

Industrial Internet Innovation Center (Shanghai) Co.,Ltd.

RF TEST REPORT

PRODUCT Smart POS system

BRAND SUNMI

MODEL T6F10

APPLICANT Shanghai Sunmi Technology Co.,Ltd.

FCC ID 2AH25T6F10

ISSUE DATE August 5, 2024

STANDARD(S) FCC Part 2, FCC Part 22H, FCC Part 24E,FCC Part 27

Prepared by: Fan Yuhang Reviewed by: Yang Fan Approved by: Zhang Min

范宇航 杨帆

CAUTION:

This report shall not be reproduced except in full without the written permission of the test laboratory and shall not be quoted out of context.

CONTENTS

1. SU	JMMARY OF TEST REPORT	3
1.1	Test Standard (s)	3
1.2	REFERENCE DOCUMENTS	
1.3	SUMSMARY OF TEST RESULTS	3
1.4	DATA PROVIDED BY APPLICANT	5
2. GE	ENERAL INFORMATION OF THE LABORATORY	6
2.1	Testing Laboratory	6
2.2	LABORATORY ENVIRONMENTAL REQUIREMENTS	6
2.3	PROJECT INFORMATION	6
3. GE	ENERAL INFORMATION OF THE CUSTOMER	7
3.1	Applicant	7
3.2	Manufacturer	7
4. GE	ENERAL INFORMATION OF THE PRODUCT	8
4.1	PRODUCT DESCRIPTION FOR EQUIPMENT UNDER TEST (EUT)	8
4.2	DESCRIPTION FOR AUXILIARY EQUIPMENT (AE)	8
4.3	Additional Information	
5. TE	EST CONFIGURATION INFORMATION	
5.1	LABORATORY ENVIRONMENTAL CONDITIONS	11
5.2	TEST EQUIPMENTS UTILIZED.	11
5.3	MEASUREMENT UNCERTAINTY	12
6. TE	EST RESULTS	13
6.1	Output Power	13
6.2	EMISSION LIMT	16
ANNEX	A: REVISED HISTORY	22
ANNEV	D. ACCREDITATION CERTIFICATE	

1. Summary of Test Report

1.1 Test Standard (s)

No.	Test Standard	Title	Version
1	FCC Part 2	FREQUENCY ALLOCATIONS AND RADIO TREATY MATTERS; GENERAL RULES AND REGULATIONS	A N
2	FCC Part 22H	CELLULAR RADIOTELEPHONE SERVICE	
3	FCC Part 24E	BROADBAND PCS	
4	FCC Part 27	MISCELLANEOUS WIRELESS COMMUNICATIONS SERVICES	(B) (E) (A)

1.2 Reference Documents

No.	Test Standard	Title	Version
1	ANSI/TIA-603-E	Land Mobile FM or PM Communications Equipment Measurement and Performance Standards	2016
2	ANSI C63.26	American National Standard of Procedures for Compliance Testing of Licensed Transmitters Used in Licensed Radio	2015
3	KDB 971168 D01 Power Meas License Digital Systems	Measurement Guidance for Certification of Licensed Digital Transmitters	v03r01

1.3 Sumsmary of Test Results

LTE Band 2

Items	Test Name	Clause in FCC rules	Verdict
1	Output Power	2.1046/24.232(c)	Pass
2	Emission Limit	2.1053/24.238(a)	Pass

Items	Test Name	Clause in FCC rules	Verdict
1	Output Power	2.1046/27.50(d)(4)	Pass
2	Emission Limit	2.1053/27.53(h)	Pass

Items	Test Name	Clause in FCC rules	Verdict
1	Output Power	2.1046/22.913(a)	Pass

2	Emission Limit	2.1053/22.917(a)	Pass
TE Band 7	N. M. N.		Me Y
Items	Test Name	Clause in FCC rules	Verdict
1	Output Power	2.1046/27.50(h)	Pass
2	Emission Limit	2.1053/27.53(m)	Pass
TE Band 26(Part 2	2) 824-849MHz		
Items	Test Name	Clause in FCC rules	Verdict
1	Output Power/ERP	2.1046/22.913(a)	Pass
2	Emission Limit	2.1053/22.917(a)	Pass
TE Band 38			By The
Items	Test Name	Clause in FCC rules	Verdict
1	Output Power	2.1046/27.50(h)	Pass
2	Emission Limit	2.1053/27.53(m)	Pass
TE Band 40 (2305-	-2315MHz and 2350-2360MHz)		
Items	Test Name	Clause in FCC rules	Verdict
1	Output Power	2.1046/27.50(a)	Pass
2	Emission Limit	2.1053/27.53(a)	Pass
TE Band 41		E CHELL IT SHE	18
Items	Test Name	Clause in FCC rules	Verdict
1	Output Power	2.1046/27.50(h)	Pass
2	Emission Limit	2.1053/27.53(m)	Pass

Note1

The T6F10 manufactured by Shanghai Sunmi Technology Co.,Ltd. is a variant product for testing. This project is a C2PC project based on the FCC ID: 2AH25T6F10(Date of Grant:02/06/2024), the content of the change is referred to the Product Change Description.

