Fig.11 LTE Band 2 1RB 50 offset Ground Mode High Date/Time: 2019/1/9 Electronics: DAE4 Sn1244 Medium parameters used: f = 1900 MHz; $\sigma = 1.556 \text{ S/m}$; $\varepsilon_r = 52.078$; $\rho = 1000 \text{ kg/m}^3$ Ambient Temperature:22.5 °C Liquid Temperature:22.5 °C Communication System: LTE Band 2 Professional 1900MHz; Frequency: 1900 MHz; Duty Cycle: 1:1 Probe: ES3DV3 - SN3252ConvF(4.77, 4.77, 4.77); Calibrated: 9/4/2018 LTE Band 2 1RB 50 offset Ground Mode High/Area Scan (61x131x1): Measurement grid: dx=10 mm, dy=10 mm Maximum value of SAR (Measurement) = 1.08 W/kg LTE Band 2 1RB 50 offset Ground Mode High/Zoom Scan (7x7x7)/Cube 0: Measurement grid: dx=5mm, dy=5mm, dz=5mm Reference Value = 0.6890 V/m; Power Drift = 0.03 dB Peak SAR (extrapolated) = 1.74 W/kg SAR(1 g) = 0.955 W/kg; SAR(10 g) = 0.491 W/kgMaximum value of SAR (measured) = 1.07 W/kg Page Number: 107 of 189 Report Issued Date: Jan. 24, 2019 ## Fig.12 LTE Band 2 1RB 50 offset Ground Mode Low Date/Time: 2019/1/9 Electronics: DAE4 Sn1244 Medium parameters used: f = 1860 MHz; $\sigma = 1.515 \text{ S/m}$; $\varepsilon_r = 52.211$; $\rho = 1000 \text{ kg/m}^3$ Ambient Temperature:22.5 °C Liquid Temperature:22.5 °C Communication System: LTE Band 2 Professional 1900MHz; Frequency: 1860 MHz; Duty Cycle: 1:1 Probe: ES3DV3 - SN3252ConvF(4.77, 4.77, 4.77); Calibrated: 9/4/2018 LTE Band 2 1RB 50 offset Ground Mode Low /Area Scan (61x131x1): Measurement grid: dx=10 mm, dy=10 mm Maximum value of SAR (Measurement) = 2.61 W/kg LTE Band 2 1RB 50 offset Ground Mode Low /Zoom Scan (7x7x7)/Cube 0: Measurement grid: dx=5mm, dy=5mm, dz=5mm Reference Value = 1.172 V/m; Power Drift = 0.08 dB Peak SAR (extrapolated) = 4.59 W/kg SAR(1 g) = 2.31 W/kg; SAR(10 g) = 1.1 W/kg Maximum value of SAR (measured) = 2.65 W/kg ## Fig.13 LTE Band 4 1RB 0 offset Ground Mode High 5mm Date/Time: 2019/1/4 Electronics: DAE4 Sn1244 Medium parameters used: f = 1745 MHz; $\sigma = 1.421$ S/m; $\varepsilon_r = 55.399$; $\rho = 1000$ kg/m³ Ambient Temperature:22.5 ℃ Liquid Temperature:22.5 ℃ Communication System: LTE Band 4 Professional 1800MHz; Frequency: 1745 MHz; Duty Cycle: 1:1 Probe: ES3DV3 - SN3252ConvF(4.99, 4.99, 4.99); Calibrated: 9/4/2018 ## LTE Band 4 1RB 0 offset Ground Mode High 5mm/Area Scan (61x131x1): Measurement grid: dx=10 mm, dy=10 mm Maximum value of SAR (Measurement) = 0.803 W/kg #### LTE Band 4 1RB 0 offset Ground Mode High 5mm/Zoom Scan (7x7x7)/Cube 0: Measurement grid: dx=5mm, dy=5mm, dz=5mm Reference Value = 1.078 V/m; Power Drift = -0.15 dB Peak SAR (extrapolated) = 1.20 W/kg SAR(1 g) = 0.710 W/kg; SAR(10 g) = 0.398 W/kgMaximum value of SAR (measured) = 0.770 W/kg Page Number: 109 of 189 Report Issued Date: Jan. 24, 2019 ## Fig.14 LTE Band 4 1 RB 0 offset Ground Mode High Date/Time: 2019/1/4 Electronics: DAE4 Sn1244 Medium parameters used: f = 1745 MHz; $\sigma = 1.421$ S/m; $\varepsilon_r = 55.399$; $\rho = 1000$ kg/m³ Ambient Temperature:22.5 °C Liquid Temperature:22.5 °C Communication System: LTE Band 4 Professional 1800MHz; Frequency: 1745 MHz; Duty Cycle: 1:1 Probe: ES3DV3 - SN3252ConvF(4.99, 4.99, 4.99); Calibrated: 9/4/2018 LTE Band 4 1 RB 0 offset Ground Mode High/Area Scan (61x131x1): Measurement grid: dx=10 mm, dy=10 mm Maximum value of SAR (Measurement) = 1.64 W/kg #### LTE Band 4 1 RB 0 offset Ground Mode High/Zoom Scan (7x7x7)/Cube 0: Measurement grid: dx=5mm, dy=5mm, dz=5mm Reference Value = 0.1480 V/m; Power Drift = 0.19 dB Peak SAR (extrapolated) = 2.40 W/kg SAR(1 g) = 1.31 W/kg; SAR(10 g) = 0.680 W/kgMaximum value of SAR (measured) = 1.42 W/kg Page Number: 110 of 189 Report Issued Date: Jan. 24, 2019 ## Fig.15 LTE Band 7 1RB 50 offset Ground Mode Middle 5mm Date/Time: 2019/1/5 Electronics: DAE4 Sn1244 Medium parameters used: f = 2535 MHz; $\sigma = 2.031$ S/m; $\varepsilon_r = 54.546$; $\rho = 1000$ kg/m³ Ambient Temperature:22.5 °C Liquid Temperature:22.5 °C Communication System: LTE Band 7 Professional 2600MHz; Frequency: 2535 MHz; Duty Cycle: 1:1 Probe: ES3DV3 - SN3252ConvF(4.41, 4.41, 4.41); Calibrated: 9/4/2018 #### LTE Band 7 1RB 50 offset Ground Mode Middle 5mm/Area Scan (61x131x1): Measurement grid: dx=10 mm, dy=10 mm Maximum value of SAR (Measurement) = 0.467 W/kg #### LTE Band 7 1RB 50 offset Ground Mode Middle 5mm/Zoom Scan (7x7x7)/Cube 0: Measurement grid: dx=5mm, dy=5mm, dz=5mm Reference Value = 0.1610 V/m; Power Drift = 0.10 dB Peak SAR (extrapolated) = 1.01 W/kg SAR(1 g) = 0.442 W/kg; SAR(10 g) = 0.191 W/kgMaximum value of SAR (measured) = 0.460 W/kg ## Fig.16 LTE Band 7 1RB 50 offset Ground Mode Middle Date/Time: 2019/1/5 Electronics: DAE4 Sn1244 Medium parameters used: f = 2535 MHz; $\sigma = 2.031$ S/m; $\varepsilon_r = 54.546$; $\rho = 1000$ kg/m³ Ambient Temperature:22.5 ℃ Liquid Temperature:22.5 ℃ Communication System: LTE Band 7 Professional 2600MHz; Frequency: 2535 MHz; Duty Cycle: 1:1 Probe: ES3DV3 - SN3252ConvF(4.41, 4.41, 4.41); Calibrated: 9/4/2018 LTE Band 7 1RB 50 offset Ground Mode Middle /Area Scan (61x131x1): Measurement grid: dx=10 mm, dy=10 mm Maximum value of SAR (Measurement) = 1.07 W/kg #### LTE Band 7 1RB 50 offset Ground Mode Middle /Zoom Scan (7x7x7)/Cube 0: Measurement grid: dx=5mm, dy=5mm, dz=5mm Reference Value = 0 V/m; Power Drift = 0.01 dB Peak SAR (extrapolated) = 2.44 W/kg SAR(1 g) = 0.943 W/kg; SAR(10 g) = 0.363 W/kg Maximum of SAR (measured) = 1.05 W/kg ## Fig.17 LTE Band17 10MHz 1RB 49 offset Ground Mode Middle Date/Time: 2019/1/11 Electronics: DAE4 Sn1244 Medium parameters used: f = 710 MHz; $\sigma = 0.877 \text{ S/m}$; $\varepsilon_r = 58.181$; $\rho = 1000 \text{ kg/m}^3$ Ambient Temperature: 22.5 °C Liquid Temperature: 22.5 °C Communication System: LTE Band 17 Professional 850MHz; Frequency: 710 MHz; Duty Cycle: 1:1 Probe: ES3DV3 - SN3252ConvF(6.53, 6.53, 6.53); Calibrated: 9/4/2018 #### LTE Band17 10MHz 1RB 49 offset Ground Mode Middle/Area Scan (61x121x1): Measurement grid: dx=10 mm, dy=10 mm Maximum value of SAR (Measurement) = 0.149 W/kg #### LTE Band17 10MHz 1RB 49 offset Ground Mode Middle/Zoom Scan (7x7x7)/Cube 0: Measurement grid: dx=5mm, dy=5mm, dz=5mm Reference Value = 3.353 V/m; Power Drift = 0.13 dB Peak SAR (extrapolated) = 0.262 W/kg SAR(1 g) = 0.148 W/kg; SAR(10 g) = 0.087 W/kg Maximum of SAR (measured) = 0.162 W/kg ## Fig.18 LTE Band17 10MHz 1RB 49 offset Ground Mode Middle Date/Time: 2019/1/11 Electronics: DAE4 Sn1244 Medium parameters used: f = 710 MHz; $\sigma = 0.877 \text{ S/m}$; $\varepsilon_r = 58.181$; $\rho = 1000 \text{ kg/m}^3$ Ambient Temperature:22.5 ℃ Liquid Temperature:22.5 ℃ Communication System: LTE Band 17 Professional 850MHz; Frequency: 710 MHz; Duty Cycle: 1:1 Probe: ES3DV3 - SN3252ConvF(6.53, 6.53, 6.53); Calibrated: 9/4/2018 #### LTE Band17 10MHz 1RB 49 offset Ground Mode Middle/Area Scan (61x121x1): Measurement grid: dx=10 mm, dy=10 mm Maximum value of SAR (Measurement) = 0.904 W/kg #### LTE Band17 10MHz 1RB 49 offset Ground Mode Middle/Zoom Scan (7x7x7)/Cube 0: Measurement grid: dx=5mm, dy=5mm, dz=5mm Reference Value = 2.413 V/m; Power Drift = 0.16 dB Peak SAR (extrapolated) = 2.31 W/kg SAR(1 g) = 0.853 W/kg; SAR(10 g) = 0.417 W/kg Maximum of SAR (measured) = 0.955 W/kg ## Fig.19 CDMA BC0 Ground Mode High Date/Time: 2019/1/10 Electronics: DAE4 Sn1244 Medium parameters used (interpolated): f = 848.31 MHz; $\sigma = 1.012$ S/m; $\varepsilon_r = 56.596$; $\rho = 1000$ kg/m³ Ambient Temperature:22.5 ℃ Liquid Temperature:22.5 ℃ Communication System: CDMA 835MHz 850MHz; Frequency: 848.31 MHz; Duty Cycle: 1:1 Probe: ES3DV3 - SN3252ConvF(6.34, 6.34, 6.34); Calibrated: 9/4/2018 #### CDMA BC0 Ground Mode High/Area Scan (61x121x1): Measurement grid: dx=10 mm, dy=10 mm Maximum value of SAR (Measurement) = 0.897 W/kg #### CDMA BC0 Ground Mode High/Zoom Scan (7x7x7)/Cube 0: Measurement grid: dx=5mm, dy=5mm, dz=5mm Reference Value = 2.949 V/m; Power Drift = 0.16 dB Peak SAR (extrapolated) = 1.59 W/kg SAR(1 g) = 0.865 W/kg; SAR(10 g) = 0.474 W/kgMaximum value of SAR (measured) = 0.969 W/kg Page Number: 115 of 189 Report Issued Date: Jan. 24, 2019 ## Fig.20 CDMA BC0 Ground Mode Middle N06 Date/Time: 2019/1/10 Electronics: DAE4 Sn1244 Medium parameters used: f = 837 MHz; $\sigma = 1.001 \text{ S/m}$; $\varepsilon_r = 56.715$; $\rho = 1000 \text{ kg/m}^3$ Ambient Temperature:22.5 °C Liquid Temperature:22.5 °C Communication System: CDMA 835MHz 850MHz; Frequency: 836.52 MHz; Duty Cycle: 1:1 Probe: ES3DV3 - SN3252ConvF(6.34, 6.34, 6.34); Calibrated: 9/4/2018 #### CDMA BC0 Ground Mode Middle N06/Area Scan (61x121x1): Measurement grid: dx=10 mm, dy=10 mm Maximum value of SAR (Measurement) = 1.46 W/kg ## CDMA BC0 Ground Mode Middle N06/Zoom Scan (7x7x7)/Cube 0: Measurement grid: dx=5mm, dy=5mm, dz=5mm Reference Value = 2.290 V/m; Power Drift = 0.05 dB Peak SAR (extrapolated) = 3.74 W/kg SAR(1 g) = 1.79 W/kg; SAR(10 g) = 0.899 W/kgMaximum value of SAR (measured) = 1.97 W/kg Page Number: 116 of 189 Report Issued Date: Jan. 24, 2019 ## Fig.21 CDMA BC1 Ground Mode Middle Date/Time: 2019/1/9 Electronics: DAE4 Sn1244 Medium parameters used: f = 1880 MHz; $\sigma = 1.536 \text{ S/m}$; $\varepsilon_r = 52.147$; $\rho = 1000 \text{ kg/m}^3$ Ambient Temperature:22.5 ℃ Liquid Temperature:22.5 ℃ Communication System: CDMA 1900MHz 1900MHz; Frequency: 1880 MHz; Duty Cycle: 1:1 Probe: ES3DV3 - SN3252ConvF(4.77, 4.77, 4.77); Calibrated: 9/4/2018 #### CDMA BC1 Ground Mode Middle/Area Scan (61x81x1): Measurement grid: dx=10 mm, dy=10 mm Maximum value of SAR (Measurement) = 1.21 W/kg #### CDMA BC1 Ground Mode Middle/Zoom Scan (7x7x7)/Cube 0: Measurement grid: dx=5mm, dy=5mm, dz=5mm Reference Value = 1.860 V/m; Power Drift = -0.13 dB Peak SAR (extrapolated) = 1.63 W/kg SAR(1 g) = 0.952 W/kg; SAR(10 g) = 0.523 W/kgMaximum value of SAR (measured) = 1.07 W/kg Page Number: 117 of 189 Report Issued Date: Jan. 24, 2019 ## Fig.22 CDMA BC1 Ground Mode Middle Date/Time: 2019/1/9 Electronics: DAE4 Sn1244 Medium parameters used: f = 1880 MHz; $\sigma = 1.536 \text{ S/m}$; $\varepsilon_r
= 52.147$; $\rho = 1000 \text{ kg/m}^3$ Ambient Temperature:22.5 °C Liquid Temperature:22.5 °C Communication System: CDMA 1900MHz 1900MHz; Frequency: 1880 MHz; Duty Cycle: 1:1 Probe: ES3DV3 - SN3252ConvF(4.77, 4.77, 4.77); Calibrated: 9/4/2018 #### CDMA BC1 Ground Mode Middle/Area Scan (61x101x1): Measurement grid: dx=10 mm, dy=10 mm Maximum value of SAR (Measurement) = 2.26 W/kg ## CDMA BC1 Ground Mode Middle/Zoom Scan (7x7x7)/Cube 0: Measurement grid: dx=5mm, dy=5mm, dz=5mm Reference Value = 1.843 V/m; Power Drift = 0.18 dB Peak SAR (extrapolated) = 3.83 W/kg SAR(1 g) = 2.02 W/kg; SAR(10 g) = 1 W/kg Maximum value of SAR (measured) = 2.29 W/kg Page Number: 118 of 189 Report Issued Date: Jan. 24, 2019 ## Fig.23 Wifi 11b CH11 Ground Mode Date/Time: 2019/1/12 Electronics: DAE4 Sn1244 Medium parameters used: f = 2462 MHz; $\sigma = 1.937 \text{ S/m}$; $\varepsilon_r = 50.08$; $\rho = 1000 \text{ kg/m}^3$ Ambient Temperature:22.5 °C Liquid Temperature:22.5 °C Communication System: Wifi 2450 2450MHz; Frequency: 2462 MHz; Duty Cycle: 1:1 Probe: ES3DV3 - SN3252ConvF(4.41, 4.41, 4.41); Calibrated: 9/4/2018 #### Wifi 11b CH11 Ground Mode/Area Scan (61x81x1): Measurement grid: dx=10 mm, dy=10 mm Maximum value of SAR (Measurement) = 0.0885 W/kg ## Wifi 11b CH11 Ground Mode/Zoom Scan (7x7x7)/Cube 0: Measurement grid: dx=5mm, dy=5mm, dz=5mm Reference Value = 2.782 V/m; Power Drift = 0.17 dB Peak SAR (extrapolated) = 0.309 W/kg SAR(1 g) = 0.143 W/kg; SAR(10 g) = 0.060 W/kgMaximum of SAR (measured) = 0.152 W/kg Page Number: 119 of 189 Report Issued Date: Jan. 24, 2019 ## Fig.24 Wifi 11b CH11 Phantom Mode Date/Time: 2019/1/12 Electronics: DAE4 Sn1244 Medium parameters used: f = 2462 MHz; $\sigma = 1.937 \text{ S/m}$; $\varepsilon_r = 50.08$; $\rho = 1000 \text{ kg/m}^3$ Ambient Temperature:22.5 °C Liquid Temperature:22.5 °C Communication System: Wifi 2450 2450MHz; Frequency: 2462 MHz; Duty Cycle: 1:1 Probe: ES3DV3 - SN3252ConvF(4.41, 4.41, 4.41); Calibrated: 9/4/2018 #### Wifi 11B CH11 Phantom Mode/Area Scan (61x121x1): Measurement grid: dx=10 mm, dy=10 mm Maximum value of SAR (Measurement) = 0.190 W/kg #### Wifi 11B CH11 Phantom Mode/Zoom Scan (7x7x7)/Cube 0: Measurement grid: dx=5mm, dy=5mm, dz=5mm Reference Value = 5.978 V/m; Power Drift = -0.10 dB Peak SAR (extrapolated) = 0.361 W/kg SAR(1 g) = 0.192 W/kg; SAR(10 g) = 0.103 W/kgMaximum value of SAR (measured) = 0.208 W/kg Page Number: 120 of 189 Report Issued Date: Jan. 24, 2019 ## ANNEX B. System Validation Results ## **Body 750MHz** Date/Time: 2019/1/11 Electronics: DAE4 Sn1244 Medium parameters used: f = 750 MHz; $\sigma = 0.916 \text{ S/m}$; $\varepsilon_r = 57.721$; $\rho = 1000 \text{ kg/m}^3$ Ambient Temperature:22.5 °C Liquid Temperature:22.5 °C Communication System: CW 850MHz; Frequency: 750 MHz; Duty Cycle: 1:1 Probe: ES3DV3 - SN3252ConvF(6.53, 6.53, 6.53); Calibrated: 9/4/2018 #### System Validation 2 2/Area Scan (71x131x1): Measurement grid: dx=10 mm, dy=10 mm Maximum value of SAR (Measurement) = 2.21 W/kg ## System Validation 2 2/Zoom Scan (7x7x7) (7x7x7)/Cube 