

SGS-CSTC Standards Technical Services (Shanghai) Co., Ltd.

Report No.: SHEM200300156704 Page: 1 of 134

TEST REPORT

Application No.:	SHEM2003001567CR		
FCC ID:	2AH25F4E00		
Applicant:	Shanghai Sunmi Technology Co.,Ltd.		
Address of Applicant:	Room 605,Block 7,KIC Plaza,No.388 Song Hu Road Yang Pu District,Shanghai,China		
Manufacturer:	Shanghai Sunmi Technology Co.,Ltd.		
Address of Manufacturer:	Room 605,Block 7,KIC Plaza,No.388 Song Hu Road Yang Pu District,Shanghai,China		
Factory:	BYD Precision Manufacture Co.,Ltd		
Address of Factory:	No.3001,Bao He Road,Baolong Industry Zone,Longgang Sub- district,Longgang District,Shenzhen,Guangdong Province,China		
Equipment Under Test (EU	Т):		
EUT Name:	Self-Checkout Kiosk		
Model No.:	F4E00		
Trade mark:	SUNMI		
Standard(s) :	47 CFR Part 15, Subpart E 15.407		
Date of Receipt:	2020-03-19		
Date of Test:	2020-03-15 to 2020-05-14		
Date of Issue:	2020-05-16		
Test Result:	Pass*		
* In the configuration tested, the EUT complied with the standards presided should			

* In the configuration tested, the EUT complied with the standards specified above.

parlan share

Parlam Zhan E&E Section Manager

The manufacturer should ensure that all products in series production are in conformity with the product sample detailed in this report. If the product in this report is used in any configuration other than that detailed in the report, the manufacturer must ensure the new system complies with all relevant standards. Any mention of SGS International Electrical Approvals or testing done by SGS International Electrical Approvals in connection with, distribution or use of the product described in this report must be approved by SGS International Electrical Approvals in writing.

Unless otherwise agreed in writing, this document is issued by the Company subject to its General Conditions of Service printed
overleaf, available on request or accessible at http://www.sgs.com/en/Terms-and-Conditions.aspx and, for electronic format documents,
subject to Terms and Conditions for Electronic Documents at http://www.sgs.com/en/Terms-and-Conditions/Terms-e-Document.aspx.
Attention is drawn to the limitation of liability, indemnification and jurisdiction issues defined therein. Any holder of this document is
advised that information contained hereon reflects the Company's findings at the time of its intervention only and within the limits of
Client's instructions, if any. The Company's sole responsibility is to its Client and this document does not exonerate parties to a
transaction from exercising all their rights and obligations under the transaction documents. This document cannot be reproduced
except in full, without prior written approval of the Company. Any unauthorized alteration, forgery or falsification of the content or
appearance of this document is unlawful and offenders may be prosecuted to the fullest extent of the law. Unless otherwise stated the
results shown in this test report refer only to the sample(s) tested and such sample(s) are retained for 30 days only.
Attention: To check the authenticity of testing /inspection report & certificate, please contact us at telephone: (86-755) 8307 1443,

or email: <u>CN.Doccheck@sgs.com</u> Ltd NO.588 West Jindu Road,Songjiang District,Shanghai,China 201612 中国・上海・松江区金都西路588号 邮编: 201612

t(86-21) 61915666 f(86-21) 61915678 www.sgsgroup.com.cn t(86-21) 61915666 f(86-21) 61915678 e sgs.china@sgs.com

Report No.: SHEM200300156704 Page: 2 of 134

Revision Record			
Version	Description	Date	Remark
00	Original	2020-05-16	/

Authorized for issue by:			
	pichal Nic		
	Micheal Niu / Project Engineer	-	
	parlam zhan		
	Parlam Zhan / Reviewer	-	

Report No.: SHEM200300156704 Page: 3 of 134

2 Test Summary

Radio Spectrum Technical Requirement				
Item	Standard	Method	Requirement	Result
Antenna Requirement	47 CFR Part 15, Subpart E 15.407	N/A	47 CFR Part 15, Subpart C 15.203	Pass
Transmission in the Absence of Data	47 CFR Part 15, Subpart E 15.407	N/A	47 CFR Part 15, Subpart C 15.407 (c)	Pass

N/A: Not applicable

Radio Spectrum Matter Part					
Item	Standard	Method	Requirement	Result	
Conducted Emissions at AC Power Line (150kHz-30MHz)	47 CFR Part 15, Subpart E 15.407	ANSI C63.10 (2013) Section 6.2	47 CFR Part 15, Subpart C 15.207 & 15.407 b(6)	Pass	
99% Bandwidth	47 CFR Part 15, Subpart E 15.407	KDB 789033 II D	N/A	Pass	
26dB Emission bandwidth	47 CFR Part 15, Subpart E 15.407	KDB 789033 D02 II C 1	47 CFR Part 15, Subpart C 15.407 (a)	Pass	
Minimum 6 dB bandwidth (5.725- 5.85 GHz band)	47 CFR Part 15, Subpart E 15.407	KDB 789033 D02 II C 2	47 CFR Part 15, Subpart C 15.407 (e)	Pass	
Maximum Conducted output power	47 CFR Part 15, Subpart E 15.407	KDB 789033 D02 II E	47 CFR Part 15, Subpart C 15.407 (a)	Pass	
Peak Power spectrum density	47 CFR Part 15, Subpart E 15.407	KDB 789033 D02 II F	47 CFR Part 15, Subpart C 15.407 (a)	Pass	
Radiated Emissions	47 CFR Part 15, Subpart E 15.407	KDB 789033 D02 II G	47 CFR Part 15, Subpart C 15.209 & 15.407(b)	Pass	
Radiated Emissions which fall in the restricted bands	47 CFR Part 15, Subpart E 15.407	KDB 789033 D02 II G	47 CFR Part 15, Subpart C 15.209 & 15.407(b)	Pass	
Frequency Stability	47 CFR Part 15, Subpart E 15.407	ANSI C63.10 (2013) Section 6.8	47 CFR Part 15, Subpart C 15.407 (g)	Pass	

N/A: Not applicable

Remark: The product has two kinds of scan header optional, EM20-80 and 3450Vsi. Both two scan headers have evaluated EMC and won't affect RF characteristics.

Report No.: SHEM200300156704 Page: 4 of 134

3 Contents

			Page
1	CO	VER PAGE	1
2	TE	ST SUMMARY	3
3	со	NTENTS	4
4	GE	NERAL INFORMATION	5
	4.1	DETAILS OF E.U.T.	
	4.2	DESCRIPTION OF SUPPORT UNITS	
	4.3	Power level setting using in test	
	4.4	MEASUREMENT UNCERTAINTY	7
	4.5	TEST LOCATION	
	4.6	TEST FACILITY	-
	4.7	DEVIATION FROM STANDARDS	
	4.8	ABNORMALITIES FROM STANDARD CONDITIONS	8
5	EQ	UIPMENT LIST	9
6	RA	DIO SPECTRUM TECHNICAL REQUIREMENT	11
	6.1	ANTENNA REQUIREMENT	
	6.2	TRANSMISSION IN THE ABSENCE OF DATA	12
7	RA	DIO SPECTRUM MATTER TEST RESULTS	13
	7.1	CONDUCTED EMISSIONS AT AC POWER LINE (150kHz-30MHz)	
	7.2	99% Bandwidth	
	7.3	26DB EMISSION BANDWIDTH	
	7.4	MINIMUM 6 DB BANDWIDTH (5.725-5.85 GHz BAND)	
	7.5		
	7.6	PEAK POWER SPECTRUM DENSITY	
	7.7 7.8	RADIATED EMISSIONS RADIATED EMISSIONS WHICH FALL IN THE RESTRICTED BANDS	
	7.8 7.9	FREQUENCY STABILITY	
8		ST SETUP PHOTOGRAPHS	
U			
9	EU	T CONSTRUCTIONAL DETAILS	134

Report No.: SHEM200300156704 Page: 5 of 134

4 General Information

4.1 Details of E.U.T.

Power supply: AC

AC 100~240V 50/60Hz

Test voltage:	AC 120V/60Hz			
Operation Frequency:	Band	Mode	Frequency Range(MHz)	Number of channels
	Band 1	802.11a/n(HT20)/ac(HT20)	5180-5240	4
		802.11n(HT40)/ac(HT40)	5190-5230	2
		802.11ac(HT80)	5210	1
	Band 4	802.11a/n(HT20)/ac(HT20)	5745-5825	5
		802.11n(HT40)/ac(HT40)	5755-5795	2
		802.11ac(HT80)	5775	1
Modulation Type:	802.11a: OFDM	802.11a: OFDM (64QAM, 16QAM, QPSK, BPSK)		
	802.11n: OFDM	802.11n: OFDM (BPSK, QPSK, 16QAM, 64QAM)		
	802.11ac: OFDN	802.11ac: OFDM (BPSK, QPSK, 16QAM, 64QAM, 256QAM)		
Channel Spacing:	802.11a/n(HT20)/ac(HT20): 20MHz			
	802.11n(HT40)/a	802.11n(HT40)/ac(HT40): 40MHz		
	802.11ac(HT80)	802.11ac(HT80): 80MHz		
Data Rate:	802.11a: 6/9/12/18/24/36/48/54Mbps			
	802.11n: MCS0-7			
	802.11ac: MCS0-9			
Antenna Gain:	2 dBi	2 dBi		
Antenna Type:	PIFA Antenna			

4.2 Description of Support Units

Description	Manufacturer	Model No.	Serial No.
Laptop	Lenovo	ThinkPad X100e	/
Serial port adapter plate	/	Test Plate 3	/

4.3 Power level setting using in test

	<u> </u>		
Channel	802.11a	802.11n(HT20)	802.11ac(VHT20)
5180	Default	Default	Default
5200	Default	Default	Default
5240	Default	Default	Default
5745	Default	Default	Default
5785	Default	Default	Default
5825	Default	Default	Default
Channel	802.11n(HT40)	802.11ac(VHT40)	
5190	Default	Default	
5230	Default	Default	
5755	Default	Default	
5795	Default	Default	

Report No.: SHEM200300156704 Page: 6 of 134

Channel	802.11ac(VHT80)
5210	Default
5775	Default

Report No.: SHEM200300156704 Page: 7 of 134

4.4 Measurement Uncertainty

Item	Measurement Uncertainty
Radio Frequency	±8.4 x 10 ⁻⁸
Timeout	±2s
Duty cycle	±0.37%
Occupied Bandwidth	±3%
RF conducted power	±0.6dB
RF power density	±2.84dB
Conducted Spurious emissions	±0.75dB
DE Dedicted neuver	±4.6dB (Below 1GHz)
RF Radiated power	±4.1dB (Above 1GHz)
	±4.2dB (Below 30MHz)
Dedicted Sourious omission test	±4.4dB (30MHz-1GHz)
Radiated Spurious emission test	±4.8dB (1GHz-18GHz)
	±5.2dB (Above 18GHz)
Temperature test	±1°C
Humidity test	±3%
Supply voltages	±1.5%
Time	±3%
	Radio Frequency Timeout Duty cycle Occupied Bandwidth RF conducted power RF power density Conducted Spurious emissions RF Radiated power RF Radiated power Temperature test Humidity test Supply voltages

Note: The measurement uncertainty represents an expanded uncertainty expressed at approximately the 95% confidence level using a coverage factor of k=2.

Report No.: SHEM200300156704 Page: 8 of 134

4.5 Test Location

All tests were performed at: Compliance Certification Services (Kunshan) Inc. No.10 Weiye Rd, Innovation park, Eco&Tec, Development Zone, Kunshan City, Jiangsu, China. Tel: +86 512 5735 5888 Fax: +86 512 5737 0818 No tests were sub-contracted.

4.6 Test Facility

The test facility is recognized, certified, or accredited by the following organizations:

• CNAS (No. CNAS L4354)

CNAS has accredited Compliance Certification Services (Kunshan) Inc. to ISO/IEC 17025:2017 General Requirements for the Competence of Testing and Calibration Laboratories (CNAS-CL01 Accreditation Criteria for the Competence of Testing and Calibration Laboratories) for the competence in the field of testing.

• A2LA (Certificate No. 2541.01)

Compliance Certification Services (Kunshan) Inc. is accredited by the American Association for Laboratory Accreditation (A2LA). Certificate No. 2541.01.

• FCC (Designation Number: CN1172)

Compliance Certification Services Inc. has been recognized as an accredited testing laboratory. Designation Number: CN1172.

• ISED (CAB identifier: CN0072)

Compliance Certification Services (Kunshan) Inc. has been recognized by Innovation, Science and Economic Development Canada (ISED) as an accredited testing laboratory.

CAB Identifier: CN0072.

• VCCI (Member No.: 1938)

The 3m and 10m Semi-anechoic chamber and Shielded Room of Compliance Certification Services (Kunshan) Inc. has been registered in accordance with the Regulations for Voluntary Control Measures with Registration No.: R-1600, C-1707, T-1499, G-10216 respectively.