According to the Product Change Description, We mainly verified the output power of the worst mode and retest Radiated Spurious Emission.

There are two configurations S04aa (Mainly Supply) and S06aa (Secondary Supply) in this project, we tested the Mainly Supply (S04aa) and the worst mode of Secondary Supply(S06aa).

The description of the dfferences between S02aa&S04aa (Mainly Supply) and S06aa (Secondary Supply) are as follows:

Model Difference	T6F10 (High Configuration) S02aa&S04aa (Mainly Supply)	T6F10 (Basic Configuration) S06aa (Secondary Supply)
Scanner	Yes	No
LCD (Just different manufacturers)	SHENZHEN DJN PHOTOELECTRIC TECHNOLOGY CO., LTD	CPT Technology (Group) Co.,Ltd
DDR	It's just that the manufacturer and mem	nory are different

EMMC It's just that the manufacturer and memory are different

Industrial Internet Innovation Center (Shanghai) Co., Ltd. only performed test cases which identified with Pass/Fail/Inc result in section 1.3.

Industrial Internet Innovation Center (Shanghai) Co., Ltd. has verified that the compliance of the tested device specified in section 5.3 of this test report is successfully evaluated according to the procedure and test methods as defined in type certification requirement listed in section 6 of this test report.

1.4 Data Provided by Applicant

No.	Item(s)	Data
1	LTE band 2	0.46
2	LTE band 4	-0.42
3	LTE band 5	-1.63
4	LTE band 7	0.39
5	LTE band 26	-1.63
6	LTE band 38	1.54
7	LTE band 40	1.01
8	LTE band 41	2.41

Note: The data of antenna gain is provided by Antenna specification may affect the validity of the test results in this report, and the impact and consequences of this shall be undertaken by the customer.

2. General Information of The Laboratory

2.1 Testing Laboratory

in resting Laboratory		
Lab Name	Industrial Internet Innovation Center (Shanghai) Co.,Ltd.	
Address	Building 4, No. 766, Jingang Road, Pudong, Shanghai, China	
Telephone	021-68866880	
FCC Registration No.	708870	
FCC Designation No.	CN1364	

2.2 Laboratory Environmental Requirements

Temperature	15℃~35℃
Relative Humidity	25%RH~75%RH
Atmospheric Pressure	86kPa~106kPa

2.3 Project Information

Project Manager	Gao Hongning
Test Date	July 2, 2024 to July 23, 2024

3. General Information of The Customer

3.1 Applicant

Company	Shanghai Sunmi Technology Co.,Ltd.
Address	Room 505, No.388, Song Hu Road, Yang Pu District, Shanghai, China
Telephone	18826519551

3.2 Manufacturer

Company	Shanghai Sunmi Technology Co.,Ltd.
Address	Room 505, No.388,Song Hu Road, Yang Pu District, Shanghai, China
Telephone	18826519551

4. General Information of The Product

4.1 Product Description for Equipment under Test (EUT)

Product	Smart POS system	
Model	T6F10	
Date of Receipt	S02aa/S04aa: July 02, 2024	
Date of Neceipt	S06aa: July 03, 2024	
EUT ID*	T6F10 S02aa/S04aa: July 02, 2024	
	S02aa: 868393070001276'868393070003272	
SN/IMEI	S04aa: 868393070001227'868393070003223	
	S06aa: 868393070001219'868393070003215	
10 10 10 10 10 10 10 10 10 10 10 10 10 1	GSM850/GSM900/DCS1800/PCS1900	
	WCDMA Band I/II/IV/V/VI/VIII/XIX	
	LTE Band 1/2/3/4/5/7/8/18/19/20/26/28/34/38/39/40/41	
Supported Radio	BT 5.0 BLE/BR/EDR	
Technology and Bands	WLAN 802.11b/g/n	
	WLAN 802.11a/n/ac	
	GPS/GLONASS/BDS/Galileo	
	NFC NFC	
Hardware Version	V1.0(LA+EU)	
Software Version	V3.0.0	
FCC ID	2AH25T6F10	

NOTE1: EUT ID is the internal identification code of the laboratory.

NOTE2: Samples in the test report are provided by the customer. The test results are only applicable to the samples received by the laboratory.

