

Fig.40 Radiated emission: GFSK, Ch78, 30MHz~1GHz

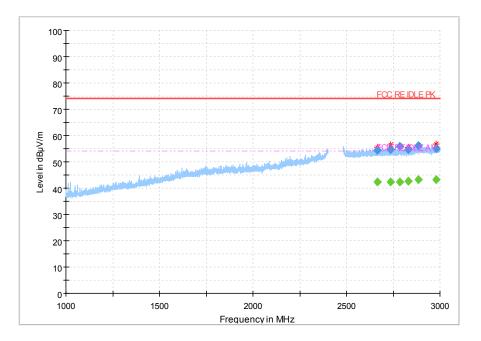


Fig.41 Radiated emission: GFSK, Ch78, 1GHz~3GHz

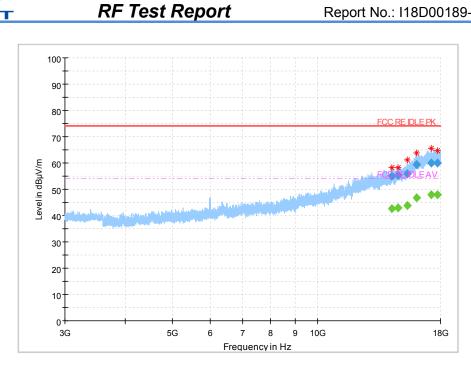
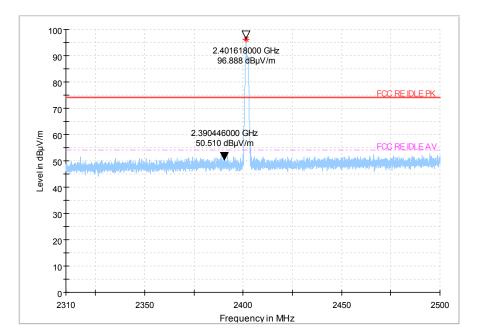



Fig.42 Radiated emission: GFSK, Ch78, 3GHz~18GHz

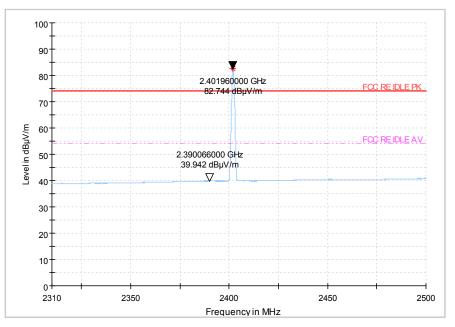
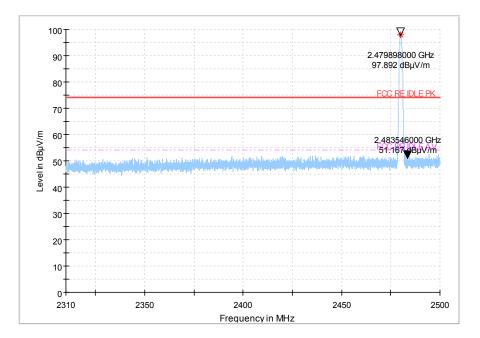



Fig.43 Radiated emission (Low): GFSK, low channel

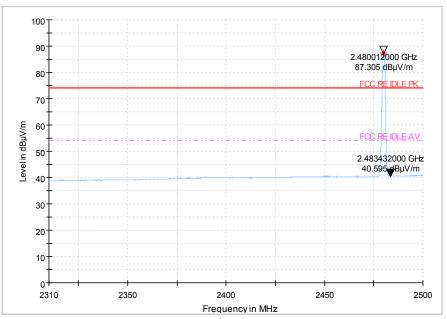


Fig.44 Radiated emission (High): GFSK, high channel

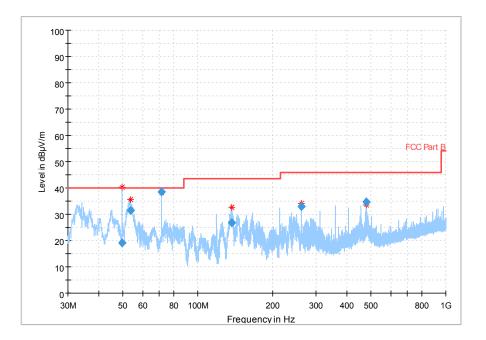


Fig.45 Radiated emission: $\pi/4$ DQPSK, Ch78, 30MHz~1GHz

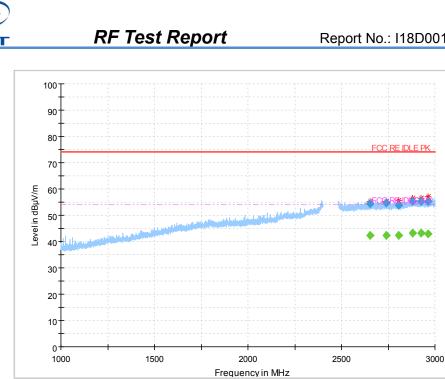


Fig.46 Radiated emission: π/4 DQPSK, Ch78, 1GHz~3GHz

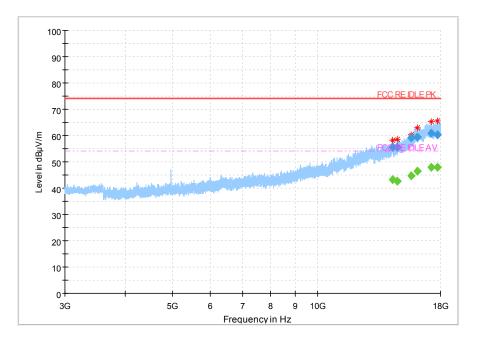
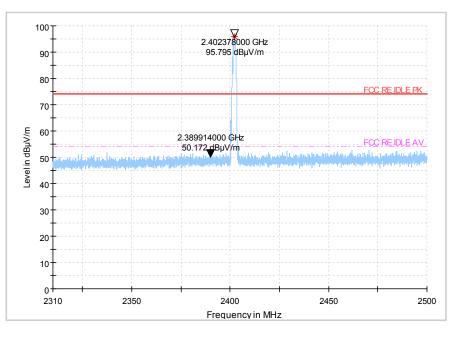