4.7 Deviation from Standards

None

4.8 Abnormalities from Standard Conditions

None

Report No.: SHEM200300156704 Page: 9 of 134

5 Equipment List

Item	Equipment	Manufacturer	Model	Serial Number	Cal Date	Cal. Due Date
	Equipment nducted Emission at Mains Term			Serial Number	Cal Date	Cal. Due Dale
1	EMI Test Receive	R&S	ESCI	100781	02/24/2020	02/23/2021
2	LISN	R&S	ENV216	101604	10/24/2019	10/23/2020
3	LISN	Schwarzbeck	NNLK 8129	8129-143	10/24/2019	10/23/2020
4	Pulse Limiter	R&S	ESH3-Z2	100609	02/24/2020	02/23/2021
5	CE test Cable	Thermax	/	14	02/24/2020	02/23/2021
	F Conducted Test		-		0_,_ ,_ 0_0_0	0_,_0,_0
1	Spectrum Analyzer	Agilent	E4446A	MY44020154	07/03/2019	07/02/2020
2	Spectrum Analyzer	Keysight	N9020A	MY55370209	12/19/2019	12/18/2020
3	Signal Generator	Agilent	E8257C	MY43321570	10/24/2019	10/23/2020
4	Vector Signal Generator	R&S	SMU 200A	102744	02/24/2020	02/23/2021
	Universal Radio Communication					
5	Tester	R&S	CMU200	109525	12/19/2019	12/18/2020
6	Universal Radio Communication Tester	R&S	CMW500	159275	12/19/2019	12/18/2020
7	Power Meter	Anritsu	ML2495A	1445010	04/21/2019	04/20/2020
8	Power Meter	Anritsu	ML2495A	1445010	04/21/2020	04/20/2021
9	Switcher	CCSRF	FY562	KS301219	12/20/2019	12/19/2020
10	AC Power Source	EXTECH	6605	1570106	N.C.R	N.C.R
11	DC Power Supply	Aglient	E3632A	MY50340053	N.C.R	N.C.R
12	6dB Attenuator	Mini-Circuits	NAT-6-2W	15542-1	N.C.R	N.C.R
13	Power Divider	AISI	IOWOPE2068	PE2068	N.C.R	N.C.R
14	Filter	MICRO-TRONICS	BRM50701	5	N.C.R	N.C.R
15	Conducted test cable	/	RF01-RF04	/	04/21/2019	04/20/2020
16	Conducted test cable	/	RF01-RF04	/	04/21/2020	04/22/2021
17	Temp. / Humidity Chamber	TERCHY	MHK-120AK	X30109	04/21/2019	04/20/2020
18	Temp. / Humidity Chamber	TERCHY	MHK-120AK	X30109	04/21/2020	04/20/2021
RF F	Radiated Test			•		
1	Spectrum Analyzer	R&S	FSV40	101493	01/08/2020	01/07/2021
2	Signal Generator	Agilent	E8257C	MY43321570	10/24/2019	10/23/2020
3	Loop Antenna	Schwarzbeck	HXYZ9170	9170-108	02/24/2020	02/23/2021
4	Bilog Antenna	TESEQ	CBL 6112D	35403	06/22/2019	06/21/2020
5	Bilog Antenna	SCHWARZBECK	VULB9160	9160-3342	04/29/2019	04/28/2021
6	Horn-antenna(1-18GHz)	Schwarzbeck	BBHA9120D	267	11/04/2018	11/03/2020
7	Horn-antenna(1-18GHz)	ETS-LINDGREN	3117	00143290	02/25/2019	02/24/2021
8	Horn Antenna(18-40GHz)	Schwarzbeck	BBHA9170	BBHA9170171	02/27/2018	02/26/2021
9	Pre-Amplifier(30MHz~18GHz)	CCSRF	AMP1277	1	12/19/2019	12/18/2020
10	Pre-Amplifier(0.1~26.5GHz)	EMCI	EMC012645	980060	07/03/2019	07/02/2020
11	Low Pass Filter	MICRO-TRONICS	VLFX-950	RV142900829	N.C.R	N.C.R
12	High Pass Filter	Mini-Circuits	VHF-1200	15542	N.C.R	N.C.R
13	Filter (5450MHz~5770 MHz)	MICRO-TRONICS	BRC50704-01	2	N.C.R	N.C.R
14	Filter (5690 MHz~5930 MHz)	MICRO-TRONICS	BRC50705-01	4	N.C.R	N.C.R
15	Filter (5150 MHz~5350 MHz)	MICRO-TRONICS	BRC50703-01	2	N.C.R	N.C.R
16	Filter (885 MHz~915 MHz)	MICRO-TRONICS	BRM14698	1	N.C.R	N.C.R
17	Filter (815 MHz~860 MHz)	MICRO-TRONICS	BRM14697	1	N.C.R	N.C.R
18	Filter (1745 MHz~1910 MHz)	MICRO-TRONICS	BRM14700	1	N.C.R	N.C.R
19	Filter (1922 MHz~1977 MHz)	MICRO-TRONICS	BRM50715	1	N.C.R	N.C.R
20	Filter (2550 MHz)	MICRO-TRONICS	HPM13362	5	N.C.R	N.C.R
21	Filter (1532 MHz~1845 MHz)	MICRO-TRONICS	BRM50713	1	N.C.R	N.C.R

NO.588 West Jindu Road,Songjiang District,Shanghai,China 201612 中国・上海・松江区金都西路588号 郎编: 201612 t(86-21)61915666 f(86-21)61915678 www.sgsgroup.com.cn t(86-21)61915666 f(86-21)61915678 e sgs.china@sgs.com

SGS-CSTC Standards Technical Services (Shanghai) Co., Ltd.

Report No.: SHEM200300156704 Page: 10 of 134

22	Filter (2.4GHz)	MICRO-TRONICS	BRM50701	5	N.C.R	N.C.R
23	RE test cable	/	RE01-RE04	/	04/21/2019	04/20/2020
24	RE test cable	/	RE01-RE04	/	04/21/2020	04/22/2021

Report No.: SHEM200300156704 Page: 11 of 134

6 Radio Spectrum Technical Requirement

6.1 Antenna Requirement

6.1.1 Test Requirement:

47 CFR Part 15, Subpart C 15.203

6.1.2 Conclusion

Standard Requirement:

An intentional radiator shall be designed to ensure that no antenna other than that furnished by the responsible party shall be used with the device. The use of a antenna that uses a unique coupling to the intentional radiator, the manufacturer may design the unit permanently attached antenna or of an so that a broken antenna can be replaced by the user, but the use of a standard antenna jack or electrical connector is prohibited.

EUT Antenna:

The antenna is PIFA and no consideration of replacement. The best case gain of the antenna is 2dBi. Antenna location: Refer to Appendix (Internal Photos)

Report No.: SHEM200300156704 Page: 12 of 134

6.2 Transmission in the Absence of Data

6.2.1 Test Requirement:

47 CFR Part 15, Subpart C 15.407 (c)

6.2.2 Conclusion

Standard Requirement:

The device shall automatically discontinue transmission in case of either absence of information to transmit or operational failure. These provisions are not intended to preclude the transmission of control or signalling information or the use of repetitive codes used by certain digital technologies to complete frame or burst intervals.

Applicants shall include in their application for equipment authorization a description of how this requirement is met.

EUT Details:

WIFI chip (AP6255) support automatically discontinue transmission in case of either absence of information to transmit or operational failure, if the chip detect absence of information to transmit or operational failure, it will be automatically shut off.

EUT Antenna:

The antenna is PIFA antenna which integrated on the main PCB and no consideration of replacement. The best case gain of the antenna is 2dBi.

Antenna location: Refer to Appendix (Internal Photos)

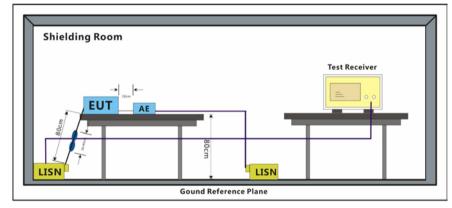
Report No.: SHEM200300156704 Page: 13 of 134

7 Radio Spectrum Matter Test Results

7.1 Conducted Emissions at AC Power Line (150kHz-30MHz)

Test Requirement Test Method: Limit: 47 CFR Part 15, Subpart C 15.207 & 15.407 b(6) ANSI C63.10 (2013) Section 6.2

	Conducted limit(dBµV)					
Frequency of emission(MHz)	Quasi-peak	Average				
0.15-0.5	66 to 56*	56 to 46*				
0.5-5	56	46				
5-30	60	50				
*Decreases with the logarithm of the frequency.						


Report No.: SHEM200300156704 Page: 14 of 134

7.1.1 E.U.T. Operation

Operating Environment:

Temperature:	23 °C	Humidity: 45	% RH	Atmospheric Pressure:	1001 n	nbar
Pretest these modes to find the worst case:	modulation type found the data MCS0 is the wo case of IEEE 80 802.11ac(VHT2 802.11ac(VHT2	es. All data rates rate @ 6Mbps is orst case of IEEE 02.11n(HT40); d 20); data rate @ 40); data rate @	for each mod the worst cas 802.11n(HT ata rate @ M MCS0 is the MCS0 is the	uously transmitting mode dulation type have been t se of IEEE 802.11a; data 20); data rate @ MCS0 is CS0 is the worst case of worst case of IEEE worst case of IEEE se is recorded in the repo	ested and a rate @ s the wora IEEE	
	modulation type found the data MCS0 is the wo case of IEEE 80 802.11ac(VHT2 802.11ac(VHT2	es. All data rates rate @ 6Mbps is orst case of IEEE 02.11n(HT40); d 20); data rate @ 40); data rate @	for each mod the worst cas 802.11n(HT ata rate @ M MCS0 is the MCS0 is the	uously transmitting mode dulation type have been t se of IEEE 802.11a; data 20); data rate @ MCS0 is CS0 is the worst case of worst case of IEEE worst case of IEEE se is recorded in the repo	ested and a rate @ s the wora IEEE	

7.1.2 Test Setup Diagram

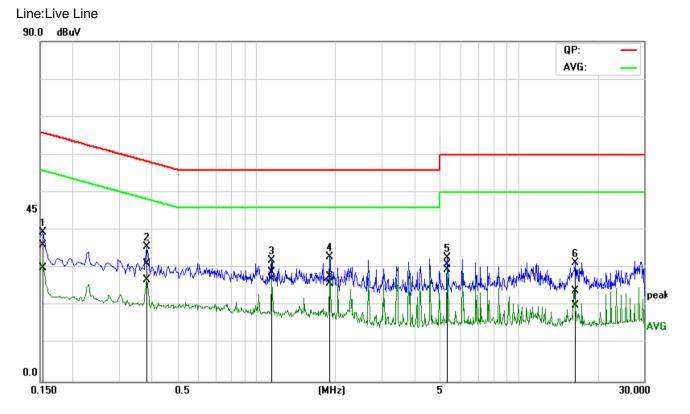
Report No.: SHEM200300156704 Page: 15 of 134

7.1.3 Measurement Procedure and Data

1) The mains terminal disturbance voltage test was conducted in a shielded room.

2) The EUT was connected to AC power source through a LISN 1 (Line Impedance Stabilization Network) which provides a 50ohm/50 μ H + 50hm linear impedance. The power cables of all other units of the EUT were connected to a second LISN 2, which was bonded to the ground reference plane in the same way as the LISN 1 for the unit being measured. A multiple socket outlet strip was used to connect multiple power cables to a single LISN provided the rating of the LISN was not exceeded.

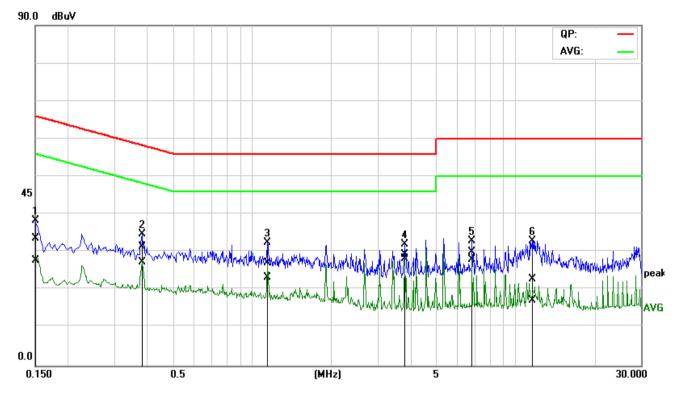
3) The tabletop EUT was placed upon a non-metallic table 0.8m above the ground reference plane. And for floor-standing arrangement, the EUT was placed on the horizontal ground reference plane,


4) The test was performed with a vertical ground reference plane. The rear of the EUT shall be 0.4 m from the vertical ground reference plane. The vertical ground reference plane was bonded to the horizontal ground reference plane. The LISN 1 was placed 0.8 m from the boundary of the unit under test and bonded to a ground reference plane for LISNs mounted on top of the ground reference plane. This distance was between the closest points of the LISN 1 and the EUT. All other units of the EUT and associated equipment was at least 0.8 m from the LISN 2.

5) In order to find the maximum emission, the relative positions of equipment and all of the interface cables must be changed according to ANSI C63.10 on conducted measurement.

Remark: LISN=Read Level+ Cable Loss+ LISN Factor

Report No.: SHEM200300156704 Page: 16 of 134


No.	Frequency	QuasiPeak reading	Average reading	Correction factor	QuasiPeak result	Average result	QuasiPeak limit	Average limit	QuasiPeak margin	Average margin	Remark
	(MHz)	(dBuV)	(dBuV)	(dB)	(dBuV)	(dBuV)	(dBuV)	(dBuV)	(dB)	(dB)	
1	0.1538	16.50	10.45	19.52	36.02	29.97	65.79	55.79	-29.77	-25.82	Pass
2	0.3839	11.56	7.42	19.51	31.07	26.93	58.19	48.19	-27.12	-21.26	Pass
3*	1.1460	9.22	7.52	19.69	28.91	27.21	56.00	46.00	-27.09	-18.79	Pass
4	1.9057	8.04	6.29	19.76	27.80	26.05	56.00	46.00	-28.20	-19.95	Pass
5	5.3420	10.90	9.60	19.97	30.87	29.57	60.00	50.00	-29.13	-20.43	Pass
6	16.4735	3.77	-0.09	20.26	24.03	20.17	60.00	50.00	-35.97	-29.83	Pass

SGS-CSTC Standards Technical Services (Shanghai) Co., Ltd.