4.2 Description for Auxiliary Equipment (AE)

AE ID*	Description	Model	SN/Remark
AE1	RF Cable	N/A	N/A
CA01	Adapter	TPA-141A050200UU01	N/A
CB01	Adapter	UC13US	N/A
CC01	Adapter	TPA-23A050200UU01	N/A
UA01	AC Cable	N/A	N/A
BA02	Battery	НРРА	Guangdong Highpower NewEnergy Technology Co., Ltd.

NOTE1: AE ID is the internal identification code of the laboratory.

NOTE2: By verifying that CC01+BA02 is the worst battery and adapter combination, this battery and adapter are used in all tests.

4.3 Additional Information

Modulation:

Type of modulation	QPSK/16QAM

Band Frequency Range:

Band	Frequency Range
Band 2	1850 - 1910 MHz
Band 4	1710 - 1755 MHz
Band 5	824 - 849 MHz
Band 7	2500 - 2570 MHz
Band 26	824 - 849 MHz
Band 38	2570 - 2620 MHz
Band 40	2305 - 2315 MHz and 2350 - 2360 MHz
Band 41	2496-2690 MHz

Rand List

Band	BW (MHz)	Low Channel	Low Freq. (MHz)	Mid Channel	Mid Freq. (MHz)	High Channel	High Freq (MHz)
	1.4	18607	1850.7	18900	1880	19193	1909.3
	3	18615	1851.5	18900	1880	19185	1908.5
David 2	5	18625	1852.5	18900	1880	19175	1907.5
Band 2	10	18650	1855	18900	1880	19150	1905
	15	18675	1857.5	18900	1880	19125	1902.5
	20	18700	1860	18900	1880	19100	1900
$X_{\infty} = X$	1.4	19957	1710.7	20175	1732.5	20393	1754.3
	3	19965	1711.5	20175	1732.5	20385	1753.5
Dand 4	5	19975	1712.5	20175	1732.5	20375	1752.5
Band 4	10	20000	1715	20175	1732.5	20350	1750
	15	20025	1717.5	20175	1732.5	20325	1747.5
	20	20050	1720	20175	1732.5	20300	1745
- 13 N	1.4	20407	824.7	20525	836.5	20643	848.3
Dand F	3	20415	825.5	20525	836.5	20635	847.5
Band 5	5	20425	826.5	20525	836.5	20625	846.5
	10	20450	829	20525	836.5	20600	844
	5	20775	2502.5	21100	2535	21425	2567.5
Band 7	10	20800	2505	21100	2535	21400	2565
Banu /	15	20825	2507.5	21100	2535	21375	2562.5
	20	20850	2510	21100	2535	21350	2560
7,000	1.4	26797	824.7	26915	836.5	27033	848.3
D1 26	3	26805	825.5	26915	836.5	27025	847.5
Band 26 (824-849MHz)	5	26815	826.5	26915	836.5	27015	846.5
	10	26840	829	26915	836.5	26990	844
Y'SO X	15	26865	831.5	26915	836.5	26965	841.5
Band 38	5	37775	2572.5	38000	2595	38225	2617.5

Band	BW (MHz)	Low Channel	Low Freq. (MHz)	Mid Channel	Mid Freq. (MHz)	High Channel	High Freq. (MHz)
11 6 18	10	37800	2575	38000	2595	38200	2615
	15	37825	2577.5	38000	2595	38175	2612.5
Carl 11 Carl	20	37850	2580	38000	2595	38150	2610
Band 40A	5	38725	2307.5	38750	2310	38775	2312.5
(2305–2315MHz)	10	8/		38750	2310		1
Band 40B	5	39175	2352.5	38750	2355	39225	2357.5
(2350–2360MHz)	10	1	10	38750	2355	N /	X / /
10, 7,50	5	39675	2498.5	40620	2593	41565	2687.5
D = 11 44	10	39700	2501	40620	2593	41540	2685
Band 41	15	39725	2503.5	40620	2593	41515	2682.5
*	20	39750	2506	40620	2593	41490	2680

5. Test Configuration Information

5.1 Laboratory Environmental Conditions

5.1.1 Permanent Facilities

Relative Humidity		Min. = 45%, Max. = 559	%				
Atmospheric Pressure	101kPa						
	Normal	Minimum	Maximum				
Temperature	25℃	-10℃	50℃				
Working Voltage of	Normal	Minimum	Maximum				
EUT	7.7V	6.0V	8.8 V				

