

Industrial Internet Innovation Center (Shanghai) Co.,Ltd.

SRD TEST REPORT

PRODUCT Smart POS System

BRAND SUNMI

MODEL T6F10

APPLICANT Shanghai Sunmi Technology Co.,Ltd.

FCC ID 2AH25T6F10

ISSUE DATE January 25, 2024

STANDARD(S) FCC Part15E

Prepared by: Tao Lingyan Reviewed by: Yang Fan Approved by: Zhang Min

图验整 析

花夏

CAUTION:

This report shall not be reproduced except in full without the written permission of the test laboratory and shall not be quoted out of context.

CONTENTS

1. SU	JMMARY OF TEST REPORT	3
1.1	Test Standard	3
1.2	REFERENCE DOCUMENT(S)	
1.3	SUMMARY OF TEST RESULTS	3
1.4	Data Provided by Applicant	4
2. GI	ENERAL INFORMATION OF THE LABORATORY	5
2.1	Testing Laboratory	5
2.2	LABORATORY ENVIRONMENTAL REQUIREMENTS	5
2.3	Project Information	5
3. GI	ENERAL INFORMATION OF THE CUSTOMER	6
3.1	Applicant	6
3.2	Manufacturer	6
4. GI	ENERAL INFORMATION OF THE PRODUCT	7
4.1	PRODUCT DESCRIPTION FOR EQUIPMENT UNDER TEST (EUT)	7
4.2	INTERNAL IDENTIFICATION OF AE USED DURING THE TEST	7
4.3	Additional Information	8
4.4	EUT TEST RF CONFIGURATION	
5. TE	ST CONFIGURATION INFORMATION	
5.1	Laboratory Environmental Conditions	10
5.2	TEST EQUIPMENTS UTILIZED.	10
5.3	MEASUREMENT UNCERTAINTY	12
6. TE	ST REQUIREMENTS	
6.1	DFS TECHNICAL REQUIREMENTS AND RADAR TEST WAVEFORMS	13
7. TE	ST RESULTS	18
7.1	DFS DETECTION THRESHOLDS	18
7.2	CHANNEL LOADING	20
7.3	IN-SERVICE MONITORING FOR CHANNEL MOVE TIME, CHANNEL CLOSING TRANSMISSION TIME AND	
Non	-Occupancy Period	21
ANNEX	A: REVISED HISTORY	24
ΔΝΝΕΥ	R. ACCREDITATION CERTIFICATE	25

1. Summary of Test Report

1.1 Test Standard

No.	Test Standard	Title	Version
1	FCC Part15E	Title 47 of the Code of Federal Regulations; Chapter I	District
7/2	rccrattist	Part 15 - Radio frequency devices	

1.2 Reference Document(s)

No.	Test Standard	Title	Version
1	ANSI 63.10	Methods of Measurement of Radio-Noise Emissions from Low-Voltage Electrical and Electronic Equipment in the Range of 9 kHz to 40 GHz	2013
2	KDB 905462 D02 UNII DFS Compliance Procedures New Rules v02	COMPLIANCE MEASUREMENT PROCEDURES FOR UNLICENSED-NATIONAL INFORMATION INFRASTRUCTURE DEVICES OPERATING IN THE 5250- 5350 MHz AND 5470-5725 MHz BANDS INCORPORATING DYNAMIC FREQUENCY SELECTION	

Note: KDB 905462 D02 UNII DFS Compliance Procedures New Rules v02 is not A2LA certified.

1.3 Summary of Test Results

No.	Measurement Items	FCC Rules	Verdict
1	Non-Occupancy Period	15.407(h) (2)	Pass
2	Channel Closing Transmission Time	15.407(h) (2)	Pass
3	Channel Move Time	15.407(h) (2)	Pass

NOTE:

The T6F10 manufactured by Shanghai Sunmi Technology Co.,Ltd. is a new products for testing. There are two configurations S16aa&S14aa (Mainly Supply) and S21aa (Secondary Supply) in this project. We mainly tested the S16aa (Mainly Supply), and recorded the test results in the report. The description of the differences between S16aa&S14aa (Mainly Supply) and S21aa (Secondary Supply) are as follows:

Model Difference	T6F10(High Configuration) S16aa&S14aa (Mainly Supply)	T6F10(Basic Configuration) S21aa (Secondary Supply)
Scanner	Yes	No
LCD(Just different manufacturers)	SHENZHEN DJN PHOTOELECTRIC TECHNOLOGY CO., LTD	CPT Technology (Group) Co.,Ltd
DDR	It's just that the manufact	urer and memory are different
EMMC	It's just that the manufact	urer and memory are different

Industrial Internet Innovation Center (Shanghai) Co., Ltd. only performed test cases which identified with Pass/Fail/Inc result in section 1.2.

