

Report No.: KSEM200800093201

Page: 1 of 102

TEST REPORT

Application No.: KSEM2008000932CR

FCC.: 2AH25NT312

Applicant: Shanghai Sunmi Technology Co.,Ltd.

Address of Applicant: Room 605,Block 7,KIC Plaza,No.388 Song Hu Road Yang Pu

District, Shanghai, China

Manufacturer: Shanghai Sunmi Technology Co.,Ltd.

Address of Manufacturer: Room 605,Block 7,KIC Plaza,No.388 Song Hu Road Yang Pu

District, Shanghai, China

Factory: Kang Zhun Electronical Technology(Kunshan)Co.,Ltd.Wu Song Jiang

Branch

Address of Factory: No.299, Nansong Road, Yushan Town, Kunshan City, Jiangsu

Province, China

Equipment Under Test (EUT):

EUT Name: Cloud POS Printer

Model No.: NT312

Standard(s): 47 CFR Part 15, Subpart C 15.247

Date of Receipt: 2020-08-03

Date of Test: 2020-08-14 to 2020-09-14

Date of Issue: 2020-09-16

Test Result: Pass*

Eric Lin EMC Lab Manager

Ina fri

The manufacturer should ensure that all products in series production are in conformity with the product sample detailed in this report. If the product in this report is used in any configuration other than that detailed in the report, the manufacturer must ensure the new system complies with all relevant standards. Any mention of SGS International Electrical Approvals or testing done by SGS International Electrical Approvals in connection with, distribution or use of the product described in this report must be approved by SGS International Electrical Approvals in writing.

Unless otherwise agreed in writing, this document is issued by the Company subject to its General Conditions of Service printed overleaf, available on request or accessible at http://www.sgs.com/en/Terms-and-Conditions.aspx and, for electronic format documents, subject to Terms and Conditions for Electronic Documents at http://www.sgs.com/en/Terms-and-Conditions/Terms-e-Document.aspx. Attention is drawn to the limitation of liability, indemnification and jurisdiction issues defined therein. Any holder of this document is advised that information contained hereon reflects the Company's findings at the time of its intervention only and within the limits of Client's instructions, if any. The Company's sole responsibility is to its Client and this document does not exonerate parties to a transaction from exercising all their rights and obligations under the transaction documents. This document cannot be reproduced except in full, without prior written approval of the Company. Any unauthorized alteration, forgery or falsification of the content or appearance of this document is unlawful and offenders may be prosecuted to the fullest extent of the law. Unless otherwise stated the results shown in this test report refer only to the sample(s) tested and such sample(s) are retained for 30 days only.

Attention: To check the authenticity of testing /inspection report & certificate, please contact us at telephone: (86-755) 83071443, or email: CN Docchecked@sss.com

No.10, Weiye Road, Innovation Park, Kunshan, Jiangsu, China 215300 中国・江苏・昆山市留学生创业园伟业路10号 邮编 215300

t(86-512)57355888 f(86-512)57370818 v t(86-512)57355888 f(86-512)57370818 s

Member of the SGS Group (SGS SA)

^{*} In the configuration tested, the EUT complied with the standards specified above.

Report No.: KSEM200800093201

Page: 2 of 102

Revision Record								
Version	Description	Date	Remark					
00	Original	2020-09-16	/					

Authorized for issue by:			
	Damon zhou		
	Damon Zhou / Project Engineer	_	
	Eria Li		
	Eric Lin / Reviewer	_	

Page: 3 of 102

2 Test Summary

Radio Spectrum Technical Requirement								
Item	Standard	Method	Requirement	Result				
Antenna Requirement	47 CFR Part 15, Subpart C 15.247	N/A	47 CFR Part 15, Subpart C 15.203 & 15.247(b)(4)	Pass				

Radio Spectrum Matter Part							
Item	Standard	Method	Requirement	Result			
Conducted Emissions at AC Power Line (150kHz-30MHz)	47 CFR Part 15, Subpart C 15.247	ANSI C63.10 (2013) Section 6.2	47 CFR Part 15, Subpart C 15.207	Pass			
Minimum 6dB Bandwidth	47 CFR Part 15, Subpart C 15.247	ANSI C63.10 (2013) Section 11.8.1	47 CFR Part 15, Subpart C 15.247a(2)	Pass			
Conducted Peak Output Power	47 CFR Part 15, Subpart C 15.247	ANSI C63.10 (2013) Section 11.9.1	47 CFR Part 15, Subpart C 15.247(b)(3)	Pass			
Power Spectrum Density	47 CFR Part 15, Subpart C 15.247	ANSI C63.10 (2013) Section 11.10.2	47 CFR Part 15, Subpart C 15.247(e)	Pass			
Conducted Band Edges Measurement	47 CFR Part 15, Subpart C 15.247	ANSI C63.10 (2013) Section 11.13.3.2	47 CFR Part 15, Subpart C 15.247(d)	Pass			
Conducted Spurious Emissions	47 CFR Part 15, Subpart C 15.247	ANSI C63.10 (2013) Section 11.11	47 CFR Part 15, Subpart C 15.247(d)	Pass			
Radiated Emissions which fall in the restricted bands	47 CFR Part 15, Subpart C 15.247	ANSI C63.10 (2013) Section 6.10.5	47 CFR Part 15, Subpart C 15.209 & 15.247(d)	Pass			
Radiated Spurious Emissions	47 CFR Part 15, Subpart C 15.247	ANSI C63.10 (2013) Section 6.4,6.5,6.6	47 CFR Part 15, Subpart C 15.209 & 15.247(d)	Pass			

Report No.: KSEM200800093201

Page: 4 of 102

3 Contents

		Page
1	COVER PAGE	1
2	TEST SUMMARY	3
3	CONTENTS	4
4	GENERAL INFORMATION	5
	DETAILS OF E.U.T.	5
	POWER LEVEL SETTING USING IN TEST:	5
	DESCRIPTION OF SUPPORT UNITS	5
	MEASUREMENT UNCERTAINTY	
	TEST LOCATION	
	TEST FACILITY	
	DEVIATION FROM STANDARDS	
5	EQUIPMENT LIST	8
6	RADIO SPECTRUM TECHNICAL REQUIREMENT	9
	ANTENNA REQUIREMENT	9
7	RADIO SPECTRUM MATTER TEST RESULTS	10
	CONDUCTED EMISSIONS AT AC POWER LINE (150kHz-30MHz)	10
	MINIMUM 6DB BANDWIDTH	14
	CONDUCTED PEAK OUTPUT POWER	
	POWER SPECTRUM DENSITY	
	CONDUCTED BAND EDGES MEASUREMENT	
	RADIATED EMISSIONS WHICH FALL IN THE RESTRICTED BANDS	
	RADIATED SPURIOUS EMISSIONS	
8	TEST SETUP PHOTOGRAPHS	
9	EUT CONSTRUCTIONAL DETAILS	60
9		
	APPENDIX A FOR KSEM200800093201	68

Report No.: KSEM200800093201 5 of 102 Page:

General Information

Details of E.U.T.

Power supply: DC 24V by Adapter

> Adapter Model: CYSE65-240250 INPUT:100-240V,50/60Hz 1.7A

OUTPUT:24V,2.5A

Test voltage: AC 120V/60Hz Cable: DC cable 50cm

Antenna Gain: 1dBi

Antenna Type: PCB Antenna

Channel Spacing: 5MHz

802.11b: DSSS (CCK, DQPSK, DBPSK) Modulation Type:

802.11g/n: OFDM (64QAM, 16QAM, QPSK, BPSK)

Number of Channels: 802.11b/g/n(HT20):11

Operation Frequency: 802.11b/g/n(HT20): 2412MHz to 2462MHz

Power level setting using in test:

Channel	802.11b	802.11g	802.11n(HT20)		
1	default	default	default		
6	default	default	default		
11	default	default	default		

Description of Support Units

Description	Manufacturer	Model No.	Serial No.
Laptop	Lenovo	ThinkPad X100e	/
SecureCRT	VanDyke	V 6.2.0	/

Report No.: KSEM200800093201

Page: 6 of 102

Measurement Uncertainty

No.	Item	Measurement Uncertainty		
1	Radio Frequency	8.4 x 10 ⁻⁸		
2	Timeout	2s		
3	Duty cycle	0.37%		
4	Occupied Bandwidth	3%		
5	RF conducted power	0.6dB		
6	RF power density	2.84dB		
7	Conducted Spurious emissions	0.75dB		
8	DE Bodistod nower	4.6dB (Below 1GHz)		
0	RF Radiated power	4.1dB (Above 1GHz)		
		4.2dB (Below 30MHz)		
0	Redicted Courious emission test	4.4dB (30MHz-1GHz)		
9	Radiated Spurious emission test	4.8dB (1GHz-18GHz)		
		5.2dB (Above 18GHz)		
10	Temperature test	1°C		
11	Humidity test	3%		
12	Supply voltages	1.5%		
13	Time	3%		

Note: The measurement uncertainty represents an expanded uncertainty expressed at approximately the 95% confidence level using a coverage factor of k=2.

Report No.: KSEM200800093201

Page: 7 of 102

Test Location

All tests were performed at:

Compliance Certification Services (Kunshan) Inc.

No.10 Weiye Rd, Innovation park, Eco&Tec, Development Zone, Kunshan City, Jiangsu, China.

Tel: +86 512 5735 5888 Fax: +86 512 5737 0818

No tests were sub-contracted.

Test Facility

The test facility is recognized, certified, or accredited by the following organizations:

CNAS (No. CNAS L4354)

CNAS has accredited Compliance Certification Services (Kunshan) Inc. to ISO/IEC 17025:2017 General Requirements for the Competence of Testing and Calibration Laboratories (CNAS-CL01 Accreditation Criteria for the Competence of Testing and Calibration Laboratories) for the competence in the field of testing.

A2LA (Certificate No. 2541.01)

Compliance Certification Services (Kunshan) Inc. is accredited by the American Association for Laboratory Accreditation (A2LA). Certificate No. 2541.01.

• FCC (Designation Number: CN1172)

Compliance Certification Services Inc. has been recognized as an accredited testing laboratory.

Designation Number: CN1172.

• ISED (CAB Identifier: CN0072)

Compliance Certification Services (Kunshan) Inc. has been recognized by Innovation, Science and Economic Development (ISED) Canada as an accredited testing laboratory.

CAB Identifier: CN0072.

• VCCI (Member No.: 1938)

The 3m and 10m Semi-anechoic chamber and Shielded Room of Compliance Certification Services (Kunshan) Inc. has been registered in accordance with the Regulations for Voluntary Control Measures with Registration No.: R-1600, C-1707, T-1499, G-10216 respectively.

Deviation from Standards

None

Abnormalities from Standard Conditions

None

Page: 8 of 102

5 Equipment List

1 2 3 4 5 VI 6 VI 8 9 10 11 12 13 14 15	Conducted test cable	R&S R&S Schwarzbeck R&S Thermax Agilent Keysight Agilent R&S R&S R&S R&S R&S Anritsu CCSRF EXTECH Aglient Mini-Circuits AISI MICRO-TRONICS	ESCI ENV216 NNLK 8129 ESH3-Z2 / E4446A N9020A E8257C SMU 200A CMU200 CMW500 ML2495A FY562 6605 E3632A NAT-6-2W IOWOPE2068 BRM50701	100781 101604 8129-143 100609 14 MY44020154 MY55370209 MY43321570 102744 109525 159275 1445010 KS301219 1570106 MY50340053 15542-1 PE2068	02/24/2020 10/24/2019 10/24/2019 02/24/2020 02/24/2020 02/24/2020 12/19/2019 10/24/2019 02/24/2020 12/19/2019 12/19/2019 04/21/2020 12/20/2019 N.C.R N.C.R N.C.R	02/23/2021 10/23/2020 10/23/2020 02/23/2021 02/23/2021 02/23/2021 12/18/2020 10/23/2020 02/23/2021 12/18/2020 12/18/2020 12/18/2020 04/20/2021 12/19/2020 N.C.R N.C.R
2 3 4 5 RF C 1 2 3 4 5 UI 6 7 8 9 10 11 12 13 14 15	LISN LISN Pulse Limiter CE test Cable Conducted Test Spectrum Analyzer Spectrum Analyzer Signal Generator Vector Signal Generator Iniversal Radio Communication Tester Power Meter Switcher AC Power Source DC Power Supply 6dB Attenuator Power Divider Filter Conducted test cable	R&S Schwarzbeck R&S Thermax Agilent Keysight Agilent R&S R&S R&S Anritsu CCSRF EXTECH Aglient Mini-Circuits AISI	ENV216 NNLK 8129 ESH3-Z2 / E4446A N9020A E8257C SMU 200A CMU200 CMW500 ML2495A FY562 6605 E3632A NAT-6-2W IOWOPE2068 BRM50701	101604 8129-143 100609 14 MY44020154 MY55370209 MY43321570 102744 109525 159275 1445010 KS301219 1570106 MY50340053 15542-1 PE2068	10/24/2019 10/24/2019 02/24/2020 02/24/2020 02/24/2020 12/19/2019 10/24/2019 02/24/2020 12/19/2019 12/19/2019 04/21/2020 12/20/2019 N.C.R N.C.R N.C.R	10/23/2020 10/23/2020 02/23/2021 02/23/2021 02/23/2021 04/21/2021 12/18/2020 10/23/2020 02/23/2021 12/18/2020 12/18/2020 04/20/2021 12/19/2020 N.C.R N.C.R
3 4 5 FC 1 2 3 4 5 UI 5 UI 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	LISN Pulse Limiter CE test Cable Conducted Test Spectrum Analyzer Spectrum Analyzer Signal Generator Vector Signal Generator Iniversal Radio Communication Tester Power Meter Switcher AC Power Source DC Power Supply 6dB Attenuator Power Divider Filter Conducted test cable	Schwarzbeck R&S Thermax Agilent Keysight Agilent R&S R&S R&S R&S Anritsu CCSRF EXTECH Aglient Mini-Circuits AISI	NNLK 8129 ESH3-Z2 / E4446A N9020A E8257C SMU 200A CMU200 CMW500 ML2495A FY562 6605 E3632A NAT-6-2W IOWOPE2068 BRM50701	8129-143 100609 14 MY44020154 MY55370209 MY43321570 102744 109525 159275 1445010 KS301219 1570106 MY50340053 15542-1 PE2068	10/24/2019 02/24/2020 02/24/2020 12/19/2019 10/24/2019 02/24/2020 12/19/2019 12/19/2019 04/21/2020 12/20/2019 N.C.R N.C.R N.C.R	10/23/2020 02/23/2021 02/23/2021 04/21/2021 12/18/2020 10/23/2020 02/23/2021 12/18/2020 12/18/2020 04/20/2021 12/19/2020 N.C.R N.C.R
4 5 RF C 1 2 3 4 5 UI 6 7 8 9 10 11 12 13 14 15	Pulse Limiter CE test Cable Conducted Test Spectrum Analyzer Spectrum Analyzer Signal Generator Vector Signal Generator Iniversal Radio Communication Tester Iniversal Radio Communication Tester Power Meter Switcher AC Power Source DC Power Supply 6dB Attenuator Power Divider Filter Conducted test cable	R&S Thermax Agilent Keysight Agilent R&S R&S R&S R&S Anritsu CCSRF EXTECH Aglient Mini-Circuits AISI	ESH3-Z2 / E4446A N9020A E8257C SMU 200A CMU200 CMW500 ML2495A FY562 6605 E3632A NAT-6-2W IOWOPE2068 BRM50701	100609 14 MY44020154 MY55370209 MY43321570 102744 109525 159275 1445010 KS301219 1570106 MY50340053 15542-1 PE2068	02/24/2020 02/24/2020 12/19/2019 10/24/2019 02/24/2020 12/19/2019 12/19/2019 04/21/2020 12/20/2019 N.C.R N.C.R N.C.R	02/23/2021 02/23/2021 04/21/2021 12/18/2020 10/23/2020 02/23/2021 12/18/2020 12/18/2020 04/20/2021 12/19/2020 N.C.R N.C.R
5 RF C 1 2 3 4 5 U1 5 U1 7 8 9 10 11 12 13 14 15	CE test Cable Conducted Test Spectrum Analyzer Spectrum Analyzer Signal Generator Vector Signal Generator Iniversal Radio Communication Tester Power Meter Switcher AC Power Source DC Power Supply 6dB Attenuator Power Divider Filter Conducted test cable	Agilent Keysight Agilent R&S R&S R&S Anritsu CCSRF EXTECH Aglient Mini-Circuits AISI	/ E4446A N9020A E8257C SMU 200A CMU200 CMW500 ML2495A FY562 6605 E3632A NAT-6-2W IOWOPE2068 BRM50701	14 MY44020154 MY55370209 MY43321570 102744 109525 159275 1445010 KS301219 1570106 MY50340053 15542-1 PE2068	02/24/2020 04/22/2020 12/19/2019 10/24/2019 02/24/2020 12/19/2019 12/19/2019 04/21/2020 12/20/2019 N.C.R N.C.R N.C.R	02/23/2021 04/21/2021 12/18/2020 10/23/2020 02/23/2021 12/18/2020 12/18/2020 04/20/2021 12/19/2020 N.C.R N.C.R
RF C 1 2 3 4 5 UI 6 7 8 9 10 11 12 13 14 15	Spectrum Analyzer Spectrum Analyzer Spectrum Analyzer Signal Generator Vector Signal Generator Iniversal Radio Communication Tester Iniversal Radio Communication Tester Power Meter Switcher AC Power Source DC Power Supply 6dB Attenuator Power Divider Filter Conducted test cable	Agilent Keysight Agilent R&S R&S R&S Anritsu CCSRF EXTECH Aglient Mini-Circuits AISI	N9020A E8257C SMU 200A CMU200 CMW500 ML2495A FY562 6605 E3632A NAT-6-2W IOWOPE2068 BRM50701	MY44020154 MY55370209 MY43321570 102744 109525 159275 1445010 KS301219 1570106 MY50340053 15542-1 PE2068	04/22/2020 12/19/2019 10/24/2019 02/24/2020 12/19/2019 12/19/2019 04/21/2020 12/20/2019 N.C.R N.C.R N.C.R	04/21/2021 12/18/2020 10/23/2020 02/23/2021 12/18/2020 12/18/2020 04/20/2021 12/19/2020 N.C.R N.C.R
1 2 3 4 5 UI 5 UI 7 8 9 10 11 12 13 14 15	Spectrum Analyzer Spectrum Analyzer Signal Generator Vector Signal Generator Iniversal Radio Communication Tester Iniversal Radio Communication Tester Power Meter Switcher AC Power Source DC Power Supply 6dB Attenuator Power Divider Filter Conducted test cable	Keysight Agilent R&S R&S R&S Anritsu CCSRF EXTECH Aglient Mini-Circuits AISI	N9020A E8257C SMU 200A CMU200 CMW500 ML2495A FY562 6605 E3632A NAT-6-2W IOWOPE2068 BRM50701	MY55370209 MY43321570 102744 109525 159275 1445010 KS301219 1570106 MY50340053 15542-1 PE2068	12/19/2019 10/24/2019 02/24/2020 12/19/2019 12/19/2019 04/21/2020 12/20/2019 N.C.R N.C.R N.C.R	12/18/2020 10/23/2020 02/23/2021 12/18/2020 12/18/2020 04/20/2021 12/19/2020 N.C.R N.C.R N.C.R
2 3 4 5 UI 5 UI 7 8 9 10 11 12 13 14 15	Spectrum Analyzer Signal Generator Vector Signal Generator Iniversal Radio Communication Tester Iniversal Radio Communication Tester Power Meter Switcher AC Power Source DC Power Supply 6dB Attenuator Power Divider Filter Conducted test cable	Keysight Agilent R&S R&S R&S Anritsu CCSRF EXTECH Aglient Mini-Circuits AISI	N9020A E8257C SMU 200A CMU200 CMW500 ML2495A FY562 6605 E3632A NAT-6-2W IOWOPE2068 BRM50701	MY55370209 MY43321570 102744 109525 159275 1445010 KS301219 1570106 MY50340053 15542-1 PE2068	12/19/2019 10/24/2019 02/24/2020 12/19/2019 12/19/2019 04/21/2020 12/20/2019 N.C.R N.C.R N.C.R	12/18/2020 10/23/2020 02/23/2021 12/18/2020 12/18/2020 04/20/2021 12/19/2020 N.C.R N.C.R N.C.R
3 4 5 UI 5 UI 6 UI 7 8 9 10 11 12 13 14 15	Signal Generator Vector Signal Generator Iniversal Radio Communication Tester Iniversal Radio Communication Tester Power Meter Switcher AC Power Source DC Power Supply 6dB Attenuator Power Divider Filter Conducted test cable	Agilent R&S R&S R&S R&S Anritsu CCSRF EXTECH Aglient Mini-Circuits AISI	E8257C SMU 200A CMU200 CMW500 ML2495A FY562 6605 E3632A NAT-6-2W IOWOPE2068 BRM50701	MY43321570 102744 109525 159275 1445010 KS301219 1570106 MY50340053 15542-1 PE2068	10/24/2019 02/24/2020 12/19/2019 12/19/2019 04/21/2020 12/20/2019 N.C.R N.C.R N.C.R	10/23/2020 02/23/2021 12/18/2020 12/18/2020 04/20/2021 12/19/2020 N.C.R N.C.R
4 5 UI 6 UI 7 8 9 10 11 12 13 14 15	Vector Signal Generator Iniversal Radio Communication Tester Iniversal Radio Communication Tester Power Meter Switcher AC Power Source DC Power Supply 6dB Attenuator Power Divider Filter Conducted test cable	R&S R&S R&S R&S Anritsu CCSRF EXTECH Aglient Mini-Circuits AISI	SMU 200A CMU200 CMW500 ML2495A FY562 6605 E3632A NAT-6-2W IOWOPE2068 BRM50701	102744 109525 159275 1445010 KS301219 1570106 MY50340053 15542-1 PE2068	02/24/2020 12/19/2019 12/19/2019 04/21/2020 12/20/2019 N.C.R N.C.R N.C.R N.C.R	02/23/2021 12/18/2020 12/18/2020 04/20/2021 12/19/2020 N.C.R N.C.R N.C.R
5 U1 6 7 8 9 10 11 12 13 14 15	Iniversal Radio Communication Tester Iniversal Radio Communication Tester Power Meter Switcher AC Power Source DC Power Supply 6dB Attenuator Power Divider Filter Conducted test cable	R&S R&S Anritsu CCSRF EXTECH Aglient Mini-Circuits AISI	CMU200 CMW500 ML2495A FY562 6605 E3632A NAT-6-2W IOWOPE2068 BRM50701	109525 159275 1445010 KS301219 1570106 MY50340053 15542-1 PE2068	12/19/2019 12/19/2019 04/21/2020 12/20/2019 N.C.R N.C.R N.C.R N.C.R	12/18/2020 12/18/2020 04/20/2021 12/19/2020 N.C.R N.C.R N.C.R
6 UI 7 8 9 10 11 12 13 14 15	Tester Iniversal Radio Communication Tester Power Meter Switcher AC Power Source DC Power Supply 6dB Attenuator Power Divider Filter Conducted test cable	R&S Anritsu CCSRF EXTECH Aglient Mini-Circuits AISI	CMW500 ML2495A FY562 6605 E3632A NAT-6-2W IOWOPE2068 BRM50701	159275 1445010 KS301219 1570106 MY50340053 15542-1 PE2068	12/19/2019 04/21/2020 12/20/2019 N.C.R N.C.R N.C.R N.C.R	12/18/2020 04/20/2021 12/19/2020 N.C.R N.C.R N.C.R
7 8 9 10 11 12 13 14 15	Tester Power Meter Switcher AC Power Source DC Power Supply 6dB Attenuator Power Divider Filter Conducted test cable	Anritsu CCSRF EXTECH Aglient Mini-Circuits AISI	ML2495A FY562 6605 E3632A NAT-6-2W IOWOPE2068 BRM50701	1445010 KS301219 1570106 MY50340053 15542-1 PE2068	04/21/2020 12/20/2019 N.C.R N.C.R N.C.R N.C.R	04/20/2021 12/19/2020 N.C.R N.C.R N.C.R
8 9 10 11 12 13 14 15	Switcher AC Power Source DC Power Supply 6dB Attenuator Power Divider Filter Conducted test cable	CCSRF EXTECH Aglient Mini-Circuits AISI	FY562 6605 E3632A NAT-6-2W IOWOPE2068 BRM50701	KS301219 1570106 MY50340053 15542-1 PE2068	12/20/2019 N.C.R N.C.R N.C.R N.C.R	12/19/2020 N.C.R N.C.R N.C.R
9 10 11 12 13 14 15	AC Power Source DC Power Supply 6dB Attenuator Power Divider Filter Conducted test cable	EXTECH Aglient Mini-Circuits AISI	6605 E3632A NAT-6-2W IOWOPE2068 BRM50701	1570106 MY50340053 15542-1 PE2068	N.C.R N.C.R N.C.R N.C.R	N.C.R N.C.R N.C.R
10 11 12 13 14 15	DC Power Supply 6dB Attenuator Power Divider Filter Conducted test cable	Aglient Mini-Circuits AISI	E3632A NAT-6-2W IOWOPE2068 BRM50701	MY50340053 15542-1 PE2068	N.C.R N.C.R N.C.R	N.C.R N.C.R
11 12 13 14 15	6dB Attenuator Power Divider Filter Conducted test cable	Mini-Circuits AISI	NAT-6-2W IOWOPE2068 BRM50701	15542-1 PE2068	N.C.R N.C.R	N.C.R
12 13 14 15	Power Divider Filter Conducted test cable	AISI	IOWOPE2068 BRM50701	PE2068	N.C.R	
13 14 15	Filter Conducted test cable		BRM50701			N.C.R
14 15	Conducted test cable	MICRO-TRONICS		5		
15		1		J	N.C.R	N.C.R
		,	RF01-RF04	/	04/21/2020	04/22/2021
RF Rad	Temp. / Humidity Chamber	TERCHY	MHK-120AK	X30109	04/21/2020	04/20/2021
	diated Test					
1	Spectrum Analyzer	R&S	FSV40	101493	01/08/2020	01/07/2021
2	Signal Generator	Agilent	E8257C	MY43321570	10/24/2019	10/23/2020
3	Loop Antenna	Schwarzbeck	HXYZ9170	9170-108	02/24/2020	02/23/2021
4	Bilog Antenna	TESEQ	CBL 6112D	35403	06/22/2019	06/21/2021
5	Bilog Antenna	SCHWARZBECK	VULB9160	9160-3342	04/29/2019	04/28/2021
6	Horn-antenna(1-18GHz)	Schwarzbeck	BBHA9120D	BHA9120D 267		11/03/2020
7	Horn-antenna(1-18GHz)	ETS-LINDGREN	3117	00143290	02/25/2019	02/24/2021
8	Horn Antenna(18-40GHz)	Schwarzbeck	BBHA9170	BBHA9170171	02/27/2018	02/26/2021
9 F	Pre-Amplifier(30MHz~18GHz)	CCSRF	AMP1277	1	12/19/2019	12/18/2020
10	Pre-Amplifier(0.1~26.5GHz)	EMCI	EMC012645	980060	04/21/2020	04/20/2021
11	Low Pass Filter	MICRO-TRONICS	VLFX-950	RV142900829	N.C.R	N.C.R
12	High Pass Filter	Mini-Circuits	VHF-1200	15542	N.C.R	N.C.R
13 F	Filter (5450MHz~5770 MHz)	MICRO-TRONICS	BRC50704-01	2	N.C.R	N.C.R
14 Fi	ilter (5690 MHz~5930 MHz)	MICRO-TRONICS	BRC50705-01	4	N.C.R	N.C.R
15 Fi	ilter (5150 MHz~5350 MHz)	MICRO-TRONICS	BRC50703-01	2	N.C.R	N.C.R
16 I	Filter (885 MHz~915 MHz)	MICRO-TRONICS	BRM14698	1	N.C.R	N.C.R
17	Filter (815 MHz~860 MHz)	MICRO-TRONICS	BRM14697	1	N.C.R	N.C.R
18 F	Filter (1745 MHz~1910 MHz)	MICRO-TRONICS	BRM14700	1	N.C.R	N.C.R
	` '	MICRO-TRONICS	BRM50715	1	N.C.R	N.C.R
20	,	MICRO-TRONICS	HPM13362	5	N.C.R	N.C.R
21 F	, ,	MICRO-TRONICS	BRM50713	1	N.C.R	N.C.R
22	,	MICRO-TRONICS	BRM50701	5	N.C.R	N.C.R
23	RE test cable	/	RE01-RE04	/	04/21/2020	04/22/2021