5.2 Test Equipments Utilized

Conduction test system

No.	Name	Model	S/N	SW Version	HW Version	Manuf acturer	Cal. Date	Cal. Interva I
1	Software	Eagle V3.3	N/A	V3.3	N/A	3IN	N/A	N/A
2	Frequency spectrum analyzer	FSQ	101091	V4.75	V11.00	R&S	2023- 07-26	1 Year
3	Wideband Radio Communication Tester	CMW 500	148874	V3.5.136	N/A	R&S	2023- 07-27	1 Year
4	Temperature Chamber	B-TF-107C	2018041 07	N/A	N/A	BoYi	2024- 06-07	1 Year
5	Programmable power supply	Keithley 2303	4039070	N/A	N/A	Keithle y	2024- 06-07	1 Year
6	RF Test Automation Box	RF 2021B	2001	V3.3	N/A	RANAT EC	N/A	N/A

Radiated emission test system

No.	Name	Model	S/N	SW Version	HW Version	Manuf acturer	Cal. Date	Cal. Interva
1	Universal Radio Communication Tester	CMU200	123126	V5.2.1	B12	R&S	2023- 10-16	1 Year
2	Universal Radio Communication Tester	CMW500	104178	V3.7.20	1206.06 00.00	R&S	2023- 10-16	1 Year
3	EMI Test Receiver	ESU40	100307	V5.1-24-3	01	R&S	2023- 12-19	1 Year
4	TRILOG Broadband Antenna	VULB9163	01345	N/A	N/A	Schwar zbeck	2024 03-23	1 Year

5	Double- ridged Waveguide Antenna	ETS-3117	0013589 0	N/A	N/A	ETS	2023- 07-28	2 Years
6	EMI Test Software	EMC32 V10.35.02	N/A	N/A	N/A	R&S	N/A	N/A
7	Preamplifier	SCU08F1	8320024	N/A	N/A	R&S	2023- 10-16	1 year
8	Preamplifier	SCU18	10155	N/A	N/A	R&S	2023- 10-16	1 year
9	Antenna	SWB- VUBA 9117	9117- 266	N/A	N/A	Schwar zbeck	2023- 9-8	1 year
10	Antenna	BBHA9120 D	02112	N/A	N/A	Schwar zbeck	2023- 7-28	1 year
11	Signal Generator	SMF100A	102314	3.20.390.2 4	05.10	R&S	2023- 10-16	1 year

Anechoic chamber

Fully anechoic chamber by ETS.

5.3 Measurement Uncertainty

Measurement Uncertainty of Radiation test

Frequency Range	Uncertainty(dB)
30MHz ≤ f ≤ 1GHz	±5.10
1GHz ≤ f ≤ 18GHz	±5.66
18GHz ≤ f ≤ 40GHz	±5.22

Measurement Uncertainty of Conduction test

No	Item	Extended uncertainty (k=2)				
1	Frequency Tolerance	23Hz				
2	RF Output Power	0.7dB				
		9kHz∼3.6GHz	1.5dB			
3	conducted spurious	3.6GHz∼8.4GHz	2.8dB			
		8.4GHz~12.75GHz	3.4dB			
4	EVM	2.1%	/ XX / XX			
(V)		Bandwidth 1.4MHz	0.03MHz			
		Bandwidth 3MHz	0.03MHz			
5	Ossumind Dandwidth	Bandwidth 5MHz	0.03MHz			
2	Occupied Bandwidth	Bandwidth 10MHz	0.05MHz			
		Bandwidth 15MHz	0.06MHz			
		Bandwidth 20MHz	0.08MHz			
	Funicaion interna divintina	Adjacent channel	1.4dB			
6	Emission intermodulation	Alternate channel	1.4dB			
7	Range of frequency	0.08MHz				

6. Test Results

6.1 Output Power

6.1.1 Measurement Limit

FCC §22.913(a) (5) The ERP of mobile transmitters and auxiliary test transmitters must not exceed 7 watts. FCC §24.232(c) Mobile and portable stations are limited to 2 watts EIRP and the equipment must employ a means for limiting power to the minimum necessary for successful communications.

FCC §27.50(a) For mobile and portable stations transmitting in the 2305–2315 MHz band or the 2350–2360 MHz band, the average EIRP must not exceed 50 milliwatts within any 1 megahertz of authorized bandwidth, except that for mobile and portable stations compliant with 3GPP LTE standards or another advanced mobile broadband protocol that avoids concentrating energy at the edge of the operating band the average EIRP must not exceed 250 milliwatts within any 5 megahertz of authorized bandwidth but may exceed 50 milliwatts within any 1 megahertz of authorized bandwidth. (EIRP ≤24dBm/5MHz) FCC §27.50(d) (4) Fixed, mobile, and portable (hand-held) stations operating in the 1710–1755 MHz band is limited to 1 watt EIRP.

FCC §27.50(h):Mobile and other user stations. Mobile stations are limited to 2.0 watts EIRP. All user stations are limited to 2.0 watts transmitter output power.