Fig.47 Radiated emission: π/4 DQPSK, Ch78, 3GHz~18GHz

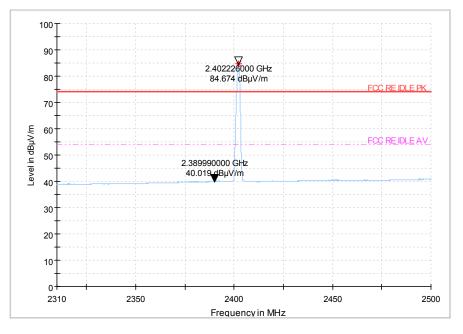


Fig.48 Radiated emission (Low): π/4 DQPSK, low channel

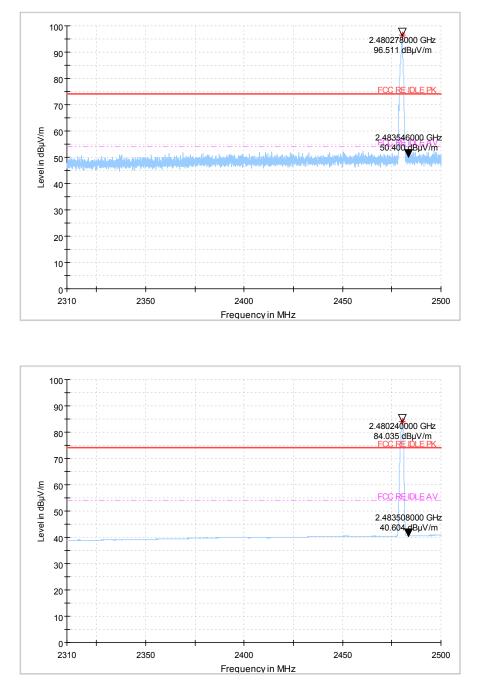


Fig.49 Radiated emission (High): π/4 DQPSK, high channel

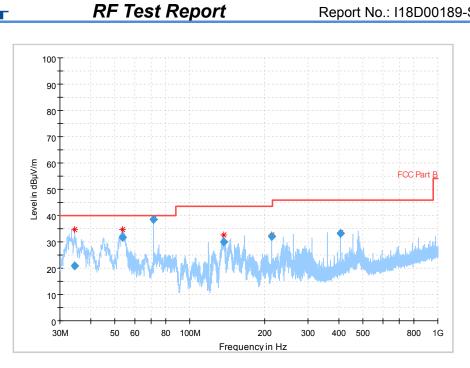


Fig.50 Radiated emission: 8DPSK, Ch78, 30MHz~1GHz

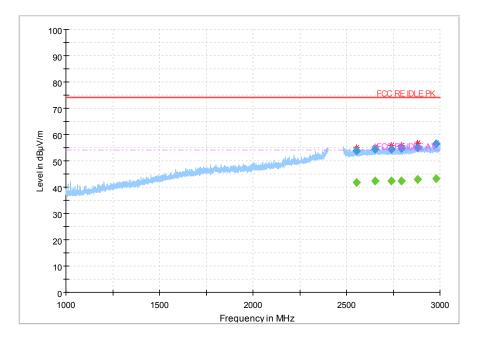


Fig.51 Radiated emission: 8DPSK, Ch78, 1GHz~3GHz

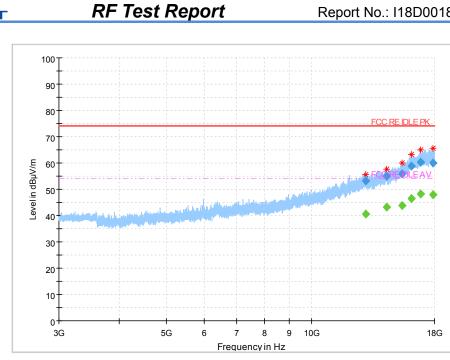
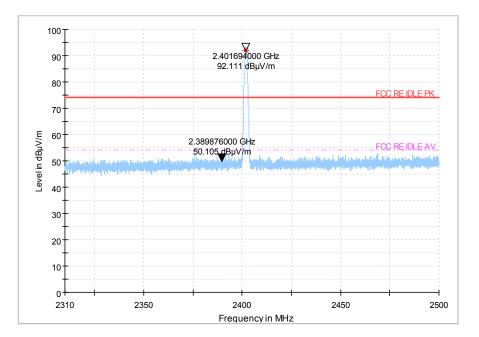



Fig.52 Radiated emission: 8DPSK, Ch78, 3GHz~18GHz

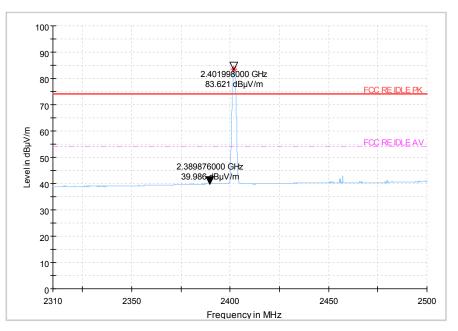
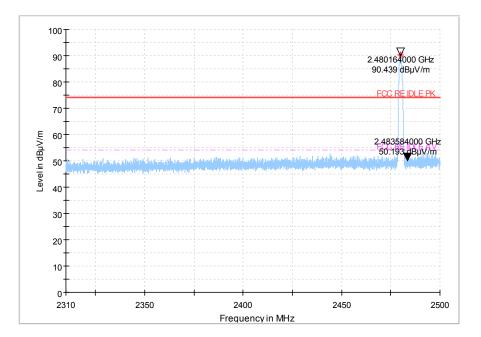



Fig.53 Radiated emission (Low): 8DPSK, low channel

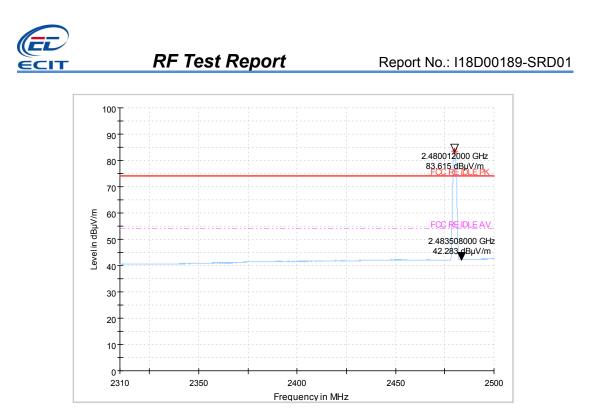


Fig.54 Radiated emission (High): 8DPSK, high channel

L1323 For π/4 DQPSK

Channel	Frequency Range Test Results		Conclusion
	30MH~1GHz	Fig.55	Р
Ch78 2480MHz	1GHz~3GHz	Fig.56	Р
	3GHz~18GHz		Р
Power(low)	2.31GHz~2.5GHz	Fig.58	Р
Power(high)	2.31GHz~2.5GHz	Fig.59	Р

$\pi/4$ DQPSK Ch78 30MHz-1GHz

Frequency(MHz)	Result(dBuV/m)	ARpl (dB)	PMea(dBuV/m)	Polarity
34.6	19.44	-22	41.44	V
40.7	24.49	-20.6	45.09	V
52.6	21.13	-20.5	41.63	V
151.7	25	-27.8	52.8	Н
181.9	28.39	-25.1	53.49	Н
258.2	24.77	-22.7	47.47	н

π/4 DQPSK Ch78 1GHz-3GHz (Peak)

Frequency(MHz)	Result(dBuV/m)	ARpl (dB)	PMea(dBuV/m)	Polarity
2667.6	55.1	7.8	47.3	V
2722.7	54.17	7.8	46.37	Н
2792.2	54.94	7.8	47.14	V
2870.7	55.55	8.5	47.05	н
2918.0	54.77	8.8	45.97	V
2997.4	59.8	9	50.8	Н

π/4 DQPSK Ch78 1GHz-3GHz (Average)

Frequency(MHz)	Result(dBuV/m)	ARpl (dB)	PMea(dBuV/m)	Polarity
2667.6	42.4	7.8	34.6	V
2722.7	42.18	7.8	34.38	Н
2792.2	42.38	7.8	34.58	V
2870.7	43.05	8.5	34.55	Н
2918.0	43.12	8.8	34.32	V
2997.4	43.25	9	34.25	н

π/4 DQPSK Ch78 3GHz-18GHz (Peak)

Frequency(MHz)	Result(dBuV/m)	ARpl (dB)	PMea(dBuV/m)	Polarity
13095.2	51.92	16.5	35.42	Н
14304.4	55.85	20.8	35.05	Н
15461.6	56.31	22.7	33.61	Н
16073.0	58.83	25	33.83	Н
16938.6	60.31	27.3	33.01	Н
17568.5	60.1	27.7	32.4	Н

π/4 DQPSK Ch78 3GHz-18GHz (Average)

Frequency(MHz)	Result(dBuV/m)	ARpl (dB)	PMea(dBuV/m)	Polarity
East China Institute of TEL: +86 21 63843300	Telecommunications FAX: +86 21 63843301		age i tainise.	52 of 87 Dec.25.2018

	RF Test Report		Report No.: I1	8D00189-SRD01
14304.4	43.16	20.8	22.36	н
15461.6	43.66	22.7	20.96	Н
16073.0	46.67	25	21.67	Н
16938.6	48.17	27.3	20.87	Н
17568.5	47.83	27.7	20.13	Н

Note: Only the worst case is written in the report. Conclusion: PASS Test graphs as below:

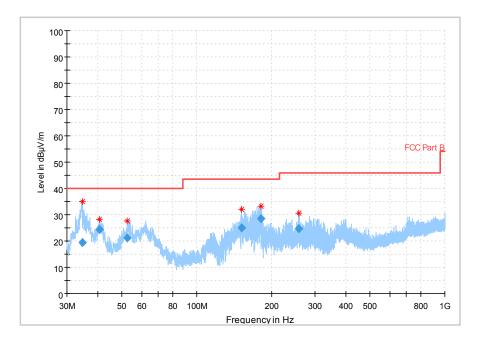


Fig.55 Radiated emission: $\pi/4$ DQPSK, Ch78, 30MHz~1GHz

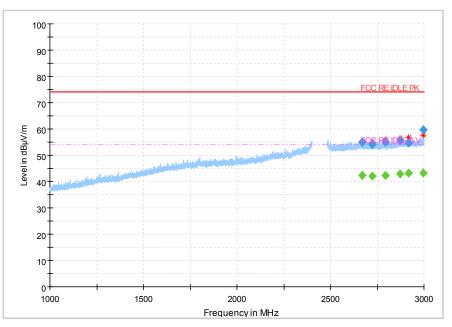


Fig.56 Radiated emission: π/4 DQPSK, Ch78, 1GHz~3GHz

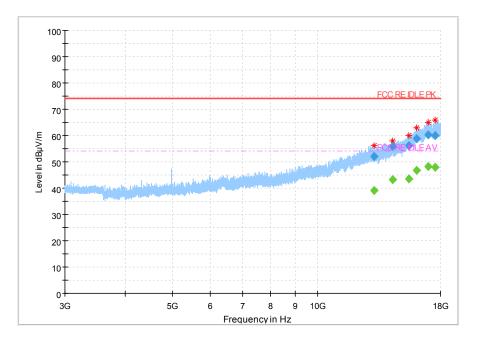
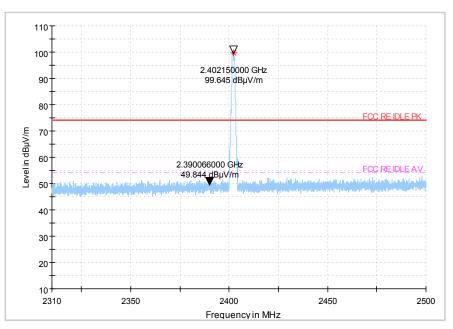



Fig.57 Radiated emission: $\pi/4$ DQPSK, Ch78, 3GHz~18GHz

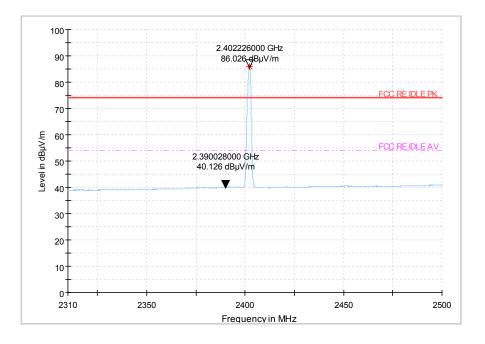


Fig.58 Radiated emission (Low): $\pi/4$ DQPSK, low channel

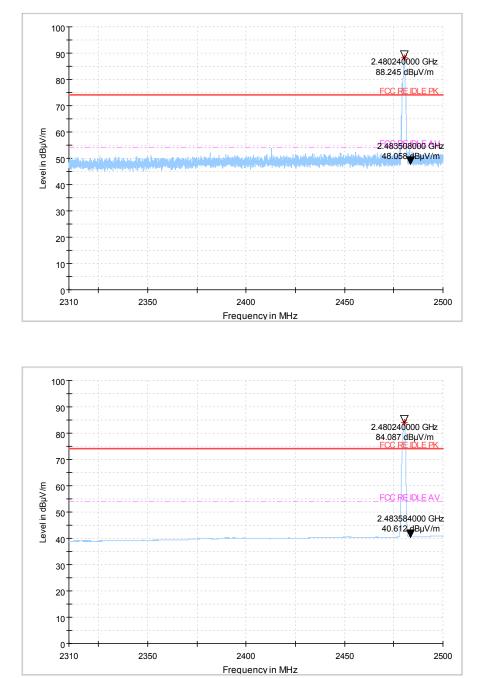
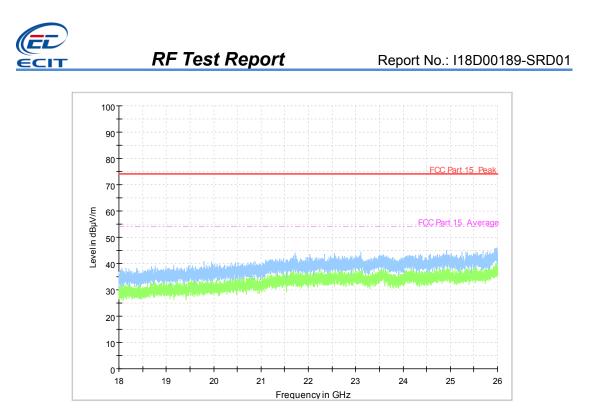



Fig.59 Radiated emission (High): π/4 DQPSK, high channel

ALL Channel 18GHz~26GHz

6.5. Time Of Occupancy (Dwell Time)

6.5.1 Measurement Limit:

Standard	Limit (ms)
FCC 47CFR Part 15.247 (a) (1) (iii)	< 400

6.5.2 Test procedures

The measurement is according to ANSI C63.10 clause 7.8.4

- 1. Connect the EUT through cable and divide with CBT32 and spectrum analyzer.
- 2. Enable the EUT transmit maximum power.
- 3. Set the spectrum analyzer as step 4 to step 8.
- 4. Span: Zero span, centered on a hopping channel.
- 5. RBW shall be \leq channel spacing and where possible RBW should be set >> 1 / T, where T is the expected dwell time per channel.
- 6. Sweep: As necessary to capture the entire dwell time per hopping channel; where possible use a video trigger and trigger delay so that the transmitted signal starts a little to the right of the start of the plot. The trigger level might need slight adjustment

Report No.: I18D00189-SRD01

to prevent triggering when the system hops on an adjacent channel; a second plot might be needed with a longer sweep time to showtwo successive hops on a channel.

- 7. Detector function: Peak.
- 8. Trace: Max hold.
- 9. Use the marker-delta function, and record it.

Note: For AFH mode, Test Period = 0.4 (second/ channel) x 20 Channel = 8 sec, For FHSS mode, Test Period = 0.4 (second/ channel) x 79 Channel = 31.6 sec, So the Time of Occupancy (Dwell Time) of AFH mode= Time of Occupancy (Dwell Time) of FHSS mode / 79 Channel x 20 Channel

Modulation type	Frequency(MHz)	Dwell Time (ms)	Limit(ms)	Conclusion
AFH(GFSK DH5)	2402-2421MHz	61.25	400	Р
AFH(π /4 DQPSK DH5)	2402-2421MHz	60.52	400	Ρ
AFH(8DPSK DH5)	2402-2421MHz	70.72	400	Р

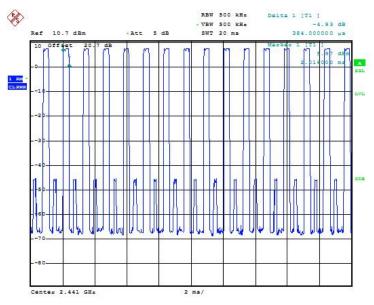
6.5.3 Measurement Result

For GFSK

Channel	Packet	Dwell Time (ms)		Conclusion
	Fig.60		D	
	DH1	Fig.61	64.90	Р
39	DH3	Fig.62	197.47	Ρ
59	DHO	Fig.63		
	DH5	Fig.64	241.92	D
		Fig.65		Р

