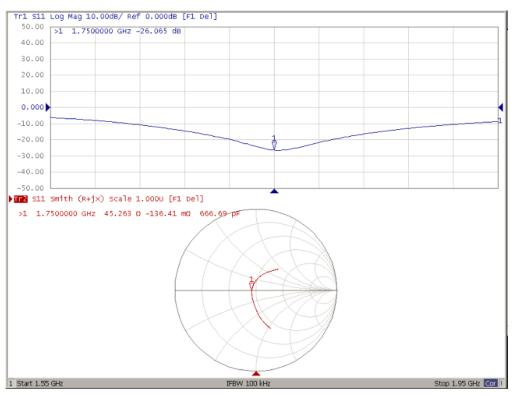
Dipole Verification Data D1750V2 Serial No.1044 1750MHz-Head

1750MHz - Body

Justification of the extended calibration


D1750V2 Serial No.1044								
	1750 Head							
Date of Measurement	Return-Loss (dB)	Delta (%)	Real Impedance (ohm)	Delta (ohm)	Imaginary Impedance (ohm)	Delta (ohm)		
11.03.2015	-36.76		48.891		1.1688			
11.02.2016	-36.675	0.23	49.732	0.841	0.738	0.431		
11.01.2017	-34.452		48.865		1.490			

D1750V2 Serial No.1044								
	1750Body							
Date of Measurement	Return-Loss (dB)	Delta (%)	Real Impedance (ohm)	Delta (ohm)	Imaginary Impedance (ohm)	Delta (ohm)		
11.03.2015	-26.523		45.53		0.583			
11.02.2016	-25.909	2.31	47.294	1.764	0.219	0.364		
11.01.2017	-26.065	0.6	45.263	2.031	-0.136	0.355		


The return loss is < -20dB, within 20% of prior calibration; the impedance is within 5 ohm of prior calibration. Therefore the verification result should support extended calibration.

