

Full

TEST REPORT

No. I18D00191-SRD02

For

- Client : Shanghai Sunmi Technology Co.,Ltd.
- **Production : POS System**
- Model Name : L1320/L1322
- Brand Name : SUNMI
 - FCC ID: 2AH25T2MINI
- Hardware Version: V1.03
- Software Version: MST2MINI_EQ000_2EE0.123BBE2.9530

762_180824_100_V01_T15

Issued date: 2018-12-25

Note:

The test results in this test report relate only to the devices specified in this report. This report shall not be reproduced except in full without the written approval of ECIT Shanghai.

Test Laboratory:

ECIT Shanghai, East China Institute of Telecommunications

Add: 7-8F, G Area, No.668, Beijing East Road, Huangpu District, Shanghai, P. R. China Tel: (+86)-021-63843300, E-Mail: <u>welcome@ecit.org.cn</u>

Report No.: I18D00191-SRD02

Revision Version

Report Number	Revision	Date	Memo
I18D00191-SRD02	00	2018-12-25	Initial creation of test report

CONTENTS

1. TEST LABORATORY	5
1.1. TESTING LOCATION	5
1.2. TESTING ENVIRONMENT	5
1.3. PROJECT DATA	5
1.4. SIGNATURE	5
2. CLIENT INFORMATION	6
2.1. APPLICANT INFORMATION	6
2.2. MANUFACTURER INFORMATION	6
3. EQUIPMENT UNDER TEST (EUT) AND ANCILLARY EQUIPMENT (AE)	7
3.1. ABOUT EUT	7
3.2. INTERNAL IDENTIFICATION OF EUT USED DURING THE TEST	7
3.3. INTERNAL IDENTIFICATION OF AE USED DURING THE TEST	7
4. REFERENCE DOCUMENTS	8
4.1. REFERENCE DOCUMENTS FOR TESTING	8
5. SUMMARY OF TEST RESULTS	9
5.1. NOTES	10
5.2. STATEMENTS	10
5.2. STATEMENTS	
	11
6. TEST RESULT	11 11
6. TEST RESULT	11 11 13
6. TEST RESULT 6.1. PEAK OUTPUT POWER-CONDUCTED 6.2. PEAK POWER SPECTRAL DENSITY	11 11 13 15
6. TEST RESULT 6.1. PEAK OUTPUT POWER-CONDUCTED 6.2. PEAK POWER SPECTRAL DENSITY 6.3. 6DB BANDWIDTH	11 13 15 18
 6. TEST RESULT 6.1. PEAK OUTPUT POWER-CONDUCTED 6.2. PEAK POWER SPECTRAL DENSITY 6.3. 6DB BANDWIDTH 6.4. FREQUENCY BAND EDGES-CONDUCTED 	11 13 15 18 20
 6. TEST RESULT 6.1. PEAK OUTPUT POWER-CONDUCTED 6.2. PEAK POWER SPECTRAL DENSITY 6.3. 6DB BANDWIDTH 6.4. FREQUENCY BAND EDGES-CONDUCTED 6.5. CONDUCTED EMISSION 	11 13 15 18 20 24

ECIT	RF Test Report	Report No.: I18D00191-SRD02
7. TEST EQUIPM	ENT AND ANCILLARIES USED FOR	R TESTS 39
8. TEST ENVIRO	NMENT	40
ANNEX A. DEVIA	TIONS FROM PRESCRIBED TEST	METHODS41
ANNEX B. ACCR	EDITATION CERTIFICATE	42

1. Test Laboratory

1.1. Testing Location

Company Name:	ECIT Shanghai, East China Institute of Telecommunications				
Address:	7-8F, G Area, No. 668, Beijing East Road, Huangpu District,				
	Shanghai, P. R. China				
Postal Code:	200001				
Telephone:	(+86)-021-63843300				
Fax:	(+86)-021-63843301				
FCC registration No	958356				

1.2. Testing Environment

Normal Temperature:	15-35℃
Extreme Temperature:	-30/+50 ℃
Relative Humidity:	20-75%

1.3. Project data

Project Leader:	Zhou Yan
Testing Start Date:	2018-09-18
Testing End Date:	2018-09-30

1.4. Signature

德尼

Yang Dejun (Prepared this test report)

施机旗

Shi Hongqi (Reviewed this test report)

Zheng Zhongbin (Approved this test report)

2. Client Information

2.1. Applicant Information

Company Name:	Shanghai Sunmi Technology Co.,Ltd.			
Address:	Room 505, KIC Plaza, No.388 Song Hu Road, Yang Pu District,			
Auuress.	Shanghai, China			
Telephone:	8618721763396			
Postcode:	200433			

2.2. Manufacturer Information

Company Name:	Shanghai Sunmi Technology Co.,Ltd.			
Address:	Room 505, KIC Plaza, No.388 Song Hu Road, Yang Pu District,			
Auuress.	Shanghai, China			
Telephone:	8618721763396			
Postcode:	200433			

3. Equipment Under Test (EUT) and Ancillary Equipment (AE)

3.1. About EUT

EUT Description	POS System		
Model name	L1320/L1322		
BLE Frequency	2402MHz-2480MHz		
BLE Channel	Channel0-Channel39		
BLE Modulation	GFSK;		
GSM Frequency Band	GSM 850/GSM 1900		
UMTS Frequency Band	Band 2/5		
CDMA Frequency Band	BC 0		
LTE Frequency Band	Band 38/41		
Additional Communication	BT/BLE/2.4G WLAN b/g/n20/n40/NFC		
Function			
Extreme Temperature	-30/+50 ℃		
Nominal Voltage	24V		
Extreme High Voltage	25V		
Extreme Low Voltage	23V		

Note: Photographs of EUT are shown in ANNEX A of this test report.

3.2. Internal Identification of EUT used during the test

EUT ID*	Model Name	SN or IMEI	HW Version	SW Version	Date of receipt
NIGO	1 4000				0040.00.07
N02	L1320	/	V1.03	MST2MINI_EQ00	2018-09-07
				0_2EE0.123BBE2	
				.9530762_180824	
				_100_V01_T15	
N01	L1322	1	V1.03	MST2MINI_EQ00	2018-09-07
				0_2EE0.123BBE2	
				.9530762_180824	
				_100_V01_T15	

*EUT ID: is used to identify the test sample in the lab internally.

3.3. Internal Identification of AE used during the test

AE ID*	Description	SN
AE1	RF cable	

*AE ID: is used to identify the test sample in the lab internally.

4. Reference Documents

4.1. Reference Documents for testing

The following documents listed in this section are referred for testing.