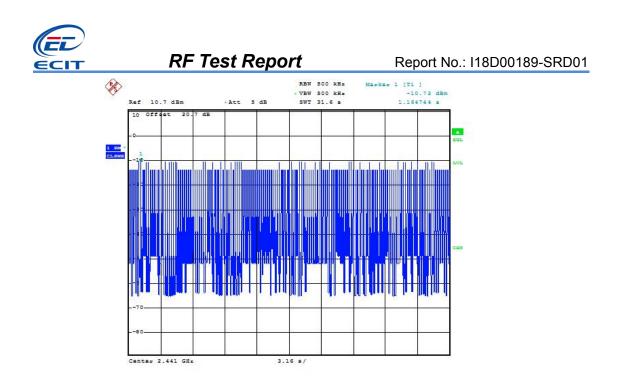
For π/4 DQPSK

Channel	Packet	Dwell Time (ms)		Conclusion
39	2DH1	Fig.66	64.51	Р


RF Test ReportReport No.: I18D00189-SRD01Fig.67Fig.67P2DH3Fig.68200.74PFig.69200.74P2DH5Fig.70239.04P

For 8DPSK

Channel	Packet	Dwell Time (ms)		Conclusion
	3DH1	Fig.72	66.82	р
	3001	Fig.73	66.82	Р
39	2042	Fig.74	195.84	Ρ
39	3DH3	Fig.75		
	2046	Fig.76	070.00	D
	3DH5	Fig.77	279.36	Р


Conclusion: PASS

Test graphs as below:

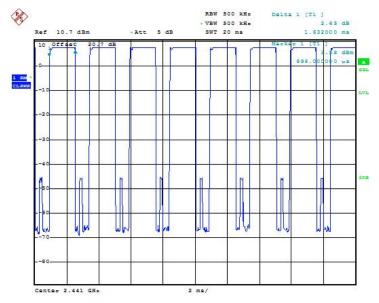

Date: 18.3EP.2018 15:59:49

Fig.60 Time of occupancy (Dwell Time): Ch39, Packet DH1

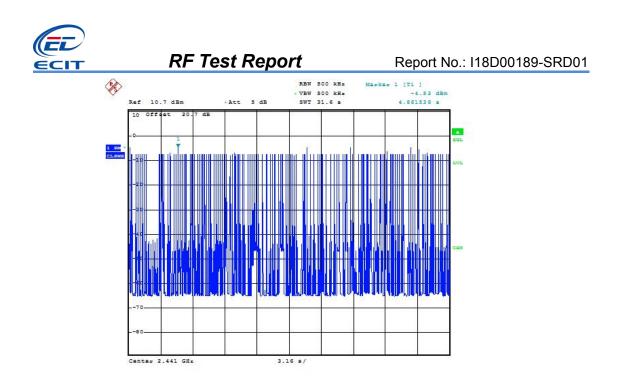

Date: 18.3EP.2018 16:00:47

Fig.61 Number of Transmissions Measurement: Ch39, Packet DH1

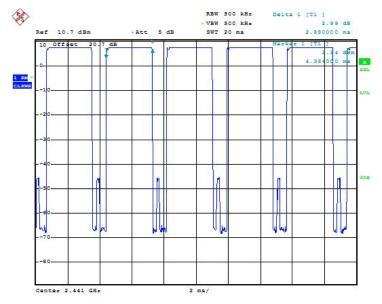

Date: 18.3EP.2018 16:01:11

Fig.62 Time of occupancy (Dwell Time): Ch39, Packet DH3

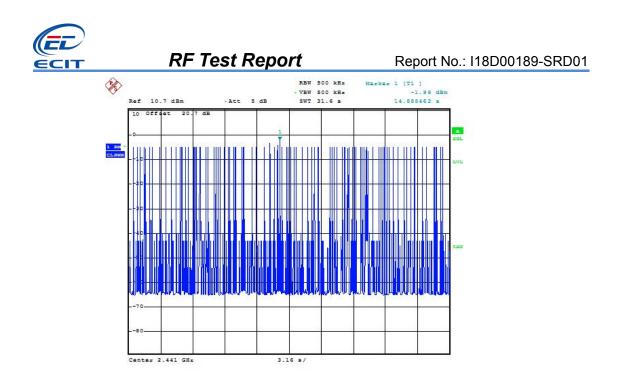

Date: 18.SEP.2018 16:02:09

Fig.63 Number of Transmissions Measurement: Ch39, Packet DH3

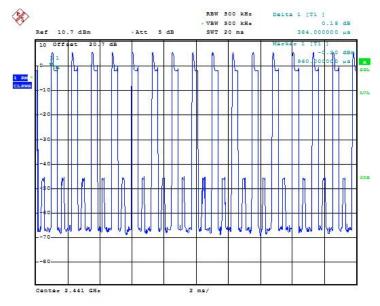

Date: 18.3EP.2018 16:02:34

Fig.64 Time of occupancy (Dwell Time): Ch39,Packet DH5

Date: 18.5EP.2018 16:03:33

Fig.65 Number of Transmissions Measurement: Ch39, Packet DH5

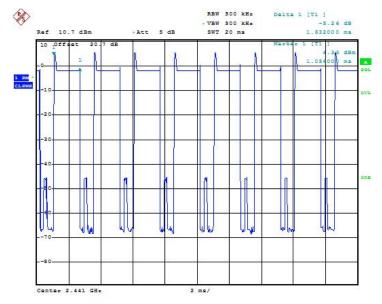

Date: 18.5EP.2018 16:03:57

Fig.66 Time of occupancy (Dwell Time): Ch39, Packet 2-DH1

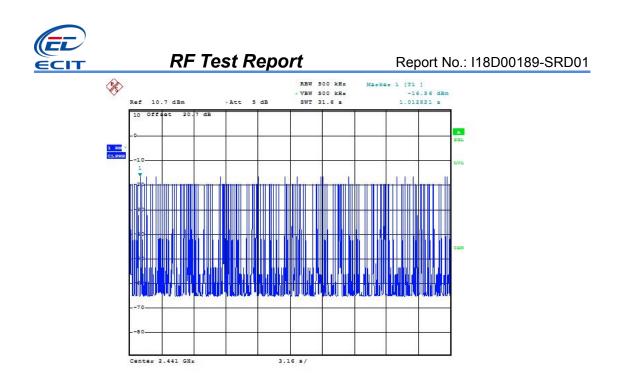

Date: 18.SEP.2018 16:04:56

Fig.67 Number of Transmissions Measurement: Ch39, Packet 2-DH1

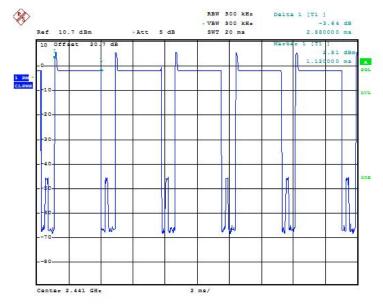

Date: 18.SEP.2018 16:05:19

Fig.68 Time of occupancy (Dwell Time): Ch39,Packet 2-DH3

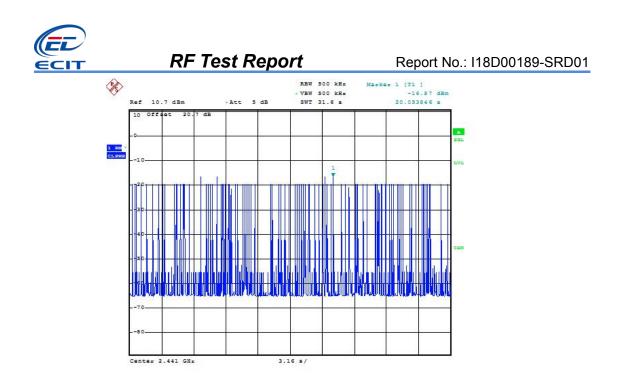

Date: 18.3EP.2018 16:06:18

Fig.69 Number of Transmissions Measurement: Ch39, Packet 2-DH3

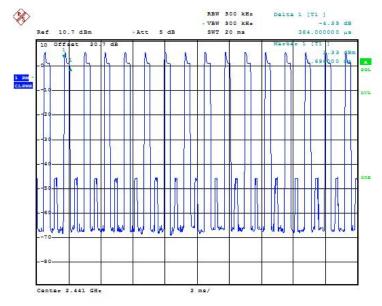

Date: 18.5EP.2018 16:06:43

Fig.70 Time of occupancy (Dwell Time): Ch39, Packet 2-DH5

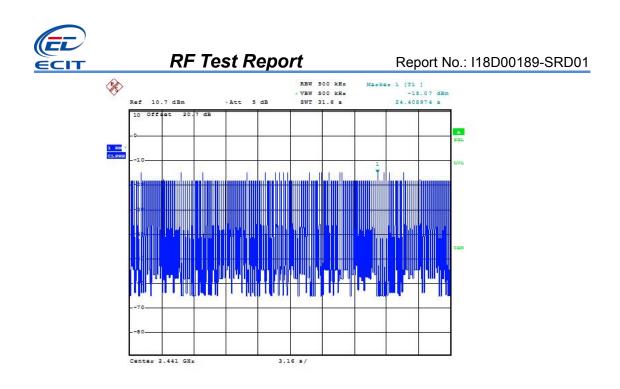

Date: 18.3EP.2018 16:07:41

Fig.71 Number of Transmissions Measurement: Ch39, Packet 2-DH5

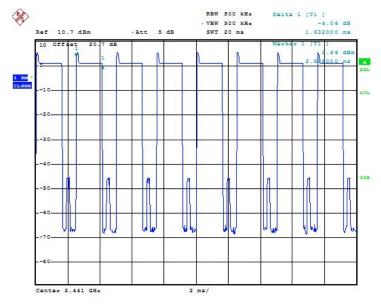

Date: 18.SEP.2018 16:08:06

Fig.72 Time of occupancy (Dwell Time): Ch39,Packet 3-DH1

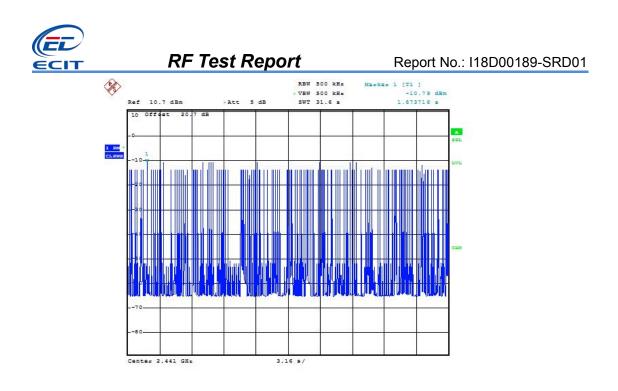

Date: 18.SEP.2018 16:09:04

Fig.73 Number of Transmissions Measurement: Ch39, Packet 3-DH1

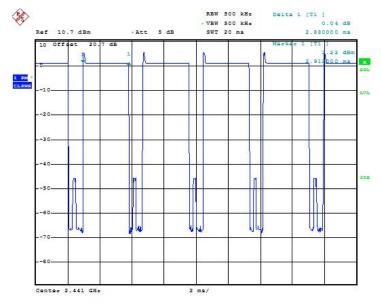

Date: 18.3EP.2018 16:09:28

Fig.74 Time of occupancy (Dwell Time): Ch39,Packet 3-DH3

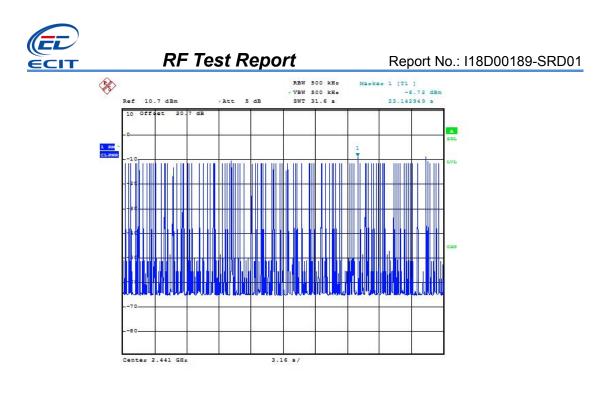

Date: 18.3EP.2018 16:10:26

Fig.75 Number of Transmissions Measurement: Ch39, Packet 3-DH3

Date: 18. SEP. 2018 16:10:50

Fig.76 Time of occupancy (Dwell Time): Ch39,Packet 3-DH5

Date: 18.5EP.2018 16:11:49

Fig.77 Number of Transmissions Measurement: Ch39, Packet 3-DH5

6.6. 20dB Bandwidth

6.6.1 Measurement Limit:

Standard	Limit
FCC 47 CFR Part 15.247 (a) (1)	N/A

6.6.2 Test procedures

The measurement is according to ANSI C63.10 clause 7.8.7

- 1. Connect the EUT through cable and divide with CBT32 and spectrum analyzer.
- 2. Enable the EUT transmit maximum power.
- 3. Set the spectrum analyzer as step 4 to step 7.
- 4. Span: two or five times of OBW
- 5. RBW= 1% to 5% of the OBW; VBW is approximately three times of RBW; Max Hold.
- 6. Select the max peak, and N DB DOWN=20dB.
- 7. Record the results.

6.6.3 Measurement Uncertainty:

Measurement Uncertainty	\pm 0.0031MHz
-------------------------	-----------------

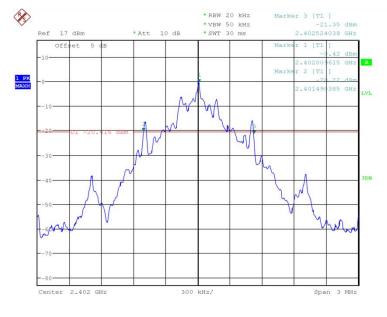
Measurement Result:

For GFSK

Channel	20dB Bandwidth (MHz)	Conclusion
---------	----------------------	------------

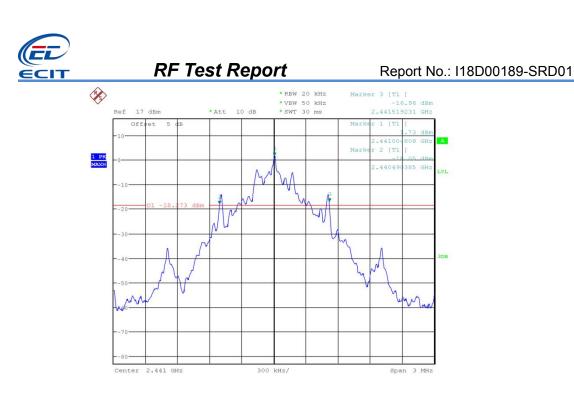
ECIT	RF Test Report	Report N	o.: I18D00189-SRD01
0	Fig.78	1.034	Р
39	Fig.79	1.029	Р
78	Fig.80	1.034	Р

For $\pi/4$ DQPSK


Channel	20dB Band	width (MHz)	Conclusion
0	Fig.81	1.178	Р
39	Fig.82	1.183	Р
78	Fig.83	1.188	Р

For 8DPSK

Channel	20dB Band	width (MHz)	Conclusion
0	Fig.84	1.168	Р
39	Fig.85	1.173	Р
78	Fig.86	1.173	Р