Dipole Verification Data D1750V2 Serial No.1044 1750MHz-Head

1750MHz - Body

11	<u>Z</u> sp		中国认可国际互认校准
Add: No.51 Xueyua Tel: +86-10-623046 E-mail: cttl@chinatt	33-2079 Fax: +	trict, Beijing, 100191, China 86-10-62304633-2504 www.chinattl.cn	CALIBRATION CNAS L0570
	L-CQ		17-97253
CALIBRATION CE	ERTIFICAT	Έ	
Dbject	D1900	/2 - SN: 5d151	
Calibration Procedure(s)		-003-01 tion Procedures for dipole validation kits	
Calibration date:	Decem	ber 6, 2017	
		the closed laboratory facility: environmer	nt temperature(22±3)°C and
numidity<70%.	(M&TE critical fr	or calibration)	
Calibration Equipment used			Scheduled Calibration
Calibration Equipment used	(M&TE critical fo	Cal Date(Calibrated by, Certificate No.)	Scheduled Calibration Mar-18
Calibration Equipment used Primary Standards Power Meter NRVD	ID #		
Calibration Equipment used Primary Standards Power Meter NRVD Power sensor NRV-Z5	ID # 102196	Cal Date(Calibrated by, Certificate No.) 02-Mar-17 (CTTL, No.J17X01254)	Mar-18
Calibration Equipment used Primary Standards Power Meter NRVD Power sensor NRV-Z5 Reference Probe EX3DV4	ID # 102196 100596	Cal Date(Calibrated by, Certificate No.) 02-Mar-17 (CTTL, No.J17X01254) 02-Mar-17 (CTTL, No.J17X01254)	Mar-18 Mar-18
Calibration Equipment used Primary Standards Power Meter NRVD Power sensor NRV-Z5 Reference Probe EX3DV4 DAE3	ID # 102196 100596 SN 3617	Cal Date(Calibrated by, Certificate No.) 02-Mar-17 (CTTL, No.J17X01254) 02-Mar-17 (CTTL, No.J17X01254) 23-Jan-17(SPEAG,No.EX3-3617_Jan17)	Mar-18 Mar-18 Jan-18
Calibration Equipment used Primary Standards Power Meter NRVD Power sensor NRV-Z5 Reference Probe EX3DV4 DAE3	ID # 102196 100596 SN 3617 SN 536	Cal Date(Calibrated by, Certificate No.) 02-Mar-17 (CTTL, No.J17X01254) 02-Mar-17 (CTTL, No.J17X01254) 23-Jan-17(SPEAG,No.EX3-3617_Jan17) 09-Oct-17(CTTL-SPEAG,No.Z17-97198)	Mar-18 Mar-18 Jan-18 Oct-18
Calibration Equipment used Primary Standards Power Meter NRVD Power sensor NRV-Z5 Reference Probe EX3DV4 DAE3 Secondary Standards Signal Generator E4438C	ID # 102196 100596 SN 3617 SN 536 ID #	Cal Date(Calibrated by, Certificate No.) 02-Mar-17 (CTTL, No.J17X01254) 02-Mar-17 (CTTL, No.J17X01254) 23-Jan-17(SPEAG,No.EX3-3617_Jan17) 09-Oct-17(CTTL-SPEAG,No.Z17-97198) Cal Date(Calibrated by, Certificate No.)	Mar-18 Mar-18 Jan-18 Oct-18 Scheduled Calibration
Calibration Equipment used Primary Standards Power Meter NRVD Power sensor NRV-Z5 Reference Probe EX3DV4 DAE3 Secondary Standards	ID # 102196 100596 SN 3617 SN 536 ID # MY49071430	Cal Date(Calibrated by, Certificate No.) 02-Mar-17 (CTTL, No.J17X01254) 02-Mar-17 (CTTL, No.J17X01254) 23-Jan-17 (CTTL, No.J17X01254) 09-Oct-17 (CTTL-SPEAG,No.Z17-97198) Cal Date(Calibrated by, Certificate No.) 13-Jan-17 (CTTL, No.J17X00286)	Mar-18 Mar-18 Jan-18 Oct-18 Scheduled Calibration Jan-18
Calibration Equipment used Primary Standards Power Meter NRVD Power sensor NRV-Z5 Reference Probe EX3DV4 DAE3 Secondary Standards Signal Generator E4438C Network Analyzer E5071C	ID # 102196 100596 SN 3617 SN 536 ID # MY49071430 MY46110673	Cal Date(Calibrated by, Certificate No.) 02-Mar-17 (CTTL, No.J17X01254) 02-Mar-17 (CTTL, No.J17X01254) 23-Jan-17(SPEAG,No.EX3-3617_Jan17) 09-Oct-17(CTTL-SPEAG,No.Z17-97198) Cal Date(Calibrated by, Certificate No.) 13-Jan-17 (CTTL, No.J17X00286) 13-Jan-17 (CTTL, No.J17X00285)	Mar-18 Mar-18 Jan-18 Oct-18 Scheduled Calibration Jan-18 Jan-18
Calibration Equipment used Primary Standards Power Meter NRVD Power sensor NRV-Z5 Reference Probe EX3DV4 DAE3 Secondary Standards Signal Generator E4438C	ID # 102196 100596 SN 3617 SN 536 ID # MY49071430 MY46110673 Name	Cal Date(Calibrated by, Certificate No.) 02-Mar-17 (CTTL, No.J17X01254) 02-Mar-17 (CTTL, No.J17X01254) 23-Jan-17 (CTTL, No.J17X01254) 23-Jan-17 (SPEAG,No.EX3-3617_Jan17) 09-Oct-17 (CTTL-SPEAG,No.Z17-97198) Cal Date(Calibrated by, Certificate No.) 13-Jan-17 (CTTL, No.J17X00286) 13-Jan-17 (CTTL, No.J17X00285) Function	Mar-18 Mar-18 Jan-18 Oct-18 Scheduled Calibration Jan-18 Jan-18
Calibration Equipment used Primary Standards Power Meter NRVD Power sensor NRV-Z5 Reference Probe EX3DV4 DAE3 Secondary Standards Signal Generator E4438C Network Analyzer E5071C	ID # 102196 100596 SN 3617 SN 536 ID # MY49071430 MY46110673 Name Zhao Jing	Cal Date(Calibrated by, Certificate No.) 02-Mar-17 (CTTL, No.J17X01254) 02-Mar-17 (CTTL, No.J17X01254) 23-Jan-17 (CTTL, No.J17X01254) 23-Jan-17 (SPEAG,No.EX3-3617_Jan17) 09-Oct-17 (CTTL-SPEAG,No.Z17-97198) Cal Date(Calibrated by, Certificate No.) 13-Jan-17 (CTTL, No.J17X00286) 13-Jan-17 (CTTL, No.J17X00285) Function SAR Test Engineer	Mar-18 Mar-18 Jan-18 Oct-18 Scheduled Calibration Jan-18 Jan-18
Calibration Equipment used Primary Standards Power Meter NRVD Power sensor NRV-Z5 Reference Probe EX3DV4 DAE3 Secondary Standards Signal Generator E4438C Network Analyzer E5071C Calibrated by: Reviewed by:	ID # 102196 100596 SN 3617 SN 536 ID # MY49071430 MY46110673 Name Zhao Jing Lin Hao	Cal Date(Calibrated by, Certificate No.) 02-Mar-17 (CTTL, No.J17X01254) 02-Mar-17 (CTTL, No.J17X01254) 23-Jan-17 (CTTL, No.J17X01254) 23-Jan-17 (SPEAG,No.EX3-3617_Jan17) 09-Oct-17 (CTTL-SPEAG,No.Z17-97198) Cal Date(Calibrated by, Certificate No.) 13-Jan-17 (CTTL, No.J17X00286) 13-Jan-17 (CTTL, No.J17X00285) Function SAR Test Engineer SAR Test Engineer SAR Project Leader	Mar-18 Mar-18 Jan-18 Oct-18 Scheduled Calibration Jan-18 Jan-18

Certificate No: Z17-97253

Page 1 of 8

 Add: No.51 Xueyuan Road, Haidian District, Beijing, 100191, China

 Tel: +86-10-62304633-2079
 Fax: +86-10-62304633-2504

 E-mail: cttl@chinattl.com
 http://www.chinattl.cn

lossary:

TSL	tissue simulating liquid
ConvF	sensitivity in TSL / NORMx,y,z
N/A	not applicable or not measured

Calibration is Performed According to the Following Standards:

- a) IEEE Std 1528-2013, "IEEE Recommended Practice for Determining the Peak Spatial-Averaged Specific Absorption Rate (SAR) in the Human Head from Wireless Communications Devices: Measurement Techniques", June 2013
- b) IEC 62209-1, "Measurement procedure for assessment of specific absorption rate of human exposure to radio frequency fields from hand-held and body-mounted wireless communication devices- Part 1: Device used next to the ear (Frequency range of 300MHz to 6GHz)", July 2016
- c) IEC 62209-2, "Procedure to measure the Specific Absorption Rate (SAR) For wireless communication devices used in close proximity to the human body (frequency range of 30MHz to 6GHz)", March 2010
- d) KDB865664, SAR Measurement Requirements for 100 MHz to 6 GHz