6.1.2 Method of Measurements

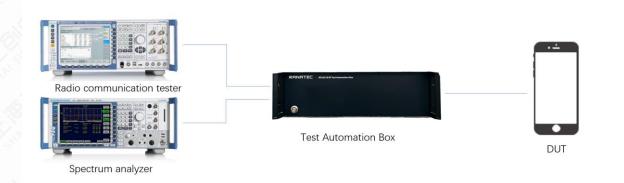
Method of measurements please refer to KDB971168 D01 v03 clause 5.

The EUT was set up for the max output power with pseudo random data modulation.

The power was measured with Rhode & Schwarz base station CMW500.

These measurements were done at 3 frequencies.(bottom, middle and top of operational frequency range).

- 1. The transmitter output port was connected to base station.
- 2. Set the EUT at maximum power through base station.
- 3. Select lowest, middle, and highest channels for each band and different modulation.
- 4. Measure and record maximum average power for other modulation signal.
- 5. During the process of testing, the EUT was controlled Rhode & Schwarz Digital Radio.
- 6. Communication tester to ensure max power transmission and proper modulation.
- 7. This result contains output power and EIRP measurements for the EUT. In all cases, output power is within the specified limits.


EIRP= Conducted power+Gain, ERP = EIRP -2.15dBi.

6.1.3 Test procedures

The transmitter output power was connected to calibrated attenuator, the other end of which was connected to signal analyzer. Transmitter output power was read off the power in dBm. The power outputs at the transmitter antenna port was determined by adding the value of attenuator to the base station reading.

6.1.4 Test Setup

6.1.5 Output Power Measurement result

Mode	Output power(dBm)
QPSK	22.26
QPSK	21.85
QPSK	22.18
QPSK	22.38
QPSK	22.37
QPSK	23.25
QPSK	22.8
QPSK	22.88
QPSK	23.32
	QPSK QPSK QPSK QPSK QPSK QPSK QPSK QPSK QPSK

Note1: The power of the worst part is verified to meet the requirements.

6.1.6 EIRP/ERP results

BAND	Mode	EIRP (dBm)	ERP (dBm)
Band2	QPSK	22.72	20.57
Band 4	QPSK	21.43	19.28
Band 5	QPSK	20.55	18.4
Band 7	QPSK	22.77	20.62
Band 26 (824-849)	QPSK	20.74	18.59

Band 38	QPSK	24.79	22.64
Band 40 (2305-2315)	QPSK	23.81	21.66
Band 40 (2350-2360)	QPSK	23.89	21.74
Band 41	QPSK	25.73	23.58

6.2 Emission Limt

6.2.1 Measurement Limit

According to KDB 971168, a relaxation of the reference bandwidth is often provided for measurements within a specified frequency range at the edge of the authorized frequency block/band. This is often implemented by permitting the use of a narrower RBW (typically limited to a minimum RBW of 1% of the OBW) for measuring the out-of-band emissions without a requirement to integrate the result over the full reference bandwidth.

FCC §22.917(a) Out of band emissions. The power of any emission outside of the authorized operating frequency ranges must be attenuated below the transmitting power (P) by a factor of at least 43 + 10 log(P) dB.

FCC $\S24.238(a)$ Out of band emissions. The power of any emission outside of the authorized operating frequency ranges must be attenuated below the transmitting power (P) by a factor of at least $43 + 10 \log(P)$ dB.

FCC §27.53(a) For mobile and portable stations operating in the 2305–2315 MHz and 2350–2360 MHz bands:

- (i) By a factor of not less than: 43 + 10 log (P) dB on all frequencies between 2305 and 2320 MHz and on all frequencies between 2345 and 2360 MHz that are outside the licensed band(s) of operation, not less than 55 + 10 log (P) dB on all frequencies between 2320 and 2324 MHz and on all frequencies between 2341 and 2345 MHz, not less than 61 + 10 log (P) dB on all frequencies between 2324 and 2328 MHz and on all frequencies between 2337 and 2341 MHz, and not less than 67 + 10 log (P) dB on all frequencies between 2328 and 2337 MHz;
- (ii) By a factor of not less than $43 + 10 \log (P) dB$ on all frequencies between 2300 and 2305 MHz, $55 + 10 \log (P) dB$ on all frequencies between 2296 and 2300 MHz, $61 + 10 \log (P) dB$ on all frequencies between 2292 and 2296 MHz, $67 + 10 \log (P) dB$ on all frequencies between 2288 and 2292 MHz, and $70 + 10 \log (P) dB$ below 2288 MHz;
- (iii) By a factor of not less than 43 + 10 log (P) dB on all frequencies between 2360 and 2365 MHz, and not less than 70 + 10 log (P) dB above 2365 MHz.