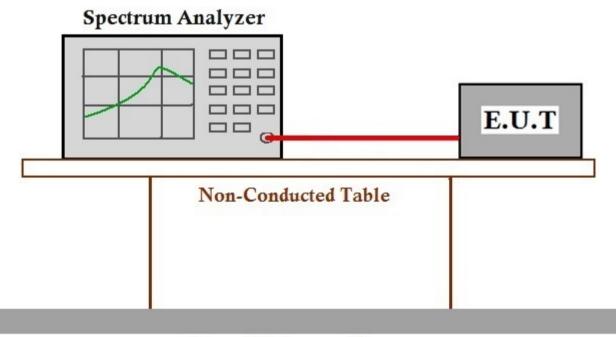
Report No.: SHEM200300156704 Page: 17 of 134

Line:Neutral Line

No.	Frequency	QuasiPeak reading	Average reading	Correction factor	QuasiPeak result	Average result	QuasiPeak limit	Average limit	QuasiPeak margin	Average margin	Remark
	(MHz)	(dBuV)	(dBuV)	(dB)	(dBuV)	(dBuV)	(dBuV)	(dBuV)	(dB)	(dB)	
1	0.1500	14.18	8.24	19.47	33.65	27.71	66.00	56.00	-32.35	-28.29	Pass
2	0.3827	11.89	7.90	19.48	31.37	27.38	58.22	48.22	-26.85	-20.84	Pass
3	1.1518	7.37	3.64	19.67	27.04	23.31	56.00	46.00	-28.96	-22.69	Pass
4*	3.8137	9.57	8.29	19.85	29.42	28.14	56.00	46.00	-26.58	-17.86	Pass
5	6.8686	10.07	8.10	19.94	30.01	28.04	60.00	50.00	-29.99	-21.96	Pass
6	11.5872	2.83	-2.81	20.03	22.86	17.22	60.00	50.00	-37.14	-32.78	Pass

Report No.: SHEM200300156704 Page: 18 of 134

7.2 99% Bandwidth


Test RequirementN/ATest Method:KDB 789033 II D

7.2.1 E.U.T. Operation

Operating Environment:

Temperature:	22 °C Humidity: 50 % RH Atmospheric Pressure: 1002 mbar
Pretest these modes to find the worst case:	d:TX mode (Band 1)_Keep the EUT in continuously transmitting mode with all modulation types. All data rates for each modulation type have been tested and found the data rate @ 6Mbps is the worst case of IEEE 802.11a; data rate @ MCS0 is the worst case of IEEE 802.11n(HT20); data rate @ MCS0 is the worst case of IEEE 802.11n(HT40); data rate @ MCS0 is the worst case of IEEE 802.11ac(VHT20); data rate @ MCS0 is the worst case of IEEE 802.11ac(VHT40); data rate @ MCS0 is the worst case of IEEE 802.11ac(VHT40); data rate @ MCS0 is the worst case of IEEE 802.11ac(VHT40); data rate @ MCS0 is the worst case of IEEE 802.11ac(VHT40); data rate @ MCS0 is the worst case of IEEE 802.11ac(VHT40); data rate @ MCS0 is the worst case of IEEE 802.11ac(VHT40); data rate @ MCS0 is the worst case of IEEE 802.11ac(VHT40); data rate @ MCS0 is the worst case of IEEE 802.11ac(VHT40); data rate @ MCS0 is the worst case of IEEE 802.11ac(VHT40); data rate @ MCS0 is the worst case of IEEE 802.11ac(VHT80). Only the data of worst case is recorded in the report.
	e:TX mode (Band 3)_Keep the EUT in continuously transmitting mode with all modulation types. All data rates for each modulation type have been tested and found the data rate @ 6Mbps is the worst case of IEEE 802.11a; data rate @ MCS0 is the worst case of IEEE 802.11n(HT20); data rate @ MCS0 is the worst case of IEEE 802.11n(HT40); data rate @ MCS0 is the worst case of IEEE 802.11ac(VHT20); data rate @ MCS0 is the worst case of IEEE 802.11ac(VHT40); data rate @ MCS0 is the worst case of IEEE 802.11ac(VHT40); data rate @ MCS0 is the worst case of IEEE 802.11ac(VHT40); data rate @ MCS0 is the worst case of IEEE 802.11ac(VHT40); data rate @ MCS0 is the worst case of IEEE 802.11ac(VHT40); data rate @ MCS0 is the worst case of IEEE 802.11ac(VHT40); data rate @ MCS0 is the worst case of IEEE 802.11ac(VHT40); data rate @ MCS0 is the worst case of IEEE 802.11ac(VHT40); data rate @ MCS0 is the worst case of IEEE 802.11ac(VHT40); data rate @ MCS0 is the worst case of IEEE 802.11ac(VHT80). Only the data of worst case is recorded in the report.

7.2.2 Test Setup Diagram

Ground Reference Plane

7.2.3 Measurement Procedure and Data

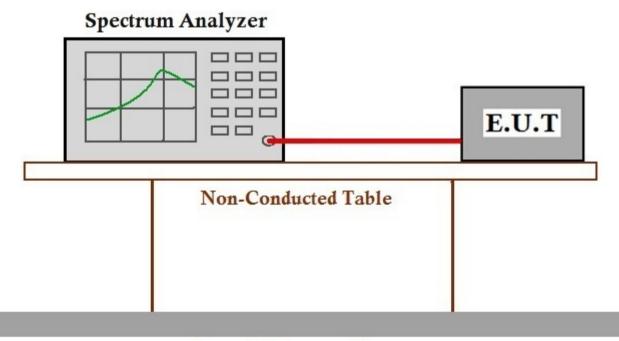
The detailed test data see: Appendix D for SHEM200300156704

NO.588 West	Jiı	ndu Road, Songjiang District, Shang	hai,China	201612
中国・上海	•	松江区金都西路588号	邮编:	201612

t(86-21) 61915666 f(86-21) 61915678 www.sgsgroup.com.cn t(86-21) 61915666 f(86-21) 61915678 e sgs.china@sgs.com

Report No.: SHEM200300156704 Page: 19 of 134

7.3 26dB Emission bandwidth


Test Requirement47 CFR Part 15, Subpart C 15.407 (a)Test Method:KDB 789033 D02 II C 1

7.3.1 E.U.T. Operation

Operating Environment:

Temperature: 22 °C Humidity: 50 % RH Atmospheric Pressure: 1002 mbar Test mode d:TX mode (Band 1) Keep the EUT in continuously transmitting mode with all modulation types. All data rates for each modulation type have been tested and found the data rate @ 6Mbps is the worst case of IEEE 802.11a; data rate @ MCS0 is the worst case of IEEE 802.11n(HT20); data rate @ MCS0 is the worst case of IEEE 802.11n(HT40); data rate @ MCS0 is the worst case of IEEE 802.11ac(VHT20); data rate @ MCS0 is the worst case of IEEE 802.11ac(VHT40); data rate @ MCS0 is the worst case of IEEE 802.11ac(VHT80). Only the data of worst case is recorded in the report. e:TX mode (Band 3) Keep the EUT in continuously transmitting mode with all modulation types. All data rates for each modulation type have been tested and found the data rate @ 6Mbps is the worst case of IEEE 802.11a; data rate @ MCS0 is the worst case of IEEE 802.11n(HT20); data rate @ MCS0 is the worst case of IEEE 802.11n(HT40); data rate @ MCS0 is the worst case of IEEE 802.11ac(VHT20); data rate @ MCS0 is the worst case of IEEE 802.11ac(VHT40); data rate @ MCS0 is the worst case of IEEE 802.11ac(VHT80). Only the data of worst case is recorded in the report.

7.3.2 Test Setup Diagram

Ground Reference Plane

7.3.3 Measurement Procedure and Data

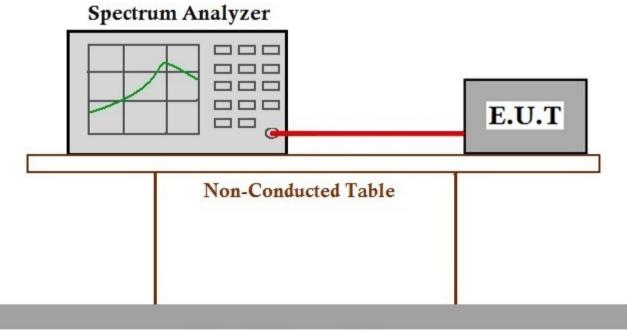
The detailed test data see: Appendix D for SHEM200300156704

NO.588 West	Jiı	du Road, Songjiang District, Shangh	nai,China	201612
中国・上海	•	松江区金都西路588号	邮编:	201612

t(86-21) 61915666 f(86-21) 61915678 www.sgsgroup.com.cn t(86-21) 61915666 f(86-21) 61915678 e sgs.china@sgs.com

Report No.: SHEM200300156704 Page: 20 of 134

7.4 Minimum 6 dB bandwidth (5.725-5.85 GHz band)


Test Requirement	47 CFR Part 15, Subpart C 15.407 (e)
Test Method:	KDB 789033 D02 II C 2
Limit:	≥500 kHz

7.4.1 E.U.T. Operation

Operating Environment:

Temperature:	22 °C Humidity: 50 % RH Atmospheric Pressure: 1002 mbar
Test mode	d:TX mode (Band 1)_Keep the EUT in continuously transmitting mode with all modulation types. All data rates for each modulation type have been tested and found the data rate @ 6Mbps is the worst case of IEEE 802.11a; data rate @ MCS0 is the worst case of IEEE 802.11n(HT20); data rate @ MCS0 is the worst case of IEEE 802.11n(HT40); data rate @ MCS0 is the worst case of IEEE 802.11ac(VHT20); data rate @ MCS0 is the worst case of IEEE 802.11ac(VHT40); data rate @ MCS0 is the worst case of IEEE 802.11ac(VHT40); data rate @ MCS0 is the worst case of IEEE 802.11ac(VHT80). Only the data of worst case is recorded in the report.
	e:TX mode (Band 3)_Keep the EUT in continuously transmitting mode with all modulation types. All data rates for each modulation type have been tested and found the data rate @ 6Mbps is the worst case of IEEE 802.11a; data rate @ MCS0 is the worst case of IEEE 802.11n(HT20); data rate @ MCS0 is the worst case of IEEE 802.11n(HT40); data rate @ MCS0 is the worst case of IEEE 802.11ac(VHT20); data rate @ MCS0 is the worst case of IEEE 802.11ac(VHT40); data rate @ MCS0 is the worst case of IEEE 802.11ac(VHT40); data rate @ MCS0 is the worst case of IEEE 802.11ac(VHT40); data rate @ MCS0 is the worst case of IEEE 802.11ac(VHT40); data rate @ MCS0 is the worst case of IEEE 802.11ac(VHT80). Only the data of worst case is recorded in the report.

7.4.2 Test Setup Diagram

Ground Reference Plane

7.4.3 Measurement Procedure and Data

The detailed test data see: Appendix D for SHEM200300156704

1	NO.588 West J	indu Road, Songjiang District, Shanghai, China	201612
	中国・上海・	松江区金都西路588号 邮编:	201612

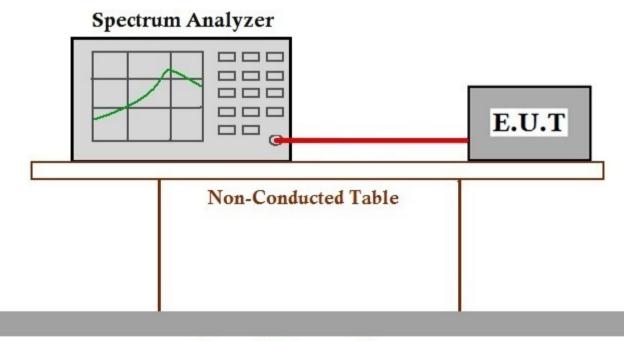
t(86-21)61915666 f(86-21)61915678 www.sgsgroup.com.cn t(86-21)61915666 f(86-21)61915678 e sgs.china@sgs.com

Report No.: SHEM200300156704 Page: 21 of 134

7.5 Maximum Conducted output power

Test Requirement	47 CFR Part 15, Subpart C 15.407 (a)
Test Method:	KDB 789033 D02 II E
Limit:	

Frequenc	y band(MHz)	Limit		
5150-5	250	≤1W(30dBm) for master device		
5150-5	0250	≤250mW(24dBm) for client device		
5250-5	350	≤250mW(24dBm) for client device or 11dBm+10logB*		
5470-5	5725	≤250mW(24dBm) for client device or 11dBm+10logB*		
5725-5	850	≤1W(30dBm)		
Remark:	* Where B is the 26dB emission bandwidth in MHz.			
	The maximum conducted output power must be measured over any interval or continuous transmission using instrumentation calibrated in terms of an rms-equivalent voltage.			