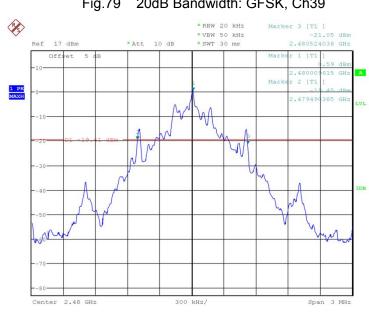
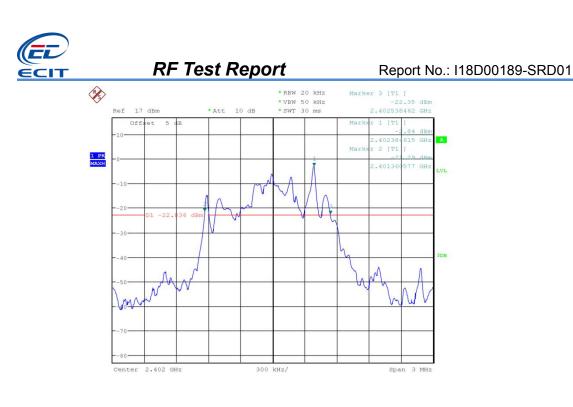

Conclusion: PASS

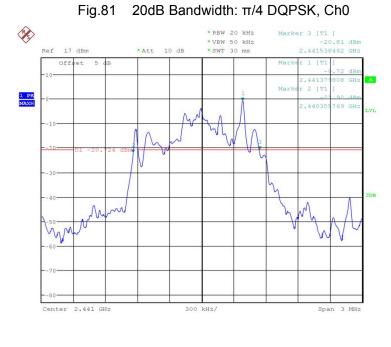
Test graphs as below:

Date: 3.NOV.2018 05:16:44

Fig.78 20dB Bandwidth: GFSK, Ch0

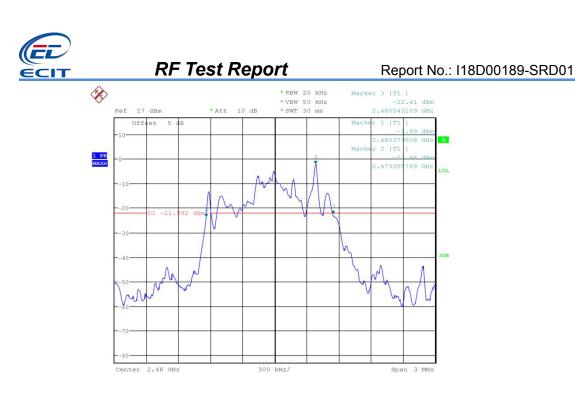
Date: 3.NOV.2018 05:17:00

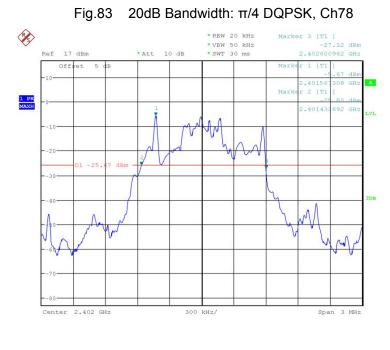

Fig.79 20dB Bandwidth: GFSK, Ch39

Date: 3.NOV.2018 05:17:16

Fig.80 20dB Bandwidth: GFSK, Ch78

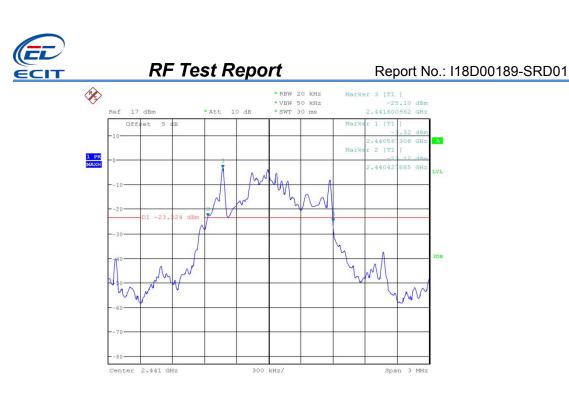


Date: 3.NOV.2018 05:17:33

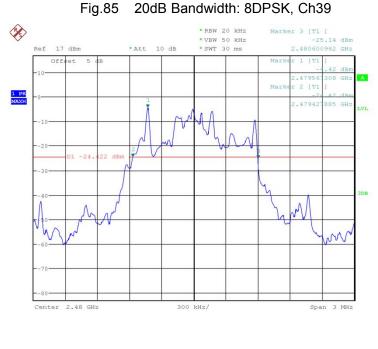


Date: 3.NOV.2018 05:17:49

Fig.82 20dB Bandwidth: π/4 DQPSK, Ch39



Date: 3.NOV.2018 05:18:06



Date: 3.NOV.2018 05:18:22

Fig.84 20dB Bandwidth: 8DPSK, Ch0

Date: 3.NOV.2018 05:18:38

Date: 3.NOV.2018 05:18:55

Fig.86 20dB Bandwidth: 8DPSK, Ch78

6.7. Carrier Frequency Separation

6.7.1 Measurement Limit:

Standard Limit (KHz)

Report No.: I18D00189-SRD01

FCC 47 CFR Part 15.247 (a) (1)

Over 25KHz or (2/3)*20dB bandwidth

6.7.2 Test procedures

The measurement is according to ANSI C63.10 clause 7.8.2.

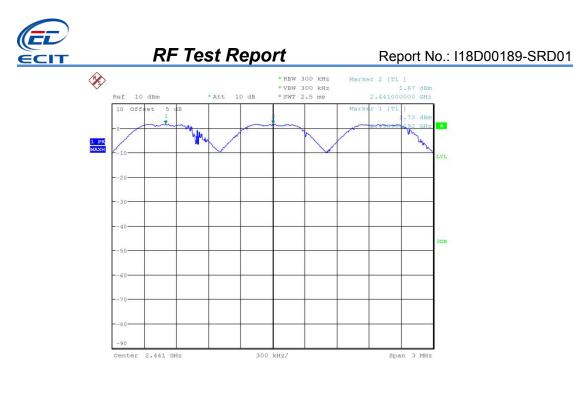
- 1. Connect the EUT through cable and divide with CBT32 and spectrum analyzer.
- 2. Enable the EUT transmit in hopping mode.
- 3. Span: Wide enough to capture the peaks of two adjacent channels.
- 4. RBW: Start with the RBW set to approximately 30% of the channel spacing; adjust as necessary to best identify the center of each individual channel.
- 5. Video (or average) bandwidth (VBW) \geq RBW.
- 6. Sweep: Auto.
- 7. Detector function: Peak.
- 8. Trace: Max hold.
- 9. Allow the trace to stabilize.

6.7.3 Measurement Result:

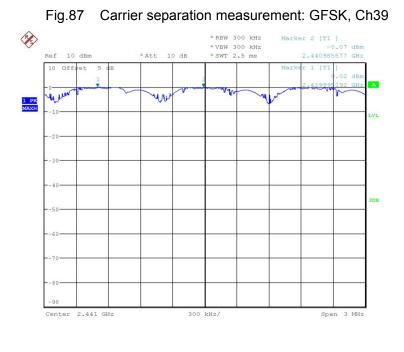
For **GFSK**

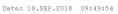
Channel	Carrier sepa	iration (KHz)	Conclusion
39	Fig.87	1004.8077	Р

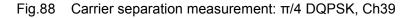
For $\pi/4$ DQPSK

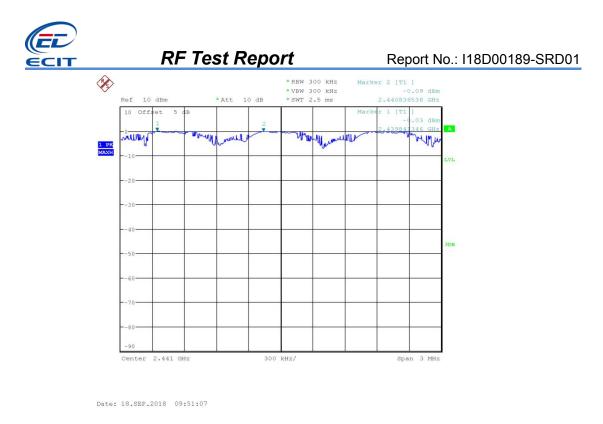

Channel	Carrier separation (KHz)		Conclusion
39	Fig.88	990.3846	Р

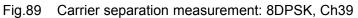
For 8DPSK


Channel	Carrier sepa	aration (KHz)	Conclusion
39	Fig.89	995.1923	Р


Conclusion: PASS


Test graphs as below:




Date: 18.SEP.2018 09:48:40

6.8. Number Of Hopping Channels

6.8.1	Measurement Limit:
-------	---------------------------

Standard	Limit
FCC 47 CFR Part 15.247 (a)(1)(iii)	At least 15 non-overlapping channels

6.8.2 Test procedure

The measurement is according to ANSI C63.10 clause 7.8.3.