Additional Documentation:

e) DASY4/5 System Handbook

Methods Applied and Interpretation of Parameters:

- *Measurement Conditions:* Further details are available from the Validation Report at the end of the certificate. All figures stated in the certificate are valid at the frequency indicated.
- Antenna Parameters with TSL: The dipole is mounted with the spacer to position its feed
 point exactly below the center marking of the flat phantom section, with the arms oriented
 parallel to the body axis.
- Feed Point Impedance and Return Loss: These parameters are measured with the dipole positioned under the liquid filled phantom. The impedance stated is transformed from the measurement at the SMA connector to the feed point. The Return Loss ensures low reflected power. No uncertainty required.
- *Electrical Delay:* One-way delay between the SMA connector and the antenna feed point. No uncertainty required.
- SAR measured: SAR measured at the stated antenna input power.
- SAR normalized: SAR as measured, normalized to an input power of 1 W at the antenna connector.
- SAR for nominal TSL parameters: The measured TSL parameters are used to calculate the nominal SAR result.

The reported uncertainty of measurement is stated as the standard uncertainty of Measurement multiplied by the coverage factor k=2, which for a normal distribution Corresponds to a coverage probability of approximately 95%.

Certificate No: Z17-97253

Page 2 of 8

Add: No.51 Xueyuan Road, Haidian District, Beijing, 100191, China Tel: +86-10-62304633-2079 Fax: +86-10-62304633-2504 E-mail: cttl@chinattl.com http://www.chinattl.cn

Measurement Conditions

DASY system configuration, as far as not given on page 1.

DASY Version	DASY52	52.10.0.1446
Extrapolation	Advanced Extrapolation	
Phantom	Triple Flat Phantom 5.1C	
Distance Dipole Center - TSL	10 mm	with Spacer
Zoom Scan Resolution	dx, dy, dz = 5 mm	
Frequency	1900 MHz ± 1 MHz	

Head TSL parameters

The following parameters and calculations were applied.

	Temperature	Permittivity	Conductivity
Nominal Head TSL parameters	22.0 °C	40.0	1.40 mho/m
Measured Head TSL parameters	(22.0 ± 0.2) °C	39.4 ± 6 %	1.41 mho/m ± 6 %
Head TSL temperature change during test	<1.0 °C		

SAR result with Head TSL

SAR averaged over 1 cm^3 (1 g) of Head TSL	Condition	
SAR measured	250 mW input power	10.2 mW / g
SAR for nominal Head TSL parameters	normalized to 1W	40.5 mW /g ± 18.8 % (k=2)
SAR averaged over 10 cm^3 (10 g) of Head TSL	Condition	
SAR measured	250 mW input power	5.30 mW / g
SAR for nominal Head TSL parameters	normalized to 1W	21.1 mW /g ± 18.7 % (k=2)

Body TSL parameters

The following parameters and calculations were applied.

Te	emperature	Permitti	vity	Conductivity
	22.0 °C	53.3		1.52 mho/m
(22	.0 ± 0.2) °C	52.9 ± 6	5 %	1.54 mho/m ± 6 %
9	<1.0 °C		12	
	_			
	Condit	ion		
	250 mW in	out power		10.2 mW / g
	normalize	d to 1W	40.4	mW /g ± 18.8 % (k=2)
SL	Condit	ion		
	(22	250 mW inj	22.0 °C 53.3 (22.0 ± 0.2) °C 52.9 ± 6 <1.0 °C	22.0 °C 53.3 (22.0 ± 0.2) °C 52.9 ± 6 % <1.0 °C

250 mW input power

normalized to 1W

Certificate No: Z17-97253

SAR for nominal Body TSL parameters

SAR measured

Page 3 of 8

5.34 mW/g

21.2 mW /g ± 18.7 % (k=2)

Appendix (Additional assessments outside the scope of CNAS L0570)

Antenna Parameters with Head TSL

Impedance, transformed to feed point	51.8Ω+ 5.34jΩ	
Return Loss	- 25.2dB	

Antenna Parameters with Body TSL

Impedance, transformed to feed point	48.3Ω+ 5.41jΩ	
Return Loss	- 24.8dB	

General Antenna Parameters and Design

Electrical Delay (one direction)	1.057 ns	
----------------------------------	----------	--

After long term use with 100W radiated power, only a slight warming of the dipole near the feedpoint can be measured.

The dipole is made of standard semirigid coaxial cable. The center conductor of the feeding line is directly connected to the second arm of the dipole. The antenna is therefore short-circuited for DC-signals. On some of the dipoles, small end caps are added to the dipole arms in order to improve matching when loaded according to the position as explained in the "Measurement Conditions" paragraph. The SAR data are not affected by this change. The overall dipole length is still according to the Standard. No excessive force must be applied to the dipole arms, because they might bend or the soldered connections near the feedpoint may be damaged.

