

Report No.: SHEM200900746603

Page: 1 of 37

TEST REPORT

Application No.: SHEM2009007466CR

FCC ID: 2AH25T7820

Applicant: Shanghai Sunmi Technology Co.,Ltd.

Address of Applicant: Room 605, Block 7, KIC Plaza, No. 388 Song Hu Road Yang Pu

District, Shanghai, China

Manufacturer: Shanghai Sunmi Technology Co.,Ltd.

Address of Manufacturer: Room 605, Block 7, KIC Plaza, No. 388 Song Hu Road Yang Pu

District, Shanghai, China

Factory: Kang Zhun Electronical Technology(Kunshan)Co.,Ltd.Wu Song Jiang

Branch

Address of Factory: No.299, Nansong Road, Yushan Town, Kunshan City, Jiangsu

Province, China

Equipment Under Test (EUT):

EUT Name: Wireless data ordering system

Model No.: T7820
Trade mark: SUNMI

Standard(s): 47 CFR Part 15, Subpart C 15.247

Date of Receipt: 2020-09-11

Date of Test: 2020-09-19 to 2020-09-27

Date of Issue: 2020-10-09

Test Result: Pass*

arlan 2han

Parlam Zhan E&E Section Manager

The manufacturer should ensure that all products in series production are in conformity with the product sample detailed in this report. If the product in this report is used in any configuration other than that detailed in the report, the manufacturer must ensure the new system complies with all relevant standards. Any mention of SGS International Electrical Approvals or testing done by SGS International Electrical Approvals in connection with, distribution or use of the product described in this report must be approved by SGS International Electrical Approvals in writing.

Unless otherwise agreed in writing, this document is issued by the Company subject to its General Conditions of Service printed overleaf, available on request or accessible at http://www.sgs.com/en/Terms-and-Conditions.aspx and, for electronic format documents, subject to Terms and Conditions for Electronic Documents at http://www.sgs.com/en/Terms-and-Conditions/Terms-e-Document.aspx. Attention is drawn to the limitation of liability, indemnification and jurisdiction issues defined therein. Any holder of this document advised that information contained hereon reflects the Company's findings at the time of its intervention only and within the limits of Client's instructions, if any. The Company's sole responsibility is to its Client and this document does not exonerate parties to a transaction from exercising all their rights and obligations under the transaction documents. This document cannot be reproduced except in full, without prior written approval of the Company. Any unauthorized alteration, forgery or falsification of the content or appearance of this document is unlawful and offenders may be prosecuted to the fullest extent of the law. Unless otherwise stated the results shown in this test report refer only to the sample(s) tested and such sample(s) are retained for 30 days only.

Attention: To check the authenticity of testing /inspection report & certificate, please contact us at telephone: (86-755) 8307 1443,

NO.588 West Jindu Road, Songjiang District, Shanghai, China 201612 中国・上海・松江区金都西路588号 邮编: 201612 t(86-21) 61915666 f(86-21) 61915678 www.sgsgroup.com.cn t(86-21) 61915666 f(86-21) 61915678 e sgs.china@sgs.com

^{*} In the configuration tested, the EUT complied with the standards specified above.

Report No.: SHEM200900746603

Page: 2 of 37

Revision Record								
Version	Description	Date	Remark					
00	Original	2020-10-09	/					

Authorized for issue by:		
	Michael Nil	
	Micheal Niu / Project Engineer	
	Parlam Zhan	
	Parlam Zhan / Reviewer	

Page: 3 of 37

2 Test Summary

Radio Spectrum Technical Requirement								
Item	Standard	Method	Requirement	Result				
Antenna Requirement	47 CFR Part 15, Subpart C 15.247	N/A	47 CFR Part 15, Subpart C 15.203 & 15.247(b)(4)	Pass				

Radio Spectrum Matter Part							
Item	Standard	Method	Requirement	Result			
Conducted Emissions at AC Power Line (150kHz-30MHz)	47 CFR Part 15, Subpart C 15.247	ANSI C63.10 (2013) Section 6.2	47 CFR Part 15, Subpart C 15.207	Pass			
Minimum 6dB Bandwidth	47 CFR Part 15, Subpart C 15.247	ANSI C63.10 (2013) Section 11.8.1	47 CFR Part 15, Subpart C 15.247a(2)	Pass			
Conducted Peak Output Power	47 CFR Part 15, Subpart C 15.247	ANSI C63.10 (2013) Section 11.9.1	47 CFR Part 15, Subpart C 15.247(b)(3)	Pass			
Power Spectrum Density	47 CFR Part 15, Subpart C 15.247	ANSI C63.10 (2013) Section 11.10.2	47 CFR Part 15, Subpart C 15.247(e)	Pass			
Conducted Band Edges Measurement	47 CFR Part 15, Subpart C 15.247	ANSI C63.10 (2013) Section 11.13.3.2	47 CFR Part 15, Subpart C 15.247(d)	Pass			
Conducted Spurious Emissions	47 CFR Part 15, Subpart C 15.247	ANSI C63.10 (2013) Section 11.11	47 CFR Part 15, Subpart C 15.247(d)	Pass			
Radiated Emissions which fall in the restricted bands	47 CFR Part 15, Subpart C 15.247	ANSI C63.10 (2013) Section 6.10.5	47 CFR Part 15, Subpart C 15.205 & 15.209	Pass			
Radiated Spurious Emissions	47 CFR Part 15, Subpart C 15.247	ANSI C63.10 (2013) Section 6.4,6.5,6.6	47 CFR Part 15, Subpart C 15.205 & 15.209	Pass			

Report No.: SHEM200900746603

Page: 4 of 37

3 Contents

			Page
1	CO	VER PAGE	1
2	TE	ST SUMMARY	3
_			
3	CO	NTENTS	4
4	GE ^l	NERAL INFORMATION	5
•			
	4.1	DETAILS OF E.U.T	
	4.2	POWER LEVEL SETTING USING IN TEST:	
	4.3	DESCRIPTION OF SUPPORT UNITS	
	4.4	MEASUREMENT UNCERTAINTY	
	4.5	TEST LOCATION	
	4.6	TEST FACILITY	
	4.7	DEVIATION FROM STANDARDS	
	4.8	ABNORMALITIES FROM STANDARD CONDITIONS	/
5	EQ	UIPMENT LIST	8
6	RA	DIO SPECTRUM TECHNICAL REQUIREMENT	9
	6.1	ANTENNA REQUIREMENT	g
7	RA	DIO SPECTRUM MATTER TEST RESULTS	10
	7.1	CONDUCTED EMISSIONS AT AC POWER LINE (150KHz-30MHz)	10
	7.2	MINIMUM 6DB BANDWIDTH	
	7.3	CONDUCTED PEAK OUTPUT POWER	
	7.4	Power Spectrum Density	
	7.5	CONDUCTED BAND EDGES MEASUREMENT	
	7.6	CONDUCTED SPURIOUS EMISSIONS	18
	7.7	RADIATED EMISSIONS WHICH FALL IN THE RESTRICTED BANDS	
	7.8	RADIATED SPURIOUS EMISSIONS	
8	TES	ST SETUP PHOTOGRAPHS	37
9	Ell	T CONSTRUCTIONAL DETAILS	37
3		I CUNSTRUCTIONAL DETAILS	