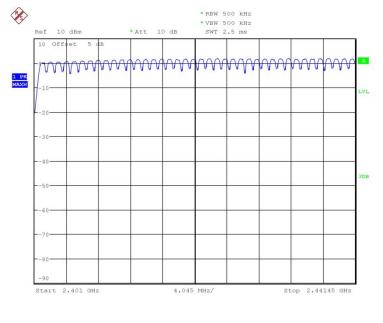
- 1. Connect the EUT through cable and divide with CBT32 and spectrum analyzer.
- 2. Enable the EUT transmit in hopping mode.
- 3. Span: The frequency band of operation. Depending on the number of channels the device supports, it may be necessary to divide the frequency range of operation across multiple spans, to allow the individual channels to be clearly seen.
- 4. RBW: To identify clearly the individual channels, set the RBW to less than 30% of the channel spacing or the 20 dB bandwidth, whichever is smaller.
- 5. VBW \geq RBW.
- 6. Sweep: Auto.
- 7. Detector function: Peak.
- 8. Trace: Max hold.
- 9. Allow the trace to stabilize.
- 10. Record the test rsults.

6.8.3 Measurement Result:

For GFSK

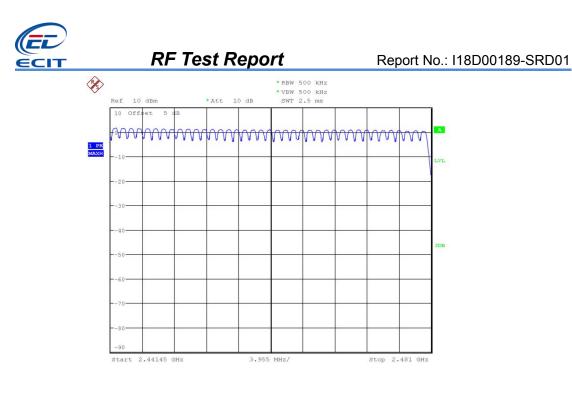
Channel	Number of hop	Conclusion	
0~39	Fig.90	70	Р
40~78	Fig.91	- 79	Р

For $\pi/4$ DQPSK

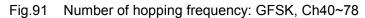

Channel	Number of hop	Conclusion	
0~39	Fig.92	70	Р
40~78	Fig.93	79	Р

For 8DPSK

Channel	Number of hop	Conclusion	
0~39	Fig.94	70	Р
40~78	Fig.95	79	Р


Conclusion: PASS

Test graphs as below:



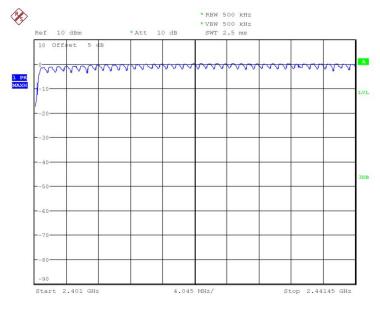

Date: 18.SEP.2018 09:53:44

Fig.90 Number of hopping frequency: GFSK, Ch0~39

Date: 18.SEP.2018 09:55:49

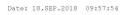
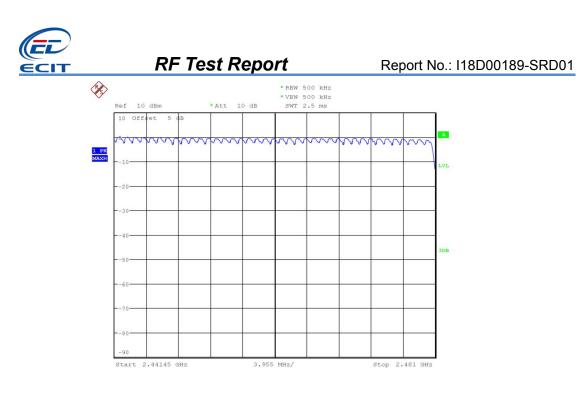
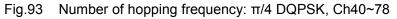
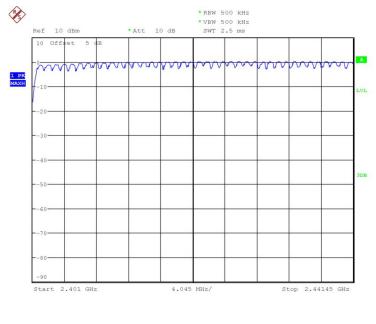





Fig.92 Number of hopping frequency: $\pi/4$ DQPSK, Ch0~39

Date: 18.SEP.2018 09:59:59

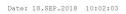


Fig.94 Number of hopping frequency: 8DPSK, Ch0~39

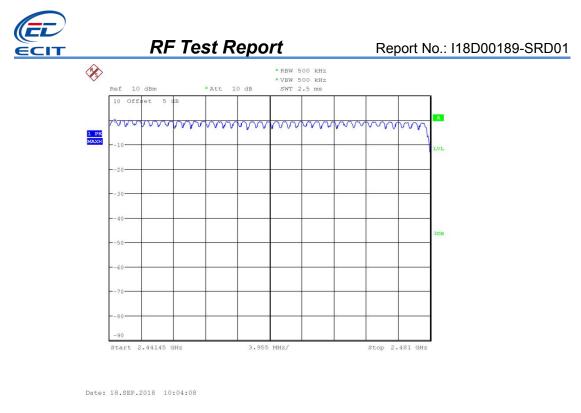


Fig.95 Number of hopping frequency: 8DPSK, Ch40~78

6.9. AC Powerline Conducted Emission

Method of Measurement: See ANSI C63.10-2013-clause 6.2

- 1 The one EUT cable configuration and arrangement and mode of operation that produced the emission with the highest amplitude relative to the limit is selected for the final measurement, while applying the appropriate modulating signal to the EUT.
- 2 If the EUT is relocated from an exploratory test site to a final test site, the highest emissions shall be remaximized at the final test location before final ac power-line conducted emission measurements are performed.
- 3 The final test on all current-carrying conductors of all of the power cords to the equipment that comprises the EUT (but not the cords associated with other non-EUT equipment in the system) is then performed for the full frequency range for which the EUT is being tested for compliance without further variation of the EUT arrangement, cable positions, or EUT mode of operation.
- If the EUT is comprised of equipment units that have their own separate ac power connections, e.g., floor-standing equipment with independent power cords for each shelf that are able to connect directly to the ac power network, each current-carrying conductor of one unit is measured while the other units are connected to a second (or more) LISN(s). All units shall be separately measured. If a power strip is provided by the manufacturer, to supply all of the units making up the EUT, only the conductors in the power cord of the power strip shall be measured.

If the EUT uses a detachable antenna, these measurements shall be made with a suitable dummy load connected to the antenna output terminals; otherwise, the tests shall be made with the antenna connected and, if adjustable, fully extended. When measuring the ac conducted emissions from a device that operates between 150 kHz and 30 MHz a

non-detachable antenna may be replaced with a dummy load for the measurements within the fundamental emission band of the transmitter, but only for those measurements.36 Record the six highest EUT emissions relative to the limit of each of the current-carrying conductors of the power cords of the equipment that comprises the EUT over the frequency range specified by the procuring or regulatory agency. Diagram or photograph the test setup that was used. See Clause 8 for full reporting requirements.