No.10, Weiye Road, Innovation Park, Kunshan, Jiangsu, China 215300 中国・江苏・昆山市留学生创业园伟业路10号 邮编 215300 t(86-512)57355888 f(86-512)57370818 www.sgsgroup.com.cn t(86-512)57355888 f(86-512)57370818 sgs.china@sgs.com

Page: 9 of 102

6 Radio Spectrum Technical Requirement

Antenna Requirement

6.1.1 Test Requirement:

47 CFR Part 15, Subpart C 15.203 & 15.247(b)(4)

6.1.2 Conclusion

Standard Requirement:

An intentional radiator shall be designed to ensure that no antenna other than that furnished by the responsible party shall be used with the device. The use of a permanently attached antenna or of an antenna that uses a unique coupling to the intentional radiator, the manufacturer may design the unit so that a broken antenna can be replaced by the user, but the use of a standard antenna jack or electrical connector is prohibited.

15.247(b) (4) requirement:

The conducted output power limit specified in paragraph (b) of this section is based on the use of antennas with directional gains that do not exceed 6 dBi. Except as shown in paragraph (c) of this section, if transmitting antennas of directional gain greater than 6 dBi are used, the conducted output power from the intentional radiator shall be reduced below the stated values in paragraphs (b)(1), (b)(2), and (b)(3) of this section, as appropriate, by the amount in dB that the directional gain of the antenna exceeds 6 dBi.

EUT Antenna:

The antenna is integrated on the main PCB and no consideration of replacement. The best case gain of the antenna is 1dBi.

Antenna location: Refer to Appendix (Internal Photos).

Page: 10 of 102

7 Radio Spectrum Matter Test Results

Conducted Emissions at AC Power Line (150kHz-30MHz)

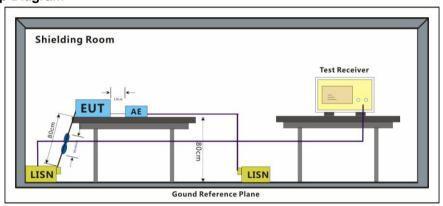
Test Requirement 47 CFR Part 15, Subpart C 15.207 Test Method: ANSI C63.10 (2013) Section 6.2

Limit:

Fraguency of emission/MU=	Conducted limit(dBμV)					
Frequency of emission(MHz)	Quasi-peak	Average				
0.15-0.5	66 to 56*	56 to 46*				
0.5-5	56	46				
5-30	60	50				
*Decreases with the logarithm of the frequency.						

Page: 11 of 102

7.1.1 E.U.T. Operation


Operating Environment:

Temperature: 24 °C Humidity: 48 % RH Atmospheric Pressure: 1010 mbar

Test mode d:TX mode_Keep the EUT in continuously transmitting mode with all modulation

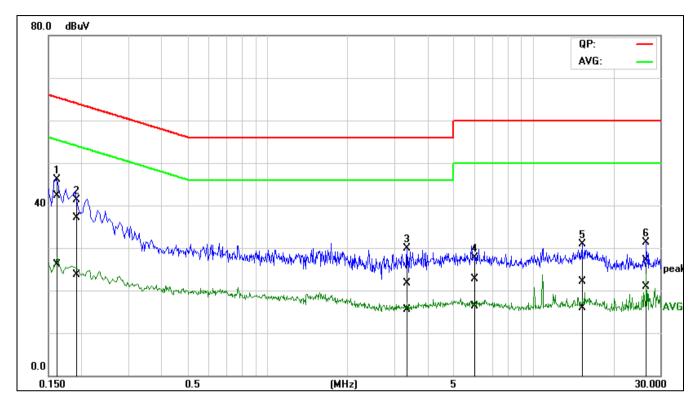
types. All data rates for each modulation type have been tested and found the data rate @ 1Mbps is the worst case of IEEE 802.11b; data rate @ 6Mbps is the worst case of IEEE 802.11g; data rate @ 6.5Mbps is the worst case of IEEE 802.11n(HT20). Only the data of worst case is recorded in the report.

7.1.2 Test Setup Diagram

7.1.3 Measurement Procedure and Data

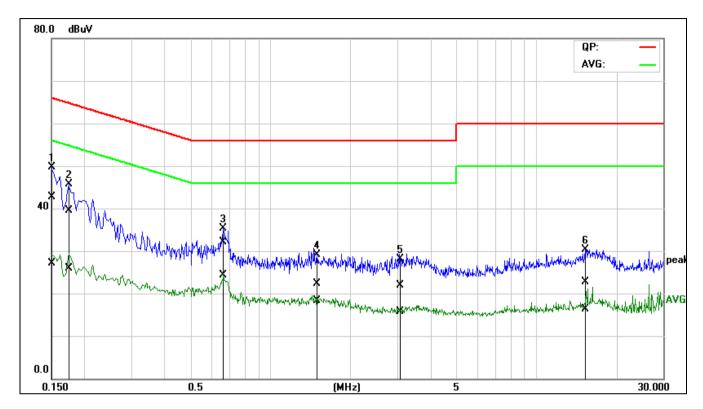
- 1) The mains terminal disturbance voltage test was conducted in a shielded room.
- 2) The EUT was connected to AC power source through a LISN 1 (Line Impedance Stabilization Network) which provides a $50 \text{ohm}/50 \mu\text{H} + 5 \text{ohm}$ linear impedance. The power cables of all other units of the EUT were connected to a second LISN 2, which was bonded to the ground reference plane in the same way as the LISN 1 for the unit being measured. A multiple socket outlet strip was used to connect multiple power cables to a single LISN provided the rating of the LISN was not exceeded.
- 3) The tabletop EUT was placed upon a non-metallic table 0.8m above the ground reference plane. And for floor-standing arrangement, the EUT was placed on the horizontal ground reference plane,
- 4) The test was performed with a vertical ground reference plane. The rear of the EUT shall be 0.4 m from the vertical ground reference plane. The vertical ground reference plane was bonded to the horizontal ground reference plane. The LISN 1 was placed 0.8 m from the boundary of the unit under test and bonded to a ground reference plane for LISNs mounted on top of the ground reference plane. This distance was between the closest points of the LISN 1 and the EUT. All other units of the EUT and associated equipment was at least 0.8 m from the LISN 2.
- 5) In order to find the maximum emission, the relative positions of equipment and all of the interface cables must be changed according to ANSI C63.10 on conducted measurement.

Remark:


- 1.LISN=Read Level+ Cable Loss+ LISN Factor
- 2. This test item was investigated while operating in each channel mode, however, it was determined that channel 11 operation for b modulation produced the worst conducted emissions. So the conducted emissions produced from other operation are not report.

Page: 12 of 102

Mode:d; Line:Live Line


No.	Frequency	QuasiPeak reading	Average reading	Correction factor	QuasiPeak result	Average result	QuasiPeak limit	Average limit	QuasiPeak margin	Average margin	Remark
	(MHz)	(dBuV)	(dBuV)	(dB)	(dBuV)	(dBuV)	(dBuV)	(dBuV)	(dB)	(dB)	
1*	0.1600	22.76	6.56	19.45	42.21	26.01	65.46	55.46	-23.25	-29.45	Pass
2	0.1927	17.66	4.27	19.43	37.09	23.70	63.92	53.92	-26.83	-30.22	Pass
3	3.3299	1.88	-4.33	19.78	21.66	15.45	56.00	46.00	-34.34	-30.55	Pass
4	5.9507	2.75	-3.62	19.87	22.62	16.25	60.00	50.00	-37.38	-33.75	Pass
5	15.2447	2.00	-4.18	20.16	22.16	15.98	60.00	50.00	-37.84	-34.02	Pass
6	26.6104	6.53	0.40	20.53	27.06	20.93	60.00	50.00	-32.94	-29.07	Pass

Page: 13 of 102

Mode:d; Line:Neutral Line

No.	Frequency	QuasiPeak reading	Average reading	Correction factor	QuasiPeak result	Average result	QuasiPeak limit	Average limit	QuasiPeak margin	Average margin	Remark
	(MHz)	(dBuV)	(dBuV)	(dB)	(dBuV)	(dBuV)	(dBuV)	(dBuV)	(dB)	(dB)	
1	0.1500	23.24	7.76	19.40	42.64	27.16	66.00	56.00	-23.36	-28.84	Pass
2	0.1716	20.16	6.42	19.40	39.56	25.82	64.88	54.88	-25.32	-29.06	Pass
3*	0.6694	12.75	4.92	19.45	32.20	24.37	56.00	46.00	-23.80	-21.63	Pass
4	1.5067	2.77	-1.39	19.60	22.37	18.21	56.00	46.00	-33.63	-27.79	Pass
5	3.0771	2.25	-4.08	19.71	21.96	15.63	56.00	46.00	-34.04	-30.37	Pass
6	15.3996	2.64	-3.80	20.12	22.76	16.32	60.00	50.00	-37.24	-33.68	Pass

Report No.: KSEM200800093201

Page: 14 of 102

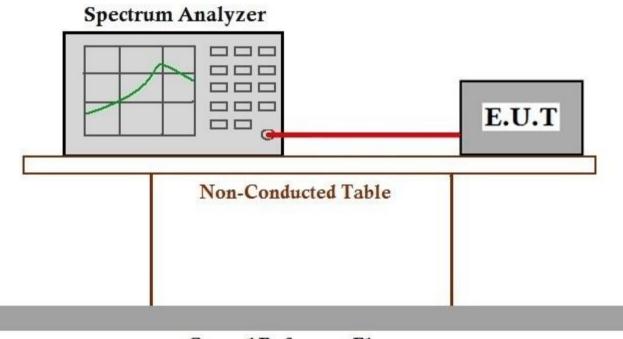
Minimum 6dB Bandwidth

Test Requirement 47 CFR Part 15, Subpart C 15.247a(2)
Test Method: ANSI C63.10 (2013) Section 11.8.1

Limit: ≥500 kHz

7.1.4 E.U.T. Operation

Operating Environment:


Temperature: 22 °C Humidity: 50 % RH Atmospheric Pressure: 1002 mbar

Test mode d:TX mode_Keep the EUT in continuously transmitting mode with all modulation

types. All data rates for each modulation type have been tested and found the data rate @ 1Mbps is the worst case of IEEE 802.11b; data rate @ 6Mbps is the worst case of IEEE 802.11g; data rate @ 6.5Mbps is the worst case of IEEE

802.11n(HT20). Only the data of worst case is recorded in the report.

7.1.5 Test Setup Diagram

Ground Reference Plane

7.1.6 Measurement Procedure and Data

The detailed test data see: Appendix A for KSEM200800093201

Report No.: KSEM200800093201

Page: 15 of 102

Conducted Peak Output Power

Test Requirement 47 CFR Part 15, Subpart C 15.247(b)(3)
Test Method: ANSI C63.10 (2013) Section 11.9.1

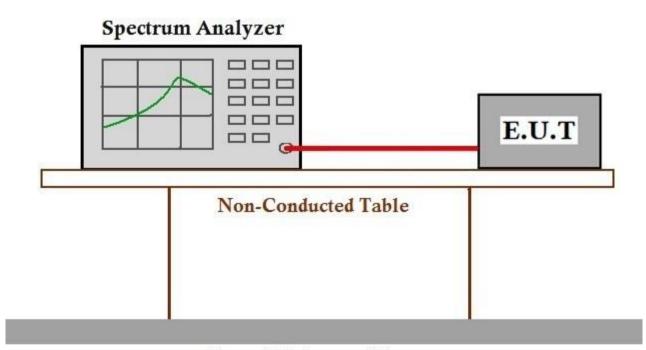
Limit:

Frequency range(MHz)	Output power of the intentional radiator(watt)			
	1 for ≥50 hopping channels			
902-928	0.25 for 25≤ hopping channels <50			
	1 for digital modulation			
	1 for ≥75 non-overlapping hopping channels			
2400-2483.5	0.125 for all other frequency hopping systems			
	1 for digital modulation			
5725-5850	1 for frequency hopping systems and digital modulation			

Report No.: KSEM200800093201

Page: 16 of 102

7.1.7 E.U.T. Operation


Operating Environment:

Temperature: 22 °C Humidity: 50 % RH Atmospheric Pressure: 1002 mbar

Test mode d:TX mode_Keep the EUT in continuously transmitting mode with all modulation

types. All data rates for each modulation type have been tested and found the data rate @ 1Mbps is the worst case of IEEE 802.11b; data rate @ 6Mbps is the worst case of IEEE 802.11g; data rate @ 6.5Mbps is the worst case of IEEE 802.11n(HT20). Only the data of worst case is recorded in the report.

7.1.8 Test Setup Diagram

Ground Reference Plane

7.1.9 Measurement Procedure and Data

The detailed test data see: Appendix A for KSEM200800093201

Report No.: KSEM200800093201

17 of 102 Page:

Power Spectrum Density

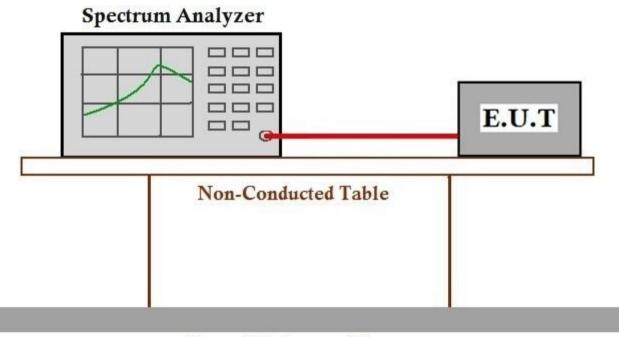
Test Requirement 47 CFR Part 15, Subpart C 15.247(e) Test Method: ANSI C63.10 (2013) Section 11.10.2

Limit: ≤8dBm in any 3 kHz band during any time interval of continuous

transmission

7.1.10 E.U.T. Operation

Operating Environment:


Temperature: 22 °C Atmospheric Pressure: 1002 mbar Humidity: 50 % RH

Test mode d:TX mode Keep the EUT in continuously transmitting mode with all modulation

types. All data rates for each modulation type have been tested and found the data rate @ 1Mbps is the worst case of IEEE 802.11b; data rate @ 6Mbps is the worst case of IEEE 802.11g; data rate @ 6.5Mbps is the worst case of IEEE

802.11n(HT20). Only the data of worst case is recorded in the report.