Industrial Internet Innovation Center (Shanghai) Co., Ltd. has verified that the compliance of the tested device specified in section 4 of this test report is successfully evaluated according to the procedure and test methods as defined in type certification requirement listed in section 1 of this test report.

1.4 Data Provided by Applicant

No.	Item(s)	Data
1	Antenna gain of EUT	2.6 dBi

Note: The data of antenna is provided by the Antenna specification may affect the validity of the test results in this report, and the impact and consequences of this shall be undertaken by the customer.

2. General Information of The Laboratory

2.1 Testing Laboratory

Lab Name Industrial Internet Innovation Center (Shanghai) Co.,Lt		
Address	Building 4, No. 766, Jingang Road, Pudong, Shanghai, China	
Telephone	021-68866880	
FCC Registration No.	708870	
FCC Designation No.	CN1364	

2.2 Laboratory Environmental Requirements

Temperature	15°C~35°C
Relative Humidity	25%RH~75%RH
Atmospheric Pressure	86kPa~106kPa

2.3 Project Information

Project Manager	Gao Hongning
Test Date	December 05, 2023 to December 29, 2023

3. General Information of The Customer

3.1 Applicant

Company	Shanghai Sunmi Technology Co.,Ltd.	
Address	Room 505,No.388,Song Hu Road,Yang Pu District,Shanghai,China	
Telephone	18826519551	

3.2 Manufacturer

Company	Shanghai Sunmi Technology Co.,Ltd.
Address	Room 505,No.388,Song Hu Road,Yang Pu District,Shanghai,China
Telephone	18826519551

4. General Information of The Product

4.1 Product Description for Equipment under Test (EUT)

Product	Smart POS System
Model	T6F10
Marketing name	S16: December 05,2023
Date of Receipt	S16
SN/IMEI	P305D3BP10037
Supported Radio Technology and Bands	GSM850/GSM900/GSM1800/GSM1900 WCDMA Band I/II/IV/V/VI/VIII/XIX LTE Band 1/2/3/4/5/7/8/18/19/20/26/28/34/38/39/40/41 BT 5.0 BR/EDR/BLE WLAN 802.11b,g,n WLAN 802.11a,n,ac GPS/Galileo/GLONASS/BDS NFC
Hardware Version	V1.0(LA+EU)
Software Version	V3.0.0
FCC ID	2AH25T6F10
Power Rating	DC 7.7V form battery, DC 5V form adapter

NOTE1: EUT ID is the internal identification code of the laboratory.

NOTE2: Samples in the test report are provided by the customer. The test results are only applicable to the samples received by the laboratory.

4.2Internal Identification of AE used during the test

AE ID*	Description	Model	SN/Remark
AE1	RF Cable	N/A	N/A
AE2	Auxiliary equipment	Archer AX6000	Name: AX6000 8-Stream Wi-Fi 6 Router FCC ID: 2AXJ4AX6000V2
CD01	Adapter	TPA- 141A050200UU01	N/A
CH02	Adapter	UC13US	N/A
CI02	Adapter	TPA- 23A050200UU01	N/A
UA09	USB Cable	N/A	N/A
BA12	Battery	НРРА	ICON ENERGY SYSTEM (SHENZHEN) CO., LTD

BB07 Battery HPPA Guangdong Highpower New Energy Technology Co., Ltd.

NOTE1: AE ID is the internal identification code of the laboratory.

NOTE2: By verifying that BA12+ClO2 is the worst battery and adapter combination, this battery and adapter are used in all tests.