Additional EUT Data

Manufactured by	SPEAG
Manufactured by	SPEAG

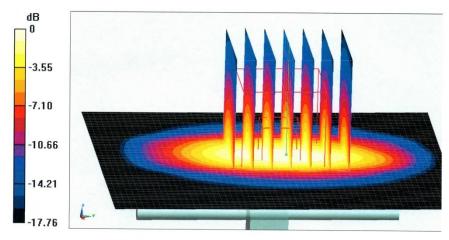
Certificate No: Z17-97253

Page 4 of 8

Tel: +86-10-62304633-2079 Fax: +86-10-62304633-2504 E-mail: cttl@chinattl.com http://www.chinattl.cn

DASY5 Validation Report for Head TSL Test Laboratory: CTTL, Beijing, China

Date: 12.06.2017


DUT: Dipole 1900 MHz; Type: D1900V2; Serial: D1900V2 - SN: 5d151

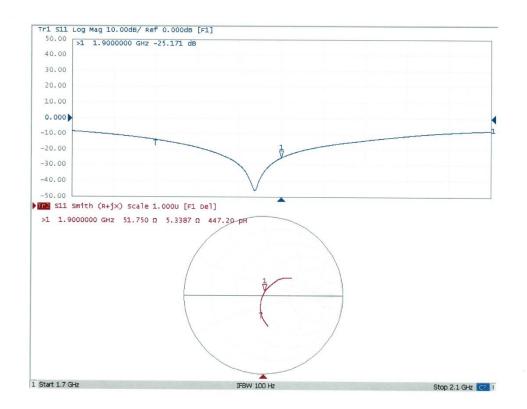
Communication System: UID 0, CW; Frequency: 1900 MHz; Duty Cycle: 1:1 Medium parameters used: f = 1900 MHz; σ = 1.409 S/m; ϵ r = 39.36; ρ = 1000 kg/m3 Phantom section: Center Section

Measurement Standard: DASY5 (IEEE/IEC/ANSI C63.19-2007) DASY5 Configuration:

- Probe: EX3DV4 SN3617; ConvF(8.26, 8.26, 8.26); Calibrated: 1/23/2017;
- Sensor-Surface: 1.4mm (Mechanical Surface Detection)
- Electronics: DAE3 Sn536; Calibrated: 10/9/2017
- Phantom: Triple Flat Phantom 5.1C; Type: QD 000 P51 CA; Serial: 1161/1
- Measurement SW: DASY52, Version 52.10 (0); SEMCAD X Version 14.6.10 (7417)

System Performance Check/Zoom Scan (7x7x7) (7x7x7)/Cube 0: Measurement grid: dx=5mm, dy=5mm, dz=5mm Reference Value = 101.8 V/m; Power Drift = 0.02 dB Peak SAR (extrapolated) = 19.3 W/kg SAR(1 g) = 10.2 W/kg; SAR(10 g) = 5.3 W/kg Maximum value of SAR (measured) = 15.9 W/kg

0 dB = 15.9 W/kg = 12.01 dBW/kg

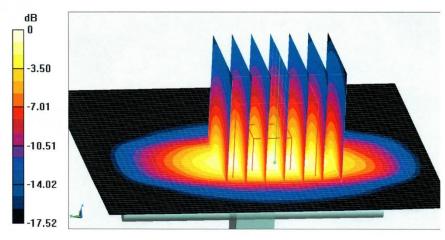

Certificate No: Z17-97253

Page 5 of 8

Impedance Measurement Plot for Head TSL

Certificate No: Z17-97253

Page 6 of 8


DASY5 Validation Report for Body TSL Test Laboratory: CTTL Beijing China

Date: 12.06.2017

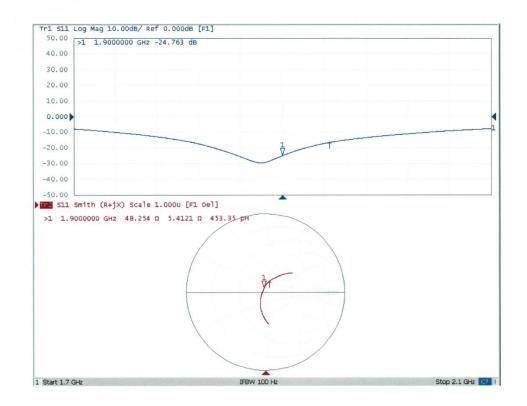
Test Laboratory: CTTL, Beijing, China **DUT: Dipole 1900 MHz; Type: D1900V2; Serial: D1900V2 - SN: 5d151** Communication System: UID 0, CW; Frequency: 1900 MHz; Duty Cycle: 1:1 Medium parameters used: f = 1900 MHz; $\sigma = 1.542$ S/m; $\epsilon_r = 52.89$; $\rho = 1000$ kg/m³ Phantom section: Left Section Measurement Standard: DASY5 (IEEE/IEC/ANSI C63.19-2007) DASY5 Configuration:

- Probe: EX3DV4 SN3617; ConvF(7.95, 7.95, 7.95); Calibrated: 1/23/2017;
- Sensor-Surface: 1.4mm (Mechanical Surface Detection)
- Electronics: DAE3 Sn536; Calibrated: 10/9/2017
- Phantom: Triple Flat Phantom 5.1C; Type: QD 000 P51 CA; Serial: 1161/1
- Measurement SW: DASY52, Version 52.10 (0); SEMCAD X Version 14.6.10 (7417)

System Performance Check/Zoom Scan (7x7x7) (7x7x7)/Cube 0: Measurement grid: dx=5mm, dy=5mm, dz=5mm Reference Value = 93.74 V/m; Power Drift = 0.01 dB Peak SAR (extrapolated) = 18.7 W/kg SAR(1 g) = 10.2 W/kg; SAR(10 g) = 5.34 W/kg Maximum value of SAR (measured) = 15.8 W/kg