0: Measurement grid: dx=5mm, dy=5mm, dz=5mm Reference Value = 46.36 V/m; Power Drift = 0.12 dB Peak SAR (extrapolated) = 2.97 W/kg SAR(1 g) = 2.06 W/kg; SAR(10 g) = 1.39 W/kgMaximum value of SAR (measured) = 2.21 W/kg Page Number: 121 of 189 Report Issued Date: Jan. 24, 2019 ## **Body 835MHz** Date/Time: 2019/1/10 Electronics: DAE4 Sn1244 Medium parameters used: f = 835 MHz; $\sigma = 0.998$ S/m; $\varepsilon_r = 56.731$; $\rho = 1000$ kg/m³ Ambient Temperature:22.5 °C Liquid Temperature:22.5 °C Communication System: CW 850MHz; Frequency: 835 MHz; Duty Cycle: 1:1 Probe: ES3DV3 - SN3252ConvF(6.34, 6.34, 6.34); Calibrated: 9/4/2018 #### System Validation/Area Scan (61x131x1): Measurement grid: dx=10 mm, dy=10 mm Maximum value of SAR (Measurement) = 2.65 W/kg #### System Validation/Zoom Scan (7x7x7)/Cube 0: Measurement grid: dx=5mm, dy=5mm, dz=5mm Reference Value = 50.50 V/m; Power Drift = 0.04 dB Peak SAR (extrapolated) = 3.55 W/kg SAR(1 g) = 2.48 W/kg; SAR(10 g) = 1.66 W/kg Maximum value of SAR (measured) = 2.67 W/kg Page Number: 122 of 189 Report Issued Date: Jan. 24, 2019 ## **Body 1750MHz** Date/Time: 2019/1/4 Electronics: DAE4 Sn1244 Medium: Body 1800MHz Medium parameters used: f = 1750 MHz; $\sigma = 1.426 \text{ S/m}$; $\varepsilon_r = 55.385$; $\rho = 1000 \text{ kg/m}^3$ Ambient Temperature:22.5 ℃ Liquid Temperature:22.5 ℃ Communication System: CW 1800MHz; Frequency: 1750 MHz; Duty Cycle: 1:1 Probe: ES3DV3 - SN3252ConvF(4.99, 4.99, 4.99); Calibrated: 9/4/2018 #### System check Validation/Area Scan (61x61x1): Measurement grid: dx=10 mm, dy=10 mm Maximum value of SAR (Measurement) = 11.1 W/kg #### System check Validation/Zoom Scan (7x7x7) (7x7x7)/Cube 0: Measurement grid: dx=5mm, dy=5mm, dz=5mm Reference Value = 88.54 V/m; Power Drift = -0.32 dB Peak SAR (extrapolated) = 17.4 W/kg SAR(1 g) = 9.63 W/kg; SAR(10 g) = 5.14 W/kgMaximum value of SAR (measured) = 10.7 W/kg Page Number: 123 of 189 Report Issued Date: Jan. 24, 2019 ## **Body 1900MHz** Date/Time: 2019/1/9 Electronics: DAE4 Sn1244 Medium parameters used: f = 1900 MHz; $\sigma = 1.556 \text{ S/m}$; $\varepsilon_r = 52.078$; $\rho = 1000 \text{ kg/m}^3$ Ambient Temperature:22.5 ℃ Liquid Temperature:22.5 ℃ Communication System: CW 1900MHz; Frequency: 1900 MHz; Duty Cycle: 1:1 Probe: ES3DV3 - SN3252ConvF(4.77, 4.77, 4.77); Calibrated: 9/4/2018 ## System check Validation 2/Area Scan (61x61x1): Measurement grid: dx=10 mm, dy=10 mm Maximum value of SAR (Measurement) = 12.3 W/kg ## System check Validation 2/Zoom Scan (7x7x7) (7x7x7)/Cube 0: Measurement grid: dx=5mm, dy=5mm, dz=5mm Reference Value = 83.59 V/m; Power Drift = -0.04 dB Peak SAR (extrapolated) = 17.9 W/kg SAR(1 g) = 10 W/kg; SAR(10 g) = 5.34 W/kg Maximum value of SAR (measured) = 11.4 W/kg Page Number: 124 of 189 Report Issued Date: Jan. 24, 2019 ## **Body 2450MHz** Date/Time: 2019/1/12 Electronics: DAE4 Sn1244 Medium parameters used: f = 2450 MHz; $\sigma = 1.922 \text{ S/m}$; $\varepsilon_r = 50.131$; $\rho = 1000 \text{ kg/m}^3$ Ambient Temperature: 22.5 °C Liquid Temperature: 22.5 °C Communication System: CW 2450MHz; Frequency: 2450 MHz; Duty Cycle: 1:1 Probe: ES3DV3 - SN3252ConvF(4.41, 4.41, 4.41); Calibrated: 9/4/2018 ## System Validation/Area Scan (91x71x1): Measurement grid: dx=10 mm, dy=10 mm Maximum value of SAR (Measurement) = 14.9 W/kg #### System Validation/Zoom Scan (7x7x7) (7x7x7)/Cube 0: Measurement grid: dx=5mm, dy=5mm, dz=5mm Reference Value = 87.88 V/m; Power Drift = -0.08 dB Peak SAR (extrapolated) = 27.0 W/kg SAR(1 g) = 12.9 W/kg; SAR(10 g) = 5.94 W/kg Maximum value of SAR (measured) = 14.7 W/kg Page Number: 125 of 189 Report Issued Date: Jan. 24, 2019 ## **Body 2600MHz** Date/Time: 2019/1/5 Electronics: DAE4 Sn1244 Medium parameters used: f = 2600 MHz; $\sigma = 2.112 \text{ S/m}$; $\varepsilon_r = 54.37$; $\rho = 1000 \text{ kg/m}^3$ Ambient Temperature:22.5 °C Liquid Temperature:22.5 °C Communication System: CW 2600MHz; Frequency: 2600 MHz; Duty Cycle: 1:1 Probe: ES3DV3 - SN3252ConvF(4.19, 4.19, 4.19); Calibrated: 9/4/2018 #### **Body 2600MHz/Area Scan (101x101x1):** Measurement grid: dx=10 mm, dy=10 mm Maximum value of SAR (Measurement) = 16.8 W/kg #### Body 2600MHz/Zoom Scan (7x7x7)/Cube 0: Measurement grid: dx=5mm, dy=5mm, dz=5mm Reference Value = 78.23 V/m; Power Drift = -0.10 dB Peak SAR (extrapolated) = 31.5 W/kg SAR(1 g) = 14.2 W/kg; SAR(10 g) = 6.2 W/kg Maximum value of SAR (measured) = 16.3 W/kg ## ANNEX C. System Validation The SAR system must be validated against its performance specifications before it is deployed. When SAR probes, system components or software are changed, upgraded or recalibrated, these must be validated with the SAR system(s) that operates with such components. Table C.1: System Validation Part 1 | System | Drobo CNI | Liquid name | Validation | Frequency | Permittivit | Conductivity | |--------|-----------|--------------|------------|-----------|-------------|--------------| | No. | Probe SN. | Liquid name | date | point | уε | σ (S/m) | | 1 | 3252 | Body 750MHz | 2019/1/11 | 750 MHz | 57.721 | 0.916 | | 2 | 3252 | Body 835MHz | 2019/1/10 | 835 MHz | 56.731 | 0.998 | | 3 | 3252 | Body 1750MHz | 2019/1/4 | 1800 MHz | 55.227 | 1.479 | | 4 | 3252 | Body 1900MHz | 2019/1/9 | 1900 MHz | 52.078 | 1.556 | | 5 | 3252 | Body 2450MHz | 2019/1/12 | 2450 MHz | 50.131 | 1.922 | | 6 | 3252 | Body 2600MHz | 2019/1/5 | 2600 MHz | 54.370 | 2.112 | **Table F.2: System Validation Part 2** | • | Sensitivity | PASS | PASS | |---|-----------------|------|------| | CW
Validation | Probe linearity | PASS | PASS | | | Probe Isotropy | PASS | PASS | | | MOD.type | GMSK | GMSK | | Mod | MOD.type | OFDM | OFDM | | Validation | Duty factor | PASS | PASS | | | PAR | PASS | PASS | #### ANNEX D. Calibration Certification Tel: +86-10-62304633-2512 Fax: +86-10-62304633-2504 E-mail: cttl@chinattl.com Http://www.chinattl.cn Certificate No: Z18-60529 #### CALIBRATION CERTIFICATE ECIT Object DAE4 - SN: 1244 Calibration Procedure(s) FF-Z11-002-01 Calibration Procedure for the Data Acquisition Electronics (DAEx) Calibration date: December 03, 2018 This calibration Certificate documents the traceability to national standards, which realize the physical units of measurements(SI). The measurements and the uncertainties with confidence probability are given on the following pages and are part of the certificate. All calibrations have been conducted in the closed laboratory facility: environment temperature(22±3)℃ and humidity<70%. Calibration Equipment used (M&TE critical for calibration) | Primary Standards | ID# | Cal Date(Calibrated by, Certificate No.) | Scheduled Calibration | |------------------------|---------|--|-----------------------| | Process Calibrator 753 | 1971018 | 20-Jun-18 (CTTL, No.J18X05034) | June-19 | Calibrated by:
Name Yu Zongying Function SAR Test Engineer Signature Reviewed by: Lin Hao SAR Test Engineer Approved by: Qi Dianyuan SAR Project Leader Issued: December 05, 2018 This calibration certificate shall not be reproduced except in full without written approval of the laboratory. Certificate No: Z18-60529 Page 1 of 3 Add: No.51 Xueyuan Road, Haidian District, Bejjing, 100191, China Tel: +86-10-62304633-2512 Fax: +86-10-62304633-2504 E-mail: cttl@chinattl.com Http://www.chinattl.cn Glossary: DAE data acquisition electronics Connector angle information used in DASY system to align probe sensor X to the robot coordinate system. #### Methods Applied and Interpretation of Parameters: - DC Voltage Measurement: Calibration Factor assessed for use in DASY system by comparison with a calibrated instrument traceable to national standards. The figure given corresponds to the full scale range of the voltmeter in the respective range. - Connector angle: The angle of the connector is assessed measuring the angle mechanically by a tool inserted. Uncertainty is not required. - The report provide only calibration results for DAE, it does not contain other performance test results. Certificate No: Z18-60529 Page 2 of 3 Add: No.51 Xueyuan Road, Haidian District, Beijing, 100191, China Tel: +86-10-62304633-2512 Fax: +86-10-62304633-2504 E-mail: cttl@chinattl.com Http://www.chinattl.cn #### **DC Voltage Measurement** A/D - Converter Resolution nominal High Range: 1LSB = 6.1μV, full range = -100...+300 mV Low Range: 1LSB = 61nV, full range = -1......+3mV DASY measurement parameters: Auto Zero Time: 3 sec; Measuring time: 3 sec | Calibration Factors | X | Υ | Z
404.470 ± 0.15% (k=2) | | |---------------------|-----------------------|-----------------------|-----------------------------------|--| | High Range | 403.818 ± 0.15% (k=2) | 403.555 ± 0.15% (k=2) | | | | Low Range | 3.95395 ± 0.7% (k=2) | 3.97087 ± 0.7% (k=2) | 3.97994 ± 0.7% (k=2) | | #### **Connector Angle** | Connector Angle to be used in DASY system | 22.5° ± 1 ° | |---|-------------| |---|-------------| Certificate No: Z18-60529 Page 3 of 3 Client Add: No.51 Xueyuan Road, Haidian District, Beijing, 100191, China Tel: +86-10-62304633-2512 Fax: +86-10-62304633-2504 E-mail: cttl@chinattl.com Http://www.chinattl.cn Certificate No: Z18-60343 #### **CALIBRATION CERTIFICATE** Object ES3DV3 - SN:3252 Calibration Procedure(s) FF-Z11-004-01 Calibration Procedures for Dosimetric E-field Probes Calibration date: September 04, 2018 This calibration Certificate documents the traceability to national standards, which realize the physical units of measurements(SI). The measurements and the uncertainties with confidence probability are given on the following pages and are part of the certificate. All calibrations have been conducted in the closed laboratory facility: environment temperature (22 \pm 3) $^{\circ}$ C and humidity<70%. Calibration Equipment used (M&TE critical for calibration) | Primary Standards | ID# | Cal Date(Calibrated by, Certificate No.) | Scheduled Calibration | |-------------------------|-------------|--|-----------------------| | Power Meter NRP2 | 101919 | 20-Jun-18 (CTTL, No.J18X05032) | Jun-19 | | Power sensor NRP-Z91 | 101547 | 20-Jun-18 (CTTL, No.J18X05032) | Jun-19 | | Power sensor NRP-Z91 | 101548 | 20-Jun-18 (CTTL, No.J18X05032) | Jun-19 | | Reference10dBAttenuator | 18N50W-10dB | 09-Feb-18(CTTL, No.J18X01133) | Feb-20 | | Reference20dBAttenuator | 18N50W-20dB | 09-Feb-18(CTTL, No.J18X01132) | Feb-20 | | Reference Probe EX3DV4 | SN 3846 | 25-Jan-18(SPEAG,No.EX3-3846_Jan18) | Jan-19 | | DAE4 | SN 777 | 15-Dec-17(SPEAG, No.DAE4-777_Dec17) | Dec -18 | | Secondary Standards | ID# | Cal Date(Calibrated by, Certificate No.) | Scheduled Calibration | | SignalGeneratorMG3700A | 6201052605 | 21-Jun-18 (CTTL, No.J18X05033) | Jun-19 | | Network Analyzer E5071C | MY46110673 | 14-Jan-18 (CTTL, No.J18X00561) | Jan -19 | | | Name | Function | Signature | | Calibrated by: | Yu Zongying | SAR Test Engineer | South | | Reviewed by: | Lin Hao | SAR Test Engineer | 林粉 | | Approved by: | Qi Dianyuan | SAR Project Leader | 7-13 | | | | | pul post constitution | Issued: September 06, 2018 This calibration certificate shall not be reproduced except in full without written approval of the laboratory. Certificate No: Z18-60343 Page 1 of 11 Page Number: 131 of 189 Report Issued Date: Jan. 24, 2019 Add: No.51 Xueyuan Road, Haidian District, Bejjing, 100191, China Tel: +86-10-62304633-2512 Fax: +86-10-62304633-2504 E-mail: cttl@chinattl.com Http://www.chinattl.cn Glossary: TSL tissue simulating liquid NORMx,y,z sensitivity in free space ConvF sensitivity in TSL / NORMx,y,z DCP diode compression point CF crest factor (1/duty_cycle) of the RF signal A,B,C,D modulation dependent linearization parameters Polarization Φ rotation around probe axis Polarization θ θ rotation around an axis that is in the plane normal to probe axis (at measurement center), i θ =0 is normal to probe axis Connector Angle information used in DASY system to align probe sensor X to the robot coordinate system Calibration is Performed According to the Following Standards: - a) IEEE Std 1528-2013, "IEEE Recommended Practice for Determining the Peak Spatial-Averaged Specific Absorption Rate (SAR) in the Human Head from Wireless Communications Devices: Measurement Techniques", June 2013 - b) IEC 62209-1, "Measurement procedure for the assessment of Specific Absorption Rate (SAR) from hand-held and body-mounted devices used next to the ear (frequency range of 300 MHz to 6 GHz)", July 2016 - c) IEĆ 62209-2, "Procedure to determine the Specific Absorption Rate (SAR) for wireless communication devices used in close proximity to the human body (frequency range of 30 MHz to 6 GHz)", March 2010 - d) KDB 865664, "SAR Measurement Requirements for 100 MHz to 6 GHz" #### Methods Applied and Interpretation of Parameters: - NORMx,y,z: Assessed for E-field polarization θ=0 (f≤900MHz in TEM-cell; f>1800MHz: waveguide). NORMx,y,z are only intermediate values, i.e., the uncertainties of NORMx,y,z does not effect the E²-field uncertainty inside TSL (see below ConvF). - NORM(f)x,y,z = NORMx,y,z* frequency_response (see Frequency Response Chart). This