4.3 Additional Information

Operating Frequency Pange	U-NII-2A(5260MHz-5320MHz)
Operating Frequency Range	U-NII-2C(5500MHz-5700MHz)
Operating Mode	Slave without radar detection

Test frequency list

UNII-2A:

DW 2014	Channel	52	56	60	64
BW_20M	Freq. (MHz)	5260	5280	5300	5320
DW 40M	Channel	5	54	()	52
BW_40M	Freq. (MHz)	52	270	53	310
DVA CONA	Channel	58		8	
BW_80M	Freq. (MHz)	133	52	.90	
DW 160M	Channel	CHI ON	5	0	
BW_160M	Freq. (MHz)	5250			131

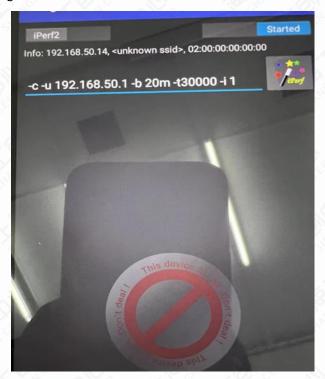
UNII-2C:

	Channel	100	104	108	112	116	120	124	128	132	136	140
BW_20M	Freq. (MHz)	5500	5520	5540	5560	5580	5600	5620	5640	5660	5680	5700
F . Oll	Channel	10)2	1:	10	13	18	12	26	13	34	/<
BW_40M	Freq. (MHz)	55	10	55	50	55	90	56	30	56	70	1
HEN I	Channel		10	06		N. N.	12	22	7.30	311	670	y .
BW_80M	Freq. (MHz)		5530			5610			ST.			
N. C.	Channel	7.0	400		1:	14	, (SHI		
BW_160M	Freq. (MHz)	M. HE	5570									

Maximum Output Power and E.I.R.P.

Frequency Band (MHz)	Max Output Power (dBm)	Antenna Gain (dBi)	Max. e.i.r.p. (dBm)	Max. e.i.r.p. (mW)
5320	9.38	2.6	11.98	15.78
5700	10.12	2.6	12.72	18.71

Note:


U-NII devices operating in the 5.25-5.35 GHz band and the 5.47-5.725GHz shall employ a TPC mechanism. A TPC mechanism is not required for systems with an e.i.r.p. of less than 500mW.

4.4 EUT Test RF Configuration

EUT uses iperf.apk working control emission measurement.

5. Test Configuration Information

5.1 Laboratory Environmental Conditions

5.1.1 Permanent Facilities

Relative Humidity		Min. = 45 %, Max. = 57	%
Atmospheric Pressure		101kPa	10 10 10 10 10 10 10 10 10 10 10 10 10 1
	Normal	Minimum	Maximum
Temperature	25℃	-10℃	50 ℃
Marking Valtage of EUT	Normal	Minimum	Maximum
Working Voltage of EUT	7.7V	6.0V	8.8V

5.2 Test Equipments Utilized

5.2.1 Conducted test system

No.	Name	Model	S/N	SW Version	HW Version	Manuf acturer	Cal. Date	Cal. Interva
1	Test Software	TS1120	10727	V3.2.22	N/A	Tonsce nd	N/A	N/A
2	Automatic control unit	JS0806-2	2218060623	N/A	N/A	Tonsce nd	2023- 05-06	1 Year
3	Wireless communication comprehensive tester	CMW50 0	164865	V3.8.12	N/A	R&S	2023- 07-26	1 Year
4	Spectrum Anal yzer	FSQ40	200063	V4.75	N/A	R&S	2023- 10-16	1 Year
5	Analog Signal Generator	SMF	104770	V3.0.13.0- 2.20.530.1 5.4	N/A	R&S	2023- 10-16	1 year
6	Vector Signal Generator	SMCV10 0B	103691	V5.00.122 .24	N/A	R&S	2023- 07-27	1 Year
7	Programmable Power Supply	Keithley 2303	4039070	N/A	N/A	Keithle y	2023- 06-23	1 Year
8	Temperature box	B-TF- 107C	BTF107C- 201804107	N/A	N/A	Boyi	2023- 06-28	1 Year
9	Network test unit AP	GT- AXE1100 0	N2IG0X401 637KWF	V3.0.0.4.3 86_45940	N/A	ASUS	N/A	N/A
10	Vector Signal Generator	SMBV10 0A	257904	V4.15.125 .49	N/A	R&S	2023- 10-16	1 Ye ar

5.2.2 Test Environment

Shielding Room1 (6.0 meters×3.0 meters×2.7 meters) did not exceed following limits along the conducted RF performance testing:

Temperature	Min. = 15 °C , Max. = 35 °C		
Relative humidity	Min. = 20 %, Max. = 75 %		
Shielding effectiveness	> 100 dB		
Ground system resistance	< 0.5 Ω		
Temperature	Min. = 15 $^{\circ}$ C, Max. = 35 $^{\circ}$ C		