Page: 5 of 37

4 General Information

4.1 Details of E.U.T.

Power supply: DC5V by adapter

Adapter Model:TPA-46B050100UU INPUT:100-240V,50/60Hz,0.2A

OUTPUT:5V,1A

Test voltage: AC 120V/60Hz

Antenna Gain: 2.3dBi

Antenna Type: PIFA Antenna
Bluetooth Version: BT4.2 Dual mode

Channel Spacing: 2MHz
Data Rate: 1Mbps
Modulation Type: GFSK
Number of Channels: 40

Operation Frequency: 2402MHz to 2480MHz

4.2 Power level setting using in test:

Channel	BLE
0	Default
19	Default
39	Default

4.3 Description of Support Units

Description	Manufacturer	Model No.	Serial No.	
Laptop	Lenovo	ThinkPad X100e	/	

Page: 6 of 37

4.4 Measurement Uncertainty

No.	Item	Measurement Uncertainty
1	Radio Frequency	8.4 x 10 ⁻⁸
2	Timeout	2s
3	Duty Cycle	0.37%
4	Occupied Bandwidth	3%
5	RF Conducted Power	0.6dB
6	RF Power Density	2.9dB
7	Conducted Spurious Emissions	0.75dB
8	DE Dadiated Dower	5.1dB (Below 1GHz)
0	RF Radiated Power	4.9dB (Above 1GHz)
		4.2dB (Below 30MHz)
0	Dedicted Courieus Emissies Test	4.5dB (30MHz-1GHz)
9	Radiated Spurious Emission Test	5.1dB (1GHz-18GHz)
		5.4dB (Above 18GHz)
10	Temperature Test	1°C
11	Humidity Test	3%
12	Supply Voltages	1.5%
13	Time	3%

Note: The measurement uncertainty represents an expanded uncertainty expressed at approximately the 95% confidence level using a coverage factor of k=2.

Report No.: SHEM200900746603

Page: 7 of 37

4.5 Test Location

All tests were performed at:

Compliance Certification Services (Kunshan) Inc.

No.10 Weiye Rd, Innovation park, Eco&Tec, Development Zone, Kunshan City, Jiangsu, China.

Tel: +86 512 5735 5888 Fax: +86 512 5737 0818

No tests were sub-contracted.

4.6 Test Facility

The test facility is recognized, certified, or accredited by the following organizations:

• CNAS (No. CNAS L4354)

CNAS has accredited Compliance Certification Services (Kunshan) Inc. to ISO/IEC 17025:2017 General Requirements for the Competence of Testing and Calibration Laboratories (CNAS-CL01 Accreditation Criteria for the Competence of Testing and Calibration Laboratories) for the competence in the field of testing.

• A2LA (Certificate No. 2541.01)

Compliance Certification Services (Kunshan) Inc. is accredited by the American Association for Laboratory Accreditation (A2LA). Certificate No. 2541.01.

• FCC (Designation Number: CN1172)

Compliance Certification Services Inc. has been recognized as an accredited testing laboratory. Designation Number: CN1172.

• ISED (CAB identifier: CN0072)

Compliance Certification Services (Kunshan) Inc. has been recognized by Innovation, Science and Economic Development Canada (ISED) as an accredited testing laboratory.

CAB Identifier: CN0072.

• VCCI (Member No.: 1938)

The 3m and 10m Semi-anechoic chamber and Shielded Room of Compliance Certification Services (Kunshan) Inc. has been registered in accordance with the Regulations for Voluntary Control Measures with Registration No.: R-1600, C-1707, T-1499, G-10216 respectively.

4.7 Deviation from Standards

None

4.8 Abnormalities from Standard Conditions

None

Page: 8 of 37

5 Equipment List

Item Equipment Manufacturer Model Serial Number Cal Date Cal. Due							
	nducted Emission at Mains Term			Serial Humber	Cai Date	Cai. Due Date	
1	EMI Test Receive	R&S	ESCI	100781	02/24/2020	02/23/2021	
2	LISN	R&S	ENV216	101604	10/24/2019	10/23/2020	
3	LISN	Schwarzbeck	NNLK 8129	8129-143	10/24/2019	10/23/2020	
4	Pulse Limiter	R&S	ESH3-Z2	100609	02/24/2020	02/23/2021	
5	CE test Cable	Thermax	/	14	02/24/2020	02/23/2021	
RI	Conducted Test	!	I				
1	Spectrum Analyzer	Agilent	E4446A	MY44020154	04/22/2020	04/21/2021	
2	Spectrum Analyzer	Keysight	N9020A	MY55370209	12/19/2019	12/18/2020	
3	Signal Generator	Agilent	E8257C	MY43321570	10/24/2019	10/23/2020	
4	Vector Signal Generator	R&S	SMU 200A	102744	02/24/2020	02/23/2021	
5	Universal Radio Communication Tester	R&S	CMU200	109525	12/19/2019	12/18/2020	
6	Universal Radio Communication Tester	R&S	CMW500	159275	12/19/2019	12/18/2020	
7	Power Meter	Anritsu	ML2495A	1445010	04/21/2020	04/20/2021	
8	Switcher	CCSRF	FY562	KS301219	12/20/2019	12/19/2020	
9	AC Power Source	EXTECH	6605	1570106	N.C.R	N.C.R	
10	DC Power Supply	Aglient	E3632A	MY50340053	N.C.R	N.C.R	
11	6dB Attenuator	Mini-Circuits	NAT-6-2W	15542-1	N.C.R	N.C.R	
12	Power Divider	AISI	IOWOPE2068	PE2068	N.C.R	N.C.R	
13	Filter	MICRO-TRONICS	BRM50701	5	N.C.R	N.C.R	
14	Conducted test cable	/	RF01-RF04	/	04/21/2020	04/22/2021	
15	Temp. / Humidity Chamber	TERCHY	MHK-120AK	X30109	04/21/2020	04/20/2021	
RF F	Radiated Test						
1	Spectrum Analyzer	R&S	FSV40	101493	01/08/2020	01/07/2021	
2	Signal Generator	Agilent	E8257C	MY43321570	10/24/2019	10/23/2020	
3	Loop Antenna	Schwarzbeck	HXYZ9170	9170-108	02/24/2020	02/23/2021	
4	Bilog Antenna	TESEQ	CBL 6112D	35403	06/22/2019	06/21/2021	
5	Bilog Antenna	SCHWARZBECK	VULB9160	9160-3342	04/29/2019	04/28/2021	
6	Horn-antenna(1-18GHz)	Schwarzbeck	BBHA9120D	267	11/04/2018	11/03/2020	
7	Horn-antenna(1-18GHz)	ETS-LINDGREN	3117	00143290	02/25/2019	02/24/2021	
8	Horn Antenna(18-40GHz)	Schwarzbeck	BBHA9170	BBHA9170171	02/27/2018	02/26/2021	
9	Pre-Amplifier(30MHz~18GHz)	CCSRF	AMP1277	1	12/19/2019	12/18/2020	
10	Pre-Amplifier(0.1~26.5GHz)	EMCI	EMC012645	980060	04/21/2020	04/20/2021	
11	Low Pass Filter	MICRO-TRONICS	VLFX-950	RV142900829	N.C.R	N.C.R	
12	High Pass Filter	Mini-Circuits	VHF-1200	15542	N.C.R	N.C.R	
13	Filter (5450MHz~5770 MHz)	MICRO-TRONICS	BRC50704-01	2	N.C.R	N.C.R	
14	Filter (5690 MHz~5930 MHz)	MICRO-TRONICS	BRC50705-01	4	N.C.R	N.C.R	
15	Filter (5150 MHz~5350 MHz)	MICRO-TRONICS	BRC50703-01	2	N.C.R	N.C.R	
16	Filter (885 MHz~915 MHz)	MICRO-TRONICS	BRM14698	1	N.C.R	N.C.R	
17	Filter (815 MHz~860 MHz)	MICRO-TRONICS	BRM14697	1	N.C.R	N.C.R	
18	Filter (1745 MHz~1910 MHz)	MICRO-TRONICS	BRM14700	1	N.C.R	N.C.R	
19	Filter (1922 MHz~1977 MHz)	MICRO-TRONICS	BRM50715	1	N.C.R	N.C.R	
20	Filter (2550 MHz)	MICRO-TRONICS	HPM13362	5	N.C.R	N.C.R	
21	Filter (1532 MHz~1845 MHz)	MICRO-TRONICS	BRM50713	1	N.C.R	N.C.R	
22	Filter (2.4GHz)	MICRO-TRONICS	BRM50701	5	N.C.R	N.C.R	
23	RE test cable	1	RE01-RE04	/	04/21/2020	04/22/2021	