linearization is implemented in DASY4 software versions later than 4.2. The uncertainty of the frequency response is included in the stated uncertainty of ConvF. - DCPx,y,z: DCP are numerical linearization parameters assessed based on the data of power sweep (no uncertainty required). DCP does not depend on frequency nor media. - PAR: PAR is the Peak to Average Ratio that is not calibrated but determined based on the signal characteristics. - Ax, y, z; Bx, y, z; Cx, y, z; VRx, y, z:A,B,C are numerical linearization parameters assessed based on the data of power sweep for specific modulation signal. The parameters do not depend on frequency nor media. VR is the maximum calibration range expressed in RMS voltage across the diode. - ConvF and Boundary Effect Parameters: Assessed in flat phantom using E-field (or Temperature Transfer Standard for f≤800MHz) and inside waveguide using analytical field distributions based on power measurements for f >800MHz. The same setups are used for assessment of the parameters applied for boundary compensation (alpha, depth) of which typical uncertainty valued are given. These parameters are used in DASY4 software to improve probe accuracy close to the boundary. The sensitivity in TSL corresponds to NORMx,y,z* ConvF whereby the uncertainty corresponds to that given for ConvF. A frequency dependent ConvF is used in DASY version 4.4 and higher which allows extending the validity from±50MHz to±100MHz. - Spherical isotropy (3D deviation from isotropy): in a field of low gradients realized using a flat phantom exposed by a patch antenna. - Sensor Offset: The sensor offset corresponds to the offset of virtual measurement center from the probe tip (on probe axis). No tolerance required. - Connector Angle: The angle is assessed using the information gained by determining the NORMx (no uncertainty required). Certificate No: Z18-60343 Page 2 of 11 Add: No.51 Xueyuan Road, Haidian District, Bejjing, 100191, China Tel: +86-10-62304633-2512 Fax: +86-10-62304633-2504 E-mail: cttl@chinattl.com Http://www.chinattl.cn # Probe ES3DV3 SN: 3252 Calibrated: September 04, 2018 Calibrated for DASY/EASY Systems (Note: non-compatible with DASY2 system!) Certificate No: Z18-60343 Page 3 of 11 Add: No.51 Xueyuan Road, Haidian District, Beijing, 100191, China Tel: +86-10-62304633-2512 Fax: +86-10-62304633-2504 E-mail: cttl@chinattl.com Http://www.chinattl.cn #### DASY/EASY - Parameters of Probe: ES3DV3 - SN: 3252 #### **Basic Calibration Parameters** | | Sensor X | Sensor Y | Sensor Z | Unc (k=2) | |-------------------------|----------|----------|----------|-----------| | $Norm(\mu V/(V/m)^2)^A$ | 1.29 | 1.35 | 1.33 | ±10.0% | | DCP(mV) ^B | 102.7 | 105.4 | 103.6 | | #### **Modulation Calibration Parameters** | UID | Communication
System Name | | A
dB | B
dBõV | С | D
dB | VR
mV | Unc ^E
(k=2) | | |------|------------------------------|---|---------|-----------|-----|---------|----------|---------------------------|--| | 0 CW | CW | Х | 0.0 | 0.0 | 1.0 | 0.00 | 268.8 | ±2.5% | | | | | | Υ | 0.0 | 0.0 | 1.0 | | 276.1 | | | | | Z | 0.0 | 0.0 | 1.0 | | 278.3 | | | The reported uncertainty of measurement is stated as the standard uncertainty of Measurement multiplied by the coverage factor k=2, which for a normal distribution Corresponds to a coverage probability of approximately 95%. Certificate No: Z18-60343 Page 4 of 11 A The uncertainties of Norm X, Y, Z do not affect the E2-field uncertainty inside TSL (see Page 5 and Page 6). ^B Numerical linearization parameter: uncertainty not required. ^E Uncertainly is determined using the max.
deviation from linear response applying rectangular distribution and is expressed for the square of the field value. Add: No.51 Xueyuan Road, Haidian District, Beijing, 100191, China Tel: +86-10-62304633-2512 Fax: +86-10-62304633-2504 E-mail: cttl@chinattl.com Http://www.chinattl.cn ## DASY/EASY - Parameters of Probe: ES3DV3 - SN: 3252 ## Calibration Parameter Determined in Head Tissue Simulating Media | f [MHz] ^C | Relative
Permittivity ^F | Conductivity
(S/m) F | ConvF X | ConvF Y | ConvF Z | Alpha ^G | Depth ^G
(mm) | Unct.
(k=2) | |----------------------|---------------------------------------|-------------------------|---------|---------|---------|--------------------|----------------------------|----------------| | 750 | 41.9 | 0.89 | 6.51 | 6.51 | 6.51 | 0.40 | 1.42 | ±12.1% | | 835 | 41.5 | 0.90 | 6.36 | 6.36 | 6.36 | 0.40 | 1.56 | ±12.1% | | 900 | 41.5 | 0.97 | 6.31 | 6.31 | 6.31 | 0.45 | 1.48 | ±12.1% | | 1750 | 40.1 | 1.37 | 5.39 | 5.39 | 5.39 | 0.61 | 1.28 | ±12.1% | | 1900 | 40.0 | 1.40 | 5.18 | 5.18 | 5.18 | 0.67 | 1.26 | ±12.1% | | 2000 | 40.0 | 1.40 | 5.17 | 5.17 | 5.17 | 0.71 | 1.20 | ±12.1% | | 2300 | 39.5 | 1.67 | 4.92 | 4.92 | 4.92 | 0.90 | 1.14 | ±12.1% | | 2450 | 39.2 | 1.80 | 4.74 | 4.74 | 4.74 | 0.90 | 1.15 | ±12.1% | | 2600 | 39.0 | 1.96 | 4.46 | 4.46 | 4.46 | 0.72 | 1.37 | ±12.1% | ^c Frequency validity above 300 MHz of ±100MHz only applies for DASY v4.4 and higher (Page 2), else it is restricted to ±50MHz. The uncertainty is the RSS of ConvF uncertainty at calibration frequency and the uncertainty for the indicated frequency band. Frequency validity below 300 MHz is ± 10, 25, 40, 50 and 70 MHz for ConvF assessments at 30, 64, 128, 150 and 220 MHz respectively. Above 5 GHz frequency validity can be extended to ± 110 MHz. Certificate No: Z18-60343 Page 5 of 11 F At frequency below 3 GHz, the validity of tissue parameters (ϵ and σ) can be relaxed to ±10% if liquid compensation formula is applied to measured SAR values. At frequencies above 3 GHz, the validity of tissue parameters (ϵ and σ) is restricted to ±5%. The uncertainty is the RSS of the ConvF uncertainty for indicated target tissue parameters. $^{^{\}rm G}$ Alpha/Depth are determined during calibration. SPEAG warrants that the remaining deviation due to the boundary effect after compensation is always less than \pm 1% for frequencies below 3 GHz and below \pm 2% for the frequencies between 3-6 GHz at any distance larger than half the probe tip diameter from the boundary. Add: No.51 Xueyuan Road, Haidian District, Beijing, 100191, China Tel: +86-10-62304633-2512 Fax: +86-10-62304633-2504 E-mail: cttl@chinattl.com Http://www.chinattl.cn ## DASY/EASY - Parameters of Probe: ES3DV3 - SN: 3252 #### Calibration Parameter Determined in Body Tissue Simulating Media | f [MHz] ^C | Relative
Permittivity ^F | Conductivity
(S/m) F | ConvF X | ConvF Y | ConvF Z | Alpha ^G | Depth ^G
(mm) | Unct.