7.1.11 Test Setup Diagram

Ground Reference Plane

7.1.12 Measurement Procedure and Data

The detailed test data see: Appendix A for KSEM200800093201

Report No.: KSEM200800093201

Page: 18 of 102

Conducted Band Edges Measurement

Test Requirement 47 CFR Part 15, Subpart C 15.247(d)
Test Method: ANSI C63.10 (2013) Section 11.13.3.2

Limit:

In any 100 kHz bandwidth outside the frequency band in which the spread spectrum or digitally modulated intentional radiator is operating, the radio frequency power that is produced by the intentional radiator shall be at least 20 dB below that in the 100 kHz bandwidth within the band that contains the highest level of the desired power, based on either an RF conducted or a radiated measurement, provided the transmitter demonstrates compliance with the peak conducted power limits. If the transmitter complies with the conducted power limits based on the use of RMS averaging over a time interval, as permitted under paragraph (b)(3) of this section, the attenuation required under this paragraph shall be 30 dB instead of 20 dB. Attenuation below the general limits specified in §15.209(a) is not required. In addition, radiated emissions which fall in the restricted bands, as defined in §15.205(a), must also comply with the radiated emission limits specified in

§15.209(a) (see §15.205(c)

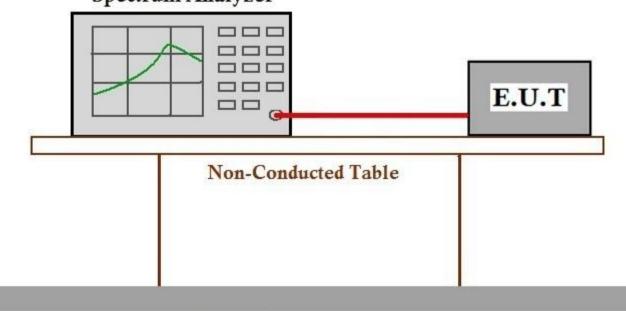
Member of the SGS Group (SGS SA)

Report No.: KSEM200800093201

Page: 19 of 102

7.1.13 E.U.T. Operation

Operating Environment:


Temperature: 22 °C Humidity: 50 % RH Atmospheric Pressure: 1002 mbar

Test mode d:TX mode_Keep the EUT in continuously transmitting mode with all modulation

types. All data rates for each modulation type have been tested and found the data rate @ 1Mbps is the worst case of IEEE 802.11b; data rate @ 6Mbps is the worst case of IEEE 802.11g; data rate @ 6.5Mbps is the worst case of IEEE 802.11n(HT20). Only the data of worst case is recorded in the report.

7.1.14 Test Setup Diagram

Spectrum Analyzer

Ground Reference Plane

7.1.15 Measurement Procedure and Data

The detailed test data see: Appendix A for KSEM200800093201

Report No.: KSEM200800093201

Page: 20 of 102

Conducted Spurious Emissions

Test Requirement 47 CFR Part 15, Subpart C 15.247(d)
Test Method: ANSI C63.10 (2013) Section 11.11

§15.209(a) (see §15.205(c)

Limit:

In any 100 kHz bandwidth outside the frequency band in which the spread spectrum or digitally modulated intentional radiator is operating, the radio frequency power that is produced by the intentional radiator shall be at least 20 dB below that in the 100 kHz bandwidth within the band that contains the highest level of the desired power, based on either an RF conducted or a radiated measurement, provided the transmitter demonstrates compliance with the peak conducted power limits. If the transmitter complies with the conducted power limits based on the use of RMS averaging over a time interval, as permitted under paragraph (b)(3) of this section, the attenuation required under this paragraph shall be 30 dB instead of 20 dB. Attenuation below the general limits specified in §15.209(a) is not required. In addition, radiated emissions which fall in the restricted bands, as defined in §15.205(a), must also comply with the radiated emission limits specified in

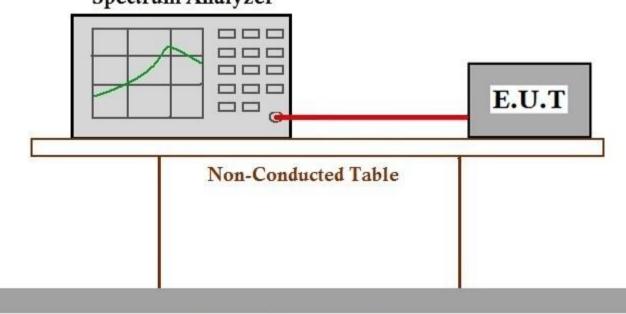
No.10, Weiye Road, Innovation Park, Kunshan, Jiangsu, China 215300 中国・江苏・昆山市留学生创业园伟业路10号 邮编 215300 t(86-512)57355888 f(86-512)57370818 www.sgsgroup.com.cn t(86-512)57355888 f(86-512)57370818 sgs.china@sgs.com

Report No.: KSEM200800093201

Page: 21 of 102

7.1.16 E.U.T. Operation

Operating Environment:


Temperature: 22 °C Humidity: 50 % RH Atmospheric Pressure: 1002 mbar

Test mode d:TX mode_Keep the EUT in continuously transmitting mode with all modulation

types. All data rates for each modulation type have been tested and found the data rate @ 1Mbps is the worst case of IEEE 802.11b; data rate @ 6Mbps is the worst case of IEEE 802.11g; data rate @ 6.5Mbps is the worst case of IEEE 802.11n(HT20). Only the data of worst case is recorded in the report.

7.1.17 Test Setup Diagram

Spectrum Analyzer

Ground Reference Plane

7.1.18 Measurement Procedure and Data

The detailed test data see: Appendix A for KSEM200800093201

Report No.: KSEM200800093201

Page: 22 of 102

Radiated Emissions which fall in the restricted bands

Test Requirement 47 CFR Part 15, Subpart C 15.209 & 15.247(d)

Test Method: ANSI C63.10 (2013) Section 6.10.5

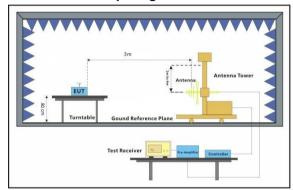
Limit:

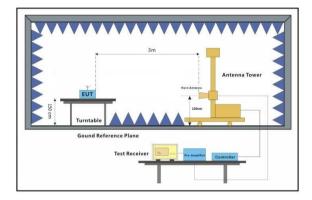
Frequency(MHz)	Field strength(microvolts/meter)	Measurement distance(meters)
0.009-0.490	2400/F(kHz)	300
0.490-1.705	24000/F(kHz)	30
1.705-30.0	30	30
30-88	100	3
88-216	150	3
216-960	200	3
Above 960	500	3

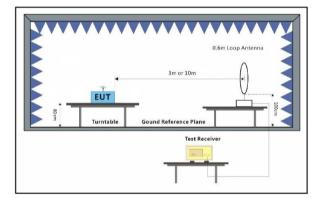
Remark: The emission limits shown in the above table are based on measurements employing a CISPR quasi-peak detector except for the frequency bands 9-90kHz, 110-490kHz and above 1000 MHz. Radiated emission limits in these three bands are based on measurements employing an average detector, the peak field strength of any emission shall not exceed the maximum permitted average limits specified above by more than 20 dB under any condition of modulation.

Page: 23 of 102

7.1.19 E.U.T. Operation


Operating Environment:


Temperature: 22 °C Humidity: 50 % RH Atmospheric Pressure: 1002 mbar


Test mode d:TX mode_Keep the EUT in continuously transmitting mode with all modulation

types. All data rates for each modulation type have been tested and found the data rate @ 1Mbps is the worst case of IEEE 802.11b; data rate @ 6Mbps is the worst case of IEEE 802.11g; data rate @ 6.5Mbps is the worst case of IEEE 802.11n(HT20). Only the data of worst case is recorded in the report.

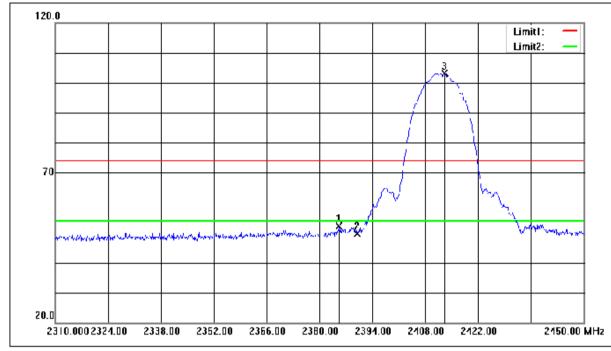
7.1.20 Test Setup Diagram

Page: 24 of 102

7.1.21 Measurement Procedure and Data

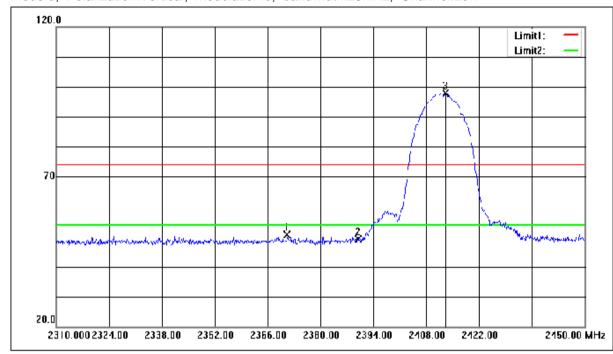
- a. For below 1GHz, the EUT was placed on the top of a rotating table 0.8 meters above the ground at a 3 or 10 meter semi-anechoic chamber. The table was rotated 360 degrees to determine the position of the highest radiation.
- b. For above 1GHz, the EUT was placed on the top of a rotating table 1.5 meters above the ground at a 3 meter fully-anechoic chamber. The table was rotated 360 degrees to determine the position of the highest radiation.
- c. The EUT was set 3 or 10 meters away from the interference-receiving antenna, which was mounted on the top of a variable-height antenna tower.
- d. The antenna height is varied from one meter to four meters above the ground to determine the maximum value of the field strength. Both horizontal and vertical polarizations of the antenna are set to make the measurement.
- e. For each suspected emission, the EUT was arranged to its worst case and then the antenna was tuned to heights from 1 meter to 4 meters (for the test frequency of below 30MHz, the antenna was tuned to heights 1 meter) and the rotatable table was turned from 0 degrees to 360 degrees to find the maximum reading.
- f. The test-receiver system was set to Peak Detect Function and Specified Bandwidth with Maximum Hold Mode.
- g. If the emission level of the EUT in peak mode was 10dB lower than the limit specified, then testing could be stopped and the peak values of the EUT would be reported. Otherwise the emissions that did not have 10dB margin would be re-tested one by one using peak, quasi-peak or average method as specified and then reported in a data sheet.
- h. Test the EUT in the lowest channel, the middle channel, the Highest channel.
- i. The radiation measurements are performed in X, Y, Z axis positioning for Transmitting mode, and found the X axis positioning which it is the worst case.
- i. Repeat above procedures until all frequencies measured was complete.

Remark 1: Level= Read Level+ Cable Loss+ Antenna Factor- Preamp Factor


Remark 2: For frequencies above 1GHz, the field strength limits are based on average limits. However, the peak field strength of any emission shall not exceed the maximum permitted average limits specified above by more than 20 dB under any condition of modulation. For the emissions whose peak level is lower than the average limit, only the peak measurement is shown in the report.

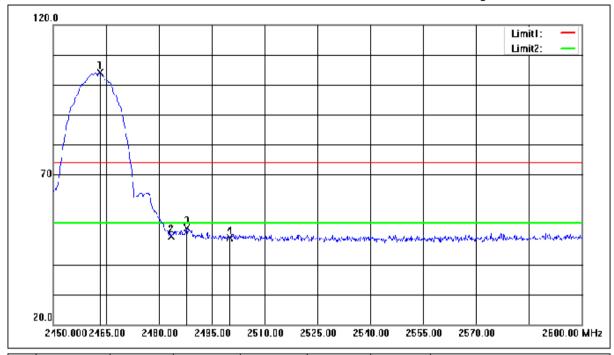
Page: 25 of 102

Mode:d; Polarization:Horizontal; Modulation:b; bandwidth:20MHz; Channel:Low


No.	Frequency	Reading	Correction	Result	Limit	Margin	Remark
	(MHz)	()	factor()	()	()	(dB)	
1	2385.180	56.27	-4.26	52.01	74.00	-21.99	peak
2	2390.000	53.86	-4.24	49.62	74.00	-24.38	peak
3	2413.180	107.40	-4.18	103.22	74.00	29.22	peak

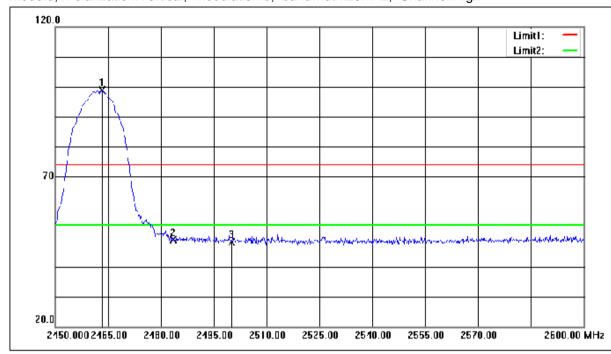
Page: 26 of 102

Mode:d; Polarization:Vertical; Modulation:b; bandwidth:20MHz; Channel:Low


No.	Frequency	Reading	Correction	Result	Limit	Margin	Remark
	(MHz)	()	factor()	()	()	(dB)	
1	2371.180	54.88	-4.29	50.59	74.00	-23.41	peak
2	2390.000	53.37	-4.24	49.13	74.00	-24.87	peak
3	2413.180	102.13	-4.18	97.95	74.00	23.95	peak

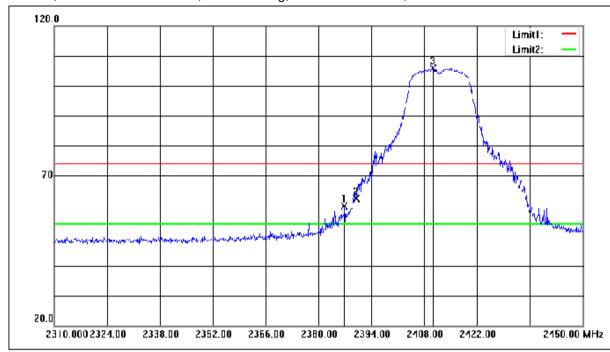
Page: 27 of 102

Mode:d; Polarization:Horizontal; Modulation:b; bandwidth:20MHz; Channel:High


No.	Frequency	Reading	Correction	Result	Limit	Margin	Remark
	(MHz)	()	factor()	()	()	(dB)	
1	2463.200	108.11	-4.05	104.06	74.00	30.06	peak
2	2483.500	53.47	-4.00	49.47	74.00	-24.53	peak
3	2487.800	56.23	-3.99	52.24	74.00	-21.76	peak
4	2500.000	52.81	-3.96	48.85	74.00	-25.15	peak

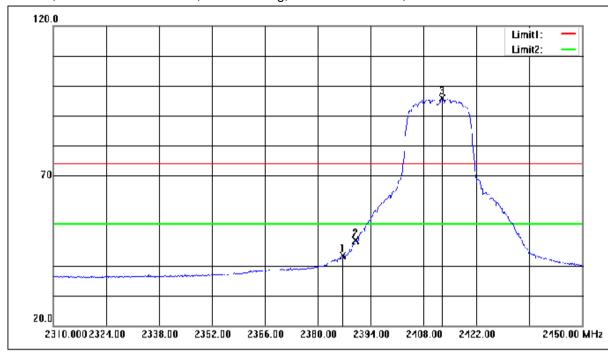
Page: 28 of 102

Mode:d; Polarization:Vertical; Modulation:b; bandwidth:20MHz; Channel:High


No.	Frequency (MHz)	Reading ()	Correction factor()	Result ()	Limit ()	Margin (dB)	Remark
1	2463.200	102.95	-4.05	98.90	74.00	24.90	peak
2	2483.500	52.86	-4.00	48.86	74.00	-25.14	peak
3	2500.000	52.13	-3.96	48.17	74.00	-25.83	peak

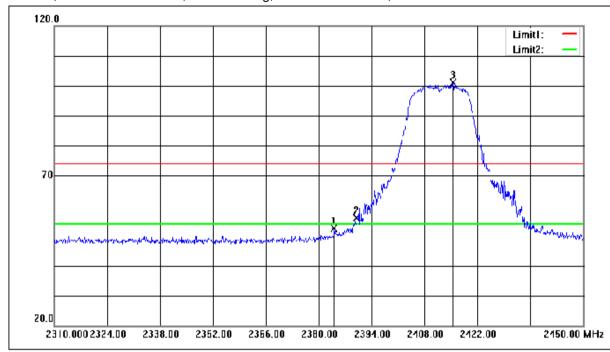
Page: 29 of 102

Mode:d; Polarization:Horizontal; Modulation:g; bandwidth:20MHz; Channel:Low


No.	Frequency	Reading	Correction	Result	Limit	Margin	Remark
	(MHz)	()	factor()	()	()	(dB)	
1	2386.860	64.01	-4.25	59.76	74.00	-14.24	peak
2	2390.000	66.60	-4.24	62.36	74.00	-11.64	peak
3	2410.240	110.15	-4.19	105.96	74.00	31.96	peak

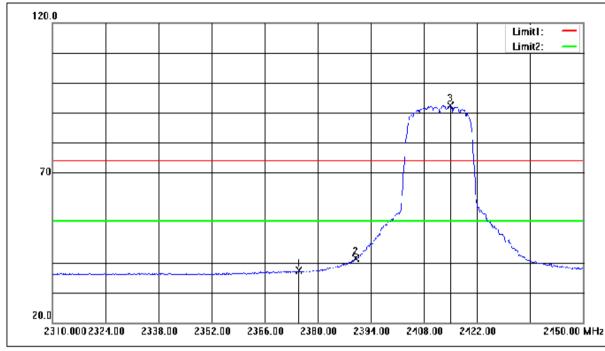
Page: 30 of 102

Mode:d; Polarization:Horizontal; Modulation:g; bandwidth:20MHz; Channel:Low


No.	Frequency	Reading	Correction	Result	Limit	Margin	Remark
	(MHz)	()	factor()	()	()	(dB)	
1	2386.580	47.52	-4.25	43.27	54.00	-10.73	AVG
2	2390.000	52.55	-4.24	48.31	54.00	-5.69	AVG
3	2412.900	99.95	-4.18	95.77	74.00	21.77	peak

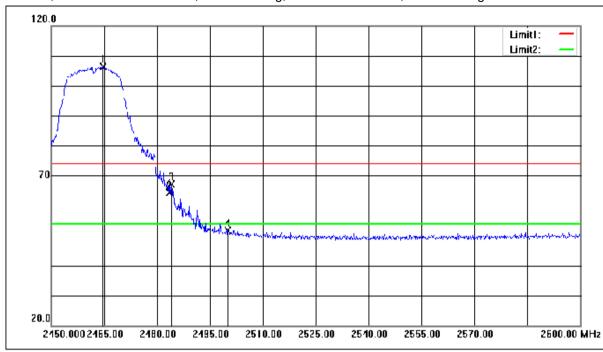
Page: 31 of 102

Mode:d; Polarization:Vertical; Modulation:g; bandwidth:20MHz; Channel:Low


No.	Frequency	Reading	Correction	Result	Limit	Margin	Remark
	(MHz)	()	factor()	()	()	(dB)	
1	2384.060	56.64	-4.26	52.38	74.00	-21.62	peak
2	2390.000	60.24	-4.24	56.00	74.00	-18.00	peak
3	2415.560	105.30	-4.18	101.12	74.00	27.12	peak

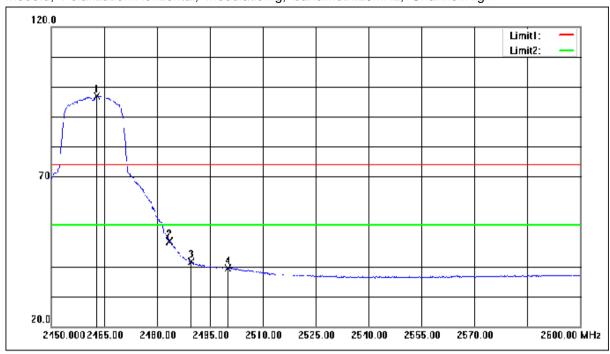
Page: 32 of 102

Mode:d; Polarization:Vertical; Modulation:g; bandwidth:20MHz; Channel:Low


No.	Frequency (MHz)	Reading ()	Correction factor()	Result ()	Limit ()	Margin (dB)	Remark
1	2374.960	41.57	-4.28	37.29	54.00	-16.71	AVG
2	2390.000	45.67	-4.24	41.43	54.00	-12.57	AVG
3	2415.000	96.67	-4.18	92.49	74.00	18.49	peak