Reference	Title	Version
FCC Part15	FCC CFR 47, Part 15,Subpart C: 15.205 Restricted bands of operation; 15.209 Radiated emission limits, general requirements; 15.247 Operation within the bands 902-928MHz, 2400-2483.5MHz, and 5725-5850MHz.	2017/10/01
ANSI C63.10	American National Standard of Procedures for Compliance Testing of Unlicensed Wireless Devices	2013

5. Summary of Test Results

A brief summary of the tests carried out is shown as following.

Measurement Items	Sub-clause of Part15C	Sub-claus e of IC	Verdict
Maximum Peak Output Power	15.247(b)	1	Р
Peak Power Spectral Density	15.247(e)	1	Р
6dB Occupied Bandwidth	15.247(a)	1	Р
Band Edges Compliance	15.247(d)	1	Р
Transmitter Spurious Emission-Conducted	15.247	1	Р
Transmitter Spurious Emission-Radiated	15.247	1	Р
AC Powerline Conducted Emission	15.107,15.207	/	Р

Please refer to part 5 for detail.

The measurements are according to ANSI C63.10.

Terms used in Verdict column

Р	Pass, the EUT complies with the essential requirements in the standard.
NP	Not Perform, the test was not performed by ECIT.
NA	Not Applicable, the test was not applicable.
F	Fail, the EUT does not comply with the essential requirements in the standard.

Test Conditions

Tnom	Normal Temperature
Tmin	Low Temperature
Tmax	High Temperature
Vnom	Normal Voltage
Vmin	Low Voltage
Vmax	High Voltage
Hnom	Norm Humidity
Anom	Norm Air Pressure

For this report, all the test case listed above are tested under Normal Temperature and Normal Voltage, and also under norm humidity, the specific conditions as following:

Temperature	Tnom	25 ℃
Voltage	Vnom	24V
Humidity	Hnom	48%
Air Pressure	Anom	1010hPa

Note:

a. All the test data for each data were verified, but only the worst case was reported.

- b. The GFSK was set in DH1.
- c. The DC and low frequency voltages' measurement uncertainty is ±2%.

5.1. Notes

All reported tests were carried out on a sample equipment to demonstrate limited compliance with section 3.

The test results of this test report relate exclusively to the item(s) tested as specified in section 5.

5.2. Statements

The L1320/L1322, supporting GPRS/EDGE/WCDMA/CDMA/LTE/BT/WLAN/BLE/NFC, manufactured by Shanghai Sunmi Technology Co.,Ltd., which is a variant product for testing.

Note: The project has two prototypes, L1320 and L1322. In this report, we only tested AC Powerline and the worse case of RSE, the other test cases please refer to the report No: I18D00189-SRD02, which was prepared by East China Institute of Telecommunications.

ECIT has verified that the compliance of the tested device specified in section 5 of this test report is successfully evaluated according to the procedure and test methods as defined in type certification requirement listed in section 5 of this test report.

6. Test result

6.1. Peak Output Power-Conducted

6.1.1 Measurement Limit

Standard	Limit (dBm)	
FCC Part 15.247(b)(1)	< 30	

6.1.2 Test Condition:

DTS procedure	RBW	VBW	Span	Sweeptime
BT-LE	3MHz	10MHz	9MHz	Auto

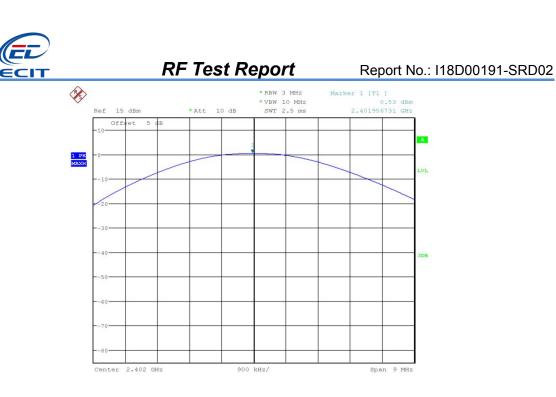
6.1.3 Test procedure

The measurement is according to ANSI C63.10 clause 11.9.1

- a) Set the RBW \geq DTS bandwidth.
- b) Set VBW \geq [3 \times RBW].
- c) Set span \geq [3 \times RBW].
- d) Sweep time = auto couple.
- e) Detector = peak.
- f) Trace mode = max hold.
- g) Allow trace to fully stabilize.
- h) Use peak marker function to determine the peak amplitude level.

6.1.4 Measurement Uncertainty:

Measurement Uncertainty	±0.88dB
-------------------------	---------


6.1.5 Measurement Results:

For GFSK

Channel	Ch0 2402 MHz	Ch19 2440 MHz	CH39 2480 MHz	Conclusion
Peak Conducted	0.533	1.983	0.625	Р
Output Power (dBm)	Fig.1	Fig.2	Fig.3	Г

Conclusion: PASS

Test graphs an below

Date: 12.SEP.2018 10:15:39

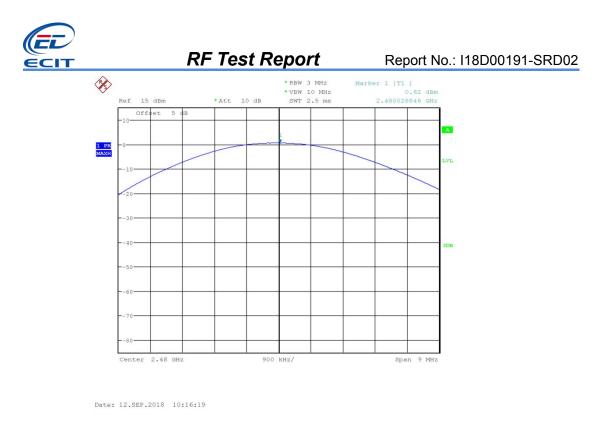



Fig.1 Peak Conducted Output Power CH0, DH1

Date: 12.SEP.2018 10:16:00

Fig.2 Peak Conducted Output Power CH19, DH1

6.2. Peak Power Spectral Density

6.2.1 Measurement Limit:

Standard	Limit	
FCC CFR Part 15.247(e)	< 8dBm/3 KHz	

6.2.2 Test procedures

The measurement is according to ANSI C63.10 clause 11.10.