Page: 9 of 37

6 Radio Spectrum Technical Requirement

6.1 Antenna Requirement

6.1.1 Test Requirement:

47 CFR Part 15, Subpart C 15.203 & 15.247(b)(4)

6.1.2 Conclusion

Standard Requirement:

An intentional radiator shall be designed to ensure that no antenna other than that furnished by the responsible party shall be used with the device. The use of a permanently attached antenna or of an antenna that uses a unique coupling to the intentional radiator, the manufacturer may design the unit so that a broken antenna can be replaced by the user, but the use of a standard antenna jack or electrical connector is prohibited.

15.247(b) (4) requirement:

The conducted output power limit specified in paragraph (b) of this section is based on the use of antennas with directional gains that do not exceed 6 dBi. Except as shown in paragraph (c) of this section, if transmitting antennas of directional gain greater than 6 dBi are used, the conducted output power from the intentional radiator shall be reduced below the stated values in paragraphs (b)(1), (b)(2), and (b)(3) of this section, as appropriate, by the amount in dB that the directional gain of the antenna exceeds 6 dBi.

EUT Antenna:

The antenna is PIFA Antenna on the main PCB and no consideration of replacement. The best case gain of the antenna is 2.3dBi.

Antenna location: Refer to Appendix (Internal Photos).

Page: 10 of 37

7 Radio Spectrum Matter Test Results

7.1 Conducted Emissions at AC Power Line (150kHz-30MHz)

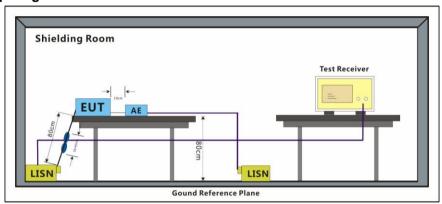
Test Requirement 47 CFR Part 15, Subpart C 15.207 Test Method: ANSI C63.10 (2013) Section 6.2

Limit:

Fraguency of amission/MU=)	Conducted limit(dBµV)				
Frequency of emission(MHz)	Quasi-peak	Average			
0.15-0.5	66 to 56*	56 to 46*			
0.5-5	56	46			
5-30	60	50			
*Decreases with the logarithm of the frequency.					

Page: 11 of 37

7.1.1 E.U.T. Operation

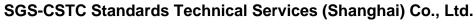

Operating Environment:

Temperature: 24 °C Humidity: 48 % RH Atmospheric Pressure: 1010 mbar

Test mode d:TX mode_Keep the EUT in continuously transmitting mode with GFSK

modulation

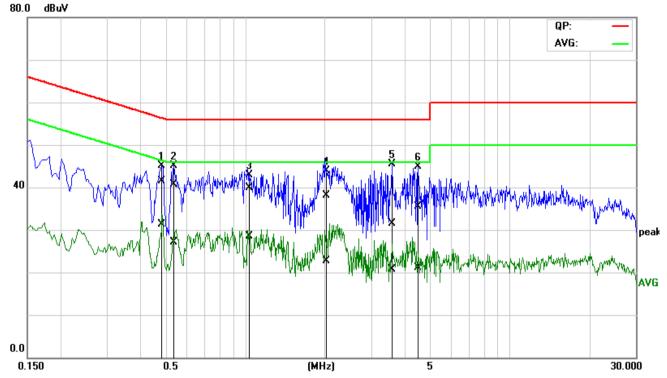
7.1.2 Test Setup Diagram



7.1.3 Measurement Procedure and Data

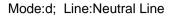
- 1) The mains terminal disturbance voltage test was conducted in a shielded room.
- 2) The EUT was connected to AC power source through a LISN 1 (Line Impedance Stabilization Network) which provides a $50 \text{ohm}/50 \mu\text{H} + 5 \text{ohm}$ linear impedance. The power cables of all other units of the EUT were connected to a second LISN 2, which was bonded to the ground reference plane in the same way as the LISN 1 for the unit being measured. A multiple socket outlet strip was used to connect multiple power cables to a single LISN provided the rating of the LISN was not exceeded.
- 3) The tabletop EUT was placed upon a non-metallic table 0.8m above the ground reference plane. And for floor-standing arrangement, the EUT was placed on the horizontal ground reference plane,
- 4) The test was performed with a vertical ground reference plane. The rear of the EUT shall be 0.4 m from the vertical ground reference plane. The vertical ground reference plane was bonded to the horizontal ground reference plane. The LISN 1 was placed 0.8 m from the boundary of the unit under test and bonded to a ground reference plane for LISNs mounted on top of the ground reference plane. This distance was between the closest points of the LISN 1 and the EUT. All other units of the EUT and associated equipment was at least 0.8 m from the LISN 2.
- 5) In order to find the maximum emission, the relative positions of equipment and all of the interface cables must be changed according to ANSI C63.10 on conducted measurement.

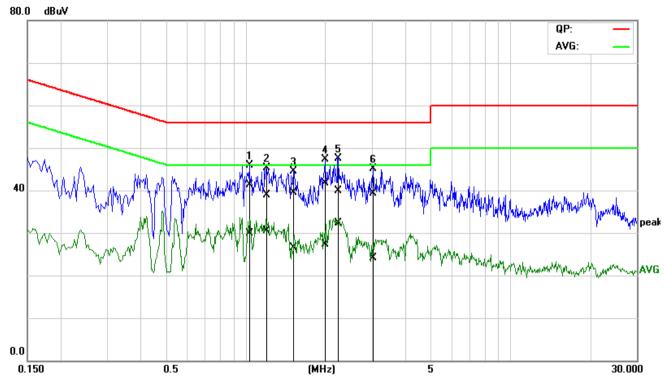
Remark:


- 1.LISN=Read Level+ Cable Loss+ LISN Factor
- 2. This test item was investigated while operating in each channel mode, however, it was determined that channel 39 operation for BLE produced the worst conducted emissions. So the conducted emissions produced from other operation are not report.