Report No.: SHEM200300156704 Page: 22 of 134

7.5.1 E.U.T. Operation

Operating Environment:

Temperature:	22 °C	Humidity: 50	% RH	Atmospheric Pressure:	1002 mbar		
Pretest these modes to find the worst case:	d:TX mode (Band 1)_Keep the EUT in continuously transmitting mode with all find modulation types. All data rates for each modulation type have been tested and						
	modulation type found the data r MCS0 is the wo case of IEEE 80 802.11ac(VHT2 802.11ac(VHT4	s. All data rates ate @ 6Mbps is rst case of IEEE 02.11n(HT40); c 0); data rate @ 0); data rate @	s for each mo s the worst ca E 802.11n(H lata rate @ M MCS0 is the MCS0 is the	inuously transmitting mode odulation type have been to ase of IEEE 802.11a; data T20); data rate @ MCS0 i MCS0 is the worst case of e worst case of IEEE e worst case of IEEE ase is recorded in the repo	tested and a rate @ s the worst IEEE		

7.5.2 Test Setup Diagram

Ground Reference Plane

7.5.3 Measurement Procedure and Data

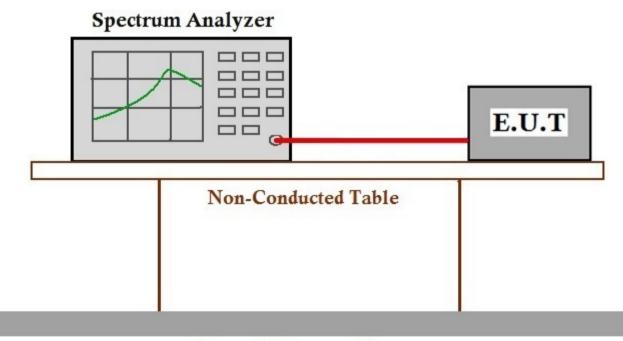
The detailed test data see: Appendix D for SHEM200300156704

Report No.: SHEM200300156704 Page: 23 of 134

7.6 Peak Power spectrum density

Test Requirement	47 CFR Part 15, Subpart C 15.407 (a)
Test Method:	KDB 789033 D02 II F
Limit:	

Frequenc	y band(MHz)	Limit		
5150-5250		≤17dBm in 1MHz for master device		
		≤11dBm in 1MHz for client device		
5250-5	350	≤11dBm in 1MHz for client device		
5470-5	725	≤11dBm in 1MHz for client device		
5725-5850		≤30dBm in 500 kHz		
Remark:	The maximum power spectral density is measured as a conducted emission by dire connection of a calibrated test instrument to the equipment under test.			


Report No.: SHEM200300156704 Page: 24 of 134

7.6.1 E.U.T. Operation

Operating Environment:

Temperature:	22 °C	Humidity: 5	50 % RH	Atmospheric Pressure:	1002 mbar
Pretest these modes to find the worst case:	modulation typ found the data MCS0 is the v case of IEEE 802.11ac(VHT 802.11ac(VHT	bes. All data rat a rate @ 6Mbps vorst case of IE 802.11n(HT40); 720); data rate (740); data rate (es for each m is the worst of EE 802.11n(H data rate @ @ MCS0 is th @ MCS0 is th	tinuously transmitting mode odulation type have been to case of IEEE 802.11a; data IT20); data rate @ MCS0 i MCS0 is the worst case of e worst case of IEEE e worst case of IEEE case is recorded in the repo	tested and a rate @ s the worst IEEE
	modulation typ found the data MCS0 is the v case of IEEE 802.11ac(VHT 802.11ac(VHT	bes. All data rat a rate @ 6Mbps vorst case of IE 802.11n(HT40); 720); data rate (740); data rate (es for each m is the worst of EE 802.11n(H data rate @ @ MCS0 is th @ MCS0 is th	tinuously transmitting mode odulation type have been to case of IEEE 802.11a; data IT20); data rate @ MCS0 i MCS0 is the worst case of e worst case of IEEE e worst case of IEEE case is recorded in the repo	tested and a rate @ s the worst IEEE

7.6.2 Test Setup Diagram

Ground Reference Plane

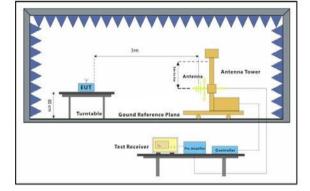
7.6.3 Measurement Procedure and Data

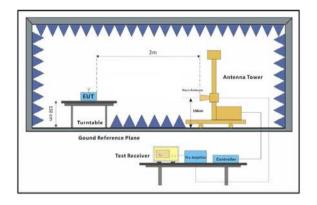
The detailed test data see: Appendix D for SHEM200300156704

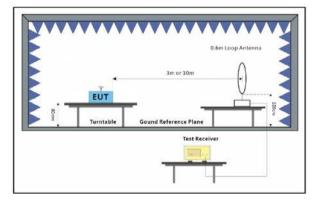
Report No.: SHEM200300156704 Page: 25 of 134

7.7 Radiated Emissions

Test Requirement Test Method: Limit:


47 CFR Part 15, Subpart C 15.209 & 15.407(b) KDB 789033 D02 II G


7.7.1 E.U.T. Operation


Operating Environment:

Temperature: 22 °C Humidity: 50 % RH Atmospheric Pressure: 1002 mbar d:TX mode (Band 1) Keep the EUT in continuously transmitting mode with all Pretest these modes to find modulation types. All data rates for each modulation type have been tested and found the data rate @ 6Mbps is the worst case of IEEE 802.11a; data rate @ the worst case: MCS0 is the worst case of IEEE 802.11n(HT20); data rate @ MCS0 is the worst case of IEEE 802.11n(HT40); data rate @ MCS0 is the worst case of IEEE 802.11ac(VHT20); data rate @ MCS0 is the worst case of IEEE 802.11ac(VHT40); data rate @ MCS0 is the worst case of IEEE 802.11ac(VHT80). Only the data of worst case is recorded in the report. e:TX mode (Band 3)_Keep the EUT in continuously transmitting mode with all modulation types. All data rates for each modulation type have been tested and found the data rate @ 6Mbps is the worst case of IEEE 802.11a; data rate @ MCS0 is the worst case of IEEE 802.11n(HT20); data rate @ MCS0 is the worst case of IEEE 802.11n(HT40); data rate @ MCS0 is the worst case of IEEE 802.11ac(VHT20); data rate @ MCS0 is the worst case of IEEE 802.11ac(VHT40); data rate @ MCS0 is the worst case of IEEE 802.11ac(VHT80). Only the data of worst case is recorded in the report.

7.7.2 Test Setup Diagram

1	NO.588 West Jindu Road, Songjiang District, Shanghai, China	а	201612
	中国・上海・松江区金都西路588号 邮编	:	201612

t(86-21)61915666 f(86-21)61915678 www.sgsgroup.com.cn t(86-21)61915666 f(86-21)61915678 e sgs.china@sgs.com

Report No.: SHEM200300156704 Page: 26 of 134

7.7.3 Measurement Procedure and Data

a. For below 1GHz, the EUT was placed on the top of a rotating table 0.8 meters above the ground at a 3 or 10 meter semi-anechoic chamber. The table was rotated 360 degrees to determine the position of the highest radiation.

b. For above 1GHz, the EUT was placed on the top of a rotating table 1.5 meters above the ground at a 3 meter fully-anechoic chamber. The table was rotated 360 degrees to determine the position of the highest radiation.

c. The EUT was set 3 or 10 meters away from the interference-receiving antenna, which was mounted on the top of a variable-height antenna tower.

d. The antenna height is varied from one meter to four meters above the ground to determine the maximum value of the field strength. Both horizontal and vertical polarizations of the antenna are set to make the measurement.

e. For each suspected emission, the EUT was arranged to its worst case and then the antenna was tuned to heights from 1 meter to 4 meters (for the test frequency of below 30MHz, the antenna was tuned to heights 1 meter) and the rotatable table was turned from 0 degrees to 360 degrees to find the maximum reading.

f. The test-receiver system was set to Peak Detect Function and Specified Bandwidth with Maximum Hold Mode.

g. If the emission level of the EUT in peak mode was 10dB lower than the limit specified, then testing could be stopped and the peak values of the EUT would be reported. Otherwise the emissions that did not have 10dB margin would be re-tested one by one using peak, quasi-peak or average method as specified and then reported in a data sheet.

h. Test the EUT in the lowest channel, the middle channel, the Highest channel.

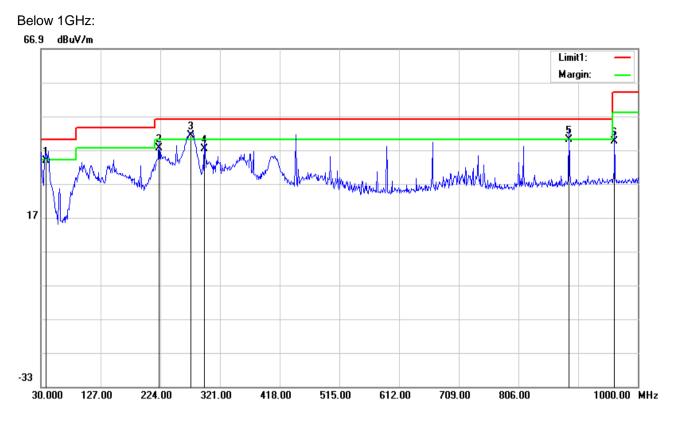
i. The radiation measurements are performed in X, Y, Z axis positioning for Transmitting mode, and found the X axis positioning which it is the worst case.

j. Repeat above procedures until all frequencies measured was complete.

Remark:

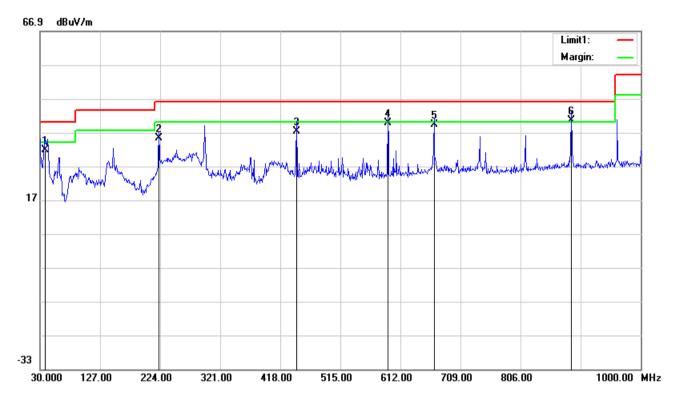
1. Level= Read Level+ Cable Loss+ Antenna Factor- Preamp Factor

2. For emission below 1GHz, through the pre-scan found the worst case is the lowest channel of 802.11a. Only the worst case is recorded in the report.

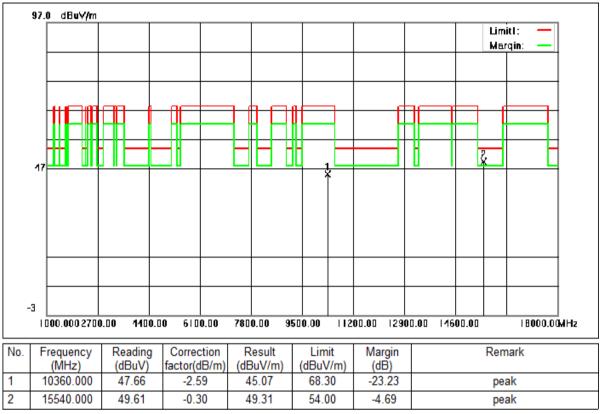

3. Scan from 9kHz to 40GHz, the disturbance above 18GHz and below 30MHz was very low. The points marked on above plots are the highest emissions could be found when testing, so only above points had been displayed. The amplitude of spurious emissions from the radiator which are attenuated more than 20dB below the limit need not be reported.

4. As shown in this section, for frequencies above 1GHz, the field strength limits are based on average limits. However, the peak field strength of any emission shall not exceed the maximum permitted average limits specified above by more than 20 dB under any condition of modulation. For the emissions whose peak level is lower than the average limit, only the peak measurement is shown in the report.

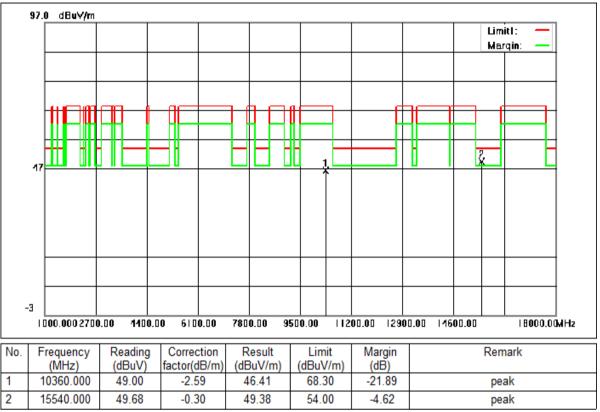
SGS-CSTC Standards Technical Services (Shanghai) Co., Ltd.