(k=2) | |----------------------|---------------------------------------|-------------------------|---------|---------|---------|--------------------|----------------------------|----------------| | 750 | 55.5 | 0.96 | 6.53 | 6.53 | 6.53 | 0.40 | 1.50 | ±12.1% | | 835 | 55.2 | 0.97 | 6.34 | 6.34 | 6.34 | 0.42 | 1.58 | ±12.1% | | 900 | 55.0 | 1.05 | 6.29 | 6.29 | 6.29 | 0.47 | 1.51 | ±12.1% | | 1750 | 53.4 | 1.49 | 4.99 | 4.99 | 4.99 | 0.65 | 1.28 | ±12.1% | | 1900 | 53.3 | 1.52 | 4.77 | 4.77 | 4.77 | 0.75 | 1.23 | ±12.1% | | 2000 | 53.3 | 1.52 | 4.95 | 4.95 | 4.95 | 0.67 | 1.28 | ±12.1% | | 2300 | 52.9 | 1.81 | 4.63 | 4.63 | 4.63 | 0.90 | 1.15 | ±12.1% | | 2450 | 52.7 | 1.95 | 4.41 | 4.41 | 4.41 | 0.90 | 1.17 | ±12.1% | | 2600 | 52.5 | 2.16 | 4.19 | 4.19 | 4.19 | 0.90 | 1.15 | ±12.1% | ^c Frequency validity above 300 MHz of ±100MHz only applies for DASY v4.4 and higher (Page 2), else it is restricted to ±50MHz. The uncertainty is the RSS of ConvF uncertainty at calibration frequency and the uncertainty for the indicated frequency band. Frequency validity below 300 MHz is ± 10, 25, 40, 50 and 70 MHz for ConvF assessments at 30, 64, 128, 150 and 220 MHz respectively. Above 5 GHz frequency validity can be extended to ± 110 MHz. Certificate No: Z18-60343 Page 6 of 11 F At frequency below 3 GHz, the validity of tissue parameters (ϵ and σ) can be relaxed to ±10% if liquid compensation formula is applied to measured SAR values. At frequencies above 3 GHz, the validity of tissue parameters (ϵ and σ) is restricted to ±5%. The uncertainty is the RSS of the ConvF uncertainty for indicated target tissue parameters. $^{^{\}rm G}$ Alpha/Depth are determined during calibration. SPEAG warrants that the remaining deviation due to the boundary effect after compensation is always less than \pm 1% for frequencies below 3 GHz and below \pm 2% for the frequencies between 3-6 GHz at any distance larger than half the probe tip diameter from the boundary. Add: No.51 Xueyuan Road, Haidian District, Beijing, 100191, China Tel: +86-10-62304633-2512 Fax: +86-10-62304633-2504 E-mail: cttl@chinattl.com Http://www.chinattl.cn # Frequency Response of E-Field (TEM-Cell: ifi110 EXX, Waveguide: R22) Uncertainty of Frequency Response of E-field: ±7.4% (k=2) Certificate No: Z18-60343 Page 7 of 11 Add: No.51 Xueyuan Road, Haidian District, Bejjing, 100191, China Tel: +86-10-62304633-2512 Fax: +86-10-62304633-2504 E-mail: cttl@chinattl.com Http://www.chinattl.cn ## Receiving Pattern (Φ), θ =0° Certificate No: Z18-60343 Page 8 of 11 Page Number: 138 of 189 Report Issued Date: Jan. 24, 2019 Add: No.51 Xueyuan Road, Haidian District, Beijing, 100191, China Tel: +86-10-62304633-2512 Fax: +86-10-62304633-2504 E-mail: cttl@chinattl.com Http://www.chinattl.com ## **Conversion Factor Assessment** #### f=750 MHz, WGLS R9(H_convF) ## f=1750 MHz, WGLS R22(H_convF) ## **Deviation from Isotropy in Liquid** Uncertainty of Spherical Isotropy Assessment: ±3.2% (K=2) Certificate No: Z18-60343 Page 10 of 11 Page Number: 140 of 189 Report Issued Date: Jan. 24, 2019 Add: No.51 Xueyuan Road, Haidian District, Beijing, 100191, China Tel: +86-10-62304633-2512 Fax: +86-10-62304633-2504 E-mail: cttl@chinattl.com Http://www.chinattl.cn ## DASY/EASY - Parameters of Probe: ES3DV3 - SN: 3252 #### **Other Probe Parameters** | Sensor Arrangement | Triangular | |---|------------| | Connector Angle (°) | 131.6 | | Mechanical Surface Detection Mode | enabled | | Optical Surface Detection Mode | disable | | Probe Overall Length | 337mm | | Probe Body Diameter | 10mm | | Tip Length | 10mm | | Tip Diameter | 4mm | | Probe Tip to Sensor X Calibration Point | 2mm | | Probe Tip to Sensor Y Calibration Point | 2mm | | Probe Tip to Sensor Z Calibration Point | 2mm | | Recommended Measurement Distance from Surface | 3mm | Certificate No: Z18-60343 Page 11 of 11 In Collaboration with Client ECIT Certificate No: Z18-60424 #### **CALIBRATION CERTIFICATE** Object D750V3 - SN: 1144 Calibration Procedure(s) FF-Z11-003-01 Calibration Procedures for dipole validation kits Calibration date: October 26, 2018 This calibration Certificate documents the traceability to national standards, which realize the physical units of measurements(SI). The measurements and the uncertainties with confidence probability are given on the following pages and are part of the certificate. All calibrations have been conducted in the closed laboratory facility: environment temperature(22 ± 3)°C and humidity<70%. Calibration Equipment used (M&TE critical for calibration) | Primary Standards | ID# | Cal Date(Calibrated by, Certificate No.) | Scheduled Calibration | |-------------------------|------------|--|-----------------------| | Power Meter NRVD | 102083 | 01-Nov-17 (CTTL, No.J17X08756) | Oct-18 | | Power sensor NRV-Z5 | 100542 | 01-Nov-17 (CTTL, No.J17X08756) | Oct-18 | | Reference Probe EX3DV4 | SN 7514 | 27-Aug-18(SPEAG,No.EX3-7514_Aug18) | Aug-19 | | DAE4 | SN 1555 | 20-Aug-18(SPEAG,No.DAE4-1555_Aug18) | Aug-19 | | Secondary Standards | ID# | Cal Date(Calibrated by, Certificate No.) | Scheduled Calibration | | Signal Generator E4438C | MY49071430 | 23-Jan-18 (CTTL, No.J18X00560) | Jan-19 | | NetworkAnalyzer E5071C | MY46110673 | 24-Jan-18 (CTTL, No.J18X00561) | Jan-19 | | | | | | Calibrated by: Name Function Zhao Jing SAR Test Engineer Signature Reviewed by: Lin Hao SAR Test Engineer Approved by: Qi Dianyuan SAR Project Leader Issued: October 29, 2018 This calibration certificate shall not be reproduced except in full without written approval of the laboratory. Certificate No: Z18-60424 Page 1 of 8 Page Number: 142 of 189 Report Issued Date: Jan. 24, 2019 In Collaboration with S D C A G CALIBRATION LABORATORY Add: No.51 Xueyuan Road, Haidian District, Beijing, 100191, China Tel: +86-10-62304633-2079 Fax: +86-10-62304633-2504 http://www.chinattl.cn Glossary: TSL tissue simulating liquid ConvF sensitivity in TSL / NORMx,y,z N/A not applicable or not measured # Calibration is Performed According to the Following Standards: - a) IEEE Std 1528-2013, "IEEE Recommended Practice for Determining the Peak Spatial-Averaged Specific Absorption Rate (SAR) in the Human Head from Wireless Communications Devices: Measurement Techniques", June 2013 - b) IEC 62209-1, "Measurement procedure for assessment of specific absorption rate of human exposure to radio frequency fields from hand-held and body-mounted wireless communication devices- Part 1: Device used next to the ear (Frequency range of 300MHz to 6GHz)", July 2016 - c) IEC 62209-2, "Procedure to measure the Specific Absorption Rate (SAR) For wireless communication devices used in close proximity to the human body (frequency range of 30MHz to 6GHz)", March 2010 - d) KDB865664, SAR Measurement Requirements for 100 MHz to 6 GHz ### Additional Documentation: e) DASY4/5 System Handbook # Methods Applied and
Interpretation of Parameters: - Measurement Conditions: Further details are available from the Validation Report at the end of the certificate. All figures stated in the certificate are valid at the frequency indicated. - Antenna Parameters with TSL: The dipole is mounted with the spacer to position its feed point exactly below the center marking of the flat phantom section, with the arms oriented parallel to the body axis. - Feed Point Impedance and Return Loss: These parameters are measured with the dipole positioned under the liquid filled phantom. The impedance stated is transformed from the measurement at the SMA connector to the feed point. The Return Loss ensures low reflected power. No uncertainty required. - Electrical Delay: One-way delay between the SMA connector and the antenna feed point. No uncertainty required. - SAR measured: SAR measured at the stated antenna input power. - SAR normalized: SAR as measured, normalized to an input power of 1 W at the antenna connector - SAR for nominal TSL parameters: The measured TSL parameters are used to calculate the nominal SAR result. The reported uncertainty of measurement is stated as the standard uncertainty of Measurement multiplied by the coverage factor k=2, which for a normal distribution Corresponds to a coverage probability of approximately 95%. Certificate No: Z18-60424 Page 2 of 8 In Collaboration with s p e a CALIBRATION LABORATORY Add: No.51 Xueyuan Road, Haidian District, Beijing, 100191, China Tel: +86-10-62304633-2079 Fax: +86-10-62304633-2504 E-mail: cttl@chinattl.com http://www.chinattl.cn ## **Measurement Conditions** DASY system configuration, as far as not given on page 1. | DASY Version | DASY52 | 52.10.2.1495 | |------------------------------|--------------------------|--------------| | Extrapolation | Advanced Extrapolation | | | Phantom | Triple Flat Phantom 5.1C | | | Distance Dipole Center - TSL | 15 mm | with Spacer | | Zoom Scan Resolution | dx, dy, dz = 5 mm | | | Frequency | 750 MHz ± 1 MHz | | Head TSL parameters The following parameters and calculations were applied. | | Temperature | Permittivity | Conductivity | |---|-----------------|--------------|------------------| | Nominal Head TSL parameters | 22.0 °C | 41.9 | 0.89 mho/m | | Measured Head TSL parameters | (22.0 ± 0.2) °C | 42.1 ± 6 % | 0.88 mho/m ± 6 % | | Head TSL temperature change during test | <1.0 °C | | | ## SAR result with Head TSL | SAR averaged over 1 cm ³ (1 g) of Head TSL | Condition | | |---|--------------------|---------------------------| | SAR measured | 250 mW input power | 2.11 mW / g | | SAR for nominal Head TSL parameters | normalized to 1W | 8.50 mW /g ± 18.8 % (k=2) | | SAR averaged over 10 cm ³ (10 g) of Head TSL | Condition | | | SAR measured | 250 mW input power | 1.39 mW / g | | SAR for nominal Head TSL parameters | normalized to 1W | 5.59 mW /g ± 18.7 % (k=2) | Body TSL parameters The following parameters and calculations were applied. | | Temperature | Permittivity | Conductivity | |---|-----------------|--------------|------------------| | Nominal Body TSL parameters | 22.0 °C | 55.5 | 0.96 mho/m | | Measured Body TSL parameters | (22.0 ± 0.2) °C | 55.6 ± 6 % | 0.93 mho/m ± 6 % | | Body TSL temperature change during test | <1.0 °C | | | ## SAR result with Body TSL | SAR averaged over 1 cm ³ (1 g) of Body TSL | Condition | | |---|--------------------|---------------------------| | SAR measured | 250 mW input power | 2.09 mW / g | | SAR for nominal Body TSL parameters | normalized to 1W | 8.55 mW /g ± 18.8 % (k=2) | | SAR averaged over 10 cm ³ (10 g) of Body TSL | Condition | | | SAR measured | 250 mW input power | 1.40 mW / g | | SAR for nominal Body TSL parameters | normalized to 1W | 5.70 mW /g ±18.7 % (k=2) | Certificate No: Z18-60424 Page 3 of 8 Add: No.51 Xueyuan Road, Haidian District, Beijing, 100191, China Tel: +86-10-62304633-2079 Fax: +86-10-62304633-2504 http://www.chinattl.cn ## Appendix (Additional assessments outside the scope of CNAS L0570) ### Antenna Parameters with Head TSL | Impedance, transformed to feed point | 54.5Ω+ 0.45jΩ | | |--------------------------------------|---------------|--| | Return Loss | - 27.4dB | | ## Antenna Parameters with Body TSL | Impedance, transformed to feed point | 49.7Ω- 2.47jΩ | | |--------------------------------------|---------------|--| | Return Loss | - 32.1dB | | ## General Antenna Parameters and Design | Electrical Delay (one direction) | 0.897 ns | | |----------------------------------|----------|--| |----------------------------------|----------|--| After long term use with 100W radiated power, only a slight warming of the dipole near the feedpoint can be measured. The dipole is made of standard semirigid coaxial cable. The center conductor of the feeding line is directly connected to the second arm of the dipole. The antenna is therefore short-circuited for DC-signals. On some of the dipoles, small end caps are added to the dipole arms in order to improve matching when loaded according to the position as explained in the "Measurement Conditions" paragraph. The SAR data are not affected by this change. The overall dipole length is still according to the Standard. No excessive force must be applied to the dipole arms, because they might bend or the soldered connections near the feedpoint may be damaged. ## **Additional EUT Data** | Manufactured by | CDEAG | |-----------------|-------| | manadata by | SPEAG | Certificate No: Z18-60424 Page 4 of 8 Add: No.51 Xueyuan Road, Haidian District, Beijing, 100191, China Tel: +86-10-62304633-2079 Fax: +86-10-62304633-2504 E-mail: cttl@chinattl.com http://www.chinattl.cn ## DASY5 Validation Report for Head TSL Test Laboratory: CTTL, Beijing, China DUT: Dipole 750 MHz; Type: D750V3; Serial: D750V3 - SN: 1144 Communication System: UID 0, CW; Frequency: 750 MHz; Duty Cycle: 1:1 Medium parameters used: f = 750 MHz; σ = 0.883 S/m; ϵ_r = 42.07; ρ = 1000 kg/m3 Phantom section: Right Section DASY5 Configuration: Probe: EX3DV4 - SN7514; ConvF(9.47, 9.47, 9.47) @ 750 MHz; Calibrated: 8/27/2018 Date: 10.25.2018 - Sensor-Surface: 1.4mm (Mechanical Surface Detection) - Electronics: DAE4 Sn1555; Calibrated: 8/20/2018 - Phantom: MFP_V5.1C; Type: QD 000 P51CA; Serial: 1062 - Measurement SW: DASY52, Version 52.10 (2); SEMCAD X Version 14.6.12 (7450) Dipole Calibration/Zoom Scan (7x7x7) (7x7x7)/Cube 0: Measurement grid: dx=5mm, dy=5mm, dz=5mm Reference Value = 55.73 V/m; Power Drift = 0.03 dB Peak SAR (extrapolated) = 3.22 W/kg SAR(1 g) = 2.11 W/kg; SAR(10 g) = 1.39 W/kg Maximum value of SAR (measured) = 2.84 W/kg g Certificate No: Z18-60424 Page 5 of 8 ## Impedance Measurement Plot for Head TSL Certificate No: Z18-60424 Page 6 of 8 Add: No.51 Xueyuan Road, Haidian District, Beijing, 100191, China Tel: +86-10-62304633-2079 Fax: +86-10-62304633-2504 http://www.chinattl.cn DASY5 Validation Report for Body TSL Test Laboratory: CTTL, Beijing, China DUT: Dipole 750 MHz; Type: D750V3; Serial: D750V3 - SN: 1144 Communication System: UID 0, CW; Frequency: 750 MHz; Duty Cycle: 1:1 Medium parameters used: f = 750 MHz; σ = 0.932 S/m; ϵ_r = 55.6; ρ = 1000 kg/m3 Phantom section: Center Section DASY5 Configuration: Probe: EX3DV4 - SN7514; ConvF(9.68, 9.68, 9.68) @ 750 MHz; Calibrated: 8/27/2018 Date: 10.25.2018 - Sensor-Surface: 1.4mm (Mechanical Surface Detection) - Electronics: DAE4 Sn1555; Calibrated: 8/20/2018 - Phantom: MFP_V5.1C; Type: QD 000 P51CA; Serial: 1062 - Measurement SW: DASY52, Version 52.10 (2); SEMCAD X Version 14.6.12 (7450) Dipole Calibration/Zoom Scan (7x7x7) (7x7x7)/Cube 0: Measurement grid: dx=5mm, dy=5mm, dz=5mm Reference Value = 53.86 V/m; Power Drift = -0.05 dB Peak SAR (extrapolated) = 3.16 W/kg SAR(1 g) = 2.09 W/kg; SAR(10 g) = 1.4 W/kg Maximum value of SAR (measured) = 2.79 W/kg 0 dB = 2.79 W/kg = 4.46 dBW/kg Certificate No: Z18-60424 Page 7 of 8 Add: No.51 Xueyuan Road, Haidian District, Beijing, 100191, China Tel: +86-10-62304633-2079 Fax: +86-10-62304633-2504 http://www.chinattl.cn http://www.chinattl.cn # Impedance Measurement Plot for Body TSL Certificate No: Z18-60424 Page 8 of 8 Client ECIT Certificate No: Z18-60425 ## **CALIBRATION CERTIFICATE** Object D835V2 - SN: 4d112 Calibration Procedure(s) FF-Z11-003-01 Calibration Procedures for dipole validation kits Calibration date: October 25, 2018 This calibration Certificate documents the traceability to national standards, which realize the physical units of measurements(SI). The measurements and the uncertainties with confidence probability are given on the following pages and are part of the certificate. All calibrations have been conducted in the closed laboratory facility: environment temperature(22±3)°C and humidity<70%. Calibration Equipment used (M&TE critical for calibration) | Primary Standards | ID# | Cal Date(Calibrated by, Certificate No.) | Scheduled Calibration | |-------------------------|------------|--|-----------------------| | Power Meter NRVD | 102083 | 01-Nov-17 (CTTL, No.J17X08756) | Oct-18 | | Power sensor NRV-Z5 | 100542 | 01-Nov-17 (CTTL, No.J17X08756) | Oct-18 | | Reference Probe EX3DV4 | SN 7514 | 27-Aug-18(SPEAG,No.EX3-7514_Aug18) | Aug-19 | | DAE4 | SN 1555 | 20-Aug-18(SPEAG,No.DAE4-1555_Aug18) | Aug-19 | | Secondary Standards | ID# | Cal Date(Calibrated by, Certificate No.) | Scheduled Calibration | | Signal Generator E4438C | MY49071430 | 23-Jan-18 (CTTL, No.J18X00560) | Jan-19 | | NetworkAnalyzer E5071C | MY46110673 | 24-Jan-18 (CTTL, No.J18X00561) | Jan-19 | | | Name | Function | Signature | |----------------|-------------|--------------------|-----------| | Calibrated by: | Zhao Jing | SAR Test Engineer | 差 | | Reviewed by: | Lin Hao | SAR Test Engineer | 林光 | | Approved by: | Qi