Control room did not exceed following limits along the EMC testing:

Temperature	Min. = 15 °C, Max. = 35 °C
Relative humidity	Min. =30 %, Max. = 60 %
Shielding effectiveness	> 100 dB
Electrical insulation	> 10 kΩ
Ground system resistance	<0.5 Ω

Fully-anechoic chamber1 (9.8 meters×6.7 meters) did not exceed following limits along the EMC testing:

/ X / Y % / X / X		
Temperature	Min. = 15 $^{\circ}$ C, Max. = 35 $^{\circ}$ C	
Relative humidity	Min. = 25 %, Max. = 75 %	
Shielding effectiveness	> 100 dB	
Electrical insulation	> 10 kΩ	
Ground system resistance	< 0.5 Ω	
VSWR	Between 0 and 6 dB, from 1GHz to 18GH	
Site Attenuation Deviation	Between -4 and 4 dB,30MHz to 1GHz	

5.3 Measurement Uncertainty

Measurement Uncertainty of Channel Shutdown:

The assessed measurement uncertainty to ensure 95% confidence level for the normal distribution is with the coverage factor K=1.96,U=2.69dB.

Measurement Uncertainty of Conduction test

Measurement Items	Range	Confidence Level	Calculated Uncertainty
Emission Bandwidth	5150-5850MHz	95%	±1.9%
Maximum Conduct Output Power	5150-5850MHz	95%	± 1.18 dB
Power Spectral Density	5150-5850MHz	95%	±0.98 dB
Band Edge Measurements	5150-5850MHz	95%	±1.21dB
Unwanted Emissions Measurement	9kHz-40GHz	95%	9kHz-7GHz:±1.21dB 7GHz-40GHz: ±3.31dB
Frequency Stability	5150-5850MHz	95%	±1.9%

6. Test Requirements

6.1 DFS Technical Requirements and Radar Test Waveforms

6.1.1 DFS Overview

Table 6-1 Applicability of DFS Requirements Prior to Use of a Channel

	Operational Mode					
Requirement	D. 4 - at a v	Client Without Radar	Client With Radar Detection			
	Master	Detection				
Non-Occupancy Period	Yes	Not required	Yes			
DFS Detection Threshold	Yes	Not required	Yes			
Channel Availability Check Time	Yes	Not required	Not required			
U-NII Detection Bandwidth	Yes	Not required	Yes			

Table 6-2 Applicability of DFS requirements during normal operation

	Operational Mode			
Requirement	Master Device or Client with	Client Without Radar Detection		
	Radar Detection			
DFS Detection Threshold	Yes	Not required		
Channel Closing Transmission Time	Yes	Yes		
Channel Move Time	Yes	Yes		
U-NII Detection Bandwidth	Yes	Not required		

Additional requirements for devices	Master Device or Client with	Client Without Radar
with multiple bandwidth modes	Radar Detection	Detection
U-NII Detection Bandwidth	All BW modes must be tested	Not required
Statistical Performance Check	All BW modes must be tested	Not required
Channel Closing Transmission Time	Test using widest BW mode available	Test using the widest BW mode available for the link
Channel Move Time	Test using widest BW mode available	Test using the widest BW mode available for the link
All other tests	Any single BW mode	Not required

Note: Frequencies selected for statistical performance check should include several frequencies within the radar detection bandwidth and frequencies near the edge of the radar detection bandwidth. For 802.11 devices it is suggested to select frequencies in each of the bonded 20 MHz channels and the channel center frequency.

6.1.2 DFS Detection Thresholds

Table 6-3 DFS Detection Thresholds for Master Devices and Client Devices with Radar Detection

Mariana Tarana ii Barra	Value
Maximum Transmit Power	(See Notes 1, 2, and 3)
EIRP ≥ 200 milliwatt	-64 dBm
EIRP < 200 milliwatt and power spectral density < 10 dBm/MHz	-62 dBm
EIRP < 200 milliwatt that do not meet the power spectral density requirement	-64 dBm

Note 1: This is the level at the input of the receiver assuming a 0 dBi receive antenna.

Note 2: Throughout these test procedures an additional 1 dB has been added to the amplitude of the test transmission waveforms to account for variations in measurement equipment. This will ensure that the test signal is at or above the detection threshold level to trigger a DFS response.