- 1. The output power of EUT was connected to the spectrum analyzer. The path loss was compensated to the results for each measurement.
- 2. Enable EUT transmitter maximum power continuously.
- 3. Set analyzer center frequency to DTS channel center frequency.
- 4. Set the span to 1.5 times the DTS bandwidth.
- 5. Set the RBW to 3 kHz \leq RBW \leq 100 kHz.
- 6. Set the VBW \geq [3 \times RBW].
- 7. Detector = peak.
- 8. Sweep time = auto couple.
- 9. Trace mode = max hold.
- 10. Allow trace to fully stabilize.
- 11. Use the peak marker function to determine the maximum amplitude level within the RBW.
- 12. If measured value exceeds requirement, then reduce RBW (but no less than 3 kHz) and repeat.

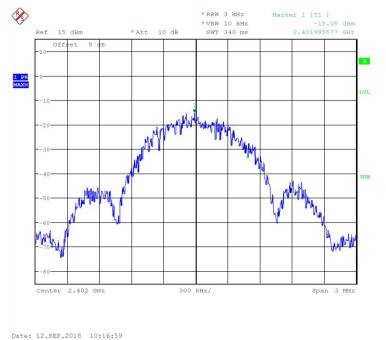
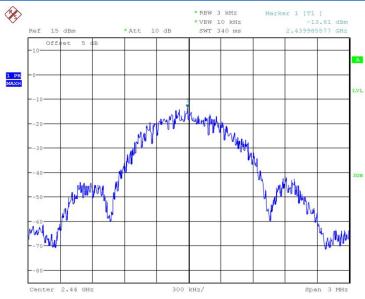
6.2.3 Measurement Uncertainty:

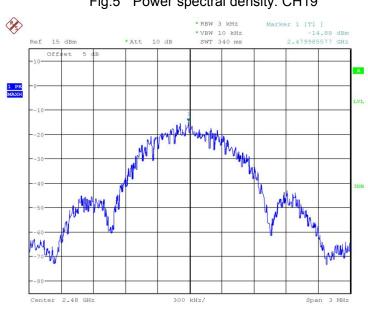
Measurement Uncertainty	\pm 0.88dB
Measurement Uncertainty	\pm 0.88dB

6.2.4 Measurement Results:

Mode	Channel	Power Spectral Density(dBm/3kHz)		Conclusion
	0	Fig.4	-15.046	Р
BT-LE	19	Fig.5	-13.615	Р
	39	Fig.6	-14.878	Р

Test figure as below:


Fig.4 Power spectral density: CH0

Report No.: I18D00191-SRD02

Date: 12.SEP.2018 10:17:25

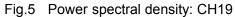


Fig.6 Power spectral density: CH39

6.3. 6dB Bandwidth

6.3.1 Measurement Limit:

Standard	Limit
FCC 47 CFR Part 15.247 (a) (1)	≥500k

6.3.2 Test procedures

The measurement is according to ANSI C63.10 clause 11.8.

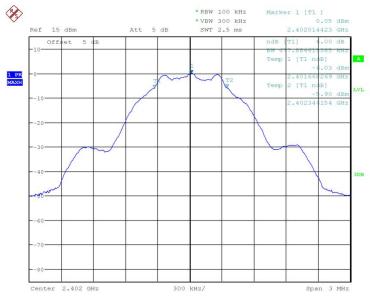
- 1. The output power of EUT was connected to the spectrum analyzer. The path loss was compensated to the results for each measurement.
- 2. Enable EUT transmitter maximum power continuously.
- 3. Set RBW = 100 kHz.
- 4. Set the VBW \geq [3 \times RBW].
- 5. Detector = peak.
- 6. Trace mode = max hold.
- 7. Sweep = auto couple.
- 8. Allow the trace to stabilize.
- 9. Measure the maximum width of the emission that is constrained by the frequencies associated with the two outermost amplitude points (upper and lower frequencies) that are attenuated by 6 dB relative to the maximum level measured in the fundamental emission.

6.3.3 Measurement Uncertainty:

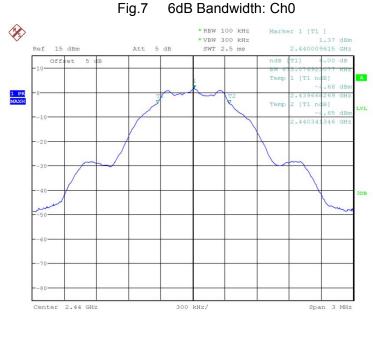
Measurement Uncertainty	±0.0031MHz
-------------------------	------------

Measurement Result:

For GFSK


Channel	6dB Bandwidth (KHz)		Conclusion
0	Fig.7	678	Р
19	Fig.8	673	Р
39	Fig.9	673	Р

Conclusion: PASS


Test graphs as below:

Report No.: I18D00191-SRD02

Date: 12.SEP.2018 10:23:39

Date: 12.SEP.2018 10:24:06

Fig.8 6dB Bandwidth: Ch19

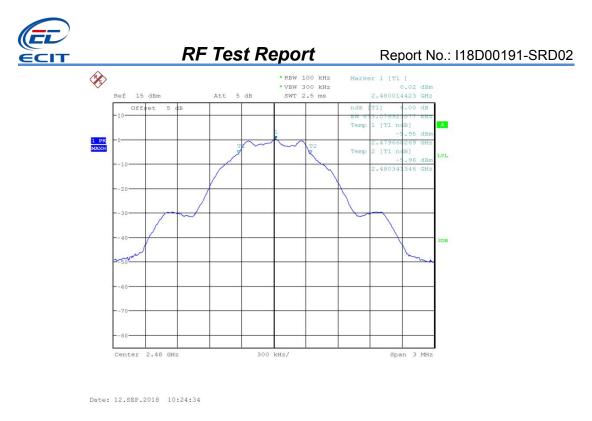


Fig.9 6dB Bandwidth: Ch39

6.4. Frequency Band Edges-Conducted

6.4.1 Measurement Limit:

Standard	Limited(dBc)
FCC 47 CFR Part 15.247(d)	>20

6.4.2 Test procedure

The measurement is according to ANSI C63.10 clause 11.13.2

1) Span: Wide enough to capture the peak level of the emission operating on the channel closest to the band edge, as well as any modulation products that fall outside of the authorized band of operation.

2) Reference level: As required to keep the signal from exceeding the maximum instrument input mixer level for linear operation. In general, the peak of the spectral envelope shall be more than [10 log (OBW/RBW)] below the reference level. Specific guidance is given in 4.1.5.2.

3) Attenuation: Auto (at least 10 dB preferred).

4) Sweep time: Coupled.

5) Resolution bandwidth: 100 kHz.6) Video bandwidth: 300 kHz.7) Detector: Peak.8) Trace: Max hold..