0 dB = 15.8 W/kg = 11.99 dBW/kg

Certificate No: Z17-97253


Page 7 of 8

Impedance Measurement Plot for Body TSL

Certificate No: Z17-97253

Page 8 of 8

	CALIBR	ATION LABORATORY	AC-MRA
Add: No.51 Xueyu Tel: +86-10-62304 E-mail: cttl@china	633-2079 Fax	District, Beijing, 100191, China : +86-10-62304633-2504 p://www.chinattl.cn	CALIBRATION No. L0570
Client ECI	Т	Certificate No:	Z15-97171
CALIBRATION C	ERTIFICA	TE	
Object	D245	0V2 - SN: 858	
Calibration Procedure(s)	FD-71	11-2-003-01	
		ation Procedures for dipole validation kits	
Calibration date:		er 30, 2015	
All calibrations have been numidity<70%. Calibration Equipment used		the closed laboratory facility: environme for calibration)	ent temperature(22±3)°C and
numidity<70%.		for calibration)	
numidity<70%. Calibration Equipment used Primary Standards Power Meter NRP2	(M&TE critical		Scheduled Calibration
numidity<70%. Calibration Equipment used Primary Standards Power Meter NRP2 Power sensor NRP-Z91	(M&TE critical ID # 101919 101547	for calibration) Cal Date(Calibrated by, Certificate No.) 01-Jul-15 (CTTL, No.J15X04256) 01-Jul-15 (CTTL, No.J15X04256)	Scheduled Calibration Jun-16 Jun-16
numidity<70%. Calibration Equipment used Primary Standards Power Meter NRP2 Power sensor NRP-Z91 Reference Probe EX3DV4	(M&TE critical ID # 101919 101547 SN 3617	for calibration) Cal Date(Calibrated by, Certificate No.) 01-Jul-15 (CTTL, No.J15X04256) 01-Jul-15 (CTTL, No.J15X04256) 26-Aug-15(SPEAG,No.EX3-3617_Aug15	Scheduled Calibration Jun-16 Jun-16 i) Aug-16
numidity<70%. Calibration Equipment used Primary Standards Power Meter NRP2 Power sensor NRP-Z91 Reference Probe EX3DV4	(M&TE critical ID # 101919 101547	for calibration) Cal Date(Calibrated by, Certificate No.) 01-Jul-15 (CTTL, No.J15X04256) 01-Jul-15 (CTTL, No.J15X04256)	Scheduled Calibration Jun-16 Jun-16 b) Aug-16
numidity<70%. Calibration Equipment used Primary Standards Power Meter NRP2 Power sensor NRP-Z91 Reference Probe EX3DV4 DAE4 Secondary Standards	(M&TE critical ID # 101919 101547 SN 3617	for calibration) Cal Date(Calibrated by, Certificate No.) 01-Jul-15 (CTTL, No.J15X04256) 01-Jul-15 (CTTL, No.J15X04256) 26-Aug-15(SPEAG,No.EX3-3617_Aug15	Scheduled Calibration Jun-16 Jun-16 i) Aug-16
numidity<70%. Calibration Equipment used Primary Standards Power Meter NRP2 Power sensor NRP-Z91 Reference Probe EX3DV4 DAE4 Secondary Standards Signal Generator E4438C	(M&TE critical ID # 101919 101547 SN 3617 SN 777 ID # MY49071430	for calibration) Cal Date(Calibrated by, Certificate No.) 01-Jul-15 (CTTL, No.J15X04256) 01-Jul-15 (CTTL, No.J15X04256) 26-Aug-15(SPEAG,No.EX3-3617_Aug15 26-Aug-15(SPEAG,No.DAE4-777_Aug15 Cal Date(Calibrated by, Certificate No.) 02-Feb-15 (CTTL, No.J15X00729)	Scheduled Calibration Jun-16 Jun-16 i) Aug-16 5) Aug-16
numidity<70%. Calibration Equipment used Primary Standards Power Meter NRP2 Power sensor NRP-Z91 Reference Probe EX3DV4 DAE4 Secondary Standards Signal Generator E4438C	(M&TE critical ID # 101919 101547 SN 3617 SN 777 ID #	for calibration) Cal Date(Calibrated by, Certificate No.) 01-Jul-15 (CTTL, No.J15X04256) 01-Jul-15 (CTTL, No.J15X04256) 26-Aug-15(SPEAG,No.EX3-3617_Aug15 26-Aug-15(SPEAG,No.DAE4-777_Aug15 Cal Date(Calibrated by, Certificate No.) 02-Feb-15 (CTTL, No.J15X00729)	Scheduled Calibration Jun-16 Jun-16 5) Aug-16 5) Aug-16 Scheduled Calibration
Calibration Equipment used Primary Standards Power Meter NRP2 Power sensor NRP-Z91 Reference Probe EX3DV4 DAE4 Secondary Standards Signal Generator E4438C	(M&TE critical ID # 101919 101547 SN 3617 SN 777 ID # MY49071430	for calibration) Cal Date(Calibrated by, Certificate No.) 01-Jul-15 (CTTL, No.J15X04256) 01-Jul-15 (CTTL, No.J15X04256) 26-Aug-15(SPEAG,No.EX3-3617_Aug15 26-Aug-15(SPEAG,No.DAE4-777_Aug15 Cal Date(Calibrated by, Certificate No.) 02-Feb-15 (CTTL, No.J15X00729)	Scheduled Calibration Jun-16 Jun-16 Aug-16 5) Aug-16 Scheduled Calibration Feb-16
numidity<70%. Calibration Equipment used Primary Standards Power Meter NRP2 Power sensor NRP-Z91 Reference Probe EX3DV4 DAE4 Secondary Standards Signal Generator E4438C Network Analyzer E5071C	(M&TE critical ID # 101919 101547 SN 3617 SN 777 ID # MY49071430 MY46110673	for calibration) Cal Date(Calibrated by, Certificate No.) 01-Jul-15 (CTTL, No.J15X04256) 01-Jul-15 (CTTL, No.J15X04256) 26-Aug-15(SPEAG,No.EX3-3617_Aug15 26-Aug-15(SPEAG,No.DAE4-777_Aug15 Cal Date(Calibrated by, Certificate No.) 02-Feb-15 (CTTL, No.J15X00729) 03-Feb-15 (CTTL, No.J15X00728)	Scheduled Calibration Jun-16 Jun-16 5) Aug-16 5) Aug-16 Scheduled Calibration Feb-16 Feb-16
Primary Standards Primary Standards Power Meter NRP2 Power sensor NRP-Z91 Reference Probe EX3DV4 DAE4	(M&TE critical ID # 101919 101547 SN 3617 SN 777 ID # MY49071430 MY46110673 Name	for calibration) Cal Date(Calibrated by, Certificate No.) 01-Jul-15 (CTTL, No.J15X04256) 01-Jul-15 (CTTL, No.J15X04256) 26-Aug-15(SPEAG,No.EX3-3617_Aug15 26-Aug-15(SPEAG,No.DAE4-777_Aug15 Cal Date(Calibrated by, Certificate No.) 02-Feb-15 (CTTL, No.J15X00729) 03-Feb-15 (CTTL, No.J15X00728) Function	Scheduled Calibration Jun-16 Jun-16 5) Aug-16 5) Aug-16 Scheduled Calibration Feb-16 Feb-16
numidity<70%. Calibration Equipment used Primary Standards Power Meter NRP2 Power sensor NRP-Z91 Reference Probe EX3DV4 DAE4 Secondary Standards Signal Generator E4438C Network Analyzer E5071C	(M&TE critical ID # 101919 101547 SN 3617 SN 777 ID # MY49071430 MY46110673 Name Zhao Jing	for calibration) Cal Date(Calibrated by, Certificate No.) 01-Jul-15 (CTTL, No.J15X04256) 01-Jul-15 (CTTL, No.J15X04256) 26-Aug-15(SPEAG,No.EX3-3617_Aug15 26-Aug-15(SPEAG,No.DAE4-777_Aug15 Cal Date(Calibrated by, Certificate No.) 02-Feb-15 (CTTL, No.J15X00729) 03-Feb-15 (CTTL, No.J15X00728) Function SAR Test Engineer	Scheduled Calibration Jun-16 Jun-16 5) Aug-16 5) Aug-16 Scheduled Calibration Feb-16 Feb-16