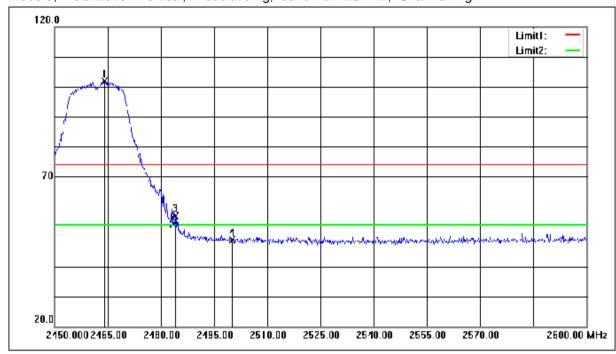
Page: 33 of 102

Mode:d; Polarization:Horizontal; Modulation:g; bandwidth:20MHz; Channel:High


No.	Frequency (MHz)	Reading	Correction factor()	Result	Limit	Margin (dB)	Remark
4	2464.700	110.25	V	100 20	74.00	/	no ale
1		110.35	-4.05	106.30	74.00	32.30	peak
2	2483.500	68.26	-4.00	64.26	74.00	-9.74	peak
3	2484.050	71.07	-4.00	67.07	74.00	-6.93	peak
4	2500.000	55.56	-3.96	51.60	74.00	-22.40	peak

Page: 34 of 102

Mode:d; Polarization:Horizontal; Modulation:g; bandwidth:20MHz; Channel:High


No.	Frequency	Reading	Correction	Result	Limit	Margin	Remark
	(MHz)	()	factor()	()	()	(dB)	
1	2462.900	101.02	-4.06	96.96	74.00	22.96	peak
2	2483.500	52.35	-4.00	48.35	54.00	-5.65	AVG
3	2489.600	45.69	-3.99	41.70	54.00	-12.30	AVG
4	2500.000	43.35	-3.96	39.39	54.00	-14.61	AVG

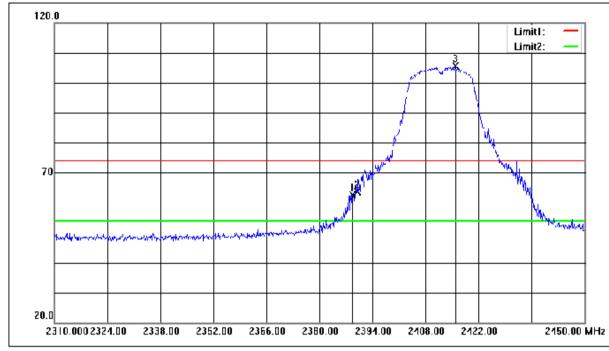
Page: 35 of 102

Mode:d; Polarization:Vertical; Modulation:g; bandwidth:20MHz; Channel:High

No.	Frequency	Reading	Correction	Result	Limit	Margin	Remark
	(MHz)	()	factor()	()	()	(dB)	
1	2464.100	105.86	-4.05	101.81	74.00	27.81	peak
2	2483.500	58.04	-4.00	54.04	74.00	-19.96	peak
3	2484.050	60.98	-4.00	56.98	74.00	-17.02	peak
4	2500.000	52.76	-3.96	48.80	74.00	-25.20	peak

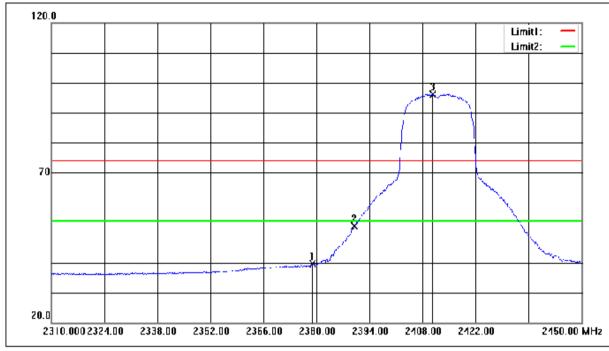
Page: 36 of 102

Mode:d; Polarization:Vertical; Modulation:g; bandwidth:20MHz; Channel:High


No.	Frequency	Reading	Correction	Result	Limit	Margin	Remark
	(MHz)	()	factor()	()	()	(dB)	
1	2463.950	97.00	-4.05	92.95	74.00	18.95	peak
2	2483.500	45.03	-4.00	41.03	54.00	-12.97	AVG
3	2484.650	44.10	-4.00	40.10	54.00	-13.90	AVG
4	2500.000	41.43	-3.96	37.47	54.00	-16.53	AVG

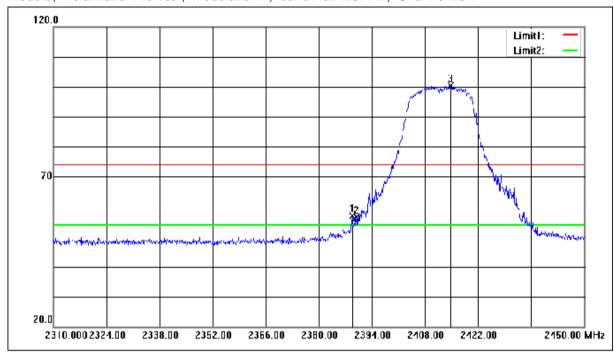
Page: 37 of 102

Mode:d; Polarization:Horizontal; Modulation:n; bandwidth:20MHz; Channel:Low


No.	Frequency	Reading	Correction	Result	Limit	Margin	Remark
	(MHz)	()	factor()	()	()	(dB)	
1	2388.680	66.80	-4.25	62.55	74.00	-11.45	peak
2	2390.000	67.96	-4.24	63.72	74.00	-10.28	peak
3	2415.840	109.77	-4.18	105.59	74.00	31.59	peak

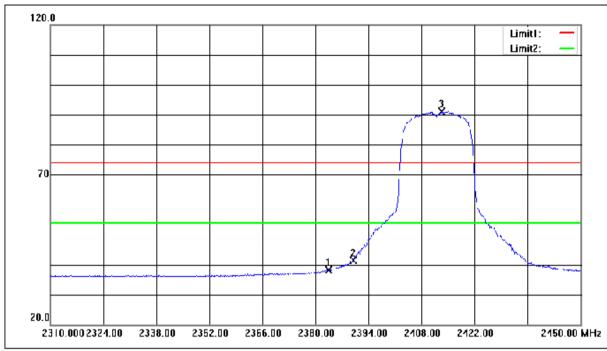
Page: 38 of 102

Mode:d; Polarization:Horizontal; Modulation:n; bandwidth:20MHz; Channel:Low


No.	Frequency	Reading	Correction	Result	Limit	Margin	Remark
	(MHz)	()	factor()	()	()	(dB)	
1	2379.020	43.85	-4.27	39.58	54.00	-14.42	AVG
2	2390.000	56.26	-4.24	52.02	74.00	-21.98	peak
3	2410.660	100.42	-4.19	96.23	74.00	22.23	peak

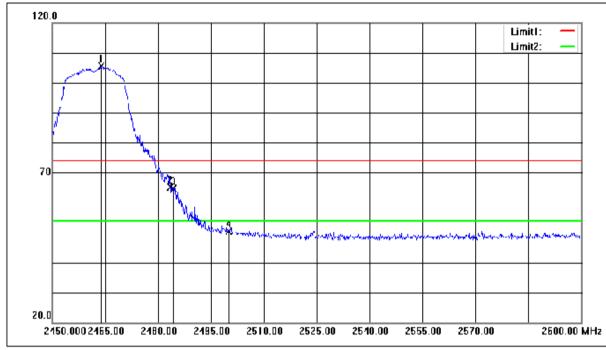
Page: 39 of 102

Mode:d; Polarization:Vertical; Modulation:n; bandwidth:20MHz; Channel:Low


No.	Frequency (MHz)	Reading ()	Correction factor()	Result ()	Limit ()	Margin (dB)	Remark
1	2388.820	61.24	-4.25	56.99	74.00	-17.01	peak
2	2390.000	60.58	-4.24	56.34	74.00	-17.66	peak
3	2414.860	104.51	-4.18	100.33	74.00	26.33	peak

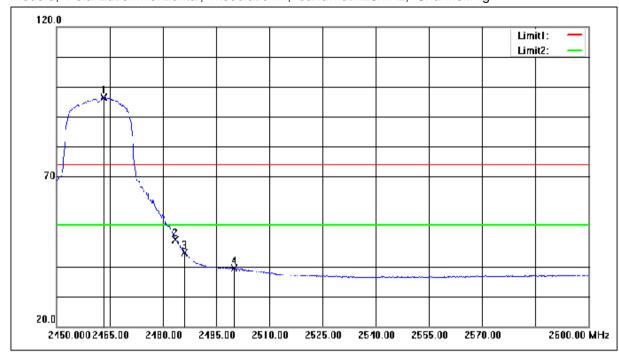
Page: 40 of 102

Mode:d; Polarization:Vertical; Modulation:n; bandwidth:20MHz; Channel:Low


No.	Frequency (MHz)	Reading ()	Correction factor()	Result ()	Limit ()	Margin (dB)	Remark
1	2383.500	42.41	-4.26	38.15	54.00	-15.85	AVG
2	2390.000	45.56	-4.24	41.32	54.00	-12.68	AVG
3	2413.320	95.28	-4.18	91.10	74.00	17.10	peak

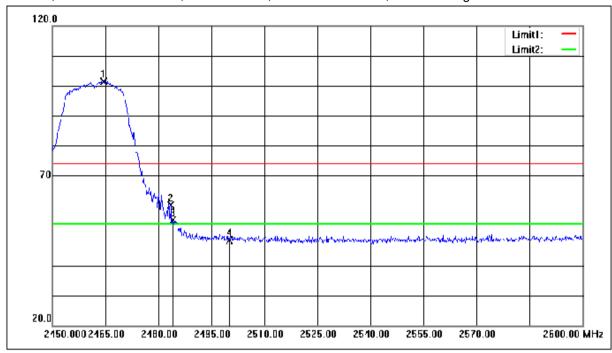
Page: 41 of 102

Mode:d; Polarization:Horizontal; Modulation:n; bandwidth:20MHz; Channel:High


No.	Frequency	Reading	Correction	Result	Limit	Margin	Remark
	(MHz)	()	factor()	()	U U	(dB)	
1	2463.800	109.63	-4.05	105.58	74.00	31.58	peak
2	2483.500	69.23	-4.00	65.23	74.00	-8.77	peak
3	2484.350	68.62	-4.00	64.62	74.00	-9.38	peak
4	2500.000	54.40	-3.96	50.44	74.00	-23.56	peak

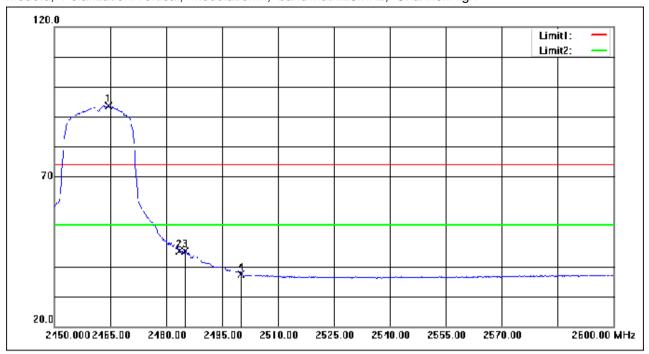
Page: 42 of 102

Mode:d; Polarization:Horizontal; Modulation:n; bandwidth:20MHz; Channel:High


No.	Frequency	Reading	Correction	Result	Limit	Margin	Remark
	(MHz)	()	factor()	()	()	(dB)	
1	2463.200	100.45	-4.05	96.40	74.00	22.40	peak
2	2483.500	52.98	-4.00	48.98	54.00	-5.02	AVG
3	2486.150	48.60	-4.00	44.60	54.00	-9.40	AVG
4	2500.000	43.35	-3.96	39.39	54.00	-14.61	AVG

Page: 43 of 102

Mode:d; Polarization:Vertical; Modulation:n; bandwidth:20MHz; Channel:High


No.	Frequency	Reading	Correction	Result	Limit	Margin	Remark
	(MHz)	()	factor()	()	()	(dB)	
1	2464.550	105.52	-4.05	101.47	74.00	27.47	peak
2	2483.500	64.17	-4.00	60.17	74.00	-13.83	peak
3	2484.050	59.06	-4.00	55.06	74.00	-18.94	peak
4	2500.000	52.45	-3.96	48.49	74.00	-25.51	peak

Page: 44 of 102

Mode:d; Polarization:Vertical; Modulation:n; bandwidth:20MHz; Channel:High

No.	Frequency	Reading	Correction	Result	Limit	Margin	Remark
	(MHz)	()	factor()	()	()	(dB)	
1	2464.400	97.74	-4.05	93.69	74.00	19.69	peak
2	2483.500	49.05	-4.00	45.05	74.00	-28.95	peak
3	2485.100	49.22	-4.00	45.22	74.00	-28.78	peak
4	2500.000	41.24	-3.96	37.28	54.00	-16.72	AVG

Report No.: KSEM200800093201

Page: 45 of 102

Radiated Spurious Emissions

Test Requirement 47 CFR Part 15, Subpart C 15.209 & 15.247(d)

Test Method: ANSI C63.10 (2013) Section 6.4,6.5,6.6

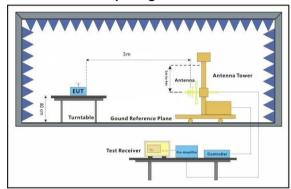
Limit:

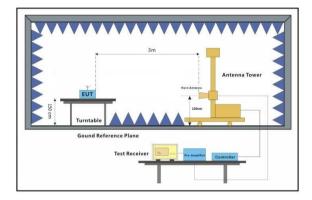
Frequency(MHz)	Field strength(microvolts/meter)	Measurement distance(meters)
0.009-0.490	2400/F(kHz)	300
0.490-1.705	24000/F(kHz)	30
1.705-30.0	30	30
30-88	100	3
88-216	150	3
216-960	200	3
Above 960	500	3

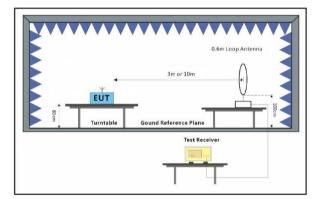
Remark: The emission limits shown in the above table are based on measurements employing a CISPR quasi-peak detector except for the frequency bands 9-90kHz, 110-490kHz and above 1000 MHz. Radiated emission limits in these three bands are based on measurements employing an average detector, the peak field strength of any emission shall not exceed the maximum permitted average limits specified above by more than 20 dB under any condition of modulation.

Page: 46 of 102

7.1.22 E.U.T. Operation


Operating Environment:


Temperature: 22 °C Humidity: 50 % RH Atmospheric Pressure: 1002 mbar


Test mode d:TX mode_Keep the EUT in continuously transmitting mode with all modulation

types. All data rates for each modulation type have been tested and found the data rate @ 1Mbps is the worst case of IEEE 802.11b; data rate @ 6Mbps is the worst case of IEEE 802.11g; data rate @ 6.5Mbps is the worst case of IEEE 802.11n(HT20). Only the data of worst case is recorded in the report.

7.1.23 Test Setup Diagram

Page: 47 of 102

7.1.24 Measurement Procedure and Data

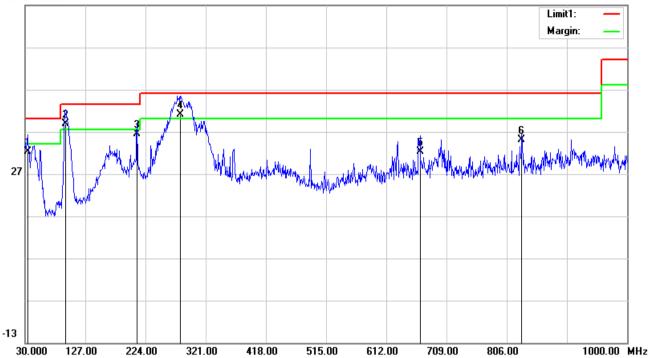
- a. For below 1GHz, the EUT was placed on the top of a rotating table 0.8 meters above the ground at a 3 or 10 meter semi-anechoic chamber. The table was rotated 360 degrees to determine the position of the highest radiation.
- b. For above 1GHz, the EUT was placed on the top of a rotating table 1.5 meters above the ground at a 3 meter fully-anechoic chamber. The table was rotated 360 degrees to determine the position of the highest radiation.
- c. The EUT was set 3 or 10 meters away from the interference-receiving antenna, which was mounted on the top of a variable-height antenna tower.
- d. The antenna height is varied from one meter to four meters above the ground to determine the maximum value of the field strength. Both horizontal and vertical polarizations of the antenna are set to make the measurement.
- e. For each suspected emission, the EUT was arranged to its worst case and then the antenna was tuned to heights from 1 meter to 4 meters (for the test frequency of below 30MHz, the antenna was tuned to heights 1 meter) and the rotatable table was turned from 0 degrees to 360 degrees to find the maximum reading.
- f. The test-receiver system was set to Peak Detect Function and Specified Bandwidth with Maximum Hold Mode.
- g. If the emission level of the EUT in peak mode was 10dB lower than the limit specified, then testing could be stopped and the peak values of the EUT would be reported. Otherwise the emissions that did not have 10dB margin would be re-tested one by one using peak, quasi-peak or average method as specified and then reported in a data sheet.
- h. Test the EUT in the lowest channel, the middle channel, the Highest channel.
- i. The radiation measurements are performed in X, Y, Z axis positioning for Transmitting mode, and found the X axis positioning which it is the worst case.
- j. Repeat above procedures until all frequencies measured was complete.

Remark:

- 1) For emission below 1GHz, through pre-scan found the worst case is the lowest channel. Only the worst case is recorded in the report.
- 2) The field strength is calculated by adding the Antenna Factor, Cable Factor & Preamplifier. The basic equation with a sample calculation is as follows:

Final Test Level = Receiver Reading + Antenna Factor + Cable Factor - Preamplifier Factor

- 3) Scan from 9kHz to 25GHz, the disturbance above 18GHz and below 30MHz was very low. The points marked on above plots are the highest emissions could be found when testing, so only above points had been displayed. The amplitude of spurious emissions from the radiator which are attenuated more than 20dB below the limit need not be reported.
- 4) For frequencies above 1GHz, the field strength limits are based on average limits. However, the peak field strength of any emission shall not exceed the maximum permitted average limits specified above by more than 20 dB under any condition of modulation. For the emissions whose peak level is lower than the average limit, only the peak measurement is shown in the report.