Report No.: SHEM200300156704 Page: 27 of 134

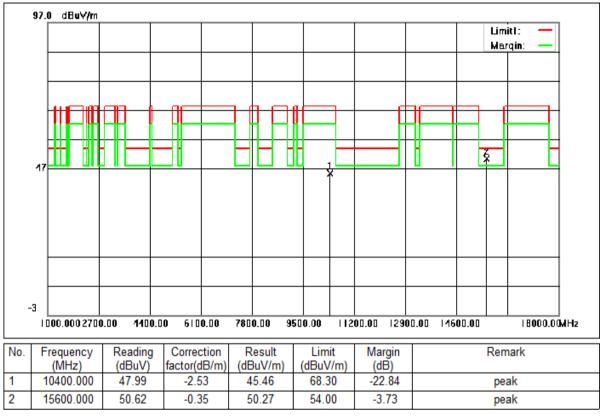
No.	Frequency	Reading	Correct	Result	Limit	Margin	Height	Degree	Remark
	(MHz)	(dBuV)	Factor(dB/m)	(dBuV/m)	(dBuV/m)	(dB)	(cm)	(deg.)	
1	38.7300	11.88	21.91	33.79	40.00	-6.21	372	360	QP
2	222.0600	22.06	15.49	37.55	46.00	-8.45	100	103	QP
3	273.4700	23.72	17.64	41.36	46.00	-4.64	100	328	QP
4	295.7800	19.23	17.97	37.20	46.00	-8.80	100	360	QP
5	888.4500	14.45	25.62	40.07	46.00	-5.93	100	153	QP
6	962.1700	13.57	26.06	39.63	54.00	-14.37	100	76	QP


Report No.: SHEM200300156704 Page: 28 of 134

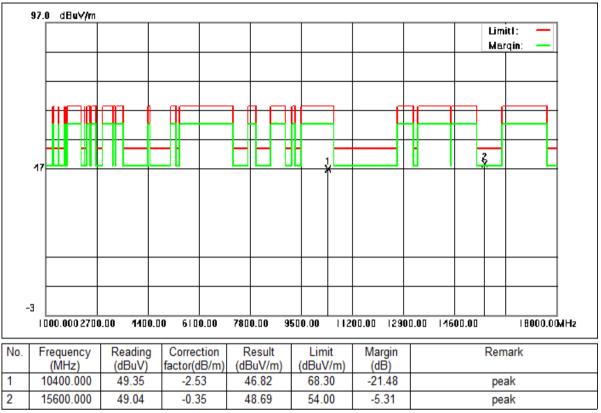
No.	Frequency	Reading	Correct	Result	Limit	Margin	Height	Degree	Remark
	(MHz)	(dBuV)	Factor(dB/m)	(dBuV/m)	(dBuV/m)	(dB)	(cm)	(deg.)	
1	37.7600	9.52	22.31	31.83	40.00	-8.17	226	0	QP
2	222.0600	19.76	15.49	35.25	46.00	-10.75	100	76	QP
3	444.1900	16.32	20.92	37.24	46.00	-8.76	100	284	QP
4	591.6300	16.43	23.42	39.85	46.00	-6.15	100	124	QP
5	666.3200	15.04	24.35	39.39	46.00	-6.61	100	291	QP
6	888.4500	14.82	25.62	40.44	46.00	-5.56	100	230	QP


Report No.: SHEM200300156704 Page: 29 of 134

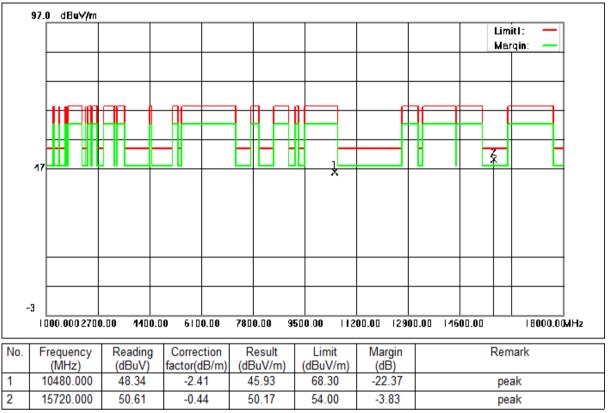
Mode:d; Polarization:Horizontal; Modulation:a; bandwidth:20MHz; Channel:Low


Report No.: SHEM200300156704 Page: 30 of 134

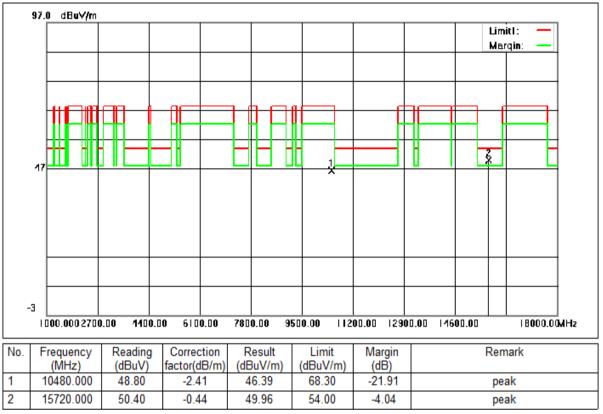
Mode:d; Polarization:Vertical; Modulation:a; bandwidth:20MHz; Channel:Low


Report No.: SHEM200300156704 Page: 31 of 134

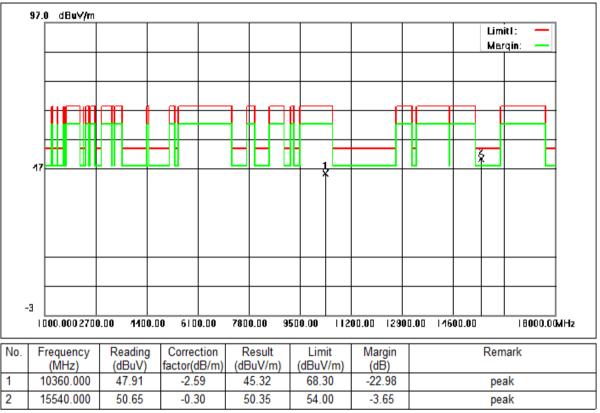
Mode:d; Polarization:Horizontal; Modulation:a; bandwidth:20MHz; Channel:middle


Report No.: SHEM200300156704 Page: 32 of 134

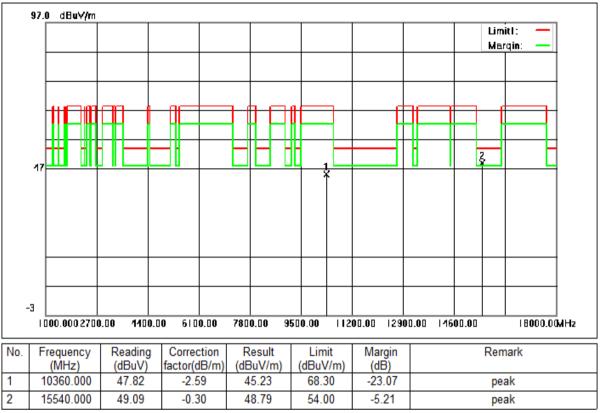
Mode:d; Polarization:Vertical; Modulation:a; bandwidth:20MHz; Channel:middle


Report No.: SHEM200300156704 Page: 33 of 134

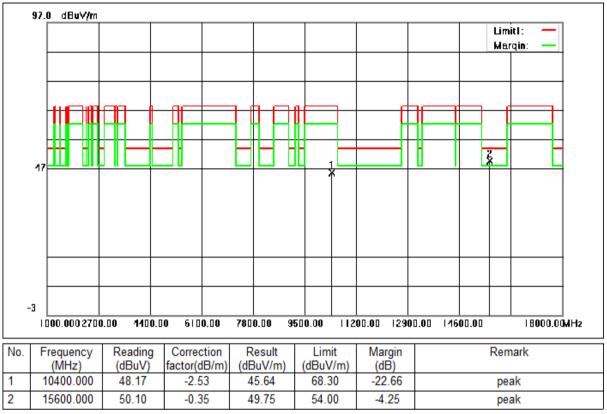
Mode:d; Polarization:Horizontal; Modulation:a; bandwidth:20MHz; Channel:High


Report No.: SHEM200300156704 Page: 34 of 134

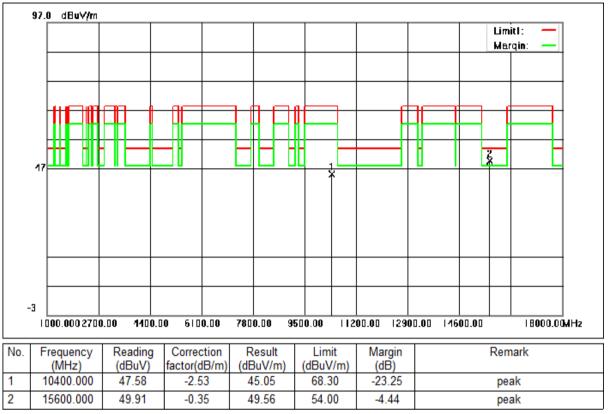
Mode:d; Polarization:Vertical; Modulation:a; bandwidth:20MHz; Channel:High


Report No.: SHEM200300156704 Page: 35 of 134

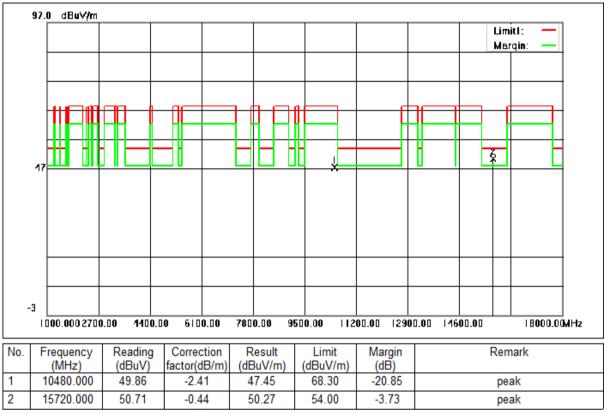
Mode:d; Polarization:Horizontal; Modulation:n; bandwidth:20MHz; Channel:Low


Report No.: SHEM200300156704 Page: 36 of 134

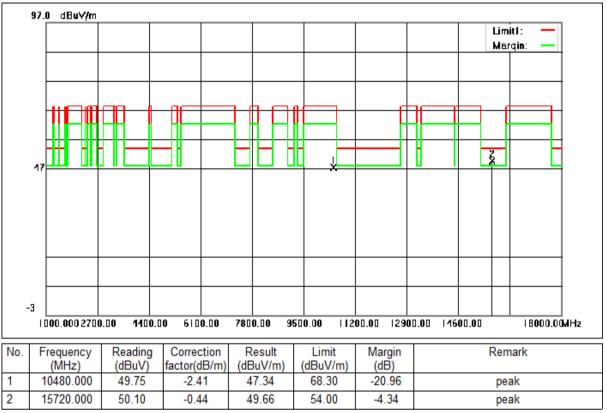
Mode:d; Polarization:Vertical; Modulation:n; bandwidth:20MHz; Channel:Low


Report No.: SHEM200300156704 Page: 37 of 134

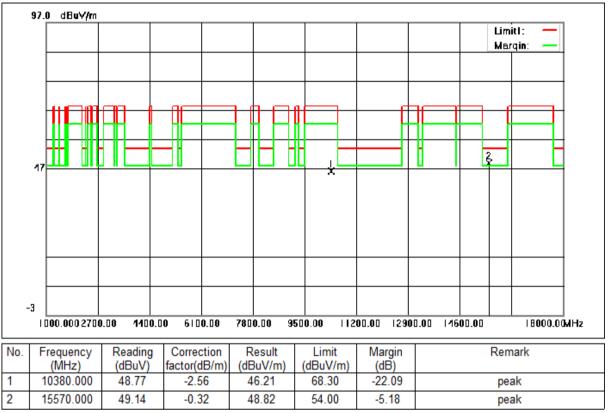
Mode:d; Polarization:Horizontal; Modulation:n; bandwidth:20MHz; Channel:middle


Report No.: SHEM200300156704 Page: 38 of 134

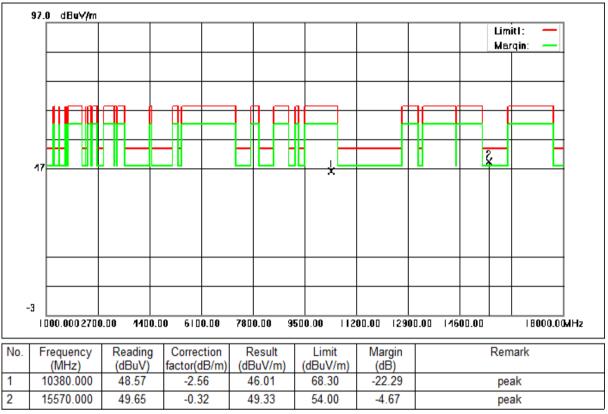
Mode:d; Polarization:Vertical; Modulation:n; bandwidth:20MHz; Channel:middle


Report No.: SHEM200300156704 Page: 39 of 134

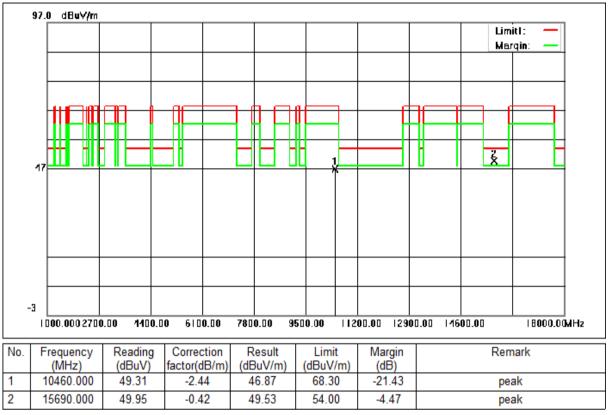
Mode:d; Polarization:Horizontal; Modulation:n; bandwidth:20MHz; Channel:High


Report No.: SHEM200300156704 Page: 40 of 134

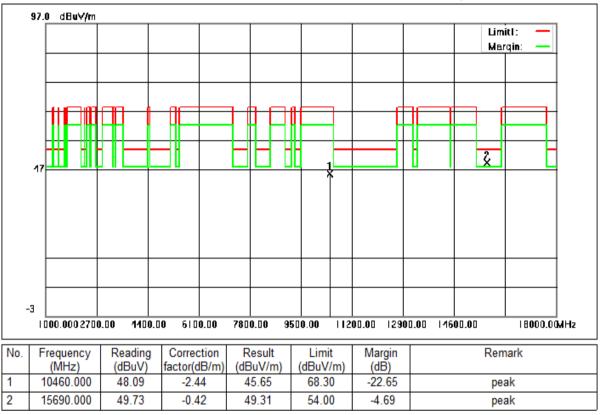
Mode:d; Polarization:Vertical; Modulation:n; bandwidth:20MHz; Channel:High