Page: 12 of 37

Mode:d; Line:Live Line




No.	Frequency	QuasiPeak reading	Average reading	Correction factor	QuasiPeak result	Average result	QuasiPeak limit	Average limit	QuasiPeak margin	Average margin	Remark
	(MHz)	(dBuV)	(dBuV)	(dB)	(dBuV)	(dBuV)	(dBuV)	(dBuV)	(dB)	(dB)	
1*	0.4832	21.97	11.76	19.46	41.43	31.22	56.28	46.28	-14.85	-15.06	Pass
2	0.5366	21.16	7.56	19.47	40.63	27.03	56.00	46.00	-15.37	-18.97	Pass
3	1.0380	20.25	8.98	19.58	39.83	28.56	56.00	46.00	-16.17	-17.44	Pass
4	2.0385	18.43	3.07	19.67	38.10	22.74	56.00	46.00	-17.90	-23.26	Pass
5	3.6162	11.78	0.81	19.80	31.58	20.61	56.00	46.00	-24.42	-25.39	Pass
6	4.5259	15.67	1.29	19.85	35.52	21.14	56.00	46.00	-20.48	-24.86	Pass

Page: 13 of 37

No.	Frequency	QuasiPeak reading	Average reading	Correction factor	QuasiPeak result	Average result	QuasiPeak limit	Average limit	QuasiPeak margin	Average margin	Remark
	(MHz)	(dBuV)	(dBuV)	(dB)	(dBuV)	(dBuV)	(dBuV)	(dBuV)	(dB)	(dB)	
1	1.0246	21.70	10.31	19.56	41.26	29.87	56.00	46.00	-14.74	-16.13	Pass
2	1.1908	19.35	11.02	19.57	38.92	30.59	56.00	46.00	-17.08	-15.41	Pass
3	1.5320	19.98	7.00	19.60	39.58	26.60	56.00	46.00	-16.42	-19.40	Pass
4	1.9895	22.04	7.66	19.63	41.67	27.29	56.00	46.00	-14.33	-18.71	Pass
5*	2.2551	20.28	12.59	19.65	39.93	32.24	56.00	46.00	-16.07	-13.76	Pass
6	3.0378	19.67	4.46	19.71	39.38	24.17	56.00	46.00	-16.62	-21.83	Pass

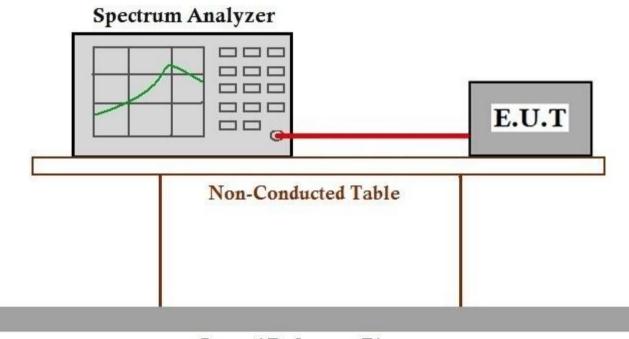
Page: 14 of 37

7.2 Minimum 6dB Bandwidth

Test Requirement 47 CFR Part 15, Subpart C 15.247a(2)
Test Method: ANSI C63.10 (2013) Section 11.8.1

Limit: ≥500 kHz

7.2.1 E.U.T. Operation


Operating Environment:

Temperature: 24 °C Humidity: 48 % RH Atmospheric Pressure: 1006 mbar

Test mode d:TX mode_Keep the EUT in continuously transmitting mode with GFSK

modulation

7.2.2 Test Setup Diagram

Ground Reference Plane

7.2.3 Measurement Procedure and Data

The detailed test data see: Appendix C for SHEM200900746603

Page: 15 of 37

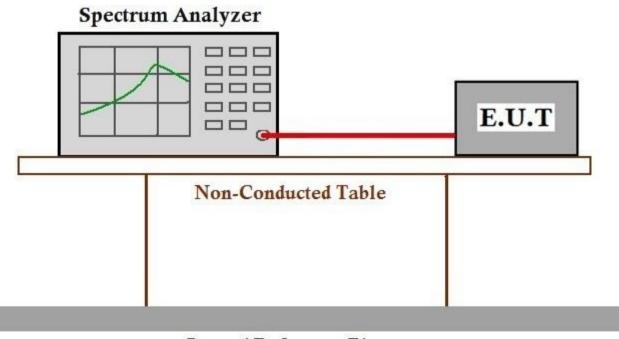
7.3 Conducted Peak Output Power

Test Requirement 47 CFR Part 15, Subpart C 15.247(b)(3)
Test Method: ANSI C63.10 (2013) Section 11.9.1

Limit:

Frequency range(MHz)	Output power of the intentional radiator(watt)				
	1 for ≥50 hopping channels				
902-928	0.25 for 25≤ hopping channels <50				
	1 for digital modulation				
	1 for ≥75 non-overlapping hopping channels				
2400-2483.5	0.125 for all other frequency hopping systems				
	1 for digital modulation				
5725-5850	1 for frequency hopping systems and digital modulation				

7.3.1 E.U.T. Operation


Operating Environment:

Temperature: 24 °C Humidity: 48 % RH Atmospheric Pressure: 1006 mbar

Test mode d:TX mode_Keep the EUT in continuously transmitting mode with GFSK

modulation

7.3.2 Test Setup Diagram

Ground Reference Plane

7.3.3 Measurement Procedure and Data

The detailed test data see: Appendix C for SHEM200900746603

NO.588 West Jindu Road, Songjiang District, Shanghai, China 201612 中国・上海・松江区金都西路588号 邮编: 201612

Page: 16 of 37

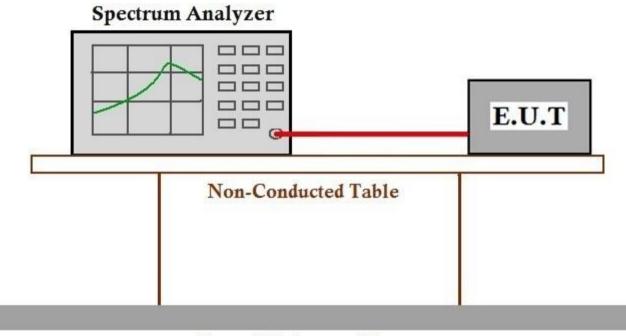
7.4 Power Spectrum Density

Test Requirement 47 CFR Part 15, Subpart C 15.247(e)
Test Method: ANSI C63.10 (2013) Section 11.10.2

Limit: ≤8dBm in any 3 kHz band during any time interval of continuous

transmission

7.4.1 E.U.T. Operation


Operating Environment:

Temperature: 24 °C Humidity: 48 % RH Atmospheric Pressure: 1006 mbar

Test mode d:TX mode_Keep the EUT in continuously transmitting mode with GFSK

modulation

7.4.2 Test Setup Diagram

Ground Reference Plane

7.4.3 Measurement Procedure and Data

The detailed test data see: Appendix C for SHEM200900746603

Page: 17 of 37

7.5 Conducted Band Edges Measurement

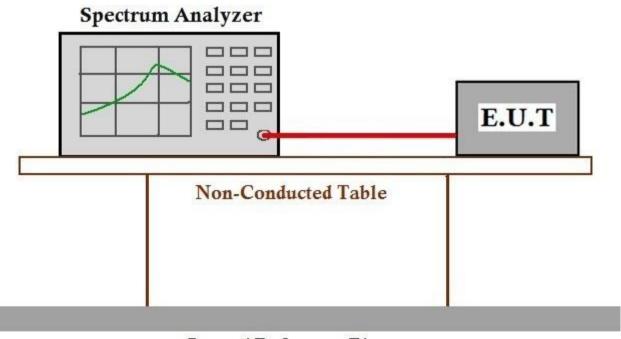
Test Requirement 47 CFR Part 15, Subpart C 15.247(d)
Test Method: ANSI C63.10 (2013) Section 11.13.3.2

Limit:

In any 100 kHz bandwidth outside the frequency band in which the spread spectrum or digitally modulated intentional radiator is operating, the radio frequency power that is produced by the intentional radiator shall be at least 20 dB below that in the 100 kHz bandwidth within the band that contains the highest level of the desired power, based on either an RF conducted or a radiated measurement, provided the transmitter demonstrates compliance with the peak conducted power limits. If the transmitter complies with the conducted power limits based on the use of RMS averaging over a time interval, as permitted under paragraph (b)(3) of this section, the attenuation required under this paragraph shall be 30 dB instead of 20 dB. Attenuation below the general limits specified in §15.209(a) is not required. In addition, radiated emissions which fall in the restricted bands, as defined in §15.205(a), must also comply with the radiated emission limits specified in

§15.209(a) (see §15.205(c)

7.5.1 E.U.T. Operation


Operating Environment:

Temperature: 24 °C Humidity: 48 % RH Atmospheric Pressure: 1006 mbar

Test mode d:TX mode_Keep the EUT in continuously transmitting mode with GFSK

modulation

7.5.2 Test Setup Diagram

Ground Reference Plane

7.5.3 Measurement Procedure and Data

The detailed test data see: Appendix C for SHEM200900746603

NO.588 West Jindu Road,Songjiang District,Shanghai,China 201612 中国・上海・松江区金都西路588号 邮编: 201612 t(86-21) 61915666 f(86-21) 61915678 www.sgsgroup.com.cn t(86-21) 61915666 f(86-21) 61915678 e sgs.china@sgs.com

Page: 18 of 37

7.6 Conducted Spurious Emissions

Test Requirement 47 CFR Part 15, Subpart C 15.247(d)
Test Method: ANSI C63.10 (2013) Section 11.11

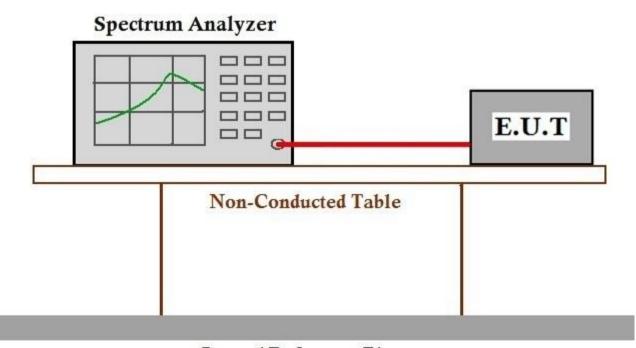
Limit:

In any 100 kHz bandwidth outside the frequency band in which the spread spectrum or digitally modulated intentional radiator is operating, the radio frequency power that is produced by the intentional radiator shall be at least 20 dB below that in the 100 kHz bandwidth within the band that contains the highest level of the desired power, based on either an RF conducted or a radiated measurement, provided the transmitter demonstrates compliance with the peak conducted power limits. If the transmitter complies with the conducted power limits based on the use of RMS averaging over a time interval, as permitted under paragraph (b)(3) of this section, the attenuation required under this paragraph shall be 30 dB instead of 20 dB. Attenuation below the general limits specified in §15.209(a) is not required. In addition, radiated emissions which fall in the restricted bands, as defined in

§15.205(a), must also comply with the radiated emission limits specified in

§15.209(a) (see §15.205(c)

7.6.1 E.U.T. Operation


Operating Environment:

Temperature: 24 °C Humidity: 48 % RH Atmospheric Pressure: 1006 mbar

Test mode d:TX mode_Keep the EUT in continuously transmitting mode with GFSK

modulation

7.6.2 Test Setup Diagram

Ground Reference Plane

7.6.3 Measurement Procedure and Data

The detailed test data see: Appendix C for SHEM200900746603

NO.588 West Jindu Road, Songjiang District, Shanghai, China 201612 中国・上海・松江区金都西路588号 邮编: 201612 t(86-21) 61915666 f(86-21) 61915678 www.sgsgroup.com.cn t(86-21) 61915666 f(86-21) 61915678 e sgs.china@sgs.com

Report No.: SHEM200900746603

Page: 19 of 37

7.7 Radiated Emissions which fall in the restricted bands

Test Requirement 47 CFR Part 15, Subpart C 15.205 & 15.209

Test Method: ANSI C63.10 (2013) Section 6.10.5

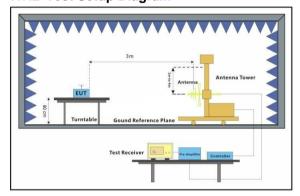
Limit:

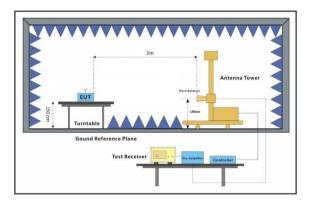
Frequency(MHz)	Field strength(microvolts/meter)	Measurement distance(meters)		
0.009-0.490	2400/F(kHz)	300		
0.490-1.705	24000/F(kHz)	30		
1.705-30.0	30	30		
30-88	100	3		
88-216	150	3		
216-960	200	3		
Above 960	500	3		

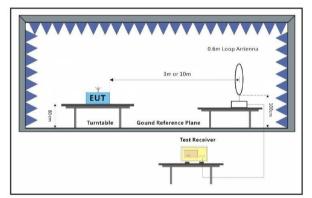
Remark: The emission limits shown in the above table are based on measurements employing a CISPR quasi-peak detector except for the frequency bands 9-90kHz, 110-490kHz and above 1000 MHz. Radiated emission limits in these three bands are based on measurements employing an average detector, the peak field strength of any emission shall not exceed the maximum permitted average limits specified above by more than 20 dB under any condition of modulation.