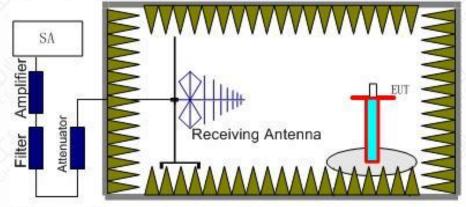
FCC $\S27.53(h)$ (1) General protection levels. Except as otherwise specified below, for operations in the 1695–1710 MHz, 1710–1755 MHz, 1755–1780 MHz, 1915–1920 MHz, 1995–2000 MHz, 2000–2020 MHz, 2110–2155 MHz, 2155–2180 MHz, and 2180–2200 bands, the power of any emission outside a licensee's frequency block shall be attenuated below the transmitter power (P) in watts by at least 43 + 10 log10 (P) dB.

FCC §27.53(m)(4) For mobile digital stations, the attenuation factor shall be not less than 40 + 10 log (P) dB on all frequencies between the channel edge and 5 megahertz from the channel edge, 43 + 10 log (P) dB on all frequencies between 5 megahertz and X megahertz from the channel edge, and 55 + 10 log (P) dB on all frequencies more than X megahertz from the channel edge, where X is the greater of 6 megahertz or the actual emission bandwidth as defined in paragraph (m)(6) of this section. In addition, the attenuation factor shall not be less that 43 + 10 log (P) dB on all frequencies between 2490.5 MHz and 2496 MHz and 55 + 10 log (P) dB at or below 2490.5 MHz. Mobile Satellite Service licensees operating on frequencies below 2495 MHz may also submit a documented interference complaint against BRS licensees operating on channel BRS Channel 1 on the same terms and conditions as adjacent channel BRS or EBS licensees.

FCC §27.53(h):

AWS emission limits -

- (1) General protection levels. Except as otherwise specified below, for operations in the 1695–1710 MHz, 1710–1755 MHz, 1755–1780 MHz, 1915–1920 MHz, 1995–2000 MHz, 2000–2020 MHz, 2110–2155 MHz, 2155–2180 MHz, and 2180–2200 bands, the power of any emission outside a licensee's frequency block shall be attenuated below the transmitter power (P) in watts by at least 43 + 10 log10 (P) dB.
- (2) Additional protection levels. Notwithstanding the foregoing paragraph (h)(1) of this section:
- (i) Operations in the 2180–2200 MHz band are subject to the out-of-band emission requirements set forth in § 27.1134 for the protection of federal government operations operating in the 2200–2290 MHz band.
- (ii) For operations in the 2000–2020 MHz band, the power of any emissions below 2000 MHz shall be attenuated below the transmitter power (P) in watts by at least 70 + 10 log10(P) dB.
- (iii) For operations in the 1915-1920 MHz band, the power of any emission between 1930-1995 MHz shall be attenuated below the transmitter power (P) in watts by at least $70 + 10 \log 10$ (P) dB.
- (iv) For operations in the 1995–2000 MHz band, the power of any emission between 2005–2020 MHz shall be attenuated below the transmitter power (P) in watts by at least 70 + 10 log10(P) dB.

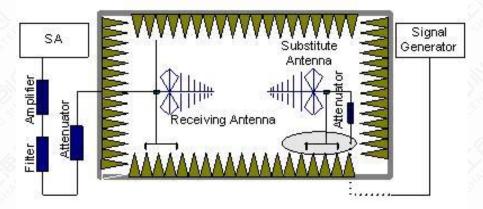

6.2.2 Method of Measurement

The measurements procedures in TIA-603E-2016 are used. This measurement is carried out in fully-anechoic chamber FAC-3.

The spectrum was scanned from 30 MHz to the 10th harmonic of the highest frequency generated within the equipment, which is the transmitted carrier. The resolution bandwidth is set 1MHz as outlined in Part 22.917(a)/24.238(a)/27.53(g)/27.53(h)/27.53(m)(4). The spectrum was scanned with the mobile station transmitting at carrier frequencies that pertain to low, mid and high channels of the LTE Bands 2/4/5/7/38/41.

The procedure of radiated spurious emissions is as follows:

Below 1 GHz, EUT was placed on a 0.8 meter high non-conductive stand at a 3 meter test distance from the receive antenna. Above 1 GHz, EUT was placed on a 1.5 meter high non-conductive stand at a 3 meter test distance from the receive antenna. EUT was placed on a 1.5 meter high non-conductive stand at a 3 meter test distance from the receive antenna. A receiving antenna was placed on the antenna mast 3 meters from the EUT for emission measurements. The height of receiving antenna is 1.5m. The test setup refers to figure below. Detected emissions were maximized at each frequency by rotating the EUT through 360° and adjusting the receiving antenna polarization. The radiated emission measurements of all non-harmonic and harmonics of the transmit frequency through the 10th harmonic were measured with peak detector.