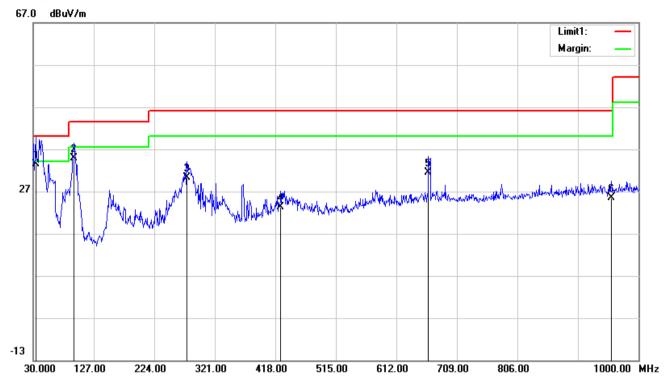


Report No.: KSEM200800093201

Page: 48 of 102

30MHz-1GHz Horizontal

67.0 dBuV/m

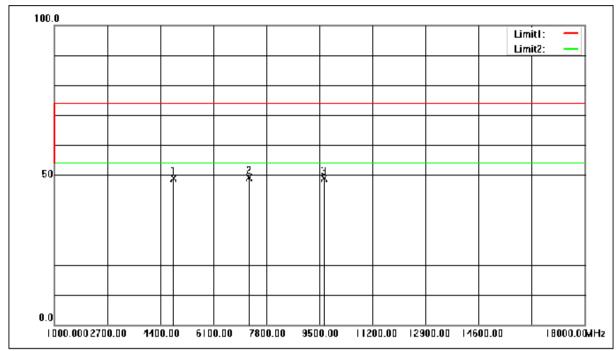

No.	Frequency	Reading	Correct	Result	Limit	Margin	Height	Degree	Remark
	(MHz)	(dBuV)	Factor(dB/m)	(dBuV/m)	(dBuV/m)	(dB)	(cm)	(deg.)	
1	33.8800	8.30	23.91	32.21	40.00	-7.79	300	187	QP
2	94.9900	26.26	12.63	38.89	43.50	-4.61	118	360	QP
3	210.4200	21.66	14.73	36.39	43.50	-7.11	200	83	QP
4	280.2600	23.37	17.74	41.11	46.00	-4.89	100	153	QP
5	666.3200	8.03	24.35	32.38	46.00	-13.62	139	360	QP
6	830.2500	9.91	25.23	35.14	46.00	-10.86	200	214	QP

Report No.: KSEM200800093201

Page: 49 of 102

Vertical

No.	Frequency	Reading	Correct	Result	Limit	Margin	Height	Degree	Remark
	(MHz)	(dBuV)	Factor(dB/m)	(dBuV/m)	(dBuV/m)	(dB)	(cm)	(deg.)	
1	33.8800	9.48	23.91	33.39	40.00	-6.61	400	360	QP
2	94.9900	22.26	12.63	34.89	43.50	-8.61	300	360	QP
3	276.3800	12.68	17.68	30.36	46.00	-15.64	200	360	QP
4	426.7300	2.68	20.69	23.37	46.00	-22.63	100	360	QP
5	663.4100	7.11	24.33	31.44	46.00	-14.56	100	100	QP
6	956.3500	-0.51	26.06	25.55	46.00	-20.45	100	67	QP

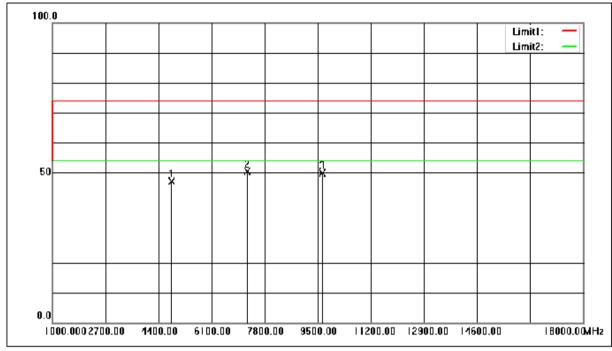


Report No.: KSEM200800093201

Page: 50 of 102

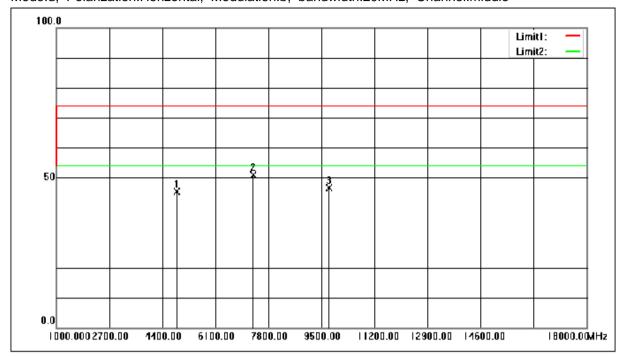
Above 1GHz

Mode:d; Polarization:Horizontal; Modulation:b; bandwidth:20MHz; Channel:Low


No.	Frequency	Reading	Correction	Result	Limit	Margin	Remark
	(MHz)	()	factor()	()	()	(dB)	
1	4824.000	59.04	-10.21	48.83	74.00	-25.17	peak
2	7236.000	56.24	-7.05	49.19	74.00	-24.81	peak
3	9648.000	53.63	-4.77	48.86	74.00	-25.14	peak

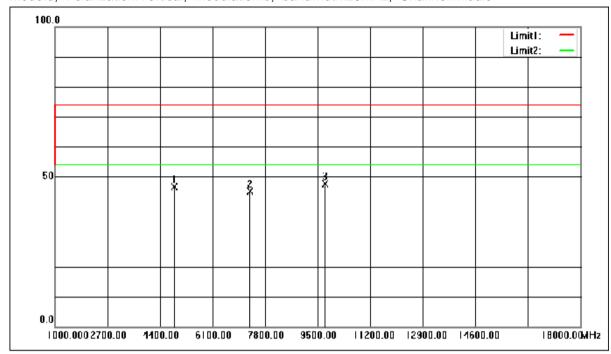
Page: 51 of 102

Mode:d; Polarization:Vertical; Modulation:b; bandwidth:20MHz; Channel:Low


No.	Frequency	Reading	Correction	Result	Limit	Margin	Remark
	(MHz)	()	factor()	()	()	(dB)	
1	4824.000	57.46	-10.21	47.25	74.00	-26.75	peak
2	7236.000	57.40	-7.05	50.35	74.00	-23.65	peak
3	9648.000	54.74	-4.77	49.97	74.00	-24.03	peak

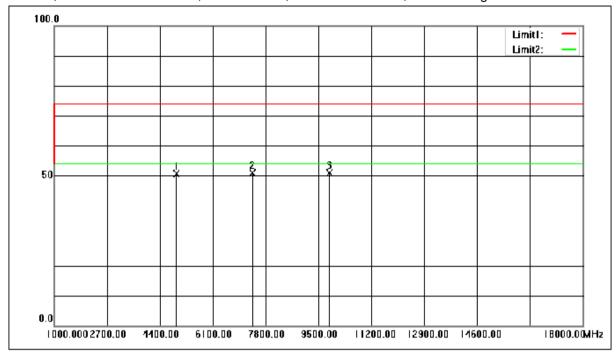
Page: 52 of 102

Mode:d; Polarization:Horizontal; Modulation:b; bandwidth:20MHz; Channel:middle


No.	Frequency	Reading	Correction	Result	Limit	Margin	Remark
	(MHz)	()	factor()	()	()	(dB)	
1	4874.000	55.28	-10.01	45.27	74.00	-28.73	peak
2	7311.000	57.82	-6.93	50.89	74.00	-23.11	peak
3	9748.000	50.81	-4.30	46.51	74.00	-27.49	peak

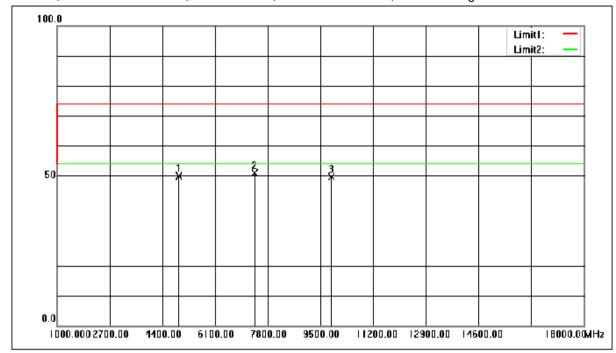
Page: 53 of 102

Mode:d; Polarization:Vertical; Modulation:b; bandwidth:20MHz; Channel:middle


No.	Frequency	Reading	Correction	Result	Limit	Margin	Remark
	(MHz)	()	factor()	()	()	(dB)	
1	4874.000	56.66	-10.01	46.65	74.00	-27.35	peak
2	7311.000	52.07	-6.93	45.14	74.00	-28.86	peak
3	9748.000	51.93	-4.30	47.63	74.00	-26.37	peak

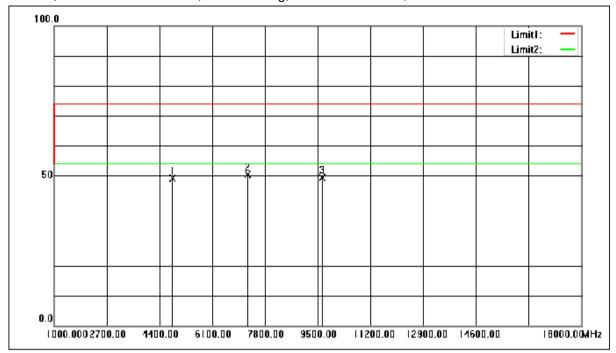
Page: 54 of 102

Mode:d; Polarization:Horizontal; Modulation:b; bandwidth:20MHz; Channel:High


No.	Frequency	Reading	Correction	Result	Limit	Margin	Remark
	(MHz)	()	factor()	()	()	(dB)	
1	4924.000	60.53	-9.82	50.71	74.00	-23.29	peak
2	7386.000	57.58	-6.80	50.78	74.00	-23.22	peak
3	9848.000	54.84	-3.84	51.00	74.00	-23.00	peak

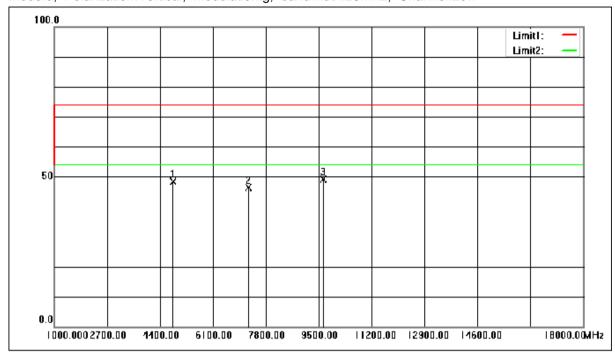
Page: 55 of 102

Mode:d; Polarization:Vertical; Modulation:b; bandwidth:20MHz; Channel:High


No.	Frequency	Reading	Correction	Result	Limit	Margin	Remark
	(MHz)	()	factor()	()	()	(dB)	
1	4924.000	59.67	-9.82	49.85	74.00	-24.15	peak
2	7386.000	57.57	-6.80	50.77	74.00	-23.23	peak
3	9848.000	53.43	-3.84	49.59	74.00	-24.41	peak

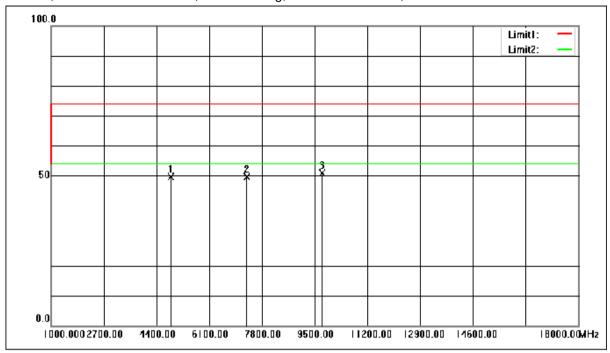
Page: 56 of 102

Mode:d; Polarization:Horizontal; Modulation:g; bandwidth:20MHz; Channel:Low


N		Reading	Correction	Result	Limit	Margin	Remark
	(MHz)	0	factor()	()	()	(dB)	
1	4824.000	59.32	-10.21	49.11	74.00	-24.89	peak
2	7236.000	57.34	-7.05	50.29	74.00	-23.71	peak
3	9648.000	54.17	-4.77	49.40	74.00	-24.60	peak

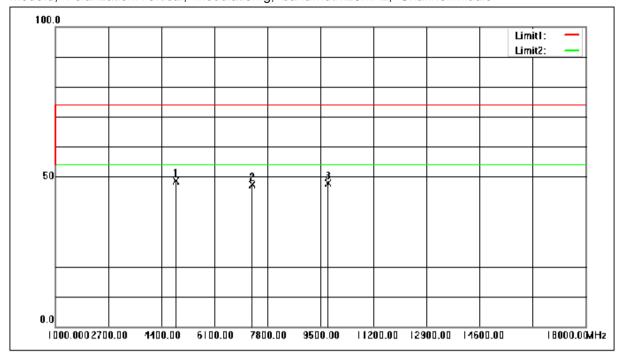
Page: 57 of 102

Mode:d; Polarization:Vertical; Modulation:g; bandwidth:20MHz; Channel:Low


No.	Frequency	Reading	Correction	Result	Limit	Margin	Remark
	(MHz)	()	factor()	()	()	(dB)	
1	4824.000	58.63	-10.21	48.42	74.00	-25.58	peak
2	7236.000	53.32	-7.05	46.27	74.00	-27.73	peak
3	9648.000	53.92	-4.77	49.15	74.00	-24.85	peak

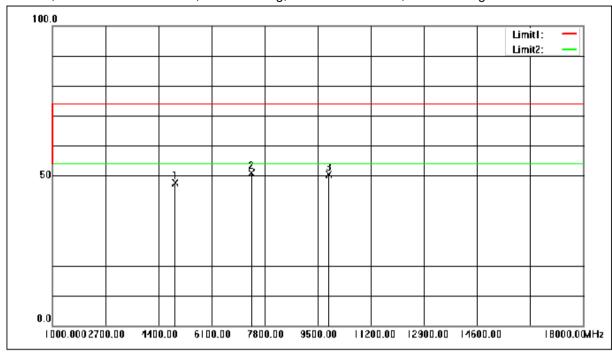
Page: 58 of 102

Mode:d; Polarization:Horizontal; Modulation:g; bandwidth:20MHz; Channel:middle


No.	Frequency	Reading	Correction	Result	Limit	Margin	Remark
	(MHz)	()	factor()	()	()	(dB)	
1	4874.000	59.64	-10.01	49.63	74.00	-24.37	peak
2	7311.000	56.59	-6.93	49.66	74.00	-24.34	peak
3	9748.000	55.15	-4.30	50.85	74.00	-23.15	peak

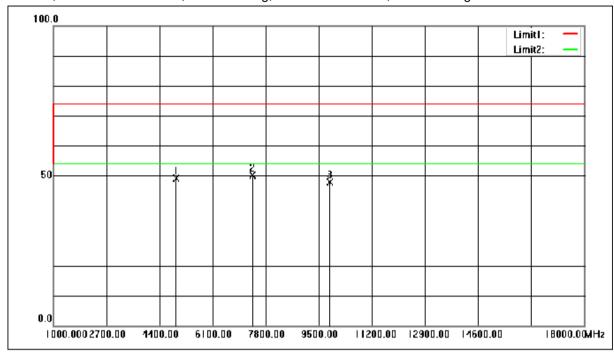
Page: 59 of 102

Mode:d; Polarization:Vertical; Modulation:g; bandwidth:20MHz; Channel:middle


No.	Frequency	Reading	Correction	Result	Limit	Margin	Remark
	(MHz)	()	factor()	()	()	(dB)	
1	4874.000	58.76	-10.01	48.75	74.00	-25.25	peak
2	7311.000	54.27	-6.93	47.34	74.00	-26.66	peak
3	9748.000	52.19	-4.30	47.89	74.00	-26.11	peak

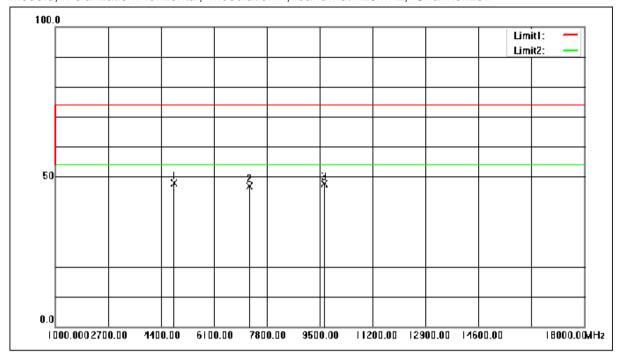
Page: 60 of 102

Mode:d; Polarization:Horizontal; Modulation:g; bandwidth:20MHz; Channel:High


No.	Frequency (MHz)	Reading	Correction factor()	Result	Limit	Margin (dB)	Remark
1	4924.000	57.54	-9.82	47.72	74.00	-26.28	peak
2	7386.000	57.74	-6.80	50.94	74.00	-23.06	peak
3	9848.000	54.34	-3.84	50.50	74.00	-23.50	peak

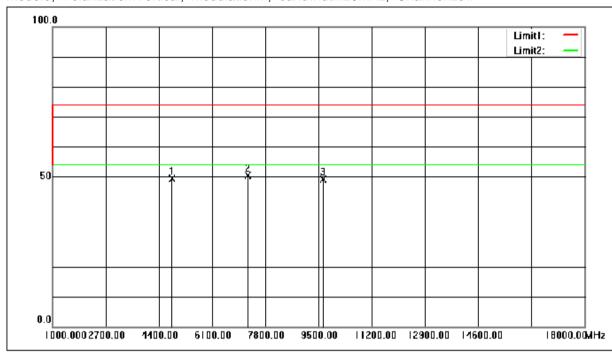
Page: 61 of 102

Mode:d; Polarization:Vertical; Modulation:g; bandwidth:20MHz; Channel:High


No.	Frequency (MHz)	Reading	Correction factor()	Result	Limit	Margin (dB)	Remark
1	4924.000	59.03	-9.82	49.21	74.00	-24.79	peak
2	7386.000	56.86	-6.80	50.06	74.00	-23.94	peak
3	9848.000	51.62	-3.84	47.78	74.00	-26.22	peak

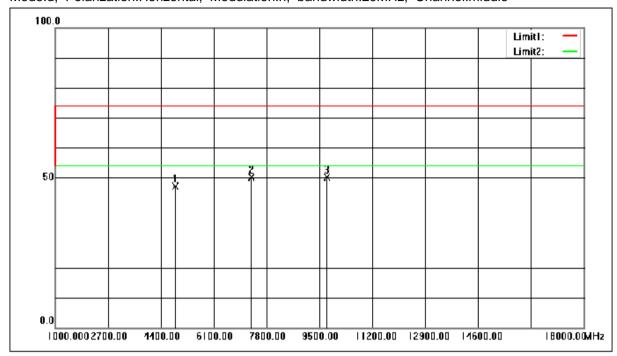
Page: 62 of 102

Mode:d; Polarization:Horizontal; Modulation:n; bandwidth:20MHz; Channel:Low


No.	Frequency	Reading	Correction	Result	Limit	Margin	Remark
	(MHz)	()	factor()	()	()	(dB)	
1	4824.000	58.05	-10.21	47.84	74.00	-26.16	peak
2	7236.000	53.85	-7.05	46.80	74.00	-27.20	peak
3	9648.000	52.52	-4.77	47.75	74.00	-26.25	peak

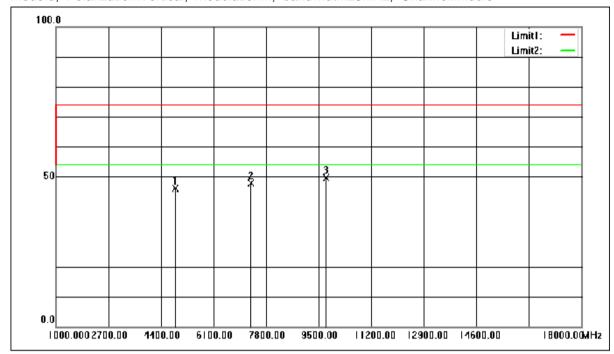
Page: 63 of 102

Mode:d; Polarization:Vertical; Modulation:n; bandwidth:20MHz; Channel:Low


No.	Frequency	Reading	Correction	Result	Limit	Margin	Remark
	(MHz)	()	factor()	()	()	(dB)	
1	4824.000	59.53	-10.21	49.32	74.00	-24.68	peak
2	7236.000	57.51	-7.05	50.46	74.00	-23.54	peak
3	9648.000	53.90	-4.77	49.13	74.00	-24.87	peak

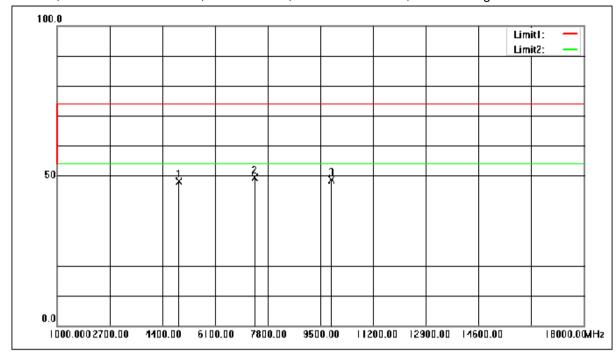
Page: 64 of 102

Mode:d; Polarization:Horizontal; Modulation:n; bandwidth:20MHz; Channel:middle


No.	Frequency	Reading	Correction	Result	Limit	Margin	Remark
	(MHz)	()	factor()	()	()	(dB)	
1	4874.000	57.16	-10.01	47.15	74.00	-26.85	peak
2	7311.000	57.03	-6.93	50.10	74.00	-23.90	peak
3	9748.000	54.52	-4.30	50.22	74.00	-23.78	peak

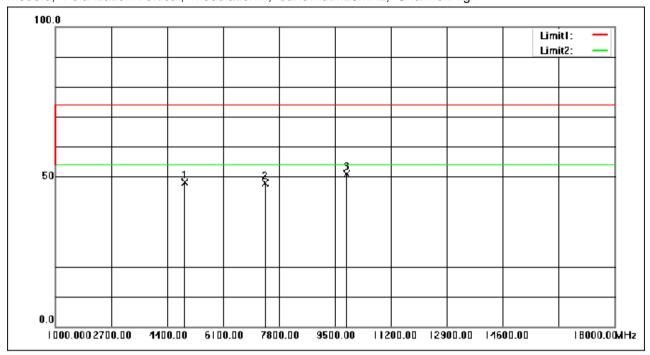
Page: 65 of 102

Mode:d; Polarization:Vertical; Modulation:n; bandwidth:20MHz; Channel:middle


No.	Frequency	Reading	Correction	Result	Limit	Margin	Remark
	(MHz)	0	factor()	()	()	(dB)	
1	4874.000	56.03	-10.01	46.02	74.00	-27.98	peak
2	7311.000	54.79	-6.93	47.86	74.00	-26.14	peak
3	9748.000	53.89	-4.30	49.59	74.00	-24.41	peak

Page: 66 of 102

Mode:d; Polarization:Horizontal; Modulation:n; bandwidth:20MHz; Channel:High


No.	Frequency	Reading	Correction	Result	Limit	Margin	Remark
	(MHz)	()	factor()	()	()	(dB)	
1	4924.000	57.85	-9.82	48.03	74.00	-25.97	peak
2	7386.000	56.29	-6.80	49.49	74.00	-24.51	peak
3	9848.000	52.43	-3.84	48.59	74.00	-25.41	peak

Page: 67 of 102

Mode:d; Polarization:Vertical; Modulation:n; bandwidth:20MHz; Channel:High

No.	Frequency	Reading	Correction	Result	Limit	Margin	Remark
	(MHz)	()	factor()	()	()	(dB)	
1	4924.000	58.06	-9.82	48.24	74.00	-25.76	peak
2	7386.000	54.71	-6.80	47.91	74.00	-26.09	peak
3	9848.000	54.70	-3.84	50.86	74.00	-23.14	peak

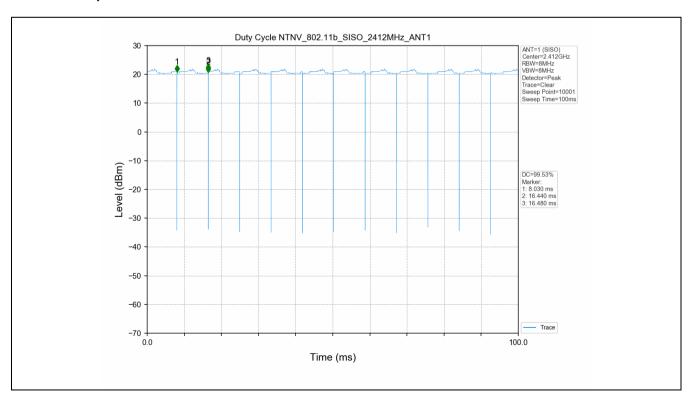
Page: 68 of 102

8 Test Setup Photographs

Refer to the < Test Setup photos-FCC>.