Page: 20 of 37

7.7.1 E.U.T. Operation


Operating Environment:


Temperature: 24 °C Humidity: 48 % RH Atmospheric Pressure: 1006 mbar


Test mode d:TX mode_Keep the EUT in continuously transmitting mode with GFSK

modulation

7.7.2 Test Setup Diagram

NO.588 West Jindu Road, Songjiang District, Shanghai, China 201612 中国・上海・松江区金都西路588号 邮编: 201612

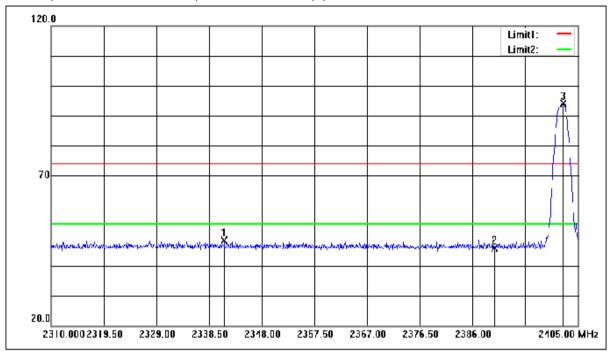
Report No.: SHEM200900746603

Page: 21 of 37

7.7.3 Measurement Procedure and Data

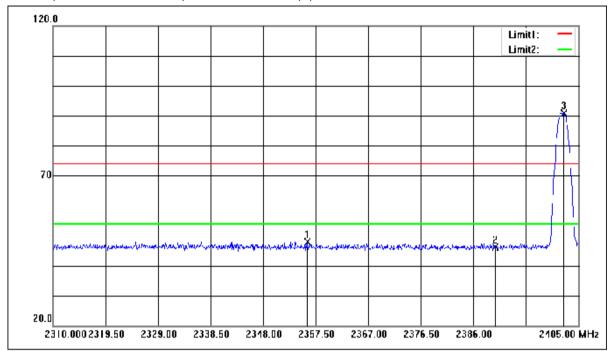
- a. For below 1GHz, the EUT was placed on the top of a rotating table 0.8 meters above the ground at a 3 or 10 meter semi-anechoic chamber. The table was rotated 360 degrees to determine the position of the highest radiation.
- b. For above 1GHz, the EUT was placed on the top of a rotating table 1.5 meters above the ground at a 3 meter fully-anechoic chamber. The table was rotated 360 degrees to determine the position of the highest radiation.
- c. The EUT was set 3 or 10 meters away from the interference-receiving antenna, which was mounted on the top of a variable-height antenna tower.
- d. The antenna height is varied from one meter to four meters above the ground to determine the maximum value of the field strength. Both horizontal and vertical polarizations of the antenna are set to make the measurement.
- e. For each suspected emission, the EUT was arranged to its worst case and then the antenna was tuned to heights from 1 meter to 4 meters (for the test frequency of below 30MHz, the antenna was tuned to heights 1 meter) and the rotatable table was turned from 0 degrees to 360 degrees to find the maximum reading.
- f. The test-receiver system was set to Peak Detect Function and Specified Bandwidth with Maximum Hold Mode.
- g. If the emission level of the EUT in peak mode was 10dB lower than the limit specified, then testing could be stopped and the peak values of the EUT would be reported. Otherwise the emissions that did not have 10dB margin would be re-tested one by one using peak, quasi-peak or average method as specified and then reported in a data sheet.
- h. Test the EUT in the lowest channel, the middle channel, the Highest channel.
- i. The radiation measurements are performed in X, Y, Z axis positioning for Transmitting mode, and found the X axis positioning which it is the worst case.
- j. Repeat above procedures until all frequencies measured was complete.

Remark 1: Level= Read Level+ Cable Loss+ Antenna Factor- Preamp Factor

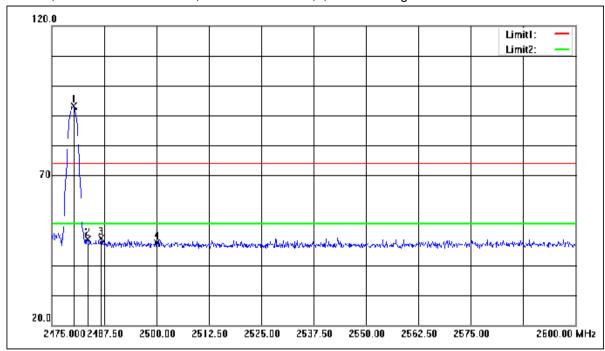

Remark 2: For frequencies above 1GHz, the field strength limits are based on average limits. However, the peak field strength of any emission shall not exceed the maximum permitted average limits specified above by more than 20 dB under any condition of modulation. For the emissions whose peak level is lower than the average limit, only the peak measurement is shown in the report.

Page: 22 of 37

Mode:d; Polarization:Horizontal; Modulation:GFSK; ; Channel:Low

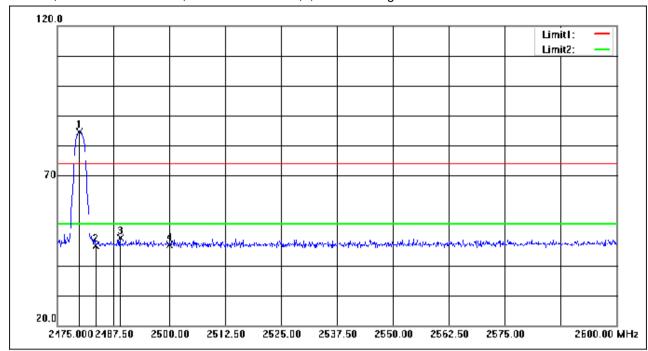

No.	Frequency	Reading	Correction	Result	Limit	Margin	Remark
	(MHz)	()	factor()	()	()	(dB)	
1	2341.255	52.72	-4.37	48.35	74.00	-25.65	peak
2	2390.000	50.14	-4.24	45.90	74.00	-28.10	peak
3	2402.340	98.42	-4.21	94.21	74.00	20.21	peak

Page: 23 of 37


No.	Frequency	Reading	Correction	Result	Limit	Margin	Remark
	(MHz)	()	factor()	()	()	(dB)	
1	2355.980	52.23	-4.33	47.90	74.00	-26.10	peak
2	2390.000	50.48	-4.24	46.24	74.00	-27.76	peak
3	2402.435	95.18	-4.21	90.97	74.00	16.97	peak

Page: 24 of 37

Mode:d; Polarization:Horizontal; Modulation:GFSK; ; Channel:High


No.	Frequency (MHz)	Reading ()	Correction factor()	Result ()	Limit ()	Margin (dB)	Remark
1	2480.250	97.12	-4.01	93.11	74.00	19.11	peak
2	2483.500	52.68	-4.00	48.68	74.00	-25.32	peak
3	2486.750	52.90	-3.99	48.91	74.00	-25.09	peak
4	2500.000	51.34	-3.96	47.38	74.00	-26.62	peak

Page: 25 of 37

Mode:d; Polarization:Vertical; Modulation:GFSK; ; Channel:High

No.	Frequency	Reading	Correction	Result	Limit	Margin	Remark
	(MHz)	()	factor()	()	()	(dB)	
1	2479.875	88.72	-4.01	84.71	74.00	10.71	peak
2	2483.500	50.74	-4.00	46.74	74.00	-27.26	peak
3	2489.000	53.01	-3.99	49.02	74.00	-24.98	peak
4	2500.000	50.91	-3.96	46.95	74.00	-27.05	peak

Report No.: SHEM200900746603

Page: 26 of 37

7.8 Radiated Spurious Emissions

Test Requirement 47 CFR Part 15, Subpart C 15.205 & 15.209
Test Method: ANSI C63.10 (2013) Section 6.4,6.5,6.6