2. The EUT is then put into continuously transmitting mode at its maximum power level during the test. And the maximum value of the receiver should be recorded as (Pr).

3. The EUT shall be replaced by a substitution antenna. The test setup refers to figure below.

In the chamber, an substitution antenna for the frequency band of interest is placed at the reference point of the chamber. An RF Signal source for the frequency band of interest is connected to the substitution antenna with a cable that has been constructed to not interfere with the radiation pattern of the antenna. A power (Pmea) is applied to the input of the substitution antenna. Adjust the level of the signal generator output until the value of the receiver reaches the previously recorded (Pr). The power of signal source (Pmea) is recorded. The test should be performed by rotating the test item and adjusting the receiving antenna polarization.

4.The Path loss (Pcl) between the Signal Source with the Substitution Antenna and the Substitution Antenna Gain (Ga) should be recorded after test.

An amplifier should be connected in for the test.

The Path loss (Pcl) is the summation of the cable loss and the gain of the amplifier.

The measurement results are obtained as described below:

Power (EIRP) = Pmea - Pcl + Ga

5.This value is EIRP since the measurement is calibrated using an antenna of known gain (unit: dBi) and known input power.

6.ERP can be calculated from EIRP by subtracting the gain of the dipole, ERP = EIRP -2.15dBi.

6.2.3 Measurement Results

Radiated emissions measurements were made at the upper, middle, and lower carrier frequencies of the LTE Bands. It was decided that measurements at these three carrier frequencies would be sufficient to demonstrate compliance with emissions limits because it was seen that all the significant spurs occur well outside the band and no radiation was seen from a carrier in one block of the LTE Bands. Into any of the other blocks. The equipment must still, however, meet emissions requirements with the carrier at all frequencies over which it is capable of operating and it is the manufacturer's responsibility to verify this. The evaluated frequency range is from 30MHz to ten times the main frequency signal. The final data result takes the worst pattern data and places it in the report.

Test Frequency range: 30M-26G

Only the worst mode data is provided Mainly Supply

RSE-LTE2-M

Frequency (MHz)	PMea (dBm)	Pcl (dBm)	Ga (dBd)	Test Result (dBm)	Limit(dBm)	Margin(dBm)	Polarization
3760.0	-50.15	6.6	7.9	-48.85	-13	35.85	V
5640.4	-48.16	8.3	10.2	-46.26	-13	33.26	V
7520.0	-38.99	9.7	11.6	-37.09	-13	24.09	V
9400.0	-41.79	10.7	12.7	-39.79	-13	26.79	V
11280.0	-47.25	12.1	12.3	-47.05	-13	34.05	н
13160.2	-44.7	13.0	12.3	-45.4	-13	32.40	V

RSE-LTE4-M

Frequency (MHz)	PMea (dBm)	Pcl (dBm)	Ga (dBd)	Test Result (dBm)	Limit(dBm)	Margin(dBm)	Polarization
3465.2	-48.7	6.4	7.8	-47.3	-13	34.30	V
5197.6	-51.22	8.0	9.4	-49.82	-13	36.82	Z V
6930.4	-53.21	9.3	11.1	-51.41	-13	38.41	V O
8662.4	-39.78	10.3	12.7	-37.38	-13	24.38	V
10398.4	-48.73	11.6	12.3	-48.03	-13	35.03	H
12136.8	-47.01	12.6	12.3	-47.31	-13	34.31	V

RSE-LTE5-M

Frequency (MHz)	PMea (dBm)	Pcl (dBm)	Ga (dBd)	Test Result (dBm)	Limit(dBm)	Margin(dBm)	Polarization
1673.6	-51.72	4.5	4.7	-51.52	-13	38.52	V
2509.2	-44.76	5.4	5.6	-44.56	-13	31.56	Н
3364.0	-53.48	6.2	6.9	-52.78	-13	39.78	Н
4182.4	-54.22	7.0	8.9	-52.32	-13	39.32	Н
5018.4	-54.28	7.8	9.6	-52.48	-13	39.48	Н
5853.2	-53.66	8.4	10.2	-51.86	-13	38.86	V