	In Co	ollabora	tion wit	th	
TTL	S	p	е	а	g
	CAL	IBRATIC	ON LAE	ORATO	ORY

 Add: No.51 Xueyuan Road, Haidian District, Beijing, 100191, China

 Tel: +86-10-62304633-2079
 Fax: +86-10-62304633-2504

 E-mail: ettl@chinattl.com
 Http://www.chinattl.cn

Measurement Conditions

DASY Version	DASY52	52.8.8.1222
Extrapolation	Advanced Extrapolation	
Phantom	Triple Flat Phantom 5.1C	
Distance Dipole Center - TSL	10 mm	with Spacer
Zoom Scan Resolution	dx, dy, dz = 5 mm	
Frequency	2450 MHz ± 1 MHz	

<u>g</u>

Head TSL parameters

The following parameters and calculations were applied.

	Temperature	Permittivity	Conductivity
Nominal Head TSL parameters	22.0 °C	39.2	1.80 mho/m
Measured Head TSL parameters	(22.0 ± 0.2) °C	40.1 ± 6 %	1.82 mho/m ± 6 %
Head TSL temperature change during test	<1.0 °C		

SAR result with Head TSL

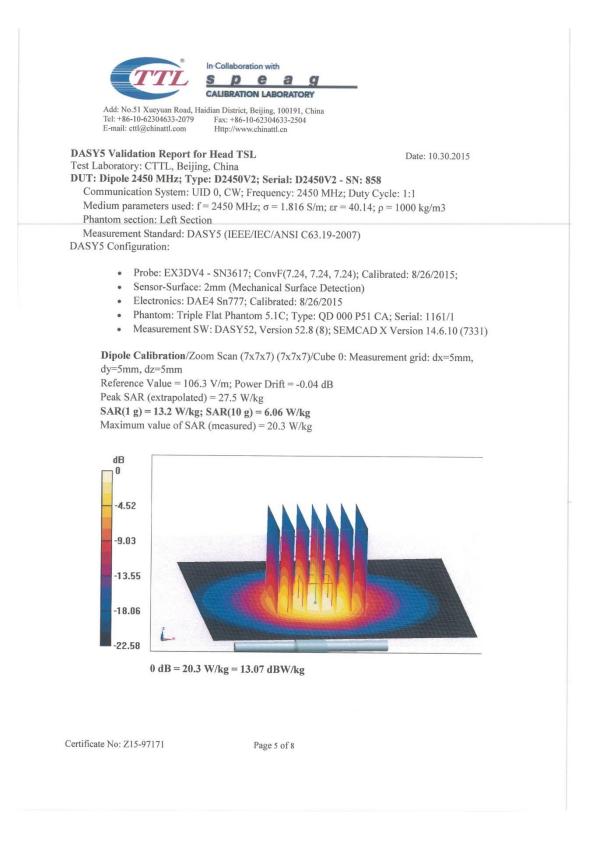
SAR averaged over 1 cm^3 (1 g) of Head TSL	Condition	
SAR measured	250 mW input power	13.2 mW / g
SAR for nominal Head TSL parameters	normalized to 1W	52.9 mW /g ± 20.8 % (k=2)
SAR averaged over 10 cm ³ (10 g) of Head TSL	Condition	
SAR measured	250 mW input power	6.06 mW / g
SAR for nominal Head TSL parameters	normalized to 1W	24.3 mW /g ± 20.4 % (k=2)