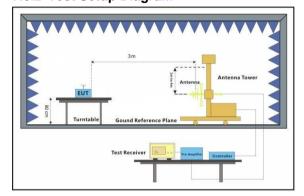
Limit:

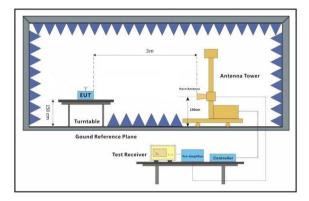
Frequency(MHz)	Field strength(microvolts/meter)	Measurement distance(meters)		
0.009-0.490	2400/F(kHz)	300		
0.490-1.705	24000/F(kHz)	30		
1.705-30.0	30	30		
30-88	100	3		
88-216	150	3		
216-960	200	3		
Above 960	500	3		

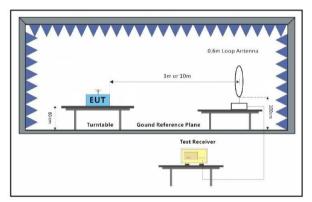
Remark: The emission limits shown in the above table are based on measurements employing a CISPR quasi-peak detector except for the frequency bands 9-90kHz, 110-490kHz and above 1000 MHz. Radiated emission limits in these three bands are based on measurements employing an average detector, the peak field strength of any emission shall not exceed the maximum permitted average limits specified above by more than 20 dB under any condition of modulation.

Page: 27 of 37

7.8.1 E.U.T. Operation


Operating Environment:


Temperature: 24 °C Humidity: 48 % RH Atmospheric Pressure: 1006 mbar


Test mode d:TX mode_Keep the EUT in continuously transmitting mode with GFSK

modulation

7.8.2 Test Setup Diagram

NO.588 West Jindu Road,Songjiang District,Shanghai,China 201612 中国・上海・松江区金都西路588号 邮编: 201612

Report No.: SHEM200900746603

Page: 28 of 37

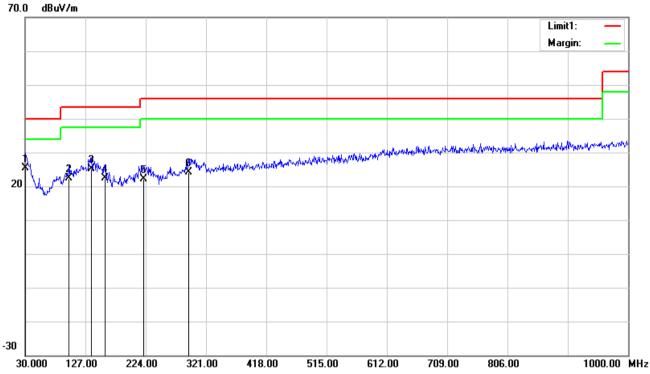
7.8.3 Measurement Procedure and Data

- a. For below 1GHz, the EUT was placed on the top of a rotating table 0.8 meters above the ground at a 3 or 10 meter semi-anechoic chamber. The table was rotated 360 degrees to determine the position of the highest radiation.
- b. For above 1GHz, the EUT was placed on the top of a rotating table 1.5 meters above the ground at a 3 meter fully-anechoic chamber. The table was rotated 360 degrees to determine the position of the highest radiation.
- c. The EUT was set 3 or 10 meters away from the interference-receiving antenna, which was mounted on the top of a variable-height antenna tower.
- d. The antenna height is varied from one meter to four meters above the ground to determine the maximum value of the field strength. Both horizontal and vertical polarizations of the antenna are set to make the measurement.
- e. For each suspected emission, the EUT was arranged to its worst case and then the antenna was tuned to heights from 1 meter to 4 meters (for the test frequency of below 30MHz, the antenna was tuned to heights 1 meter) and the rotatable table was turned from 0 degrees to 360 degrees to find the maximum reading.
- f. The test-receiver system was set to Peak Detect Function and Specified Bandwidth with Maximum Hold Mode.
- g. If the emission level of the EUT in peak mode was 10dB lower than the limit specified, then testing could be stopped and the peak values of the EUT would be reported. Otherwise the emissions that did not have 10dB margin would be re-tested one by one using peak, quasi-peak or average method as specified and then reported in a data sheet.
- h. Test the EUT in the lowest channel, the middle channel, the Highest channel.
- i. The radiation measurements are performed in X, Y, Z axis positioning for Transmitting mode, and found the X axis positioning which it is the worst case.
- j. Repeat above procedures until all frequencies measured was complete.

Remark:

- 1) For emission below 1GHz, through pre-scan found the worst case is the lowest channel. Only the worst case is recorded in the report.
- 2) The field strength is calculated by adding the Antenna Factor, Cable Factor & Preamplifier. The basic equation with a sample calculation is as follows:

Final Test Level =Receiver Reading + Antenna Factor + Cable Factor - Preamplifier Factor


- 3) Scan from 9kHz to 25GHz, the disturbance above 18GHz and below 30MHz was very low. The points marked on above plots are the highest emissions could be found when testing, so only above points had been displayed. The amplitude of spurious emissions from the radiator which are attenuated more than 20dB below the limit need not be reported.
- 4) For frequencies above 1GHz, the field strength limits are based on average limits. However, the peak field strength of any emission shall not exceed the maximum permitted average limits specified above by more than 20 dB under any condition of modulation. For the emissions whose peak level is lower than the average limit, only the peak measurement is shown in the report.

Page: 29 of 37

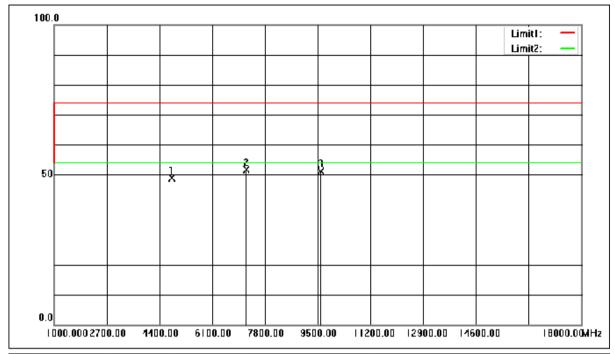
30MHz-1GHz Horizontal

No.	Frequency	Reading	Correct	Result	Limit	Margin	Height	Degree	Remark
	(MHz)	(dBuV)	Factor(dB/m)	(dBuV/m)	(dBuV/m)	(dB)	(cm)	(deg.)	
1	30.9700	-0.18	25.50	25.32	40.00	-14.68	100	86	QP
2	100.8100	3.66	18.66	22.32	43.50	-21.18	100	241	QP
3	136.7000	5.33	19.78	25.11	43.50	-18.39	100	106	QP
4	158.0400	2.75	19.58	22.33	43.50	-21.17	100	72	QP
5	221.0900	4.35	17.66	22.01	46.00	-23.99	100	267	QP
6	292.8700	3.65	20.49	24.14	46.00	-21.86	100	299	QP