RSE-LTE7-M

Frequency (MHz)	PMea (dBm)	Pcl (dBm)	Ga (dBd)	Test Result (dBm)	Limit(dBm)	Margin(dBm)	Polarization
5072.4	-45.79	7.8	9.6	-43.99	-25	18.99	V
7604.0	-37.86	9.7	11.6	-35.96	-25	10.96	V
10139.6	-46.47	11.3	12.5	-45.27	-25	20.27	Н
15212.2	-29.81	14.5	12.3	-32.01	-25	7.01	V
17744.5	-30.99	15.8	12.3	-34.49	-25	9.49	V

RSE-LTE26-M-836.5

Frequency (MHz)	PMea (dBm)	Pcl (dBm)	Ga (dBd)	Test Result (dBm)	Limit(dBm)	Margin(dBm)	Polarization
1674.3	-52.84	4.5	4.7	-52.64	-13	39.64	Н
2508.5	-45.08	5.4	5.6	-44.88	-13	31.88	Н
3345.6	-53.8	6.2	6.9	-53.1	-13	40.10	Н
4196.8	-54.71	7.0	8.9	-52.81	-13	39.81	Н
5042.4	-54	7.8	9.6	-52.2	-13	39.20	Н
5853.2	-53.36	8.4	10.2	-51.56	-13	38.56	Н

RSE-LTE38-M

Frequency (MHz)	PMea (dBm)	Pcl (dBm)	Ga (dBd)	Test Result (dBm)	Limit(dBm)	Margin(dBm)	Polarization
5190.0	-45.06	8.0	9.4	-43.66	-25	18.66	V
7784.8	-33.9	9.9	11.8	-32	-25	7.00	V
10380.4	-42.69	11.6	12.3	-41.99	-25	16.99	V
12972.2	-41	13.2	12.3	-41.9	-25	16.90	V
15569.2	-32.47	14.6	12.3	-34.77	-25	9.77	V

RSE-LTE40-M

Frequency (MHz)	PMea (dBm)	Pcl (dBm)	Ga (dBd)	Test Result (dBm)	Limit(dBm)	Margin(dBm)	Polarization
4703.6	-50.53	7.5	9.0	-49.03	-13	36.03	V

		1 1 2 4 V					
7050.8	-49.46	9.4	11.1	-47.76	-13	34.76	Н
9400.0	-47.07	10.7	12.7	-45.07	-13	32.07	V
11757.8	-43.32	12.5	12.3	-43.52	-13	30.52	H
14095.8	-40.59	14.0	12.3	-42.29	-13	29.29	V
16458.2	-33.77	14.6	12.3	-36.07	-13	23.07	H

RSE-LTE41-M

Frequency (MHz)	PMea (dBm)	Pcl (dBm)	Ga (dBd)	Test Result (dBm)	Limit(dBm)	Margin(dBm)	Polarization
5183.6	-46.31	8.0	9.4	-44.91	-25	19.91	V
7774.8	-37.02	9.8	11.8	-35.02	-25	10.02	V
10372.4	-44.32	11.6	12.3	-43.62	-25	18.62	н
12956.5	-41.11	13.2	12.3	-42.01	-25	17.01	H
15560.5	-29.57	14.6	12.3	-31.87	-25	6.87	V
17777.8	-31.05	16.0	12.3	-34.75	-25	9.75	Н

Secondary Supply

RSE-LTE41-M

Frequency (MHz)	PMea (dBm)	Pcl (dBm)	Ga (dBd)	Test Result (dBm)	Limit(dBm)	Margin(dBm)	Polarization
3620.8	-50.63	6.5	7.8	-49.33	-25	24.33	н
5186.0	-44.16	8.0	9.4	-42.76	-25	17.76	V
7775.6	-39.32	9.9	11.8	-37.42	-25	12.42	V
9518.0	-47.8	10.7	12.7	-45.8	-25	20.80	V
11652.8	-41.69	12.4	12.3	-41.79	-25	16.79	N V
15558.8	-30.73	14.6	12.3	-33.03	-25	8.03	V

Annex A: Revised History

Version	Revised Content				
V0	Initial				

Annex B: Accreditation Certificate

Accredited Laboratory

A2LA has accredited

INDUSTRIAL INTERNET INNOVATION CENTER (SHANGHAI) CO., LTD. Shanghai, People's Republic of China

for technical competence in the field of

Electrical Testing

This laboratory is accredited in accordance with the recognized International Standard ISO/IEC 17025:2017 General requirements for the competence of testing and calibration laboratories. This accreditation demonstrates technical competence for a defined scope and the operation of a laboratory quality management system (refer to joint ISO-ILAC-IAF Communiqué dated April 2017).

Presented this 20th day of September 2023.

Mr. Trace McInturff, Vice President, Accreditation Services For the Accreditation Council Certificate Number 3682.01 Valid to February 28, 2025

For the tests to which this accreditation applies, please refer to the laboratory's Electrical Scope of Accreditation.

END OF REPORT