Note3: EIRP is based on the highest antenna gain. For MIMO devices refer to KDB Publication 662911 D01.

Table 6-4 DFS Response Requirement Values

Parameter	Value		
Non-occupancy period	Minimum 30 minutes		
Channel Availability Check Time	60 seconds		
Characl Maria Time	10 seconds		
Channel Move Time	See Note 1.		
Channel Closing Transmission Time	200 milliseconds + an aggregate of 60 milliseconds over remaining 10 second period. See Notes 1 and 2.		
U-NII Detection Bandwidth	Minimum 100% of the U-NII 99% transmission power bandwidth. See Note 3.		

Note 1: Channel Move Time and the Channel Closing Transmission Time should be performed with Radar Type 0. The measurement timing begins at the end of the Radar Type 0 burst.

Note 2: The Channel Closing Transmission Time is comprised of 200 milliseconds starting at the beginning of the Channel Move Time plus any additional intermittent control signals required to facilitate a Channel move (an aggregate of 60 milliseconds) during the remainder of the 10 second period. The aggregate duration of control signals will not count quiet periods in between transmissions.

Note 3: During the U-NII Detection Bandwidth detection test, radar type 0 should be used. For each frequency step the minimum percentage of detection is 90 percent. Measurements are performed with no data traffic.

6.1.3 Radar Test Waveforms Short Pulse Radar Test Waveforms

Radar Type	Pulse Width (μsec)	PRI (μsec)	Number of Pulses	Minimum Percentage of Successful Detection	Minimum Number of Trials
0	1	1428	18	See Note 1	See Note 1
		Test A: 15 unique PRI values randomly selected from the list of 23 PRI values in Table 5a			
1	1	Test B: 15 unique PRI values randomly selected within the range of 518-3066 µsec, with a minimum increment of 1 µsec, excluding PRI values selected in Test A	Roundup	60%	30
2	1-5	150-230	23-29	60%	30
3	6-10	200-500	16-18	60%	30
4	11-20	200-500	12-16	60%	30
Aggregate (Ra	dar Types	1-4)	E. 10) (1)	80%	120

Note 1: Short Pulse Radar Type 0 should be used for the detection bandwidth test, channel move time, and channel closing time tests.

Pulse Repetition Intervals Values for Test A

Pulse Repetition Frequency Number	Pulse Repetition Frequency (Pulses Per Second)	Pulse Repetition Interval (Microseconds)	
1	1930.5	518	
2	1858.7	538	
3	1792.1	558	
4	1730.1	578	
5	1672.2	598	
6	1618.1	618	
7	1567.4	638	
8	1519.8	658	
9	1474.9	678	
10	1432.7	698	
11	1392.8	718	
12	1355	738	
13	1319.3	758	
14	1285.3	778	
15	1253.1	798	
16	1222.5	818	
17	17 1193.3		
18	1165.6	858	

	J 6 10 10	Report No: 23T04I30131-SRD06-V01	
19	1139	878	
20	1113.6	898	
21	1089.3	918	
22	1066.1	938	
23	326.2	3066	

The aggregate is the average of the percentage of successful detections of Short Pulse Radar Types 1-4. For example, the following table indicates how to compute the aggregate of percentage of successful detections.

De deu Ture	Number of Trials	Number of Successful	Minimum Percentage of Successful Detection	
Radar Type	Number of Trials	Detections		
1 1	35	29	82.9%	
2	30	18	60%	
3	30	27	90%	
4	50	44	88%	

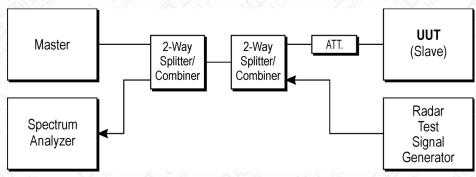
Long Pulse Radar Test Waveform

N 7 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1							
Radar Type	Pulse Width (µsec)	Chirp Width (MHz)	PRI (μsec)	Number of Pulses per Burst	Number of Bursts	Minimum Percentage of Successful Detection	Minimum Number of Trials
5	50-100	5-20	1000- 2000	1-3	8-20	80%	30

The parameters for this waveform are randomly chosen. Thirty unique waveforms are required for the Long Pulse Radar Type waveforms. If more than 30 waveforms are used for the Long Pulse Radar Type waveforms, then each additional waveform must also be unique and not repeated from the previous waveforms.