6.4.3 Measurement Uncertainty:

Measurement Uncertainty	\pm 4.56dB
-------------------------	--------------

6.4.4 Measurement results

For GFSK

Channel	Band Edge Power (dBc)	Conclusion
0	Fig.10	Р
39	Fig.11	Р

Conclusion: PASS

Test graphs an below

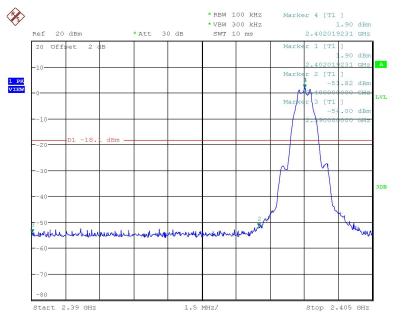


Fig.10 Frequency Band Edge: GFSK, Ch0

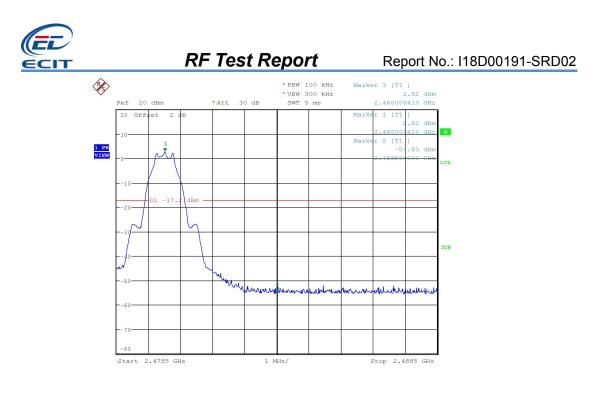


Fig.11 Frequency Band Edge: GFSK, Ch39

6.5. Conducted Emission

6.5.1 Measurement Limit:

Standard	Limit
FCC 47 CFR Part15.247 (d)	20dB below peak output power in 100KHz bandwidth

6.5.2 Test procedures

This measurement is according to ANSI C63.10 clause 11.11.

- 1. The output power of EUT was connected to the spectrum analyzer. The path loss was compensated to the results for each measurement.
- 2. Enable EUT transmitter maximum power continuously.

Reference level measurement

- 3. Set instrument center frequency to DTS channel center frequency.
- 4. Set the span to \geq 1.5 times the DTS bandwidth.
- 5. Set the RBW = 100 kHz.
- 6. Set the VBW \geq [3 \times RBW].
- 7. Detector = peak.
- 8. Sweep time = auto couple.
- 9. Trace mode = max hold.
- 10. Allow trace to fully stabilize.
- 11. Use the peak marker function to determine the maximum PSD level.

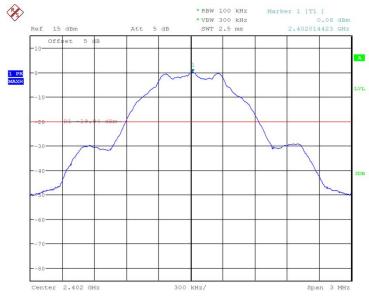
Emission level measurement

- 12. Set the center frequency and span to encompass frequency range to be measured.
- 13. Set the RBW = 100 kHz.

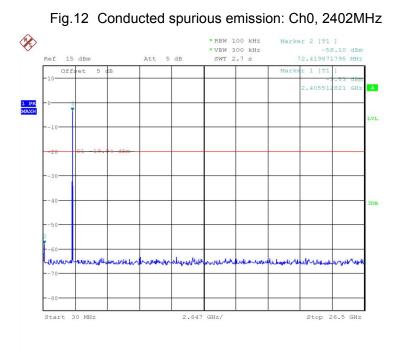
- 14. Set the VBW \geq [3 \times RBW].
- 15. Detector = peak.
- 16. Sweep time = auto couple.
- 17. Trace mode = max hold.
- 18. Allow trace to fully stabilize.
- 19. Use the peak marker function to determine the maximum amplitude level.

6.5.3 Measurement Uncertainty:

Measurement Uncertainty	\pm 4.56dB
-------------------------	--------------


6.5.4 Measurement Results:

Channel	Frequency Range	Test Results	Conclusion
	Center Freq.	Fig.12	Р
Ch0 2402MHz	30MHz~26.5GHz	Fig.13	Р
	Center Freq.	Fig.14	Р
Ch19 2440MHz	30MHz~26.5GHz	Fig.15	Р
Ch20.2400MU-	Center Freq.	Fig.16	Р
Ch39 2480MHz	30MHz~26.5GHz	Fig.17	Р


Conclusion: PASS Test graphs as below

Report No.: I18D00191-SRD02

Date: 12.SEP.2018 10:19:27

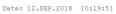
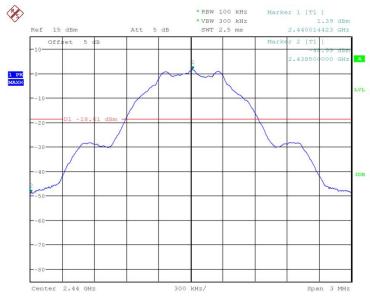
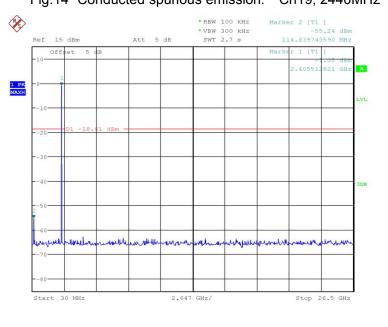
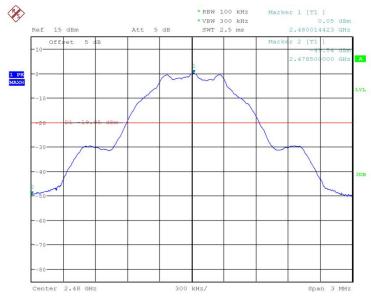