Dianyuan | SAR Project Leader | 30 | Issued: October 29, 2018 This calibration certificate shall not be reproduced except in full without written approval of the laboratory. Certificate No: Z18-60425 Page 1 of 8 Add: No.51 Xueyuan Road, Haidian District, Beijing, 100191, China Tel: +86-10-62304633-2079 Fax: +86-10-62304633-2504 E-mail: cttl@chinattl.com http://www.chinattl.cn Glossary: TSL ConvF N/A tissue simulating liquid sensitivity in TSL / NORMx,y,z not applicable or not measured Calibration is Performed According to the Following Standards: - a) IEEE Std 1528-2013, "IEEE Recommended Practice for Determining the Peak Spatial-Averaged Specific Absorption Rate (SAR) in the Human Head from Wireless Communications Devices: Measurement Techniques", June 2013 - b) IEC 62209-1, "Measurement procedure for assessment of specific absorption rate of human exposure to radio frequency fields from hand-held and body-mounted wireless communication devices- Part 1: Device used next to the ear (Frequency range of 300MHz to 6GHz)", July 2016 - c) IEC 62209-2, "Procedure to measure the Specific Absorption Rate (SAR) For wireless communication devices used in close proximity to the human body (frequency range of 30MHz to 6GHz)", March 2010 - d) KDB865664, SAR Measurement Requirements for 100 MHz to 6 GHz #### Additional Documentation: e) DASY4/5 System Handbook ### Methods Applied and Interpretation of Parameters: - Measurement Conditions: Further details are available from the Validation Report at the end of the certificate. All figures stated in the certificate are valid at the frequency indicated. - Antenna Parameters with TSL: The dipole is mounted with the spacer to position its feed point exactly below the center marking of the flat phantom section, with the arms oriented parallel to the body axis. - Feed Point Impedance and Return Loss: These parameters are measured with the dipole positioned under the liquid filled phantom. The impedance stated is transformed from the measurement at the SMA connector to the feed point. The Return Loss ensures low reflected power. No uncertainty required. - Electrical Delay: One-way delay between the SMA connector and the antenna feed point. No uncertainty required. - SAR measured: SAR measured at the stated antenna input power. - SAR normalized: SAR as measured, normalized to an input power of 1 W at the antenna connector. - SAR for nominal TSL parameters: The measured TSL parameters are used to calculate the nominal SAR result. The reported uncertainty of measurement is stated as the standard uncertainty of Measurement multiplied by the coverage factor k=2, which for a normal distribution Corresponds to a coverage probability of approximately 95%. Certificate No: Z18-60425 Page 2 of 8 In Collaboration with p e a CALIBRATION LABORATORY Add: No.51 Xueyuan Road, Haidian District, Beijing, 100191, China Tel: +86-10-62304633-2079 Fax: +86-10-62304633-2504 http://www.chinattl.cn ## **Measurement Conditions** DASY system configuration, as far as not given on page 1. | DASY Version | DASY52 | 52.10.2.1495 | |------------------------------|--------------------------|--------------| | Extrapolation | Advanced Extrapolation | | | Phantom | Triple Flat Phantom 5.1C | | | Distance Dipole Center - TSL | 15 mm | with Spacer | | Zoom Scan Resolution | dx, dy, dz = 5 mm | | | Frequency | 835 MHz ± 1 MHz | | ## Head TSL parameters The following parameters and calculations were applied. | | Temperature | Permittivity | Conductivity | |---|-----------------|--------------|------------------| | Nominal Head TSL parameters | 22.0 °C | 41.5 | 0.90 mho/m | | Measured Head TSL parameters | (22.0 ± 0.2) °C | 42.4 ± 6 % | 0.89 mho/m ± 6 % | | Head TSL temperature change during test | <1.0 °C | | | ### SAR result with Head TSL | SAR averaged over 1 cm ³ (1 g) of Head TSL | Condition | | |---|--------------------|---------------------------| | SAR measured | 250 mW input power | 2.38 mW / g | | SAR for nominal Head TSL parameters | normalized to 1W | 9.63 mW /g ± 18.8 % (k=2) | | SAR averaged over 10 cm ³ (10 g) of Head TSL | Condition | | | SAR measured | 250 mW input power | 1.55 mW / g | | SAR for nominal Head TSL parameters | normalized to 1W | 6.25 mW /g ± 18.7 % (k=2) | Body TSL parameters The following parameters and calculations were applied. | | Temperature | Permittivity | Conductivity | |---|-----------------|--------------|------------------| | Nominal Body TSL parameters | 22.0 °C | 55.2 | 0.97 mho/m | | Measured Body TSL parameters | (22.0 ± 0.2) °C | 55.3 ± 6 % | 0.96 mho/m ± 6 % | | Body TSL temperature change during test | <1.0 °C | | | ## SAR result with Body TSL | SAR averaged over 1 cm ³ (1 g) of Body TSL | Condition | | |---|--------------------|---------------------------| | SAR measured | 250 mW input power | 2.42 mW / g | | SAR for nominal Body TSL parameters | normalized to 1W | 9.75 mW /g ± 18.8 % (k=2) | | SAR averaged over 10 cm ³ (10 g) of Body TSL | Condition | | | SAR measured | 250 mW input power | 1.59 mW / g | | SAR for nominal Body TSL parameters | normalized to 1W | 6.40 mW /g ± 18.7 % (k=2) | Certificate No: Z18-60425 Page 3 of 8 Add: No.51 Xueyuan Road, Haidian District, Beijing, 100191, China Tel: +86-10-62304633-2079 Fax: +86-10-62304633-2504 http://www.chinattl.cn # Appendix (Additional assessments outside the scope of CNAS L0570) ### Antenna Parameters with Head TSL | Impedance, transformed to feed point | 52.7Ω- 1.03jΩ | | |--------------------------------------|---------------|--| | Return Loss | - 31.0dB | | ## Antenna Parameters with Body TSL | Impedance, transformed to feed point | 49.2Ω- 6.11jΩ | | |--------------------------------------|---------------|--| | Return Loss | - 24.1dB | | # General Antenna Parameters and Design | Electrical Delay (one direction) | 1.265 ns | |----------------------------------|----------| After long term use with 100W radiated power, only a slight warming of the dipole near the feedpoint can be measured. The dipole is made of standard semirigid coaxial cable. The center conductor of the feeding line is directly connected to the second arm of the dipole. The antenna is therefore short-circuited for DC-signals. On some of the dipoles, small end caps are added to the dipole arms in order to improve matching when loaded according to the position as explained in the "Measurement Conditions" paragraph. The SAR data are not affected by this change. The overall dipole length is still according to the Standard. No excessive force must be applied to the dipole arms, because they might bend or the soldered connections near the feedpoint may be damaged. ## **Additional EUT Data** | University of the Control Con | | |--|-------| | Manufactured by | SPEAG | Certificate No: Z18-60425 Page 4 of 8 In Collaboration with S P E A Q CALIBRATION LABORATORY Add: No.51 Xueyuan Road, Haidian District, Beijing, 100191, China Tel: +86-10-62304633-2079 Fax: +86-10-62304633-2504 E-mail: cttl@chinattl.com http://www.chinattl.cn # DASY5 Validation Report for Head TSL Test Laboratory: CTTL, Beijing, China DUT: Dipole 835 MHz; Type: D835V2; Serial: D835V2 - SN: 4d112 Communication System: UID 0, CW; Frequency: 835 MHz; Duty Cycle: 1:1 Medium parameters used: f = 835 MHz; σ = 0.892 S/m; ϵ_r = 42.41; ρ = 1000 kg/m3 Phantom section: Right Section DASY5 Configuration: Probe: EX3DV4 - SN7514; ConvF(9.09, 9.09, 9.09) @ 835 MHz; Calibrated: 8/27/2018 Date: 10.24.2018 - Sensor-Surface: 1.4mm (Mechanical Surface Detection) - Electronics: DAE4 Sn1555; Calibrated: 8/20/2018 - Phantom: MFP_V5.1C; Type: QD 000 P51CA; Serial: 1062 - Measurement SW: DASY52, Version 52.10 (2); SEMCAD X Version 14.6.12 (7450) Dipole Calibration/Zoom Scan (7x7x7) (7x7x7)/Cube 0: Measurement
grid: dx=5mm, dy=5mm, dz=5mm Reference Value = 58.97 V/m; Power Drift = 0.01 dB Peak SAR (extrapolated) = 3.59 W/kg SAR(1 g) = 2.38 W/kg; SAR(10 g) = 1.55 W/kg Maximum value of SAR (measured) = 3.19 W/kg 0 dB = 3.19 W/kg = 5.04 dBW/kg Certificate No: Z18-60425 Page 5 of 8 Add: No.51 Xueyuan Road, Haidian District, Beijing, 100191, China Tel: +86-10-62304633-2079 Fax: +86-10-62304633-2504 http://www.chinattl.cn http://www.chinattl.cn # Impedance Measurement Plot for Head TSL Certificate No: Z18-60425 Page 6 of 8 In Collaboration with CALIBRATION LABORATORY Add: No.51 Xueyuan Road, Haidian District, Beijing, 100191, China Tel: +86-10-62304633-2079 Fax: +86-10-62304633-2504 http://www.chinattl.cn DASY5 Validation Report for Body TSL Date: 10.25.2018 Test Laboratory: CTTL, Beijing, China DUT: Dipole 835 MHz; Type: D835V2; Serial: D835V2 - SN: 4d112 Communication System: UID 0, CW; Frequency: 835 MHz; Duty Cycle: 1:1 Medium parameters used: f = 835 MHz; σ = 0.961 S/m; ϵ_r = 55.25; ρ = 1000 kg/m3 Phantom section: Center Section DASY5 Configuration: - Probe: EX3DV4 SN7514; ConvF(9.47, 9.47, 9.47) @ 835 MHz; Calibrated: - Sensor-Surface: 1.4mm (Mechanical Surface Detection) - Electronics: DAE4 Sn1555; Calibrated: 8/20/2018 - Phantom: MFP_V5.1C; Type: QD 000 P51CA; Serial: 1062 - Measurement SW: DASY52, Version 52.10 (2); SEMCAD X Version 14.6.12 Dipole Calibration/Zoom Scan (7x7x7) (7x7x7)/Cube 0: Measurement grid: dx=5mm, dy=5mm, dz=5mm Reference Value = 57.14 V/m; Power Drift = -0.06 dB Peak SAR (extrapolated) = 3.68 W/kg SAR(1 g) = 2.42 W/kg; SAR(10 g) = 1.59 W/kg Maximum value of SAR (measured) = 3.24 W/kg 0 dB = 3.24 W/kg = 5.11 dBW/kg Certificate No: Z18-60425 Page 7 of 8