Report No.: SHEM200300156704 Page: 41 of 134

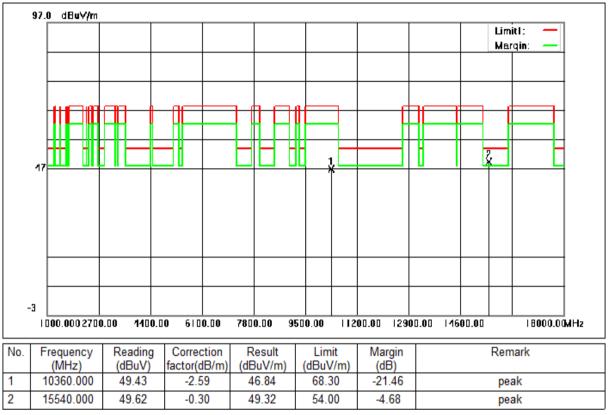
Mode:d; Polarization:Horizontal; Modulation:n; bandwidth:40MHz; Channel:Low


Report No.: SHEM200300156704 Page: 42 of 134

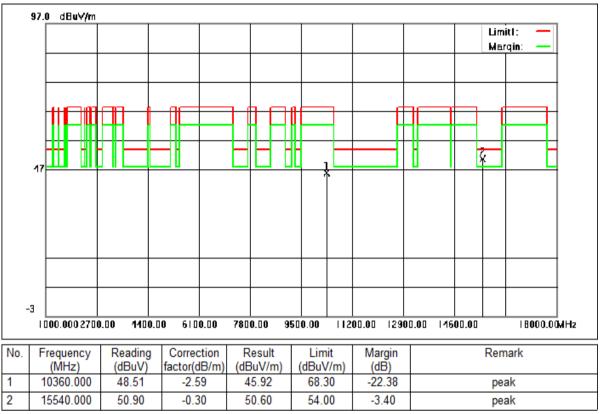
Mode:d; Polarization:Vertical; Modulation:n; bandwidth:40MHz; Channel:Low


Report No.: SHEM200300156704 Page: 43 of 134

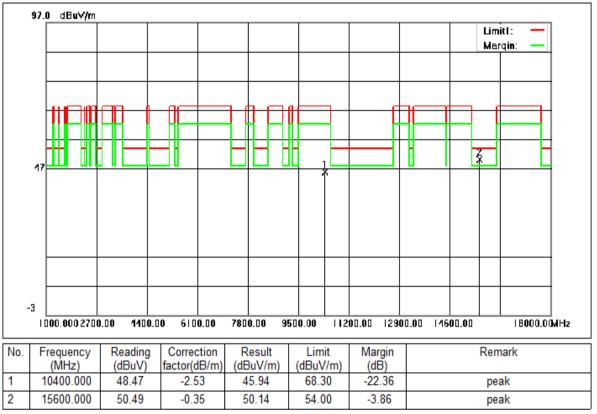
Mode:d; Polarization:Horizontal; Modulation:n; bandwidth:40MHz; Channel:High


Report No.: SHEM200300156704 Page: 44 of 134

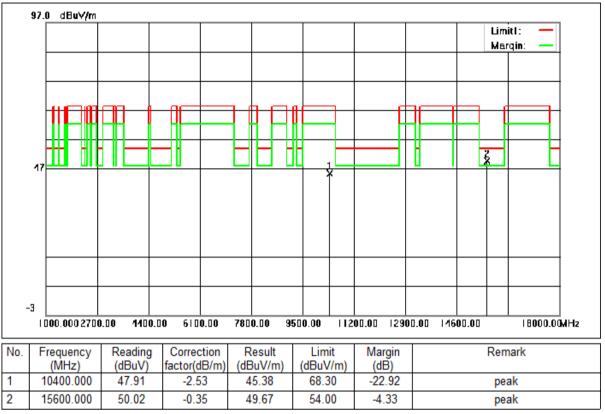
Mode:d; Polarization:Vertical; Modulation:n; bandwidth:40MHz; Channel:High


Report No.: SHEM200300156704 Page: 45 of 134

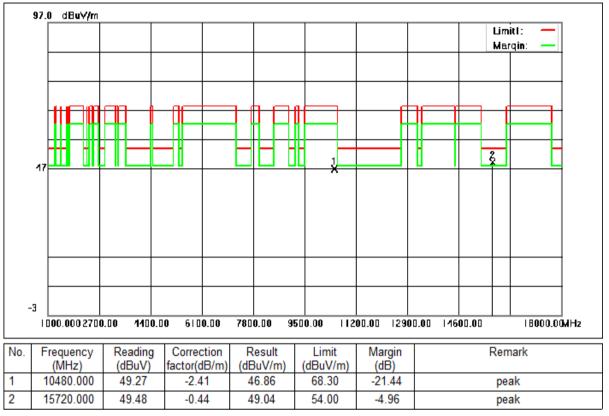
Mode:d; Polarization:Horizontal; Modulation:c; bandwidth:20MHz; Channel:Low


Report No.: SHEM200300156704 Page: 46 of 134

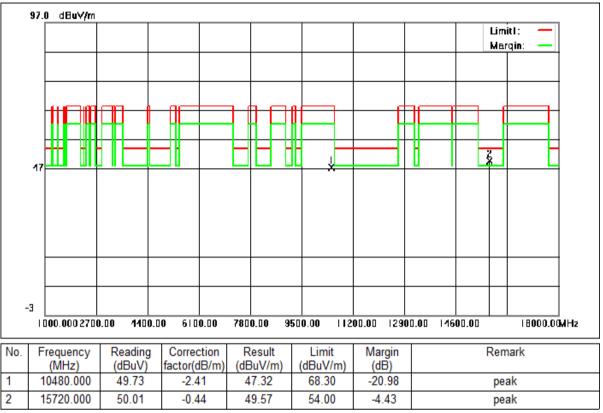
Mode:d; Polarization:Vertical; Modulation:c; bandwidth:20MHz; Channel:Low


Report No.: SHEM200300156704 Page: 47 of 134

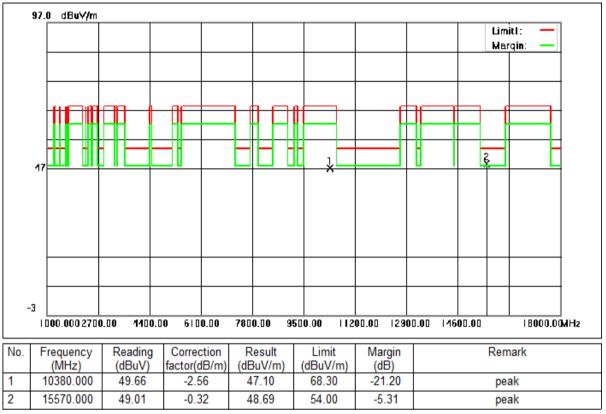
Mode:d; Polarization:Horizontal; Modulation:c; bandwidth:20MHz; Channel:middle


Report No.: SHEM200300156704 Page: 48 of 134

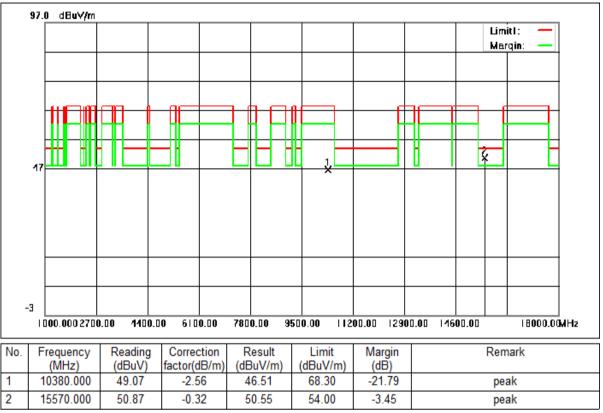
Mode:d; Polarization:Vertical; Modulation:c; bandwidth:20MHz; Channel:middle


Report No.: SHEM200300156704 Page: 49 of 134

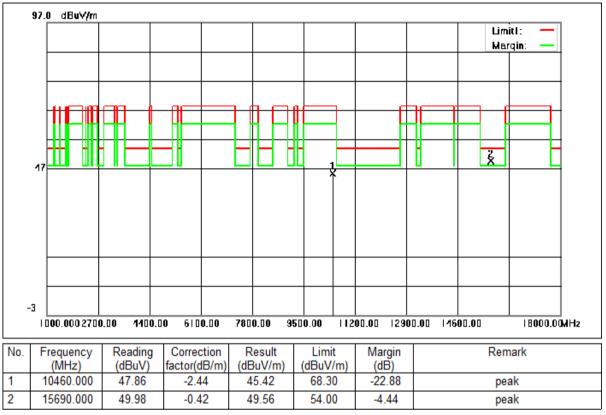
Mode:d; Polarization:Horizontal; Modulation:c; bandwidth:20MHz; Channel:High


Report No.: SHEM200300156704 Page: 50 of 134

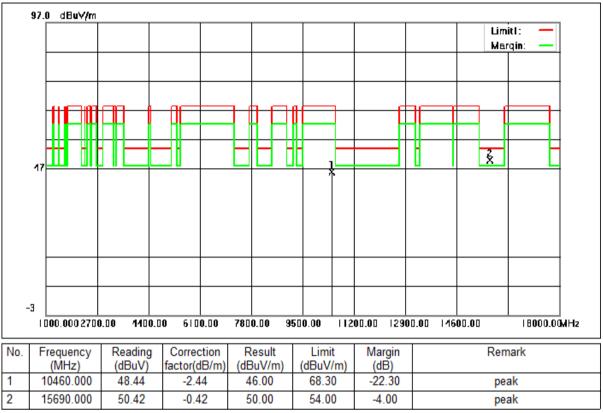
Mode:d; Polarization:Vertical; Modulation:c; bandwidth:20MHz; Channel:High


Report No.: SHEM200300156704 Page: 51 of 134

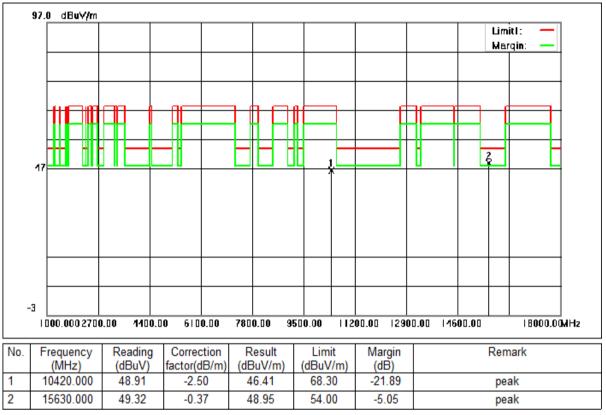
Mode:d; Polarization:Horizontal; Modulation:c; bandwidth:40MHz; Channel:Low


Report No.: SHEM200300156704 Page: 52 of 134

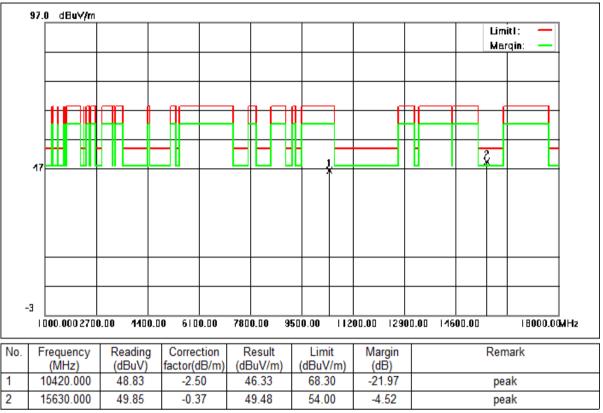
Mode:d; Polarization:Vertical; Modulation:c; bandwidth:40MHz; Channel:Low


Report No.: SHEM200300156704 Page: 53 of 134

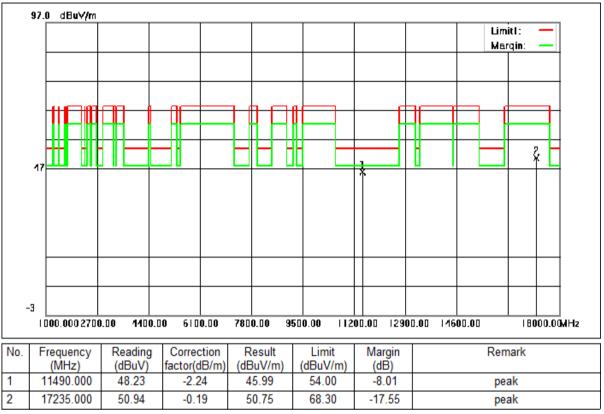
Mode:d; Polarization:Horizontal; Modulation:c; bandwidth:40MHz; Channel:High


Report No.: SHEM200300156704 Page: 54 of 134

Mode:d; Polarization:Vertical; Modulation:c; bandwidth:40MHz; Channel:High

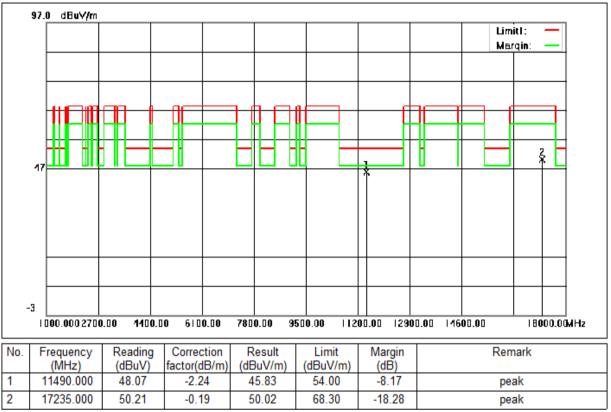

Report No.: SHEM200300156704 Page: 55 of 134

Mode:d; Polarization:Horizontal; Modulation:c; bandwidth:80MHz; Channel:Low


Report No.: SHEM200300156704 Page: 56 of 134

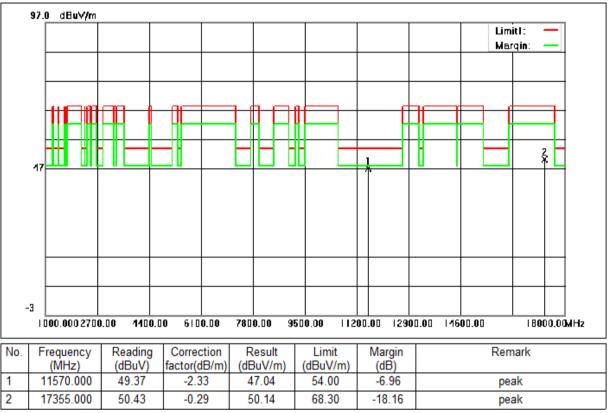
Mode:d; Polarization:Vertical; Modulation:c; bandwidth:80MHz; Channel:Low