9 EUT Constructional Details

Refer to the < External Photos > & < Internal Photos >.

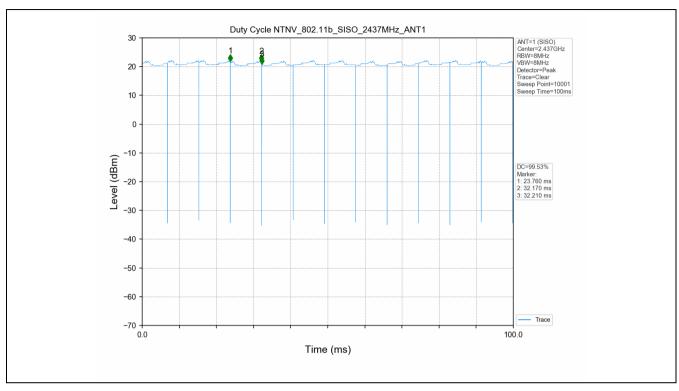

Appendix A for KSEM200800093201

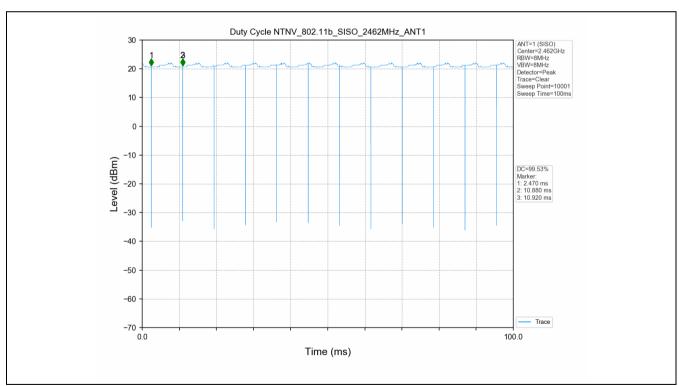
1. Duty Cycle

1.1 Test Result

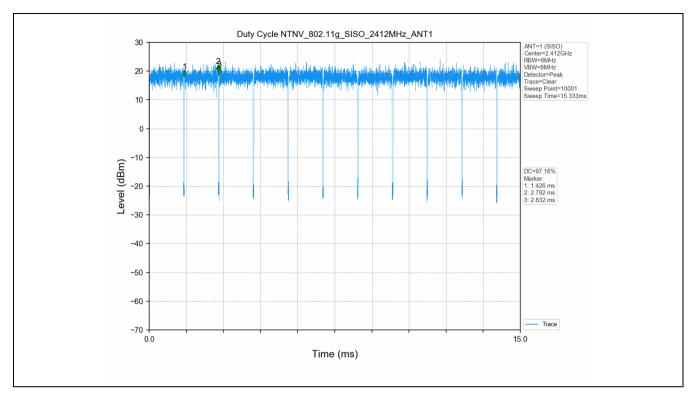
Test Mode	Channel Frequency(MHz)	ТХ Туре	ANT No.	T_on (ms)	Period (ms)	Duty Cycle (%)	Duty Cycle Correction Factor (dB)
	2412	SISO	1	8.410	8.450	99.53	0.02
802.11b	2437	SISO	1	8.410	8.450	99.53	0.02
	2462	SISO	1	8.410	8.450	99.53	0.02
	2412	SISO	1	1.366	1.406	97.16	0.13
802.11g	2437	SISO	1	1.366	1.406	97.16	0.13
	2462	SISO	1	1.365	1.406	97.08	0.13
	2412	SISO	1	1.307	1.348	96.96	0.13
802.11n(HT20)	2437	SISO	1	1.308	1.349	96.96	0.13
	2462	SISO	1	1.307	1.348	96.96	0.13

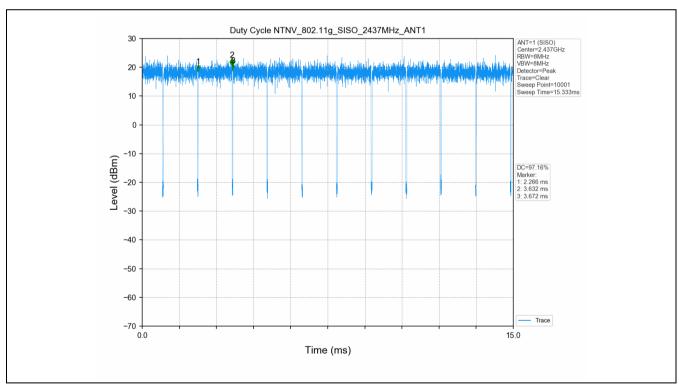
1.2 Test Graph




No.10, Weiye Road, Innovation Park, Kunshan, Jiangsu, China 215300 中国・江苏・昆山市留学生创业园伟业路10号 邮编 215300 t(86-512)57355888 f(86-512)57370818 www.sgsgroup.com.cn t(86-512)57355888 f(86-512)57370818 sgs.china@sgs.com

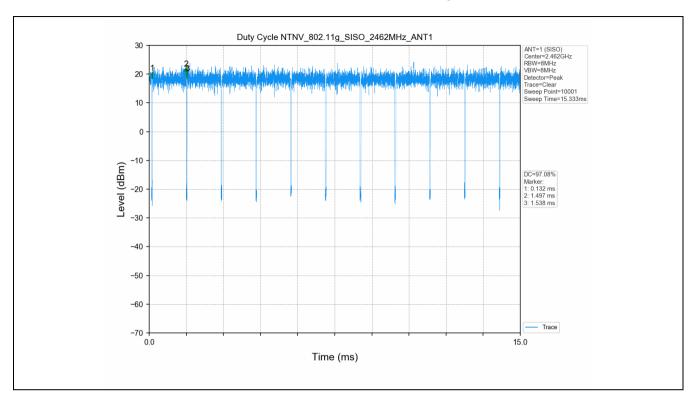
Page: 69 of 102

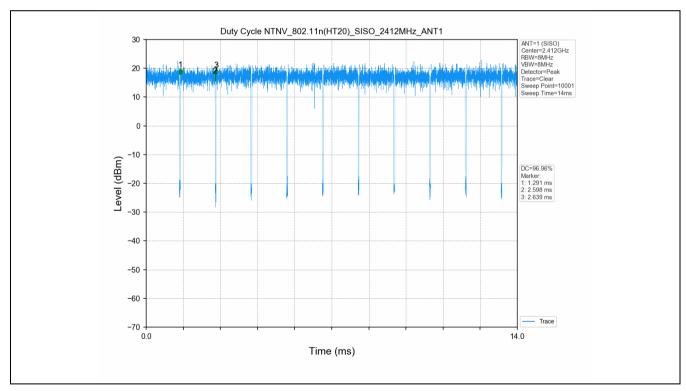




Report No.: KSEM200800093201

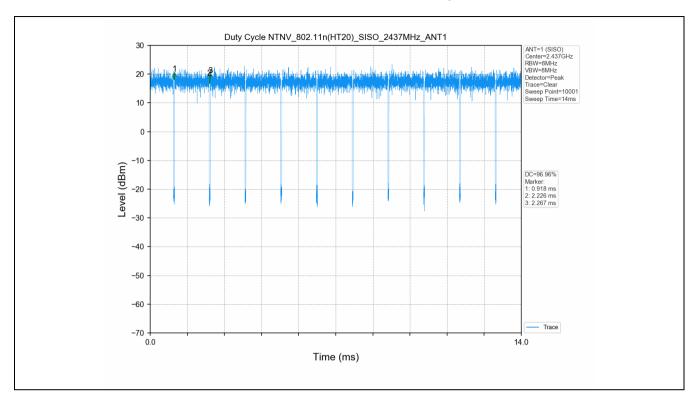
Page: 70 of 102

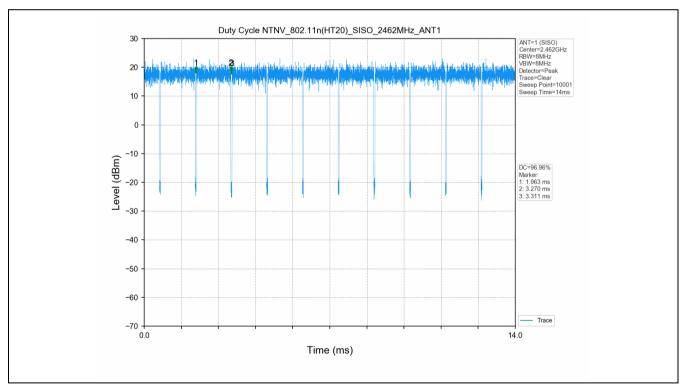




Report No.: KSEM200800093201

Page: 71 of 102





Report No.: KSEM200800093201

Page: 72 of 102

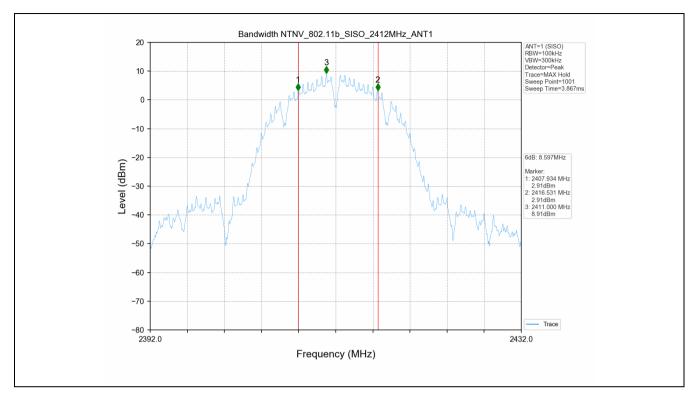
Report No.: KSEM200800093201

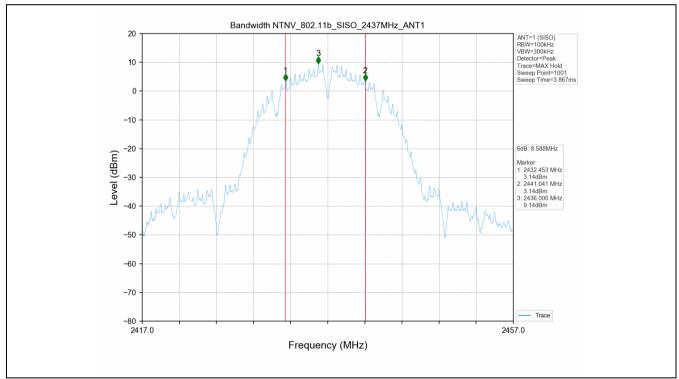
73 of 102 Page:

2. Bandwidth

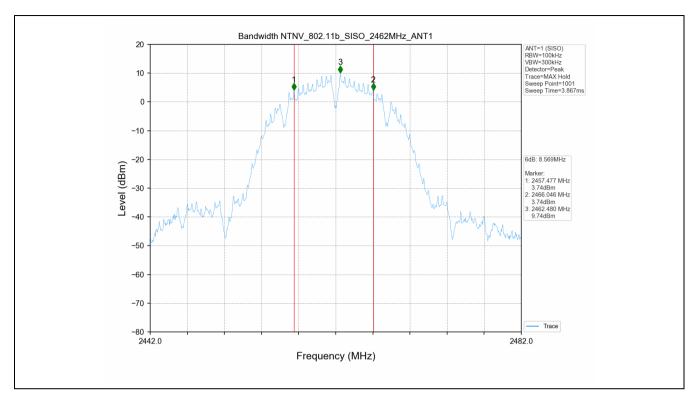
2.1 Test Result

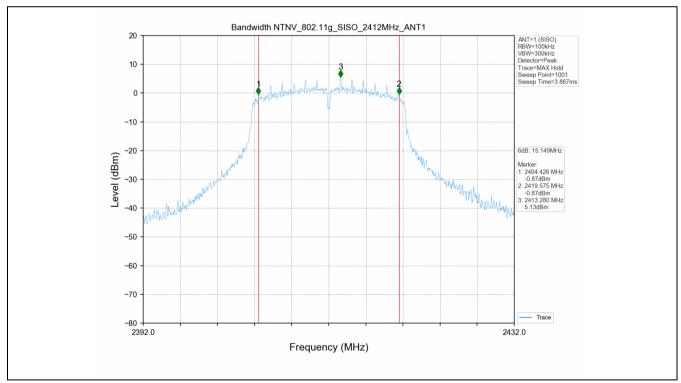
Took Mode	Frequency (MHz)	TX Type	ANT No.	6dB Bar	\/andiat	
Test Mode				Test Result (MHz)	Limits (MHz)	Verdict
	2412	SISO	1	8.597	≥0.5	PASS
802.11b	2437	SISO	1	8.588	≥0.5	PASS
	2462	SISO	1	8.569	≥0.5	PASS
	2412	SISO	1	15.149	≥0.5	PASS
802.11g	2437	SISO	1	15.078	≥0.5	PASS
	2462	SISO	1	14.758	≥0.5	PASS
	2412	SISO	1	15.098	≥0.5	PASS
802.11n(HT20)	2437	SISO	1	15.147	≥0.5	PASS
	2462	SISO	1	15.151	≥0.5	PASS


Test Mode	Frequency	TV Tupo	ANT No.	99% Occupied Bandwidth		
i est Mode	(MHz)	TX Type	ANT NO.	Test Res	t (MHz)	
	2412	SISO	1	13.976	Only for Report Use	
802.11b	2437	SISO	1	13.980	Only for Report Use	
	2462	SISO	1	13.960	Only for Report Use	
	2412	SISO	1	16.476	Only for Report Use	
802.11g	2437	SISO	1	16.507	Only for Report Use	
	2462	SISO	1	16.472	Only for Report Use	
	2412	SISO	1	17.543	Only for Report Use	
802.11n(HT20)	2437	SISO	1	17.585	Only for Report Use	
	2462	SISO	1	17.564	Only for Report Use	