Fig.13 Conducted spurious emission: Ch0, 30MHz~26GHz

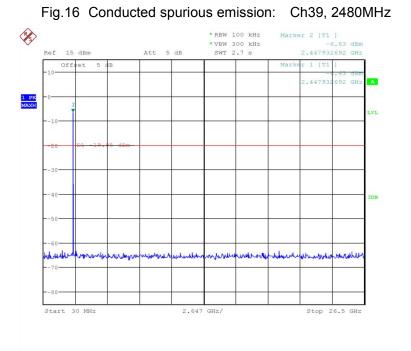
Report No.: I18D00191-SRD02

Date: 12.SEP.2018 10:20:28




Fig.14 Conducted spurious emission: Ch19, 2440MHz

Date: 12.SEP.2018 10:20:52


Fig.15 Conducted spurious emission: Ch19, 30MHz~26GHz

Report No.: I18D00191-SRD02

Date: 12.SEP.2018 10:21:24

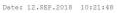


Fig.17 Conducted spurious emission: Ch39, 30MHz~26GHz

6.6. Radiated Emission

6.6.1 Measurement Limit:

Standard	Limit
----------	-------

Report No.: I18D00191-SRD02

FCC 47 CFR Part 15.247, 15.205, 15.209

20dB below peak output power

In addition, radiated emissions which fall in the restricted bands, as defined in 15.205(a), must also comply with the radiated emission limits specified in 15.209(a) (see 15.205(c)). **Limit in restricted band:**

Frequency of emission (MHz)	Field strength (uV/m)	Field strength (dBuV/m)
30~88	100	40
88~216	150	43.5
216~960	200	46
Above 960	500	54

Measurement Uncertainty

Measurement Items	Range	Confidence	Calculated
Measurement items	Kange	Level	Uncertainty
Transmitter Spurious	9KHz-30MHz	0.5%	\pm 5.66db
Emission-Radiated	9502-3010102	95%	<u> </u>
Transmitter Spurious	30MHz-1000MHz	95%	+4.98db
Emission-Radiated		95%	<u>4.9000</u>
Transmitter Spurious	1000MHz -18000MHz	95%	+5.06db
Emission-Radiated		95%	± 5.000D
Transmitter Spurious	18000MHz	0.5%	\pm 5.20db
Emission-Radiated	-40000MHz	95%	

6.6.2 Test Method

Portable, small, lightweight, or modular devices that may be handheld, worn on the body, or placed on a table during operation shall be positioned on a non-conducting platform, the top of which is 80 cm above the reference ground plane. The preferred area occupied by the EUT arrangement is 1 m by 1.5 m, For emissions testing at or below 1 GHz, the table height shall be 80 cm above the reference ground plane. For emission measurements above 1 GHz, the table height shall be 1.5 m. but it may be larger or smaller to accommodate various sized EUTs. For testing purposes, ceiling- and wall-mounted devices also shall be positioned on a tabletop (see also ANSI C63.10-2013 section 6.3.4 and 6.3.5). In making any tests involving handheld, body-worn, or ceiling-mounted equipment, it is essential to recognize that the measured levels may be dependent on the orientation (attitude) of the three orthogonal axes of the EUT. Thus, exploratory tests as specified in 8.3.1 shall be carried out for various axes orientations to determine the attitude having maximum or near-maximum emission level.

The EUT was placed on a non-conductive table. The measurement antenna was placed at a distance of 3 meters from the EUT. During the tests, the antenna height and the EUT azimuth were varied in order to identify the maximum level of emissions from the EUT. This maximization process was repeated with the EUT positioned in each of its three

orthogonal orientations.

Frequency of emission (MHz)	RBW/VBW	Sweep Time (s)
30~1000	100kHz/300kHz	5
1000~4000	1MHz/3MHz	15
4000~18000	1MHz/3MHz	40
18000~26500	1MHz/3MHz	20

6.6.3 Measurement Results:

A "reference path loss" is established and A_{Rpi} is the attenuation of "reference path loss", and including the gain of receive antenna, the gain of the preamplifier, the cable loss. The measurement results are obtained as described below:

A_{Rpi} = Cable loss + Antenna Gain-Preamplifier gain

Result=P_{Mea} + A_{Rpi}

L1320

Channel	Frequency Range	Test Results	Conclusion
	30MH~1GHz	Fig.18	Р
Ch39 2480MHz	1GHz~3GHz	Fig.19	Р
	3GHz~18GHz	Fig.20	Р
Bandedge:CH39	2.31GHz~2.5GHz	Fig.21	Р

Ch39 30MHz-1GHz

Frequency(MHz)	Result(dBuV/m)	ARpl (dB)	PMea(dBuV/m)	Polarity
32.9	32.14	-22	54.14	V
34.9	22.91	-21.9	44.81	V
53.2	32.11	-20.6	52.71	V
236.3	29.2	-23.2	52.4	V
288.0	33.69	-22.2	55.89	Н
478.9	29.36	-17.4	46.76	V

Ch39 1GHz-3GHz (Peak)

Frequency(MHz)	Result(dBuV/m)	ARpl (dB)	PMea(dBuV/m)	Polarity
----------------	----------------	-----------	--------------	----------

	RF Test R	RF Test Report		8D00191-SRD02
2521.2	54.39	6.9	47.49	н
2645.0	54.59	7.7	46.89	V
2712.5	54.49	7.8	46.69	V
2833.5	54.32	8.2	46.12	V
2880.2	55.5	8.7	46.8	V
2991.3	57.69	9	48.69	Н

Ch39 1GHz-3GHz (Average)

Frequency(MHz)	Result(dBuV/m)	ARpl (dB)	PMea(dBuV/m)	Polarity
2521.2	41.57	6.9	34.67	Н
2645.0	42.23	7.7	34.53	V
2712.5	42.19	7.8	34.39	V
2833.5	42.46	8.2	34.26	V
2880.2	43.24	8.7	34.54	V
2991.3	43.41	9	34.41	Н

Ch39 3GHz-18GHz (Peak)

Frequency(MHz)	Result(dBuV/m)	ARpl (dB)	PMea(dBuV/m)	Polarity
14300.0	56.26	20.9	35.36	Н
15012.8	54.68	20.8	33.88	Н
15701.9	56.93	23.2	33.73	V
16264.3	59.11	25.5	33.61	Н
16993.5	59.87	27	32.87	V
17522.9	59.89	27.6	32.29	V

Ch39 3GHz-18GHz (Average)

Frequency(MHz)	Result(dBuV/m)	ARpl (dB)	PMea(dBuV/m)	Polarity
14300.0	42.92	20.9	22.02	Н
15012.8	42.57	20.8	21.77	Н

	RF Test R	RF Test Report		8D00191-SRD02
15701.9	44.93	23.2	21.73	V
16264.3	46.58	25.5	21.08	Н
16993.5	48.11	27	21.11	V
17522.9	47.72	27.6	20.12	V

Note: Only the worst case is written in the report. Conclusion: PASS Test graphs as below:

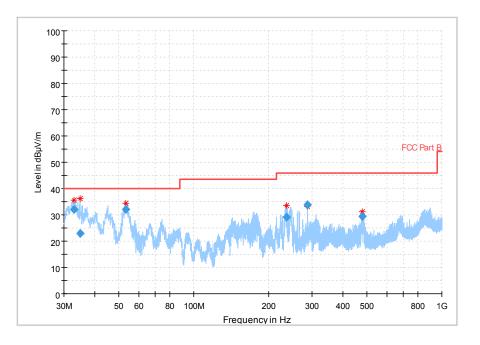


Fig.18 Radiated emission: CH39, 30MHz~1GHz

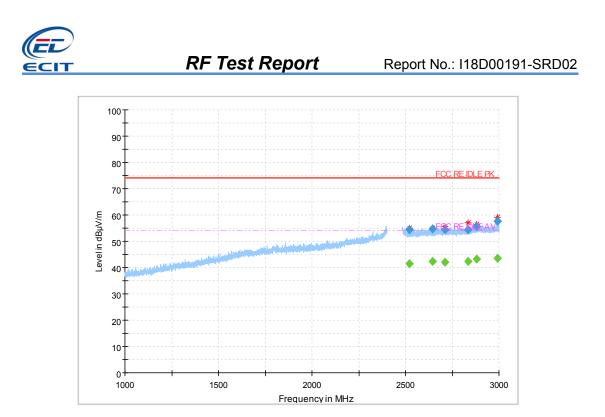


Fig.19 Radiated emission: CH39, 1GHz~3GHz

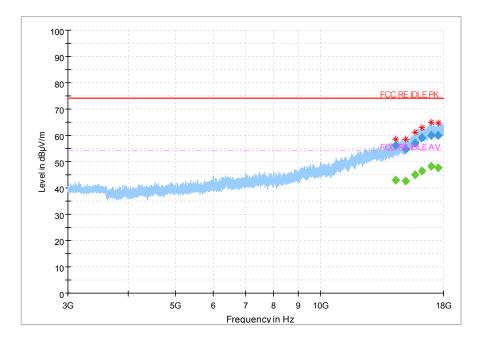


Fig.20 Radiated emission: CH39, 3GHz~18GHz

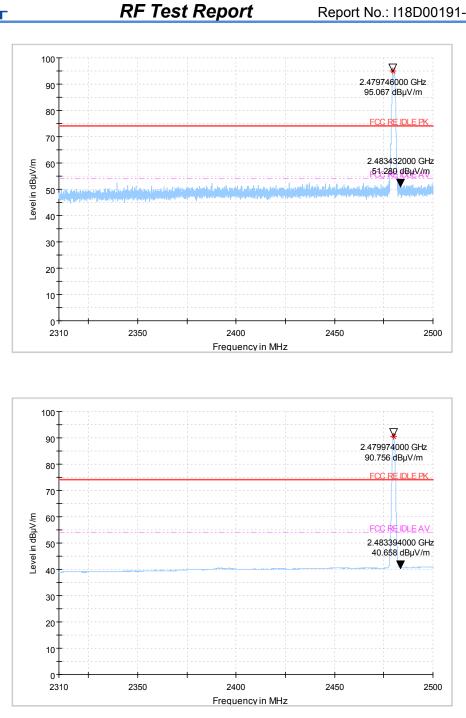


Fig.21 Bandedge:CH39

L1322						
Channel	Frequency Range	Test Results	Conclusion			
	30MH~1GHz	Fig.22	Р			
Ch39 2480MHz	1GHz~3GHz	Fig.23	Р			
	3GHz~18GHz	Fig.24	Р			

1 4 2 2 2

Ρ

Ch39 30MHz-1GHz

Frequency(MHz)	Result(dBuV/m)	ARpl (dB)	PMea(dBuV/m)	Polarity
37.1	29.84	-21.4	51.24	V
40.3	29.5	-20.7	50.2	V
44.0	20.75	-20.3	41.05	V
137.5	9.08	-27.9	36.98	Н
240.0	13.97	-23	36.97	V
479.5	19.48	-17.3	36.78	V

Ch39 1GHz-3GHz (Peak)

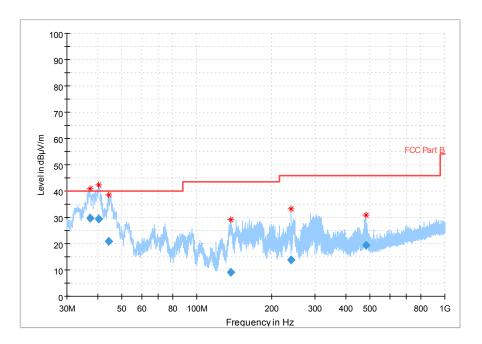
Frequency(MHz)	Result(dBuV/m)	ARpl (dB)	PMea(dBuV/m)	Polarity
2518.7	53.49	6.9	46.59	Н
2616.0	54.05	7.4	46.65	V
2663.7	54.52	7.8	46.72	Н
2756.2	54	7.7	46.3	V
2812.7	55.07	8	47.07	Н
2881.4	55.48	8.7	46.78	Н

Ch39 1GHz-3GHz (Average)

Frequency(MHz)	Result(dBuV/m)	ARpl (dB)	PMea(dBuV/m)	Polarity
2616.0	41.92	7.4	34.52	V
2663.7	42.42	7.8	34.62	Н
2756.2	42.13	7.7	34.43	V
2812.7	2812.7 42.56		34.56	Н
2881.4	43.28	8.7	34.58	Н

Ch39 3GHz-18GHz (Peak)

Frequency(MHz)	Result(dBuV/m)	ARpl (dB)	PMea(dBuV/m)	Polarity
East China Institute of TEL: +86 21 63843300	Telecommunications FAX: +86 21 63843301	age Hannee.	31 of 42 Dec.25.2018	



	RF Test R	RF Test Report		8D00191-SRD02
13709.5	53.05	17.6	35.45	н
14301.6	55.75	20.8	34.95	н
15276.0	55.79	21.4	34.39	н
16307.0	59.16	25.8	33.36	н
17182.1	60.34	27.3	33.04	н
17713.5	59.98	27.3	32.68	н

Ch39 3GHz-18GHz (Average)

Frequency(MHz)	Result(dBuV/m)	ARpl (dB) PMea(dBuV/m)		Polarity
14301.6	43.07	43.07 20.8 22.27		Н
15276.0	43.48	21.4	22.08	Н
16307.0	46.51	25.8	20.71	Н
17182.1	48.17	27.3	20.87	Н
17713.5	47.77	27.3	20.47	Н

Note: Only the worst case is written in the report. Conclusion: PASS Test graphs as below:

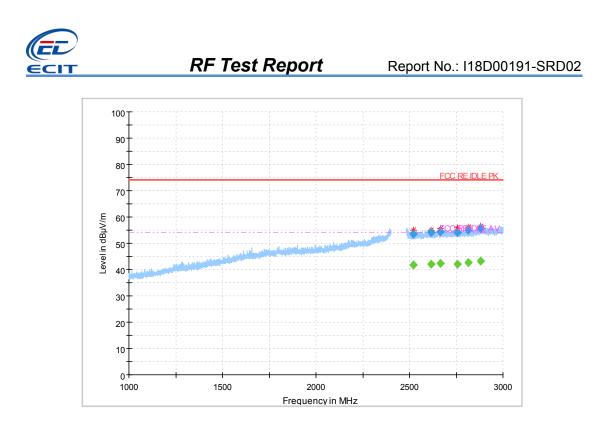


Fig.23 Radiated emission: CH39, 1GHz~3GHz

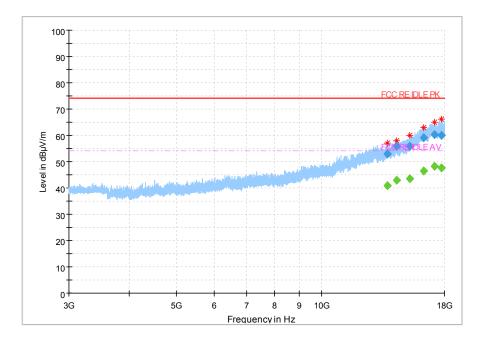
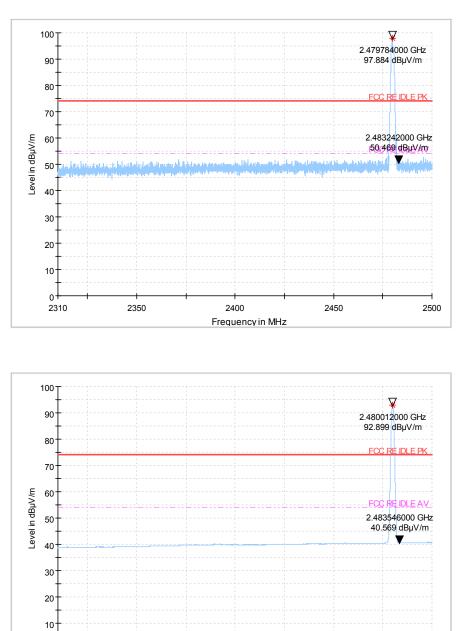
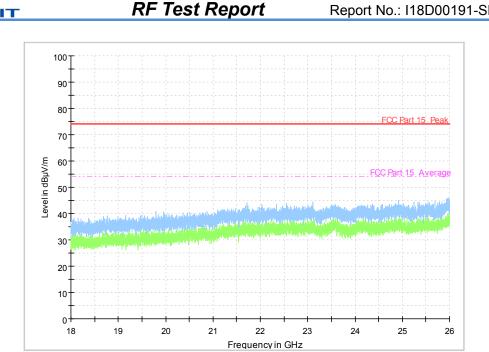



Fig.24 Radiated emission: CH39, 3GHz~18GHz



2350 2400 2450 Frequency in MHz Fig.25 Bandedge:CH39

0 | 2310

2500

ALL Channel 18GHz~26GHz

6.7. AC Powerline Conducted Emission

Method of Measurement: See ANSI C63.10-2013-clause 6.2

- 1 The one EUT cable configuration and arrangement and mode of operation that produced the emission with the highest amplitude relative to the limit is selected for the final measurement, while applying the appropriate modulating signal to the EUT.
- 2 If the EUT is relocated from an exploratory test site to a final test site, the highest emissions shall be remaximized at the final test location before final ac power-line conducted emission measurements are performed.
- 3 The final test on all current-carrying conductors of all of the power cords to the equipment that comprises the EUT (but not the cords associated with other non-EUT equipment in the system) is then performed for the full frequency range for which the EUT is being tested for compliance without further variation of the EUT arrangement, cable positions, or EUT mode of operation.
- 4 If the EUT is comprised of equipment units that have their own separate ac power connections, e.g., floor-standing equipment with independent power cords for each shelf that are able to connect directly to the ac power network, each current-carrying conductor of one unit is measured while the other units are connected to a second (or more) LISN(s). All units shall be separately measured. If a power strip is provided by the manufacturer, to supply all of the units making up the EUT, only the conductors in the power cord of the power strip shall be measured.

If the EUT uses a detachable antenna, these measurements shall be made with a suitable dummy load connected to the antenna output terminals; otherwise, the tests shall be made with the antenna connected and, if adjustable, fully extended. When measuring the ac conducted emissions from a device that operates between 150 kHz and 30 MHz a

non-detachable antenna may be replaced with a dummy load for the measurements within the fundamental emission band of the transmitter, but only for those measurements.36 Record the six highest EUT emissions relative to the limit of each of the current-carrying conductors of the power cords of the equipment that comprises the EUT over the frequency range specified by the procuring or regulatory agency. Diagram or photograph the test setup that was used. See Clause 8 for full reporting requirements.

Test Condition:

Voltage (V)	Frequency (Hz)
120	60

Measurement Uncertainty

Measurement Items	Range	Confidence Level	Calculated Uncertainty
AC Power line Conducted Emission	0.15MHz-30MHz	95%	\pm 5.66 db

Measurement Result and limit:

(Quasi-peak-average Limit)

L1320

Frequency range	Quasi-peak	Average Limit	Result (dBμV) With charger	
(MHz)	Limit (dBµV)	(dBµV)		Conclusion
			BLE	
0.15 to 0.5	66 to 56	56 to 46		
0.5 to 5	56	46	Fig.26	Р
5 to 30	60	50		

NOTE: The limit decreases linearly with the logarithm of the frequency in the range 0.15 MHz to 0.5 MHz.