Frequency Hopping Radar Test Waveform

25	Radar Type	Pulse Width (µsec)	PRI (μsec)	Pulses per Hop	Hopping Rate (kHz)	Hopping Sequence Length (msec)	Minimum Percentage of Successful Detection	Minimum Number of Trials
1	6	1	333	9	0.333	300	70%	30


For the Frequency Hopping Radar Type, the same Burst parameters are used for each waveform. The hopping sequence is different for each waveform and a 100-length segment is selected from the hopping sequence defined by the following algorithm: The first frequency in a hopping sequence is selected randomly from the group of 475 integer frequencies from 5250 – 5724 MHz. Next, the frequency that was just chosen is removed from the group and a frequency is randomly selected from the remaining 474 frequencies in the group. This process continues until all 475 frequencies are chosen for the set. For selection of a random frequency, the frequencies remaining within the group are always treated as equally likely.

6.1.4 Set-up

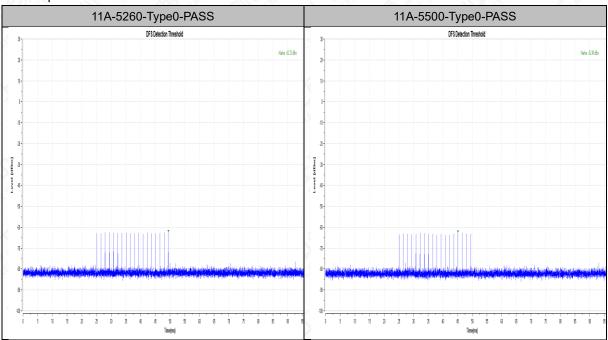
Set-up B is a set-up whereby the UUT is an RLAN device operating in slave mode, with or without Radar Interference Detection function. This set-up also contains an RLAN device operating in master mode. The radar test signals are injected into the master device. The UUT (slave device) is associated with the master device.

Pic 6-6: Set-up B

7. Test Results

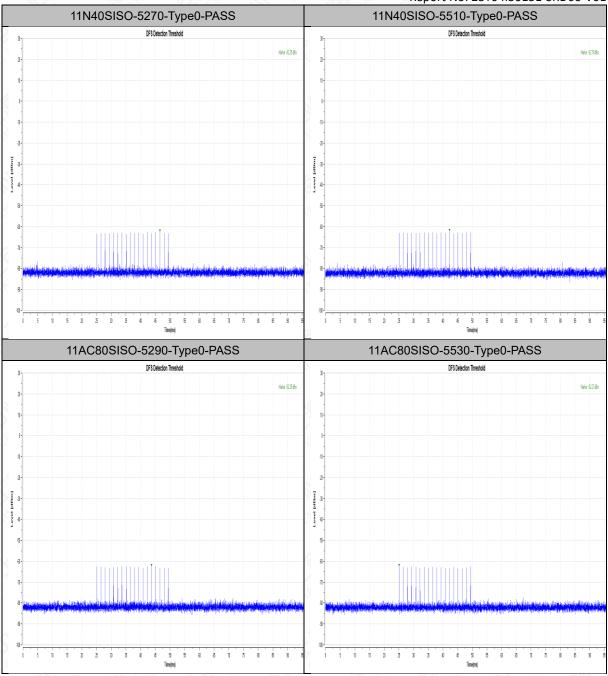
7.1 DFS Detection Thresholds

7.1.1 Method of Measurement

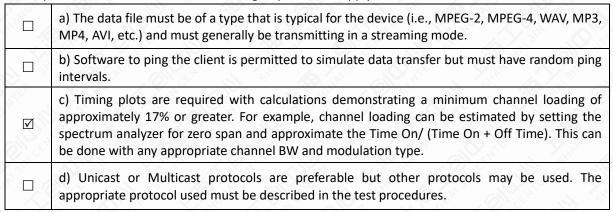

A spectrum analyzer is used to establish the test signal level for each radar type. During this process, there are no transmissions by either the Master Device or Client Device. The spectrum analyzer is switched to the zero span (time domain) mode at the frequency of the Radar Waveform generator. The peak detector function of the spectrum analyzer is utilized. The spectrum analyzer resolution bandwidth (RBW) and video bandwidth (VBW) are set to at least 3 MHz.