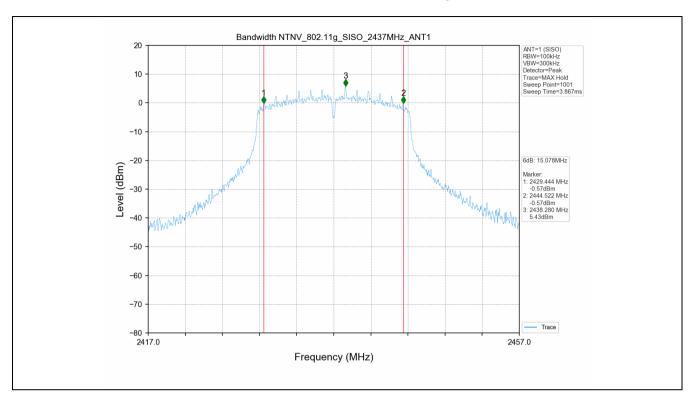

2.2 Test Graph - 6dB Bandwidth

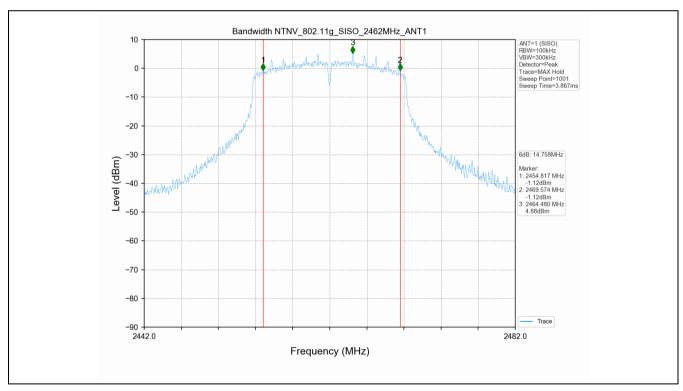
Page: 74 of 102





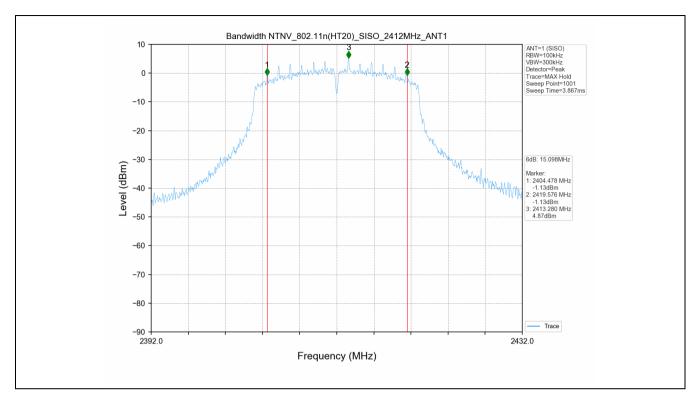
Page: 75 of 102

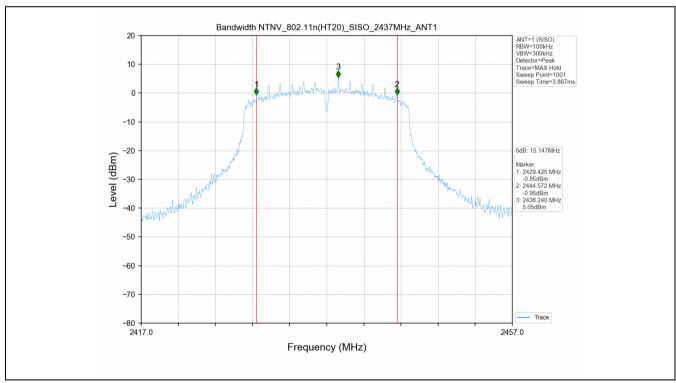




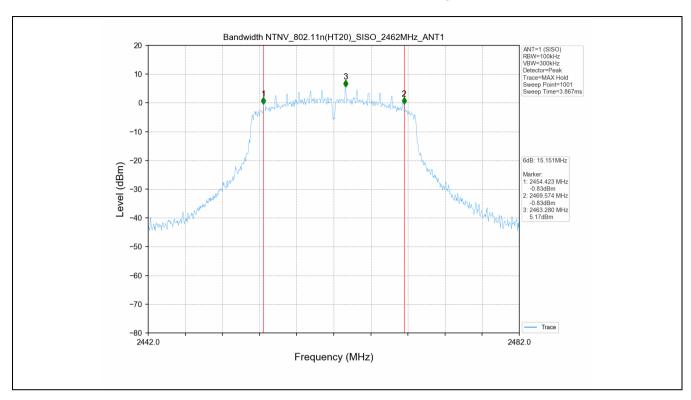
Report No.: KSEM200800093201

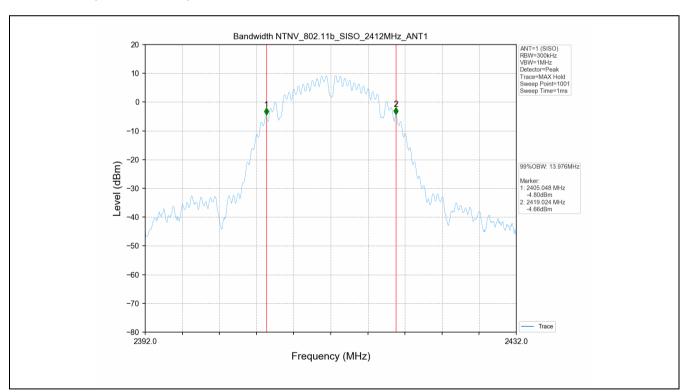
Page: 76 of 102



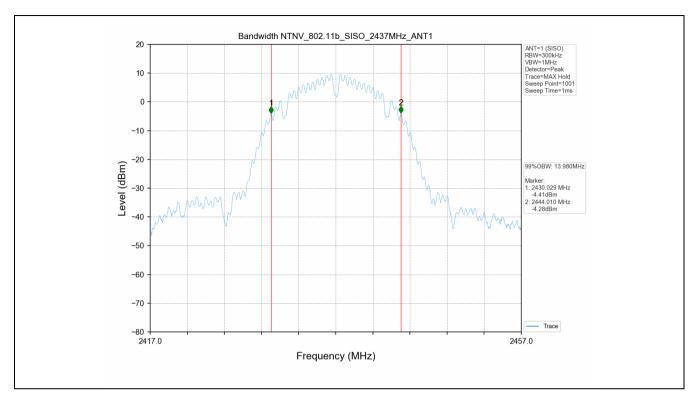


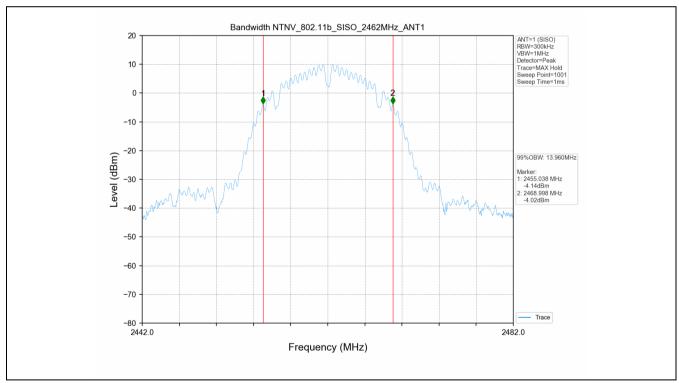
Page: 77 of 102



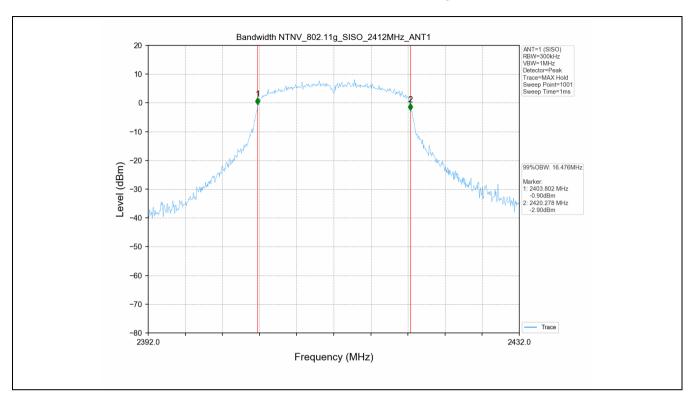


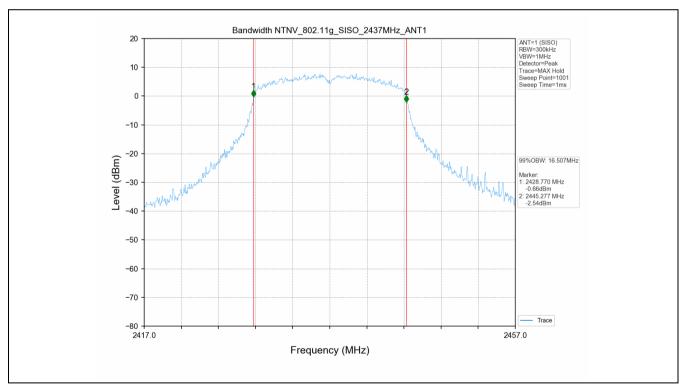
Page: 78 of 102


2.3 Test Graph - 99% Occupied Bandwidth



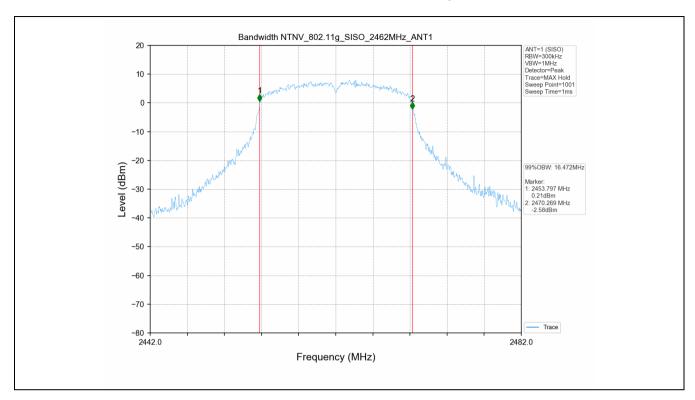
Page: 79 of 102

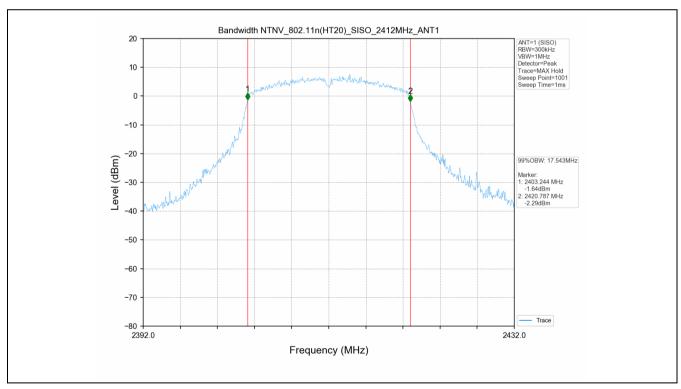




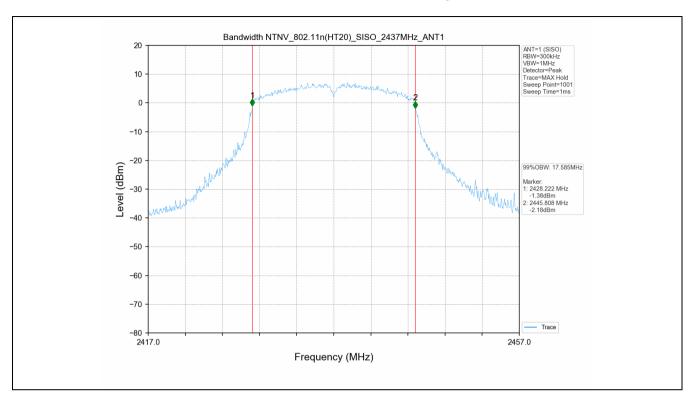
Report No.: KSEM200800093201

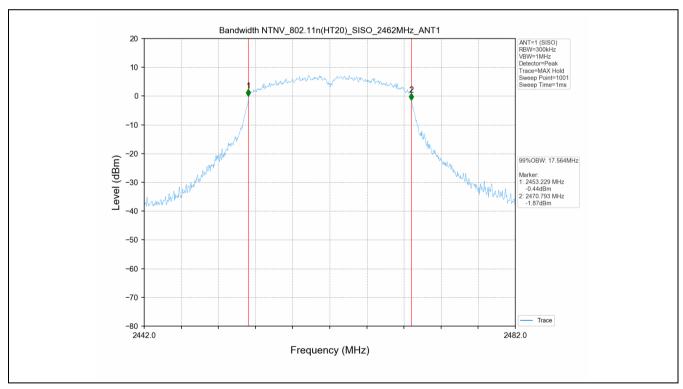
Page: 80 of 102





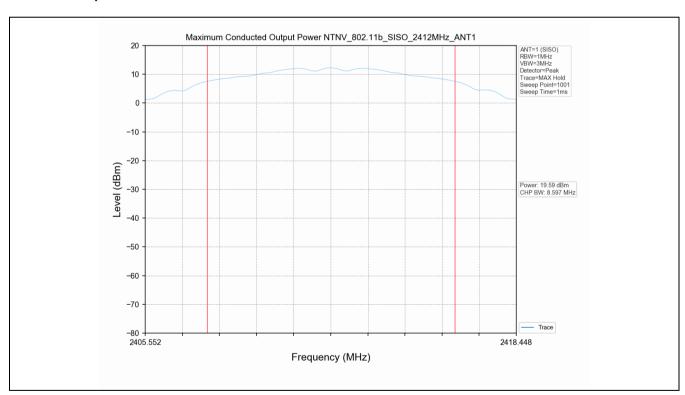
Page: 81 of 102





Report No.: KSEM200800093201

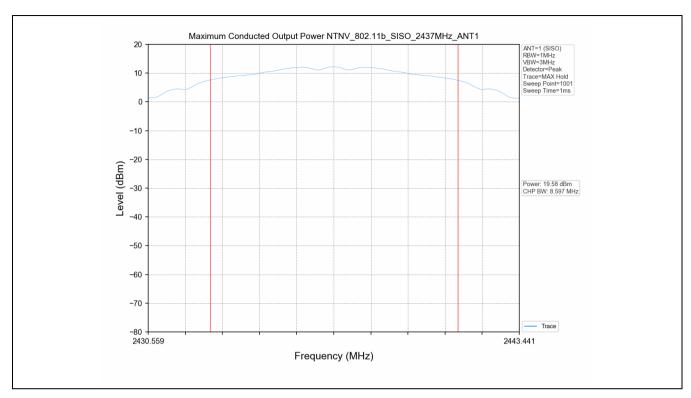
Page: 82 of 102

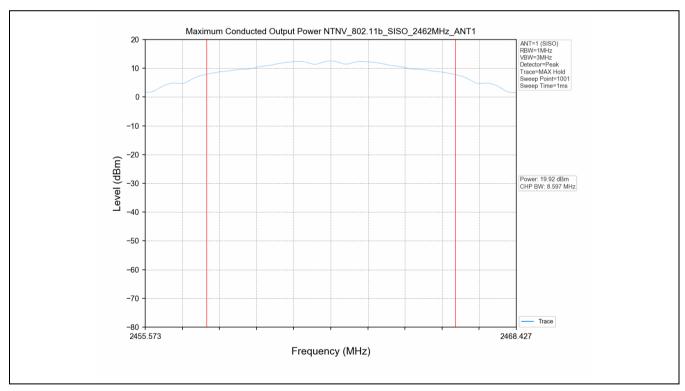

Page: 83 of 102

3. Maximum Conducted Output Power

3.1 Test Result

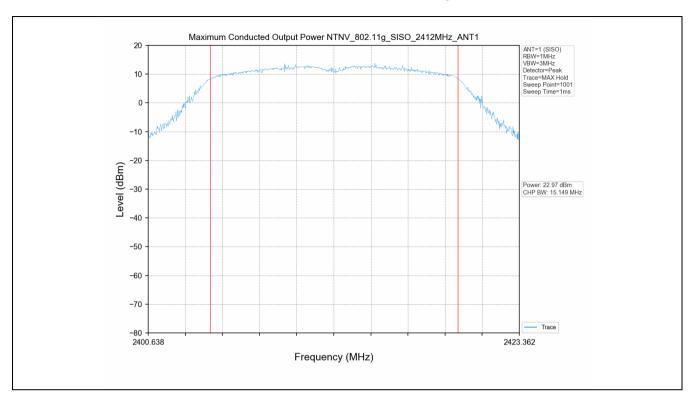
Test Mode	Frequency (MHz)	Тх Туре	Measured Peak Output Power (dBm)	Limits (dBm)	Verdict	
	(1711 12)		Ant 1			
	2412	SISO	19.59	30	PASS	
802.11b	2437	SISO	19.58	30	PASS	
	2462	SISO	19.92	30	PASS	
	2412	SISO	22.97	30	PASS	
802.11g	2437	SISO	23.24	30	PASS	
	2462	SISO	23.37	30	PASS	
802.11n(HT20)	2412	SISO	22.32	30	PASS	
	2437	SISO	22.46	30	PASS	
	2462	SISO	22.66	30	PASS	

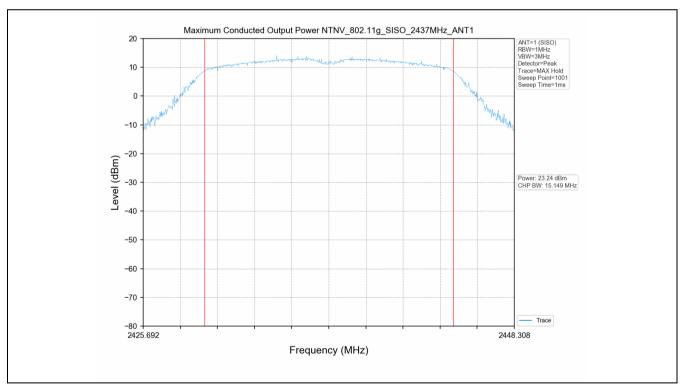

3.2 Test Graph



Report No.: KSEM200800093201

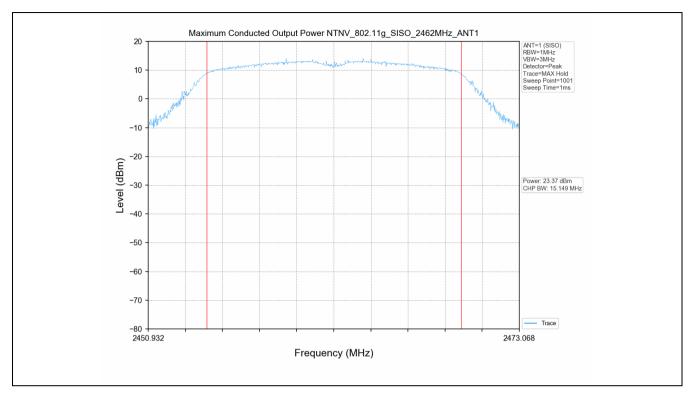
Page: 84 of 102

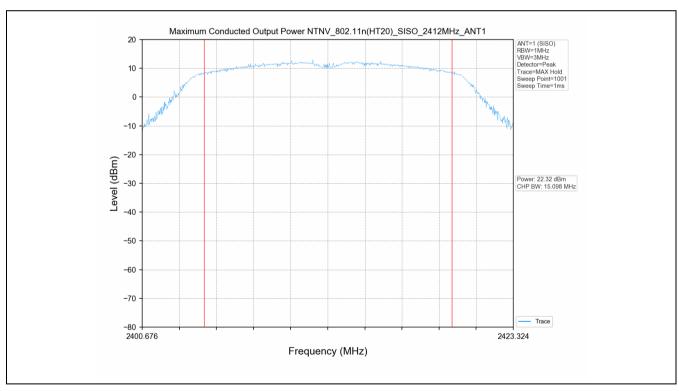




Report No.: KSEM200800093201

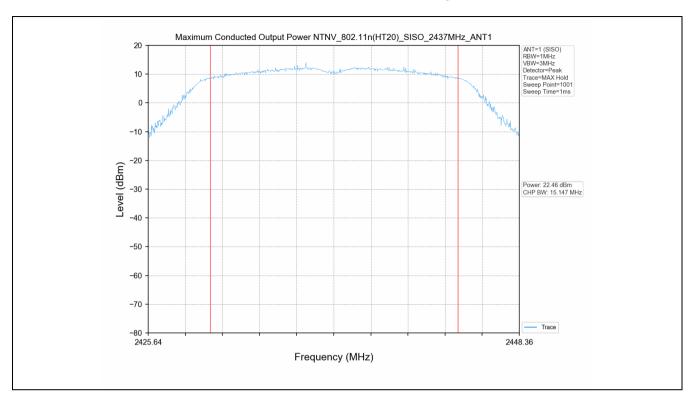
Page: 85 of 102

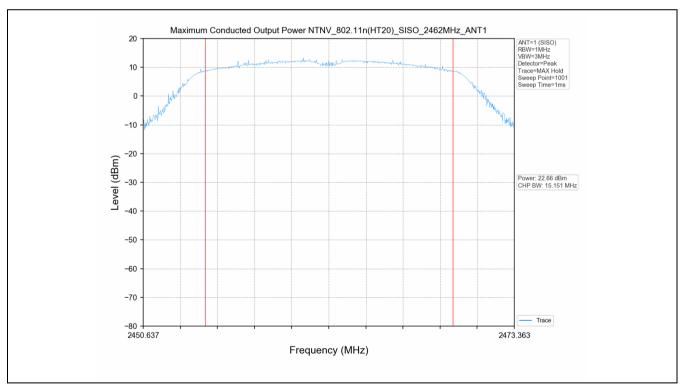




Report No.: KSEM200800093201

Page: 86 of 102





Report No.: KSEM200800093201

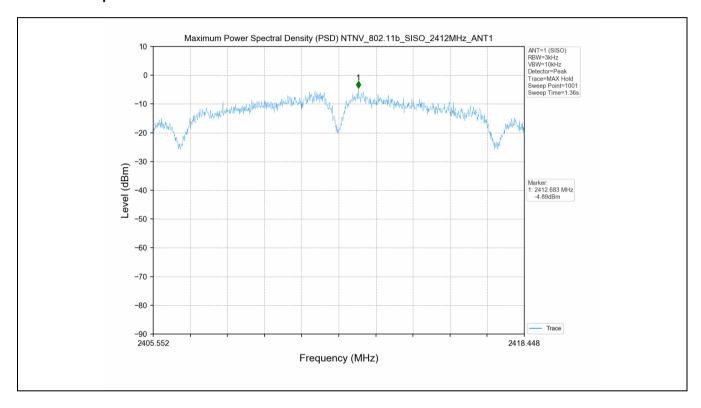
Page: 87 of 102

4. Maximum Power Spectral Density (PSD)

4.1 Test Result

Test Mode Frequency (MHz) Tx Type	Maximum Power Spectral Density (dBm/3KHz) Ant 1	Limits (dBm/3kHz)	Verdict
-----------------------------------	--	----------------------	---------

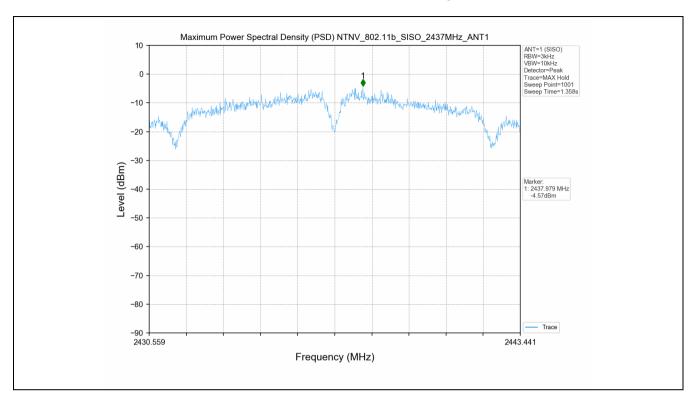
No.10, Weiye Road, Innovation Park, Kunshan, Jiangsu, China 215300 中国・江苏・昆山市留学生创业园伟业路10号 邮编 215300 t(86-512)57355888 f(86-512)57370818 www.sgsgroup.com.cn t(86-512)57355888 f(86-512)57370818 sgs.china@sgs.com

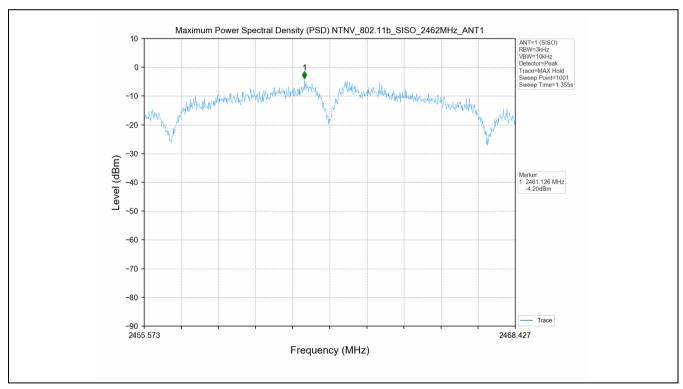


Report No.: KSEM200800093201

88 of 102 Page:

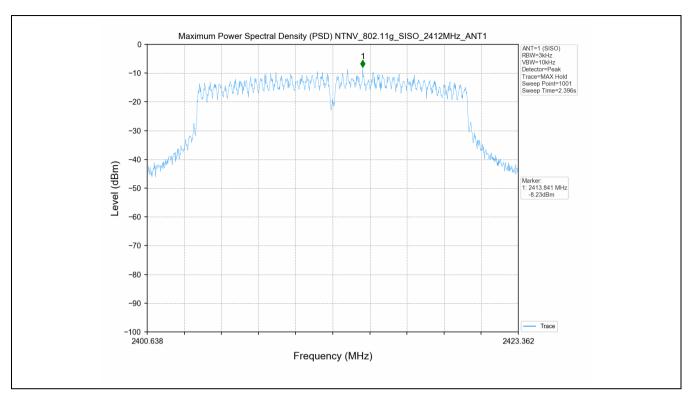
	2412	SISO	-4.89	≤8	PASS
802.11b	2437	SISO	-4.57	≤8	PASS
	2462	SISO	-4.20	≤8	PASS
	2412	SISO	-8.23	≤8	PASS
802.11g	2437	SISO	-7.53	≤8	PASS
	2462	SISO	-9.08	≤8	PASS
	2412	SISO	-8.35	≤8	PASS
802.11n(HT20)	2437	SISO	-8.77	≤8	PASS
	2462	SISO	-9.25	≤8	PASS