Conclusion: Pass

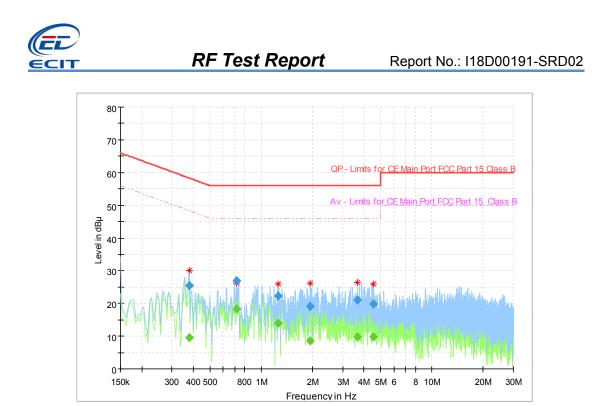
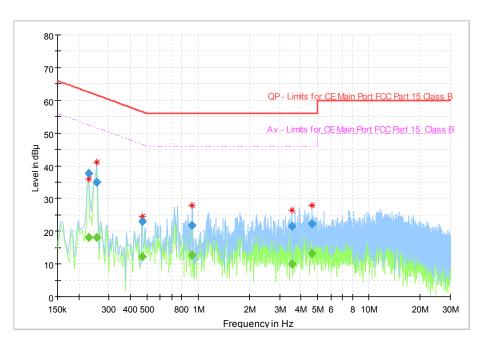


Fig.26 AC Powerline Conducted Emission


Frequency	QuasiPeak	Average	Limit	Margin	Meas.	Bandwidth	Line	Filter	Corr.
(MHz)	(dB	(dB	(dB µ	(dB)	Time	(kHz)			(dB)
0.377606	25.55		58.33	32.78	1000.0	9.000	N	ON	9.7
0.377606		9.46	48.33	38.87	1000.0	9.000	N	ON	9.7
0.713419		18.36	46.00	27.64	1000.0	9.000	L1	ON	9.7
0.713419	26.95		56.00	29.05	1000.0	9.000	L1	ON	9.7
1.250719	22.20		56.00	33.80	1000.0	9.000	L1	ON	9.7
1.250719		13.88	46.00	32.12	1000.0	9.000	L1	ON	9.7
1.944731		8.65	46.00	37.35	1000.0	9.000	N	ON	9.7
1.944731	19.00		56.00	37.00	1000.0	9.000	N	ON	9.7
3.646181		9.88	46.00	36.12	1000.0	9.000	N	ON	9.8
3.646181	21.04		56.00	34.96	1000.0	9.000	N	ON	9.8
4.515563		9.69	46.00	36.31	1000.0	9.000	N	ON	9.8
4.515563	19.72		56.00	36.28	1000.0	9.000	N	ON	9.8

L1322

to 0.5 MHz.

Frequency range (MHz)	Quasi-peak Limit (dBμV)	Average Limit (dBμV)	Result (dBµV) With charger	Conclusion		
			BLE			
0.15 to 0.5	67 to 56	56 to 46				
0.5 to 5	56	46	Fig.27	Р		
5 to 30	60	50				
NOTE: The limit decreases linearly with the logarithm of the frequency in the range 0.15 MHz						

Conclusion: Pass

RF Test Report

Fia.27	AC Powerline Conducted Emission
1 19.27	

Frequency	QuasiPeak	Average	Limit	Margin	Meas.	Bandwidth	Line	Filter	Corr.
(MHz)	(dB	(dB	(dB µ	(dB)	Time	(kHz)			(dB)
0.228356		18.13	52.51	34.38	1000.0	9.000	L1	ON	9.7
0.228356	37.73		62.51	24.78	1000.0	9.000	L1	ON	9.7
0.254475		18.05	51.61	33.56	1000.0	9.000	L1	ON	9.7
0.254475	35.01		61.61	26.60	1000.0	9.000	L1	ON	9.7
0.470888		12.18	46.50	34.31	1000.0	9.000	L1	ON	9.7
0.470888	22.96		56.50	33.54	1000.0	9.000	L1	ON	9.7
0.922369		12.71	46.00	33.29	1000.0	9.000	L1	ON	9.7
0.922369	21.76		56.00	34.24	1000.0	9.000	L1	ON	9.7
3.523050		9.98	46.00	36.02	1000.0	9.000	L1	ON	9.7
3.523050	21.54		56.00	34.46	1000.0	9.000	L1	ON	9.7
4.620038		13.30	46.00	32.70	1000.0	9.000	N	ON	9.8
4.620038	22.38		56.00	33.62	1000.0	9.000	N	ON	9.8

7. Test Equipment and Ancillaries Used For Tests

The test equipment and ancillaries used are as follows.

Conducted test system

No.	Equipment	Model	Serial Number	Manufacturer	Calibrati on date	Cal.interval
1	Vector Signal Analyzer	FSQ26	101096	Rohde&Schwar z	2018-05- 11	1 Year
2	DC Power Supply	ZUP60-14	LOC-220Z006 -0007	TDL-Lambda	2018-05- 11	1 Year

Radiated emission test system

No.	Equipment	Model	Serial Number	Manufacturer	Calibrati on date	Cal.interval
1	Universal Radio Communicat ion Tester	CMU200	123123	R&S	2018-05- 11	1 Year
2	EMI Test Receiver	ESU40	100307	R&S	2018-05- 11	1 Year
3	TRILOG Broadband Antenna	VULB916 3	VULB9163-51 5	Schwarzbeck	2017-02- 25	3 Year
4	Double- ridged Waveguide Antenna	ETS-311 7	00135890	ETS	2017-01- 11	3 Year
5	2-Line V-Network	ENV216	101380	R&S	2018-05- 11	1 Year

Anechoic chamber

Fully anechoic chamber by Frankonia German.

8. Test Environment

Shielding Room1 (6.0 meters×3.0 meters×2.7 meters) did not exceed following limits along the conducted RF performance testing:

Temperature	Min. = 15 ℃, Max. = 35 ℃	
Relative humidity	Min. = 20 %, Max. = 75 %	
Shielding effectiveness	> 100 dB	
Ground system resistance	< 0.5	

Control room did not exceed following limits along the EMC testing:

Temperature	Min. = 15 ℃, Max. = 35 ℃	
Relative humidity	Min. =25 %, Max. = 75 %	
Shielding effectiveness	> 100 dB	
Electrical insulation	> 10 k	
Ground system resistance	< 0.5	

Fully-anechoic chamber1 (6.9 meters×10.9 meters×5.4 meters) did not exceed following limits along the EMC testing:

Temperature	Min. = 15 ℃, Max. = 35 ℃
Relative humidity	Min. = 25 %, Max. = 75 %
Shielding effectiveness	> 100 dB
Electrical insulation	> 10 k
Ground system resistance	< 0.5
VSWR	Between 0 and 6 dB, from 1GHz to 18GHz
Site Attenuation Deviation	Between -4 and 4 dB,30MHz to 1GHz
Uniformity of field strength	Between 0 and 6 dB, from 80MHz to 3000 MHz

ANNEX A. Deviations from Prescribed Test Methods

No deviation from Prescribed Test Methods.

ANNEX B. Accreditation Certificate

************END OF REPORT*********