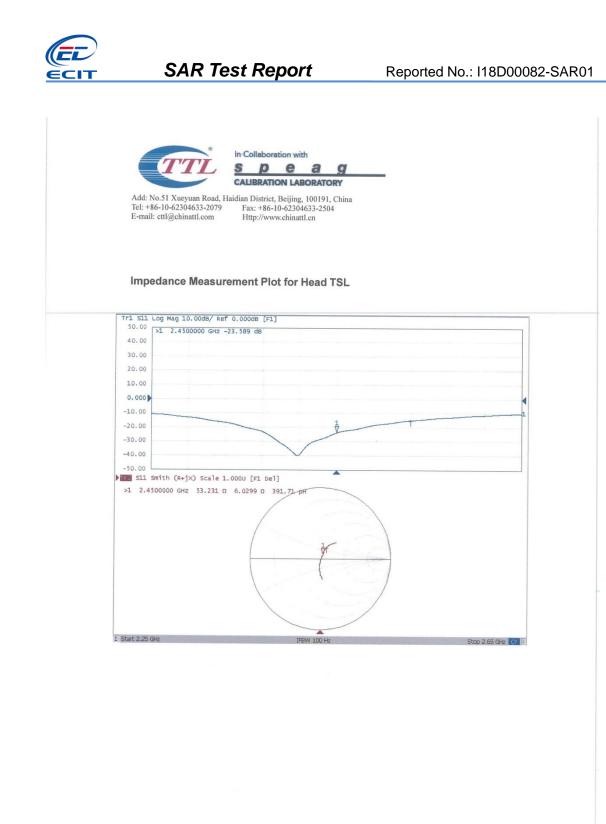
Body TSL parameters

	Temperature	Permittivity	Conductivity
Nominal Body TSL parameters	22.0 °C	52.7	1.95 mho/m
Measured Body TSL parameters	(22.0 ± 0.2) °C	53.1 ± 6 %	1.94 mho/m ± 6 %
Body TSL temperature change during test	<1.0 °C		

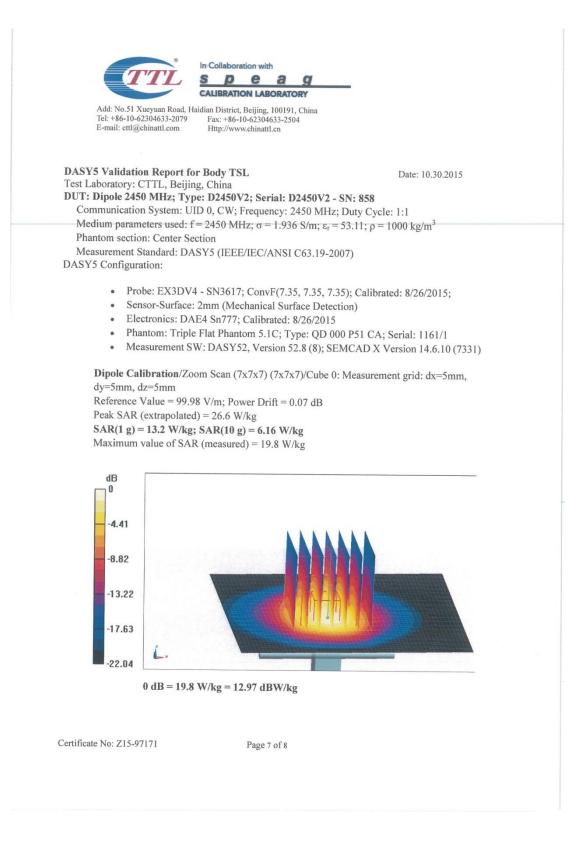
SAR averaged over 1 cm^3 (1 g) of Body TSL	Condition	
SAR measured	250 mW input power	13.2 mW / g
SAR for nominal Body TSL parameters	normalized to 1W	53.1 mW /g ± 20.8 % (k=2)
SAR averaged over 10 cm ³ (10 g) of Body TSL	Condition	
SAR measured	250 mW input power	6.16 mW / g
SAR for nominal Body TSL parameters	normalized to 1W	24.7 mW /g ± 20.4 % (k=2)