Report No.: SHEM200300156704 Page: 57 of 134

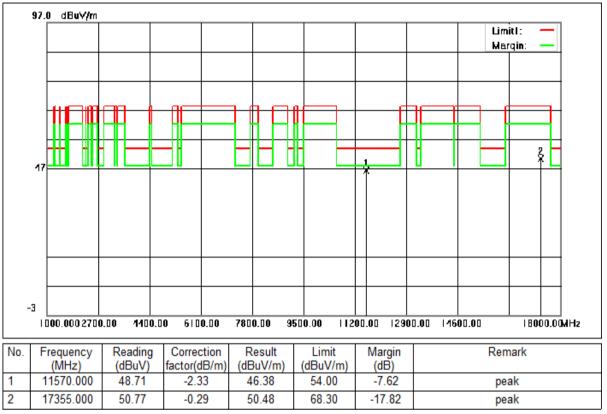


Mode:e; Polarization:Horizontal; Modulation:a; bandwidth:20MHz; Channel:Low

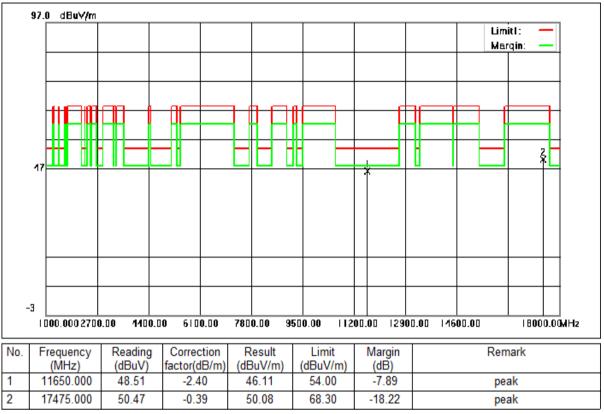
SGS-CSTC Standards Technical Services (Shanghai) Co., Ltd.


Report No.: SHEM200300156704 Page: 58 of 134

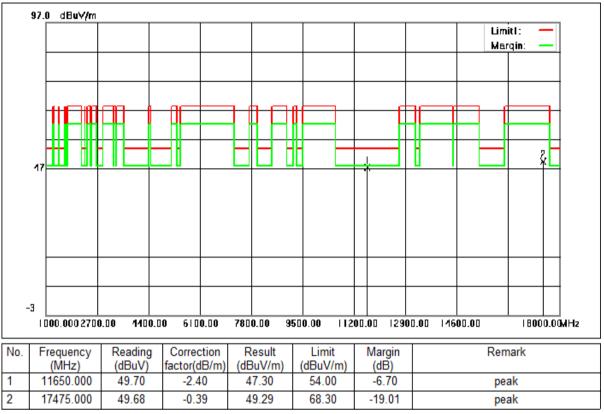
Mode:e; Polarization:Vertical; Modulation:a; bandwidth:20MHz; Channel:Low


Report No.: SHEM200300156704 Page: 59 of 134

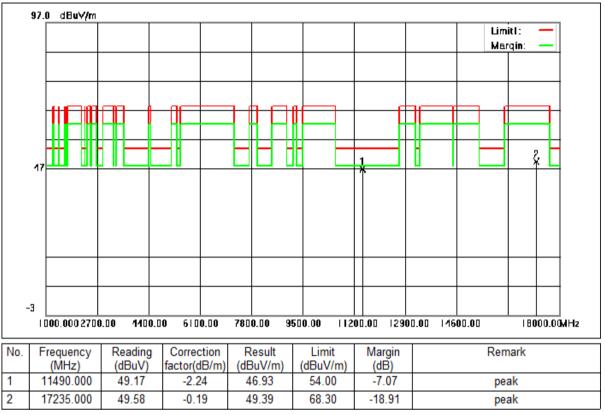
Mode:e; Polarization:Horizontal; Modulation:a; bandwidth:20MHz; Channel:middle


Report No.: SHEM200300156704 Page: 60 of 134

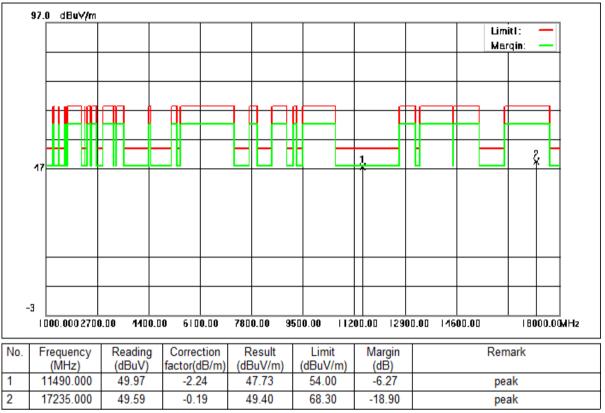
Mode:e; Polarization:Vertical; Modulation:a; bandwidth:20MHz; Channel:middle


Report No.: SHEM200300156704 Page: 61 of 134

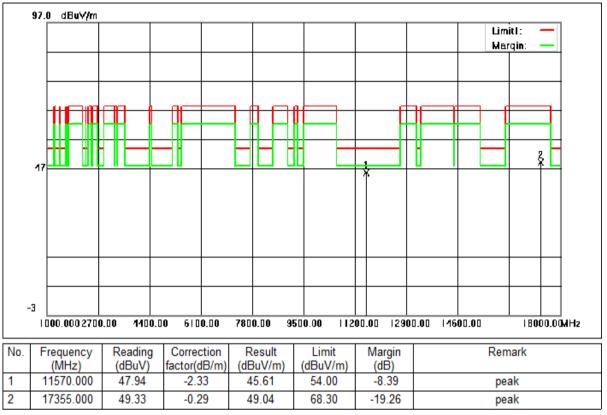
Mode:e; Polarization:Horizontal; Modulation:a; bandwidth:20MHz; Channel:High


Report No.: SHEM200300156704 Page: 62 of 134

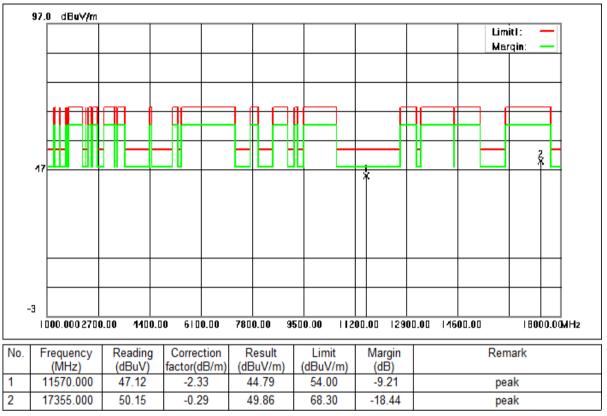
Mode:e; Polarization:Vertical; Modulation:a; bandwidth:20MHz; Channel:High


Report No.: SHEM200300156704 Page: 63 of 134

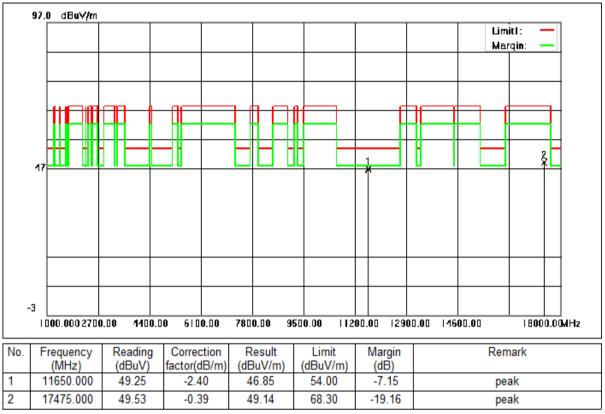
Mode:e; Polarization:Horizontal; Modulation:n; bandwidth:20MHz; Channel:Low


Report No.: SHEM200300156704 Page: 64 of 134

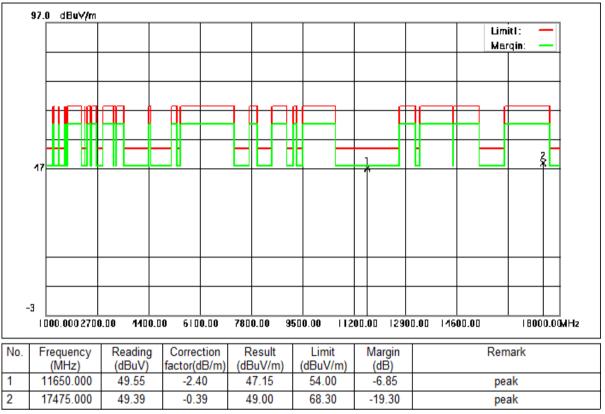
Mode:e; Polarization:Vertical; Modulation:n; bandwidth:20MHz; Channel:Low


Report No.: SHEM200300156704 Page: 65 of 134

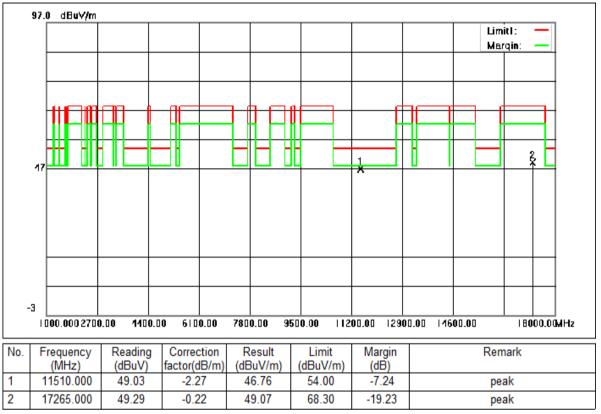
Mode:e; Polarization:Horizontal; Modulation:n; bandwidth:20MHz; Channel:middle


Report No.: SHEM200300156704 Page: 66 of 134

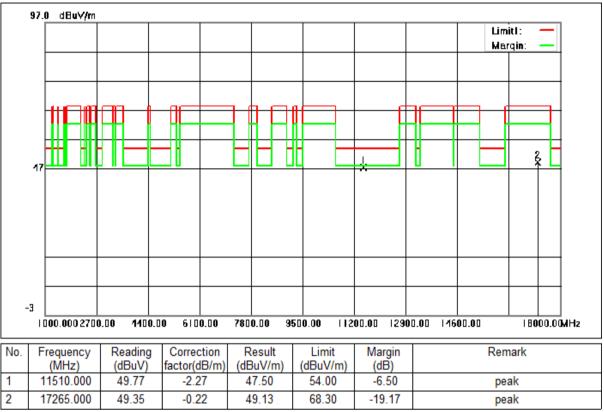
Mode:e; Polarization:Vertical; Modulation:n; bandwidth:20MHz; Channel:middle


Report No.: SHEM200300156704 Page: 67 of 134

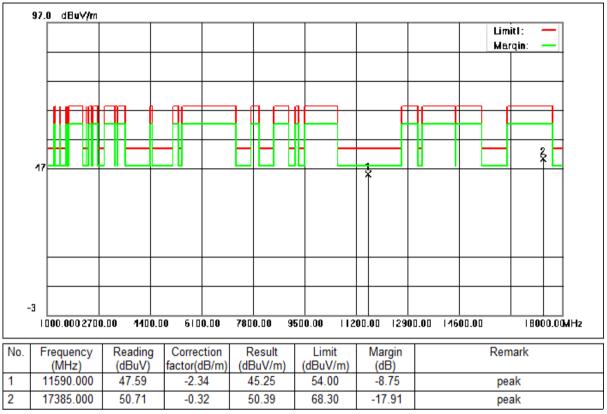
Mode:e; Polarization:Horizontal; Modulation:n; bandwidth:20MHz; Channel:High


Report No.: SHEM200300156704 Page: 68 of 134

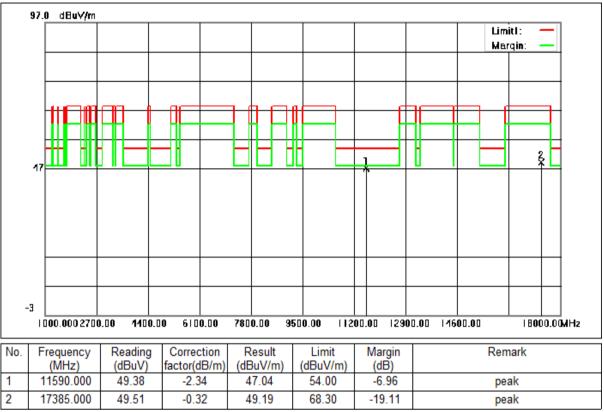
Mode:e; Polarization:Vertical; Modulation:n; bandwidth:20MHz; Channel:High