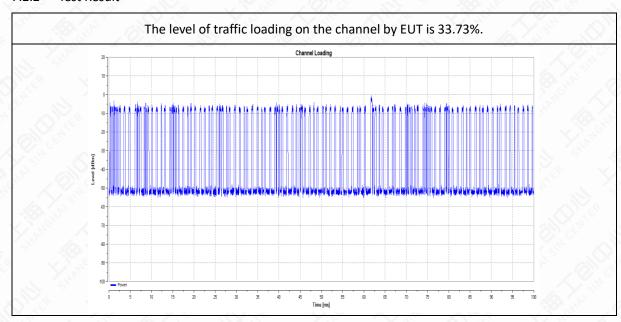
The signal generator amplitude and/or step attenuators are set so that the power level measured at the spectrum analyzer is equal to the DFS Detection Threshold that is required for the tests. The signal generator and attenuator settings are recorded for use during the test.

7.1.2 The Calibration is listed below:


TestMode	Frequency[dbm]	Radar Type	Result	Limit[dbm]	Verdict
11A	5260	Type0	-62.33	-62.00	PASS
11A	5500	Type0	-62.48	-62.00	PASS
11N40SISO	5270	Type0	-62.25	-62.00	PASS
11N40SISO	5510	Type0	-62.18	-62.00	PASS
11AC80SISO	5290	Type0	-62.35	-62.00	PASS
11AC80SISO	5530	Type0	-62.27	-62.00	PASS

Test Graphs




7.2 Channel loading

7.2.1 Method of Measurement

System testing will be performed with channel-loading using means appropriate to the data types that are used by the unlicensed device. The following requirements apply:

7.2.2 Test Result

7.3 In-Service Monitoring for Channel Move Time, Channel Closing Transmission Time and Non-Occupancy Period

7.3.1 Method of Measurement

These tests define how the following DFS parameters are verified during In-Service Monitoring;

- Channel Closing Transmission Time
- Channel Move Time
- Non-Occupancy Period

The steps below define the procedure to determine the above mentioned parameters when a radar Burst with a level equal to the DFS Detection Threshold + 1dB is generated on the Operating Channel of the U-NII device (In- Service Monitoring).

- a) One frequency will be chosen from the Operating Channels of the EUT within the 5250-5350 MHz or 5470-5725 MHz bands. For 802.11 devices, the test frequency must contain control signals. This can be verified by disabling channel loading and monitoring the spectrum analyzer. If no control signals are detected, another frequency must be selected within the emission bandwidth where control signals are detected.
- b) In case the EUT is a U-NII device operating as a Client Device (with or without DFS), a U-NII device operating as a Master Device will be used to allow the EUT (Client device) to Associate wit the Master Device. In case the EUT is a Master Device, a U-NII device operating as a Client Device will be used and it is assumed that the Client will Associate with the EUT (Master). In both cases for conducted tests, the Radar Waveform generator will be connected to the Master Device. For radiated tests, the emissions of the Radar Waveform generator will be directed towards the Master Device. If the Master Device has antenna gain, the main beam of the antenna will be directed toward the radar emitter.
- c) Vertical polarization is used for testing.
- d) Stream the channel loading test file from the Master Device to the Client Device on the test Channel for the entire period of the test.
- e) At time T0 the Radar Waveform generator sends a Burst of pulses for one of the Radar Type 0 in Table 5 at levels defined in Table 3, on the Operating Channel. An additional 1 dB is added to the radar test signal to ensure it is at or above the DFS Detection Threshold, accounting for equipment variation /errors.
- f) Observe the transmissions of the EUT at the end of the radar Burst on the Operating Channel for duration greater than 10 seconds. Measure and record the transmissions from the EUT during the observation time (Channel Move Time). Measure and r cord the Channel Move Time and Channel Closing Transmission Time if radar detection occurs. Figure 17 illustrates Channel Closing Transmission Time.
- g) When operating as a Master Device, monitor the EUT for more than 30 minutes following instant T2 to verify that the EUT does not resume any transmissions on this Channel. Perform this test once and record the measurement result.
- h) In case the EUT is a U-NII device operating as a Client Device with In-Service Monitoring, perform steps a) to f).