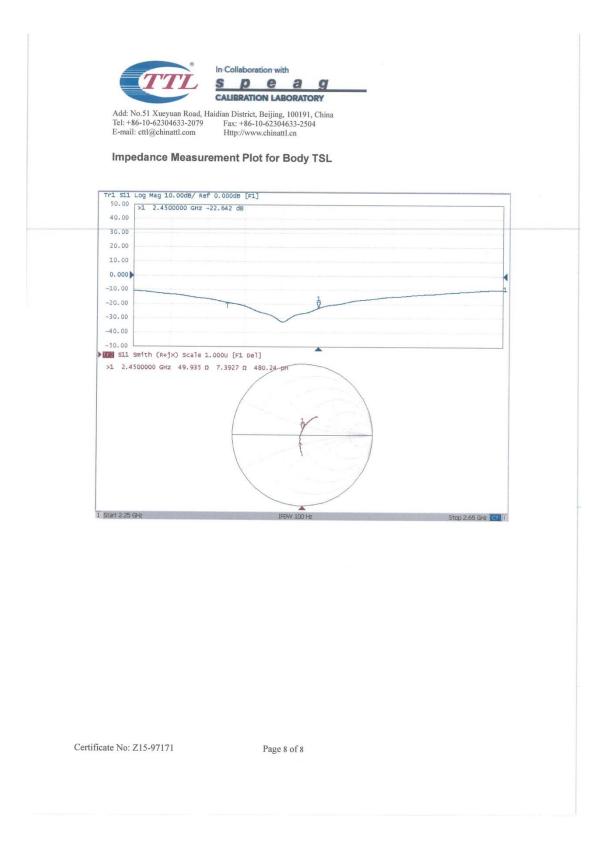
Certificate No: Z15-97171


Page 3 of 8


ΕСΙΤ

Add: No.51 Xueyuan Road, Haid Tel: +86-10-62304633-2079 E-mail: cttl@chinattl.com	talibration Labor lian District, Beijing, 100 Fax: +86-10-62304633 Http://www.chinattl.cn	191, China
Appendix		
Antenna Parameters with H		53.2Ω+ 6.03jΩ
Return Loss		- 23.6dB
Antenna Parameters with E	Body TSL	
Impedance, transformed to feed	point	49.9Ω+ 7.39jΩ
Return Loss		- 22.6dB
General Antenna Paramete	rs and Design	
be measured. The dipole is made of standard so connected to the second arm of th of the dipoles, small end caps are	emirigid coaxial cab he dipole. The ante added to the dipol	1.261 ns a slight warming of the dipole near the feedpoint can le. The center conductor of the feeding line is directly nna is therefore short-circuited for DC-signals. On some e arms in order to improve matching when loaded
After long term use with 100W rate be measured. The dipole is made of standard se connected to the second arm of the of the dipoles, small end caps are according to the position as expla affected by this change. The over	emirigid coaxial cab he dipole. The ante e added to the dipol ined in the "Measu all dipole length is ed to the dipole arm	le. The center conductor of the feeding line is directly nna is therefore short-circuited for DC-signals. On some e arms in order to improve matching when loaded rement Conditions" paragraph The SAR data are not
After long term use with 100W rate be measured. The dipole is made of standard se connected to the second arm of the of the dipoles, small end caps are according to the position as expla affected by this change. The over No excessive force must be appli connections near the feedpoint m	emirigid coaxial cab he dipole. The ante e added to the dipol ined in the "Measu all dipole length is ed to the dipole arr	a slight warming of the dipole near the feedpoint can le. The center conductor of the feeding line is directly nna is therefore short-circuited for DC-signals. On some e arms in order to improve matching when loaded rement Conditions" paragraph. The SAR data are not still according to the Standard
After long term use with 100W rate be measured. The dipole is made of standard so connected to the second arm of ti of the dipoles, small end caps are according to the position as expla affected by this change. The over No excessive force must be appli- connections near the feedpoint m	emirigid coaxial cab he dipole. The ante e added to the dipol ined in the "Measu all dipole length is ed to the dipole arr	a slight warming of the dipole near the feedpoint can le. The center conductor of the feeding line is directly nna is therefore short-circuited for DC-signals. On some e arms in order to improve matching when loaded rement Conditions" paragraph. The SAR data are not still according to the Standard. Is, because they might bend or the soldered
After long term use with 100W rate be measured. The dipole is made of standard so connected to the second arm of ti of the dipoles, small end caps are according to the position as expla affected by this change. The over No excessive force must be appli- connections near the feedpoint m	emirigid coaxial cab he dipole. The ante e added to the dipol ined in the "Measu all dipole length is ed to the dipole arr	a slight warming of the dipole near the feedpoint can le. The center conductor of the feeding line is directly nna is therefore short-circuited for DC-signals. On some e arms in order to improve matching when loaded rement Conditions" paragraph. The SAR data are not still according to the Standard. Is, because they might bend or the soldered




Certificate No: Z15-97171

Page 6 of 8

D2450V2, Serial No.858 Extended Dipole Calibrations

Per IEEE Std 1528-2013, the dipole should have a return loss better than -20dB at the test frequency to reduce uncertainty in the power measurement.

Per KDB 865664 D01, if dipoles are verified in return loss(<-20dB, within 20% of prior calibration), and in impedance (within 5 ohm of prior calibration), the annual calibration is not necessary and the calibration interval can be extended.

Justification of the extended calibration

D2450V2 Serial No.858									
2450 Head									
Date of Measurement	Return-Loss (dB)	Delta (%)	Real Impedance (ohm)	Delta (ohm)	Imaginary Impedance (ohm)	Delta (ohm)			
10.30.2015	-23.589		53.231		6.0299				
10.29.2016	-23.466	0.52	50.672	2.559	6.4162	0.386			

D2450V2 Serial No.858									
2450 Body									
Date of Measurement	Return-Loss (dB)	Delta (%)	Real Impedance (ohm)	Delta (ohm)	Imaginary Impedance (ohm)	Delta (ohm)			
10.30.2015	-22.642		49.935		7.3927				
10.29.2016	-23.075	1.91	46.903	3.032	5.6814	1.711			

The return loss is < -20dB, within 20% of prior calibration; the impedance is within 5 ohm of prior calibration. Therefore the verification result should support extended calibration.