Page: 30 of 37

Vertical

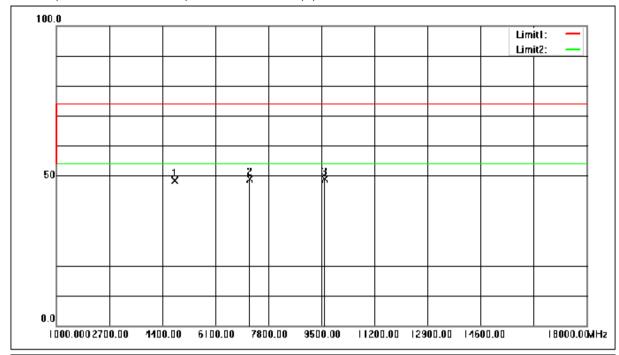
No.	Frequency	Reading	Correct	Result	Limit	Margin	Height	Degree	Remark
	(MHz)	(dBuV)	Factor(dB/m)	(dBuV/m)	(dBuV/m)	(dB)	(cm)	(deg.)	
1	30.0000	0.06	26.08	26.14	40.00	-13.86	100	1	QP
2	97.9000	3.63	18.21	21.84	43.50	-21.66	100	277	QP
3	131.8500	3.81	19.63	23.44	43.50	-20.06	100	169	QP
4	162.8900	2.97	19.21	22.18	43.50	-21.32	100	23	QP
5	256.9800	5.25	19.61	24.86	46.00	-21.14	100	313	QP
6	925.3100	1.19	28.92	30.11	46.00	-15.89	100	314	QP



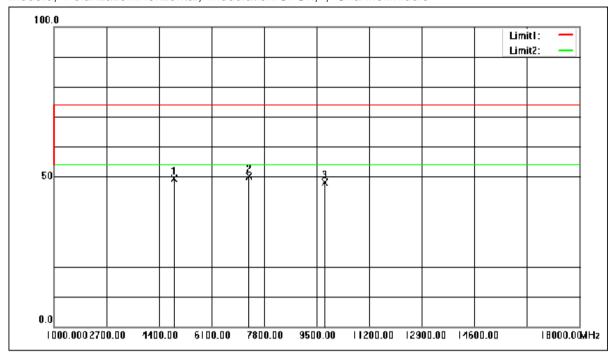
Page: 31 of 37

Above 1GHz

Mode:d; Polarization:Horizontal; Modulation:GFSK; ; Channel:Low

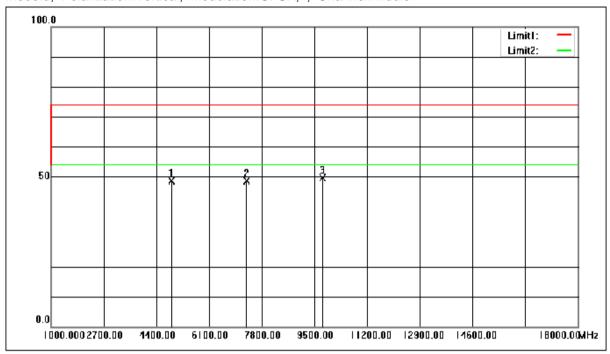

No.	Frequency	Reading	Correction	Result	Limit	Margin	Remark
	(MHz)	()	factor()	()	()	(dB)	
1	4804.000	59.21	-10.28	48.93	74.00	-25.07	peak
2	7206.000	58.63	-7.10	51.53	74.00	-22.47	peak
3	9608.000	56.20	-4.96	51.24	74.00	-22.76	peak

Page: 32 of 37


No.	Frequency	Reading	Correction	Result	Limit	Margin	Remark
	(MHz)	()	factor()	()	()	(dB)	
1	4804.000	58.65	-10.28	48.37	74.00	-25.63	peak
2	7206.000	56.04	-7.10	48.94	74.00	-25.06	peak
3	9608.000	53.73	-4.96	48.77	74.00	-25.23	peak

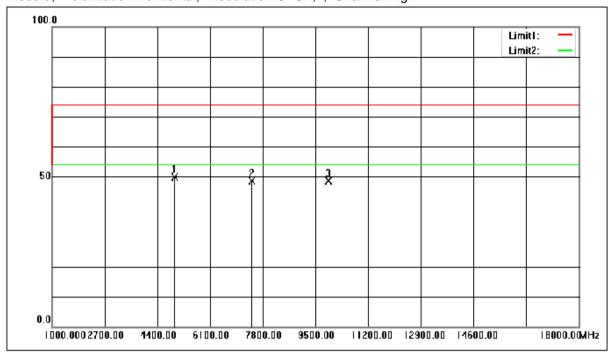
Page: 33 of 37

Mode:d; Polarization:Horizontal; Modulation:GFSK; ; Channel:middle


No.	Frequency	Reading	Correction	Result	Limit	Margin	Remark
	(MHz)	()	factor()	()	()	(dB)	
1	4880.000	59.37	-9.99	49.38	74.00	-24.62	peak
2	7320.000	57.07	-6.91	50.16	74.00	-23.84	peak
3	9760.000	52.45	-4.25	48.20	74.00	-25.80	peak

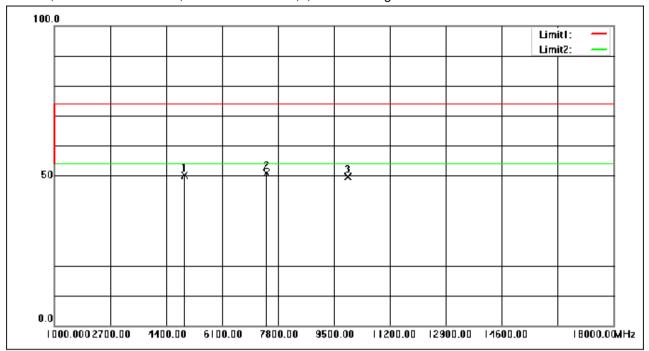
Page: 34 of 37

Mode:d; Polarization:Vertical; Modulation:GFSK; ; Channel:middle


No.	Frequency	Reading	Correction	Result	Limit	Margin	Remark
	(MHz)	()	factor()	()	()	(dB)	
1	4880.000	58.51	-9.99	48.52	74.00	-25.48	peak
2	7320.000	55.50	-6.91	48.59	74.00	-25.41	peak
3	9760.000	53.76	-4.25	49.51	74.00	-24.49	peak

Page: 35 of 37

Mode:d; Polarization:Horizontal; Modulation:GFSK; ; Channel:High


No.	Frequency	Reading	Correction	Result	Limit	Margin	Remark
	(MHz)	()	factor()	()	()	(dB)	
1	4960.000	59.63	-9.68	49.95	74.00	-24.05	peak
2	7440.000	55.31	-6.72	48.59	74.00	-25.41	peak
3	9920.000	52.23	-3.50	48.73	74.00	-25.27	peak

Page: 36 of 37

Mode:d; Polarization:Vertical; Modulation:GFSK; ; Channel:High

No.	Frequency	Reading	Correction	Result	Limit	Margin	Remark
	(MHz)	()	factor()	()	()	(dB)	
1	4960.000	59.87	-9.68	50.19	74.00	-23.81	peak
2	7440.000	57.51	-6.72	50.79	74.00	-23.21	peak
3	9920.000	53.07	-3.50	49.57	74.00	-24.43	peak

Page: 37 of 37

8 Test Setup Photographs

Refer to the < Test Setup photos-FCC>.

9 EUT Constructional Details

Refer to the < External Photos > & < Internal Photos >.

- End of the Report -