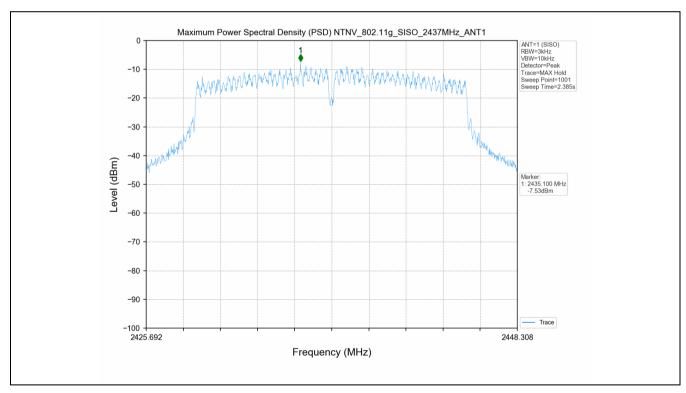

4.2 Test Graph



Report No.: KSEM200800093201

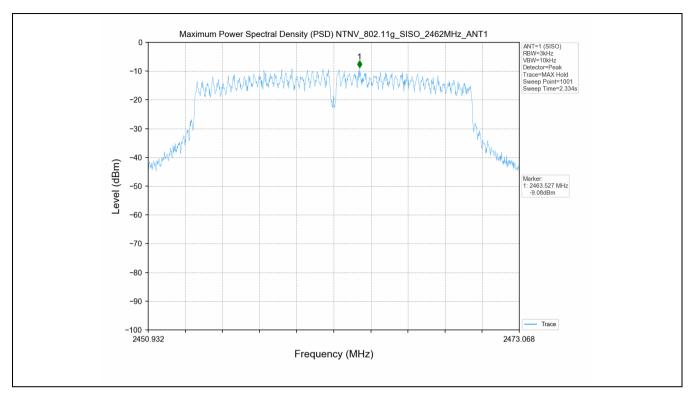
Page: 89 of 102

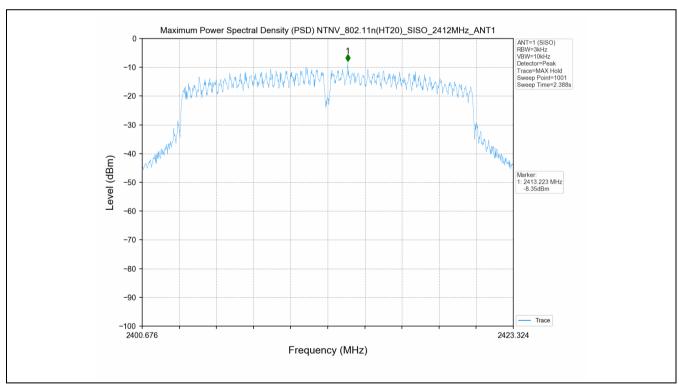




Report No.: KSEM200800093201

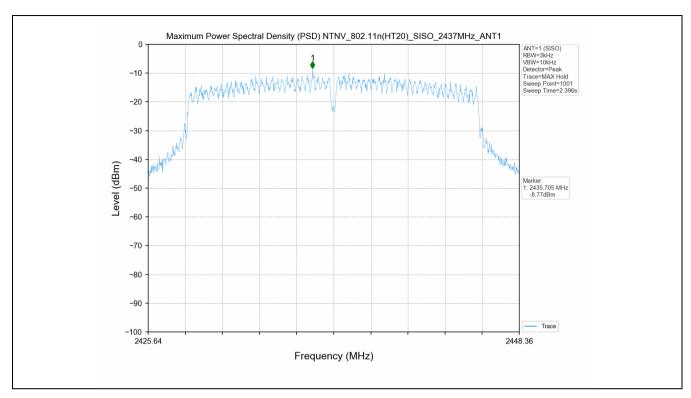
Page: 90 of 102

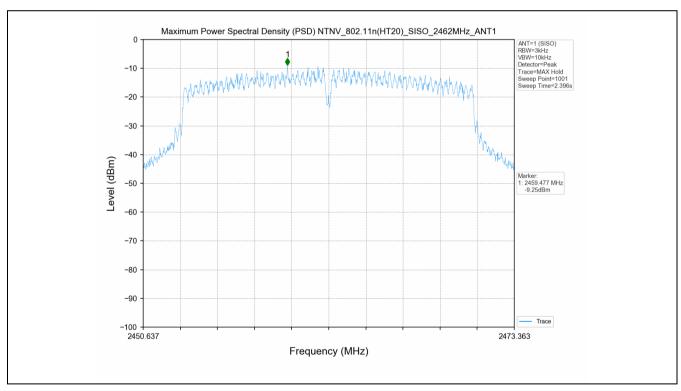




Report No.: KSEM200800093201

Page: 91 of 102





Report No.: KSEM200800093201

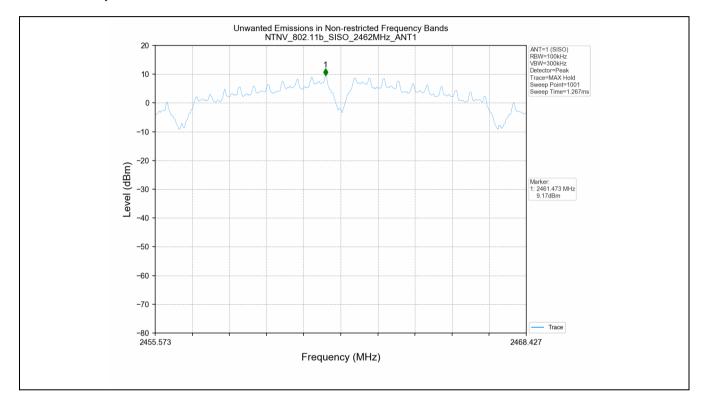
Page: 92 of 102

5. Unwanted Emissions in Non-restricted Frequency Bands

5.1 Test Result

Test Mode	Frequency (MHz)	TX Type	ANT No.	Spurious Conducted Emission (dBm)	Limits (dBm)	Verdict
000 445	2412	SISO	1	Refer to test graph	-10.83	PASS
802.11b	2437	SISO	1	Refer to test graph	-10.83	PASS

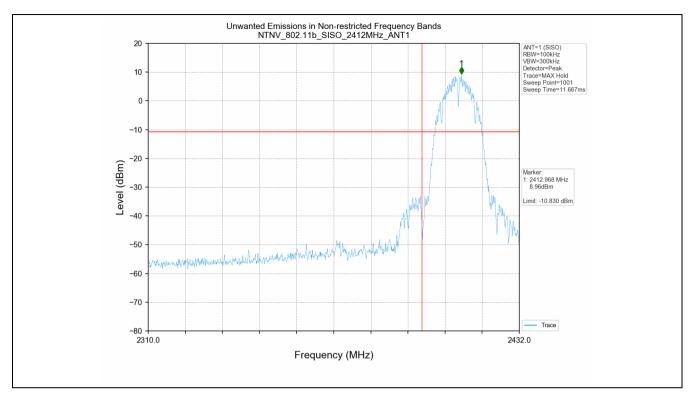
No.10, Weiye Road, Innovation Park, Kunshan, Jiangsu, China 215300 中国・江苏・昆山市留学生创业园伟业路10号 邮编 215300 t(86-512)57355888 f(86-512)57370818 www.sgsgroup.com.cn t(86-512)57355888 f(86-512)57370818 sgs.china@sgs.com

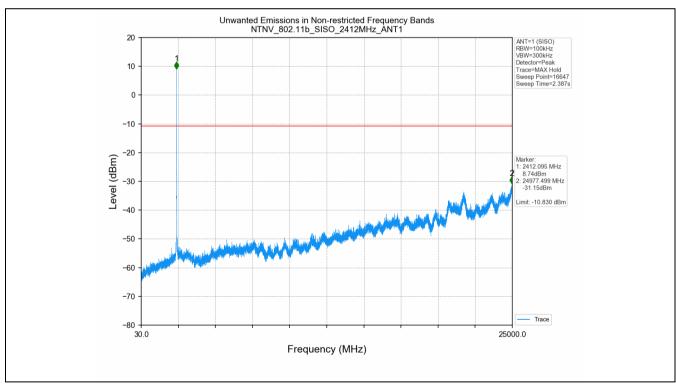


Report No.: KSEM200800093201

93 of 102 Page:

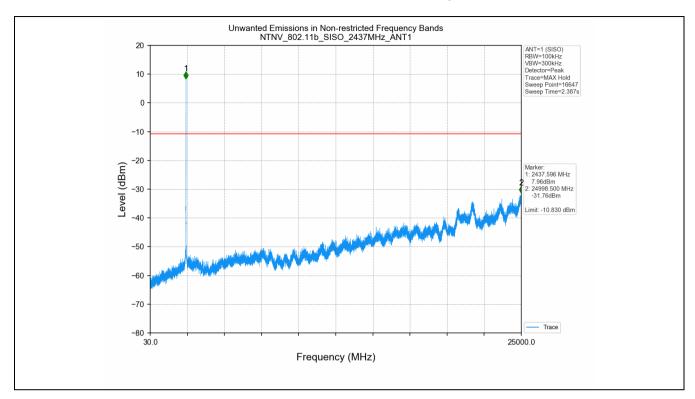
	2462	SISO	1	Refer to test graph	-10.83	PASS
	2412	SISO	1	Refer to test graph	-14.39	PASS
802.11g	2437	SISO	1	Refer to test graph	-14.39	PASS
	2462	SISO	1	Refer to test graph	-14.39	PASS
	2412	SISO	1	Refer to test graph	-14.96	PASS
802.11n(HT20)	2437	SISO	1	Refer to test graph	-14.96	PASS
	2462	SISO	1	Refer to test graph	-14.96	PASS

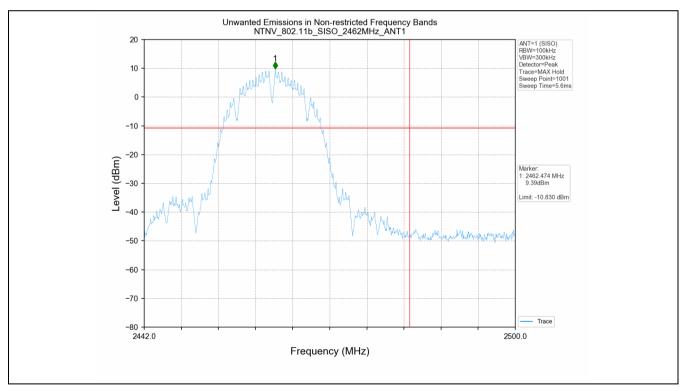

5.2 Test Graph



Report No.: KSEM200800093201

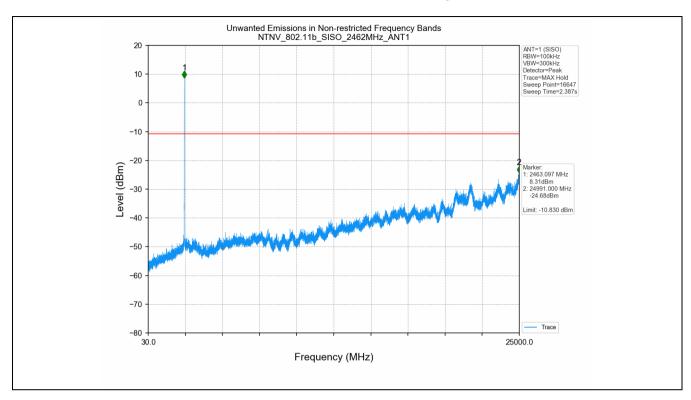
Page: 94 of 102

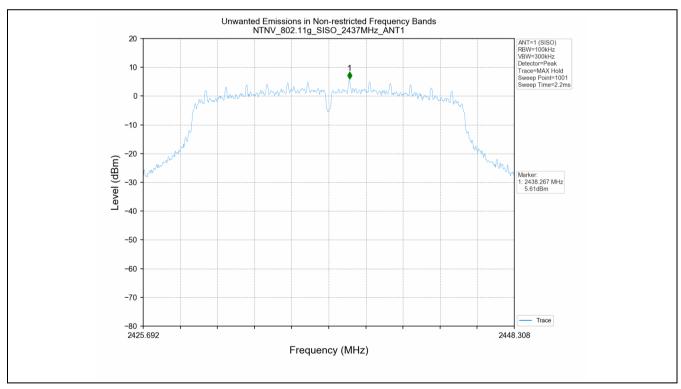




Report No.: KSEM200800093201

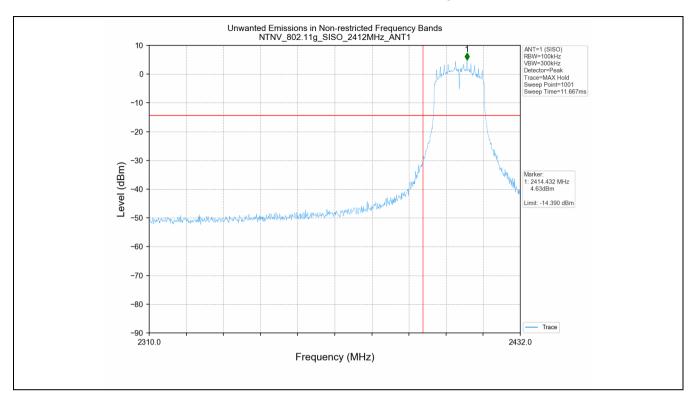
Page: 95 of 102

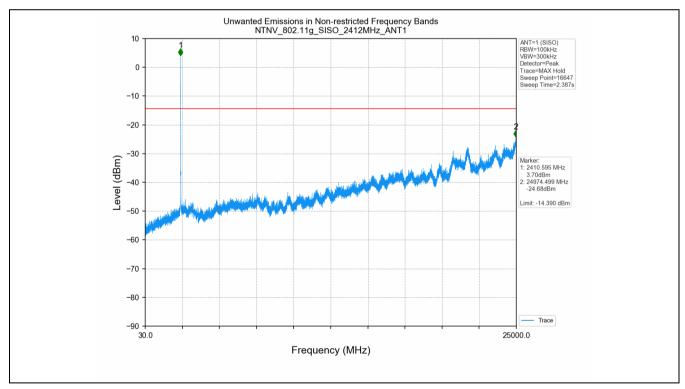




Report No.: KSEM200800093201

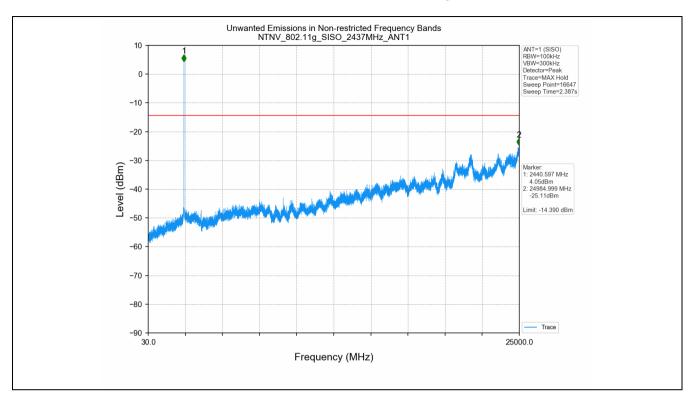
Page: 96 of 102

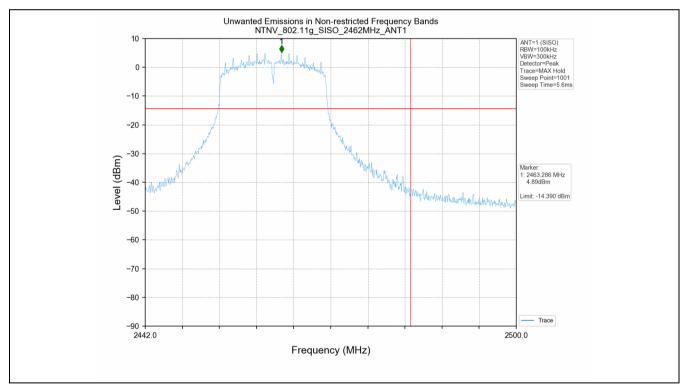




Report No.: KSEM200800093201

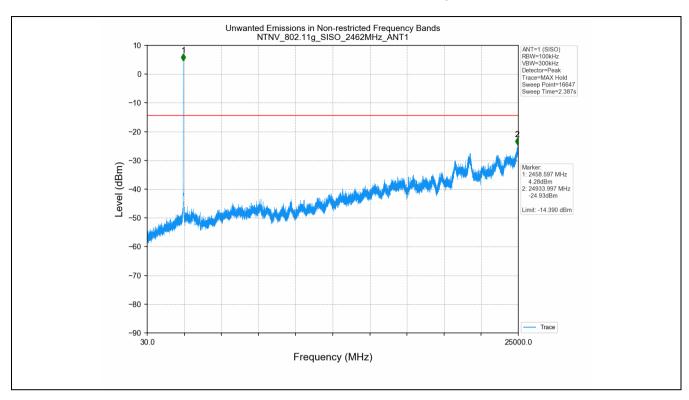
Page: 97 of 102

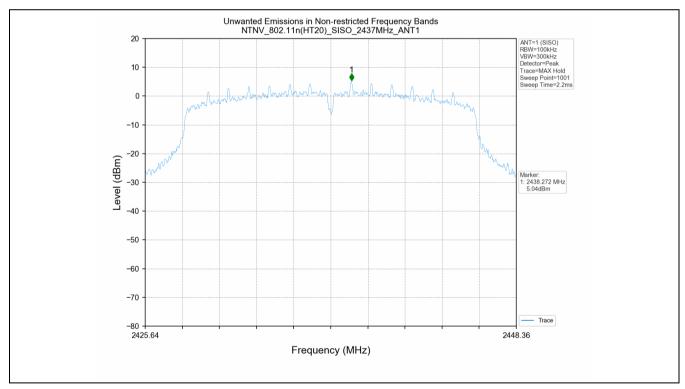




Report No.: KSEM200800093201

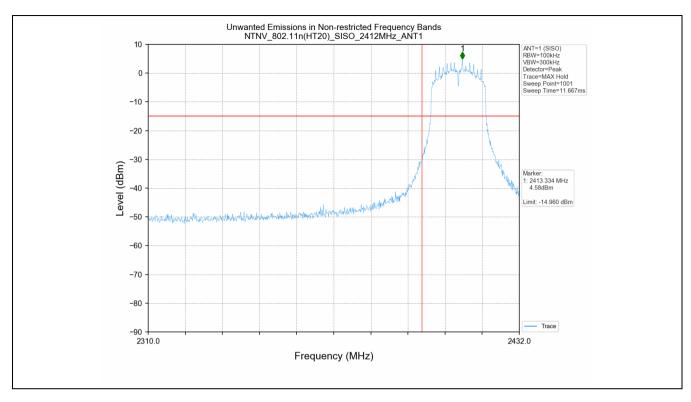
Page: 98 of 102

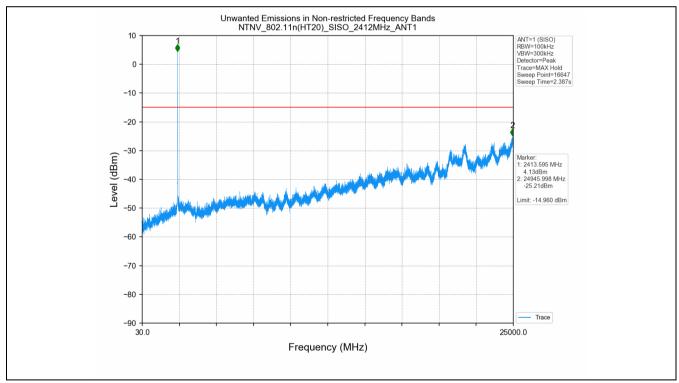




Report No.: KSEM200800093201

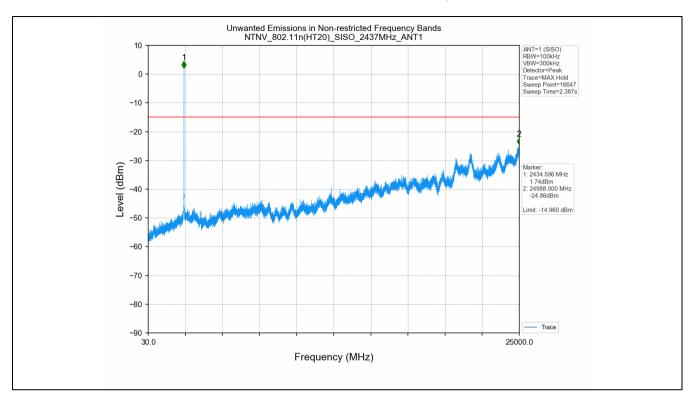
Page: 99 of 102

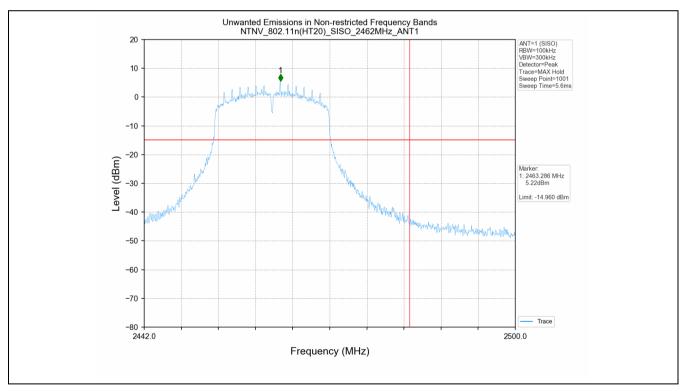




Report No.: KSEM200800093201

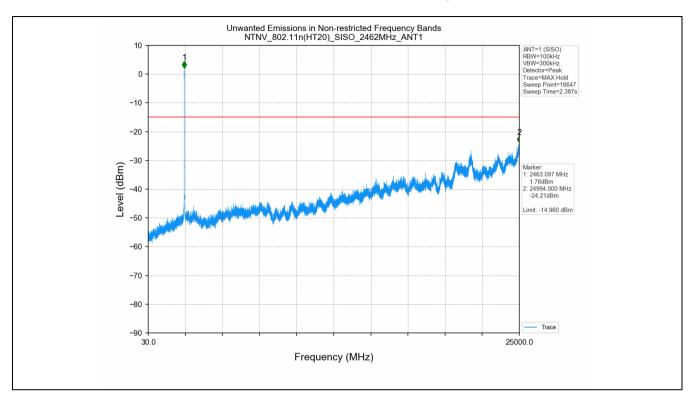
Page: 100 of 102





Report No.: KSEM200800093201

Page: 101 of 102



Report No.: KSEM200800093201

Page: 102 of 102

- End of the Report -