Report No: 23T04l30131-SRD06-V01 T_0 T_1 T_2 T_3 T_3 T_{0} T_{0

Pic 7-1: Channel Closing Transmission Time, Channel Move Time and Non-Occupancy Period

7.3.2 Limits

Channel Move Time	≤10s	
Channel Closing Transmission Time	≤200ms + 60ms (over remaining 10s period	
Non-Occupancy Period	≥30min	

Note 1: Channel Move Time and the Channel Closing Transmission Time should be performed with Radar Type 0. The measurement timing begins at the end of the Radar Type 0 burst.

Note 2: The Channel Closing Transmission Time is comprised of 200 milliseconds starting at the beginning of the Channel Move Time plus any additional intermittent control signals required to facilitate Channel move (an aggregate of 60 milliseconds) during the remainder of the 10 second period. The aggregate duration of control signals will not count quiet periods in between transmissions.

Note 3: The Channel Closing Transmission Time is calculated by the computer.

Note 4: A port with a minimum antenna gain was selected for testing. For details, refer to the document" DFS Set-up Photo".

7.3.3 Test result of Channel Move Time and Channel Closing Transmission Time

TestMode	Frequency[MHz]	CCTT[ms]	Limit[ms]	CMT[ms]	Limit[ms]	Verdict
11AC80SISO	5290	200+14.3	200+60	972.1	10000	PASS
11AC80SISO	5530	200+24.7	200+60	1103.4	10000	PASS

Note:

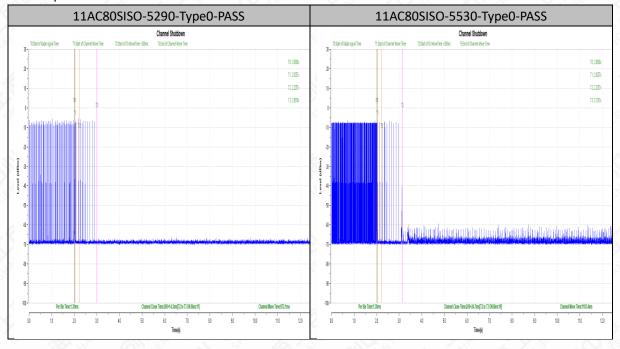
CCTT = 200ms + Per Bin Time * Number of T2 to T3 ON Bins;

CMT=T3-T1.

*CCTT: Channel Closing Transmission Time,

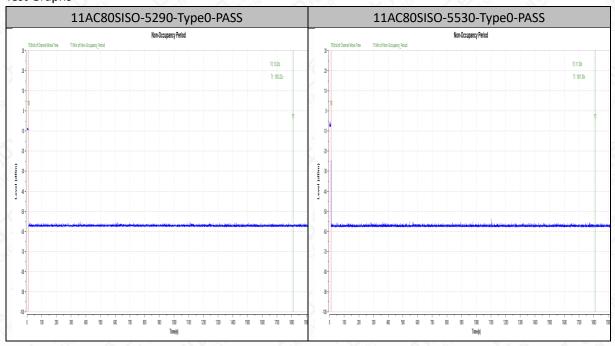
*CMT: Channel Move Time,

*T0: Start of Radar signal Time,


*T1: Start of channel Move Time,

*T2: Start of channel Move Time + 200ms,

*T3: End of Channel Move Time.


Test Graphs

7.3.4 Test result of Non-Occupancy Period

TestMode	Frequency[MHz]	Result	Limit[s]	Verdict
11AC80SISO	5290	see test graph	≥1800	PASS
11AC80SISO	5530	see test graph	≥1800	PASS

Test Graphs

Annex A: Revised History

Version	Revised Content		
V00	Initial		
V01	First change of test report		

Annex B: Accreditation Certificate

Accredited Laboratory

A2LA has accredited

INDUSTRIAL INTERNET INNOVATION CENTER (SHANGHAI) CO., LTD.

Shanghai, People's Republic of China

for technical competence in the field of

Electrical Testing

This laboratory is accredited in accordance with the recognized International Standard ISO/IEC 17025:2017

General requirements for the competence of testing and calibration laboratories. This accreditation demonstrates technical competence for a defined scope and the operation of a laboratory quality management system (refer to joint ISO-ILAC-IAF Communiqué dated April 2017).

Presented this 20th day of September 2023.

Mr. Trace McInturff, Vice President, Accreditation Services For the Accreditation Council Certificate Number 3682.01

Certificate Number 3682.01 Valid to February 28, 2025

For the tests to which this accreditation applies, please refer to the laboratory's Electrical Scope of Accreditation.

END OF REPORT