Test Condition:

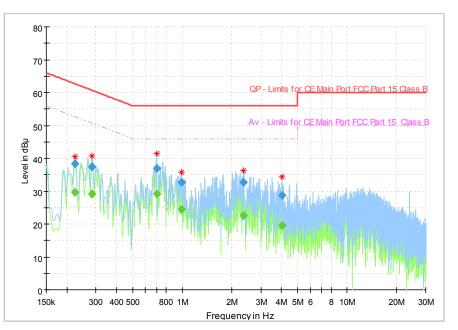
Voltage (V)	Frequency (Hz)
120	60

Measurement Uncertainty

Measurement Items	Range	Confidence Level	Calculated Uncertainty
AC Power line Conducted Emission	0.15MHz-30MHz	95%	\pm 5.66 db

Measurement Result and limit:

(Quasi-peak-average Limit)


L1321

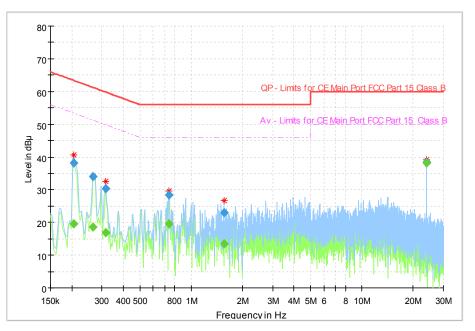
Frequency range (MHz)	Quasi-peak Limit (dBμV)	Average Limit (dBμV)	Result (dBµV) With charger	Conclusion
			BT	
0.15 to 0.5	66 to 56	56 to 46		
0.5 to 5	56	46	Fig.96	Р
5 to 30	60	50		

NOTE: The limit decreases linearly with the logarithm of the frequency in the range 0.15 MHz to 0.5 MHz.

Conclusion: Pass

Fig.96	AC Powerline Conducted Emission
--------	---------------------------------

Frequency	QuasiPeak	Average	Limit	Margin	Meas.	Bandwidth	Line	Filter	Corr.
(MHz)	(dB	(dB µ V)	(dB µ	(dB)	Time	(kHz)			(dB)
0.224625		29.60	52.65	23.05	1000.0	9.000	N	ON	9.7
0.224625	38.36		62.65	24.29	1000.0	9.000	N	ON	9.7
0.284325	37.51		60.69	23.18	1000.0	9.000	L1	ON	9.7
0.284325		29.14	50.69	21.55	1000.0	9.000	L1	ON	9.7
0.698494		29.28	46.00	16.72	1000.0	9.000	L1	ON	9.7
0.698494	36.96		56.00	19.04	1000.0	9.000	L1	ON	9.7
0.989531		24.50	46.00	21.50	1000.0	9.000	N	ON	9.7
0.989531	32.78		56.00	23.22	1000.0	9.000	N	ON	9.7
2.347706	32.61		56.00	23.39	1000.0	9.000	L1	ON	9.7
2.347706		22.48	46.00	23.52	1000.0	9.000	L1	ON	9.7
4.019306		19.62	46.00	26.38	1000.0	9.000	Ν	ON	9.8
4.019306	28.82		56.00	27.18	1000.0	9.000	N	ON	9.8


L1323

Frequency range (MHz)	Quasi-peak Limit (dBμV)	Average Limit (dBμV)	Result (dBμV) With charger	Conclusion
			BT	
0.15 to 0.5	67 to 56	56 to 46		
0.5 to 5	56	46	Fig.97	Р
5 to 30	60	50		

NOTE: The limit decreases linearly with the logarithm of the frequency in the range 0.15 MHz to 0.5 MHz.

Conclusion: Pass

Fig.97	AC Powerline Conducted Emission
--------	---------------------------------

Frequency	QuasiPeak	Average	Limit	Margin	Meas.	Bandwidth	Line	Filter	Corr.
(MHz)	(dB	(dB	(dB μ	(dB)	Time	(kHz)			(dB)
0.205969	38.11		63.37	25.26	1000.0	9.000	N	ON	9.7
0.205969		19.46	53.37	33.91	1000.0	9.000	N	ON	9.7
0.265669	34.13		61.25	27.12	1000.0	9.000	L1	ON	9.7
0.265669		18.55	51.25	32.70	1000.0	9.000	L1	ON	9.7
0.314175		16.84	49.86	33.02	1000.0	9.000	L1	ON	9.7
0.314175	30.38		59.86	29.48	1000.0	9.000	L1	ON	9.7
0.743269		19.65	46.00	26.35	1000.0	9.000	N	ON	9.7
0.743269	28.42		56.00	27.58	1000.0	9.000	N	ON	9.7
1.552950		13.53	46.00	32.47	1000.0	9.000	L1	ON	9.7
1.552950	22.98		56.00	33.02	1000.0	9.000	L1	ON	9.7
24.000150		38.16	50.00	11.84	1000.0	9.000	L1	ON	9.9
24.000150	38.52		60.00	21.48	1000.0	9.000	L1	ON	9.9

7. Test Equipment and Ancillaries Used For Tests

The test equipments and ancillaries used are as follows.

Conducted test system

No.	Equipmen	Model	Serial	Manufactur	Calibration	Cal.interval	
	t	modol	Number	er	date	Gailliter var	
1	Vector	FSQ26	101091	Rohde&Sch	2018-05-11	1 Year	
	Signal	10020	101091	warz	2010-03-11	i icai	
2	DC Power	ZUP60-14	LOC-220Z0	TDL-Lambd	2018-05-11	1 Year	
	Supply	20100-14	06	а	2010-03-11	i itai	
3	Bluetooth	CBT32	100785	Rohde&Sch	2018-05-11	1 Year	
	Tester	CDIJZ	100765	warz	2010-00-11	real	

Radiated emission test system

No.	Equipment	Model	Serial Number	Manufactu rer	Calibration date	Cal.interval
1	Universal Radio Communication Tester	CMU20 0	123123	R&S	2018-05-11	1 Year
2	EMI Test Receiver	ESU40	100307	R&S	2018-05-11	1 Year
3	TRILOG Broadband Antenna	VULB9 163	VULB916 3-515	Schwarzbe ck	2017-02-25	3 Year
4	Double- ridged Waveguide Antenna	ETS-31 17	0013589 0	ETS	2017-01-11	3 Year
5	2-Line V-Network	ENV21 6	101380	R&S	2018-05-11	1 Year

Anechoic chamber

Fully anechoic chamber by Frankonia German.

8. Test Environment

Shielding Room1 (6.0 meters×3.0 meters×2.7 meters) did not exceed following limits along the conducted RF performance testing:

Temperature	Min. = 15 ℃, Max. = 35 ℃	
Relative humidity	Min. = 20 %, Max. = 75 %	
Shielding effectiveness	> 100 dB	
Ground system resistance	< 0.5	

Control room did not exceed following limits along the EMC testing:

Temperature	Min. = 15 ℃, Max. = 35 ℃	
Relative humidity	Min. =30 %, Max. = 60 %	
Shielding effectiveness	> 100 dB	
Electrical insulation	> 10 k	
Ground system resistance	< 0.5	

Fully-anechoic chamber1 (6.9 meters×10.9 meters×5.4 meters) did not exceed following limits along the EMC testing:

Temperature	Min. = 15 ℃, Max. = 35 ℃
Relative humidity	Min. = 25 %, Max. = 75 %
Shielding effectiveness	> 100 dB
Electrical insulation	> 10 k
Ground system resistance	< 0.5
VSWR	Between 0 and 6 dB, from 1GHz to 18GHz
Site Attenuation Deviation	Between -4 and 4 dB,30MHz to 1GHz
Uniformity of field strength	Between 0 and 6 dB, from 80MHz to 3000 MHz

ANNEX A. Deviations from Prescribed Test Methods

No deviation from Prescribed Test Methods.

ANNEX B. Accreditation Certificate

************END OF REPORT*********