Report No.: SHEM200300156704 Page: 69 of 134

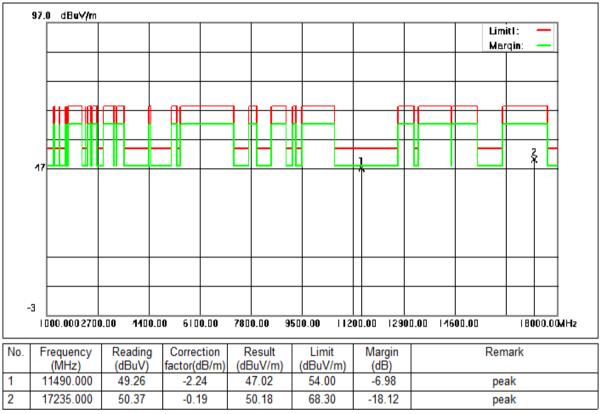
Mode:e; Polarization:Horizontal; Modulation:n; bandwidth:40MHz; Channel:Low


Report No.: SHEM200300156704 Page: 70 of 134

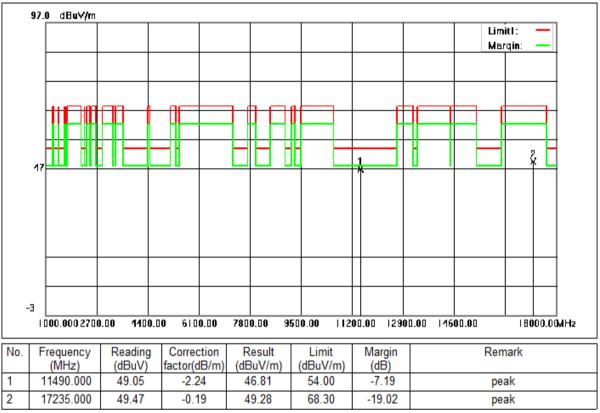
Mode:e; Polarization:Vertical; Modulation:n; bandwidth:40MHz; Channel:Low


Report No.: SHEM200300156704 Page: 71 of 134

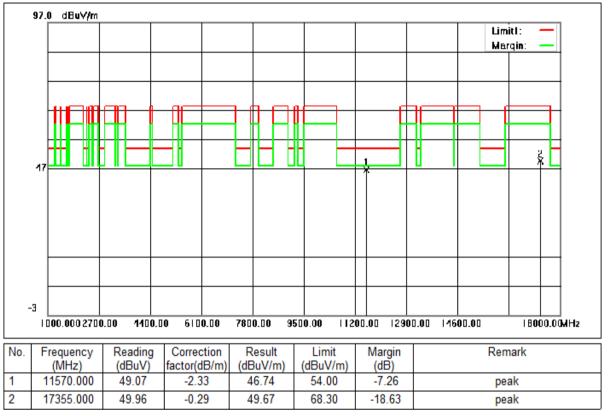
Mode:e; Polarization:Horizontal; Modulation:n; bandwidth:40MHz; Channel:High


Report No.: SHEM200300156704 Page: 72 of 134

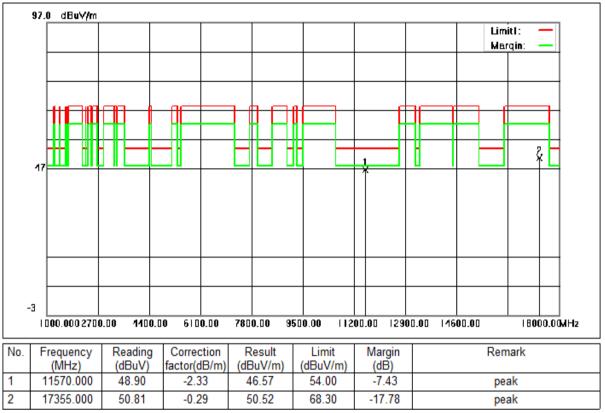
Mode:e; Polarization:Vertical; Modulation:n; bandwidth:40MHz; Channel:High


Report No.: SHEM200300156704 Page: 73 of 134

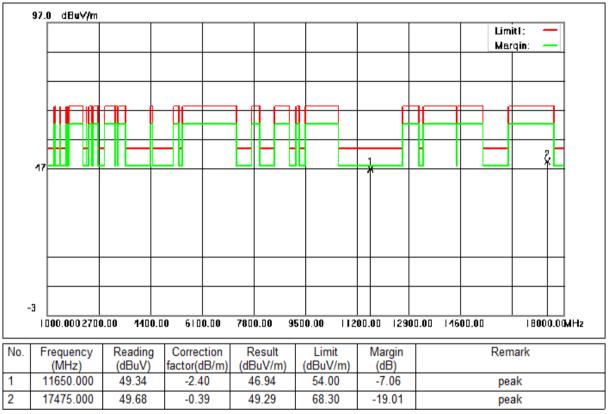
Mode:e; Polarization:Horizontal; Modulation:c; bandwidth:20MHz; Channel:Low


Report No.: SHEM200300156704 Page: 74 of 134

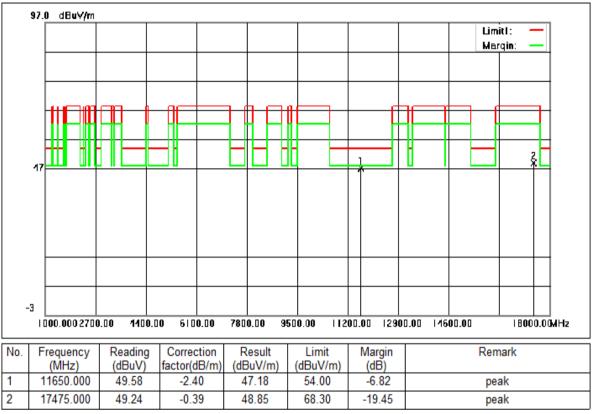
Mode:e; Polarization:Vertical; Modulation:c; bandwidth:20MHz; Channel:Low


Report No.: SHEM200300156704 Page: 75 of 134

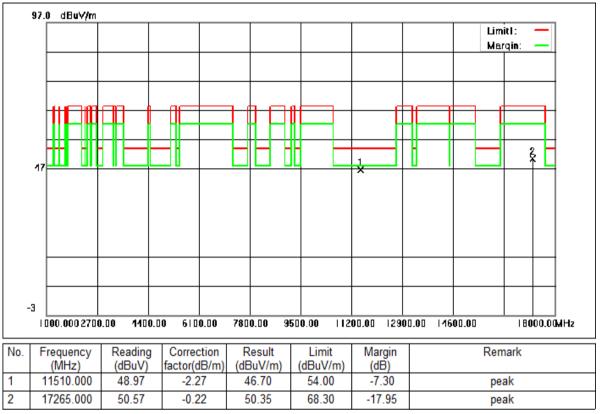
Mode:e; Polarization:Horizontal; Modulation:c; bandwidth:20MHz; Channel:middle


Report No.: SHEM200300156704 Page: 76 of 134

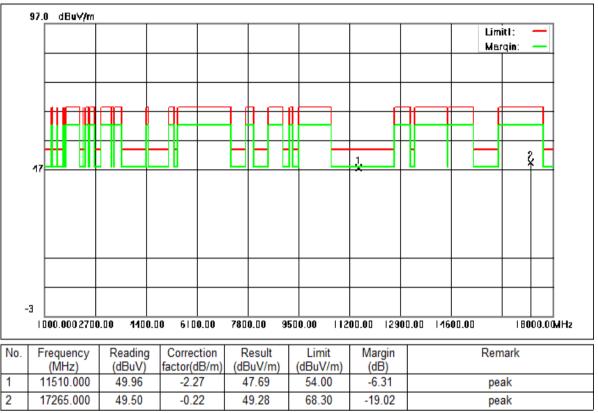
Mode:e; Polarization:Vertical; Modulation:c; bandwidth:20MHz; Channel:middle


Report No.: SHEM200300156704 Page: 77 of 134

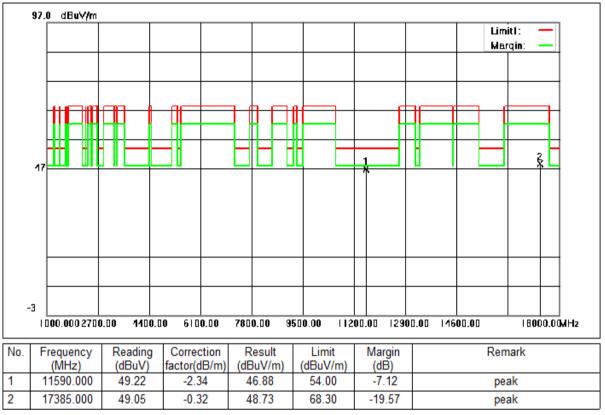
Mode:e; Polarization:Horizontal; Modulation:c; bandwidth:20MHz; Channel:High


Report No.: SHEM200300156704 Page: 78 of 134

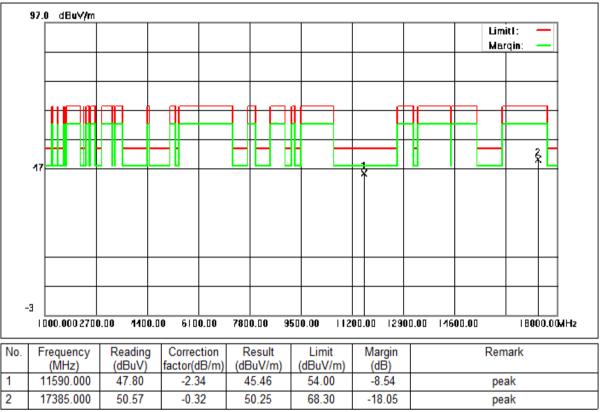
Mode:e; Polarization:Vertical; Modulation:c; bandwidth:20MHz; Channel:High


Report No.: SHEM200300156704 Page: 79 of 134

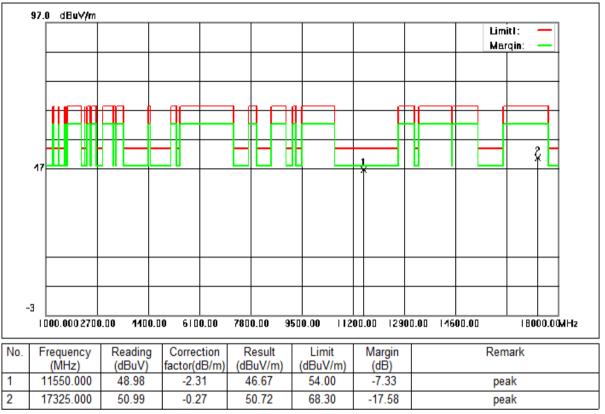
Mode:e; Polarization:Horizontal; Modulation:c; bandwidth:40MHz; Channel:Low


Report No.: SHEM200300156704 Page: 80 of 134

Mode:e; Polarization:Vertical; Modulation:c; bandwidth:40MHz; Channel:Low


Report No.: SHEM200300156704 Page: 81 of 134

Mode:e; Polarization:Horizontal; Modulation:c; bandwidth:40MHz; Channel:High


Report No.: SHEM200300156704 Page: 82 of 134

Mode:e; Polarization:Vertical; Modulation:c; bandwidth:40MHz; Channel:High

Report No.: SHEM200300156704 Page: 83 of 134

Mode:e; Polarization:Horizontal; Modulation:c; bandwidth:80MHz; Channel:Low

Report No.: SHEM200300156704 Page: 84 of 134

															Limi		-	
								-		┢					Mar	qin:	_	
								+		┢								
						1		nF		╞	f	he	-		-6		-	
	17					H		IL I		1		10					ζ.	
	11									Γ	ς							
-	- 1	100.000 2700).00 110	0.00 610	0.00	780	0.00 9	500.0	0 1;	200	.00 29	00.00	146	00.00		18	000.00	MHz
0.	F	requency	Reading	Correc	tion	R	esult	L	imit	Τ	Margin	Τ			Rem	ark		
		(MHz)	(dBuV)	factor(o	IB/m)		BuV/m)		uV/m)	\perp	(dB)							
		1550.000	49.41	-2.3			7.10		4.00		-6.90				pea	ik		
		7325.000	49.65	-0.2	7		9.38	6	8.30		-18.92				pea	de la		

Mode:e; Polarization:Vertical; Modulation:c; bandwidth:80MHz; Channel:Low

Report No.: SHEM200300156704 Page: 85 of 134

7.8 Radiated Emissions which fall in the restricted bands

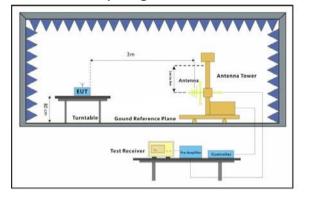
Test Requirement	47 CFR Part 15, Subpart C 15.209 & 15.407(b)
Test Method:	KDB 789033 D02 II G
Limit:	

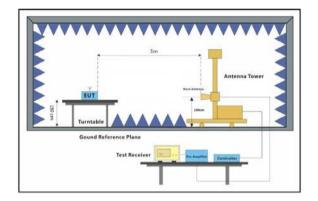
Frequency(MHz)	Field strength(microvolts/meter)	Measurement distance(meters)
0.009-0.490	2400/F(kHz)	300
0.490-1.705	24000/F(kHz)	30
1.705-30.0	30	30
30-88	100	3
88-216	150	3
216-960	200	3
Above 960	500	3

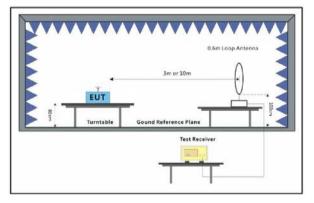
Remark: The emission limits shown in the above table are based on measurements employing a CISPR quasi-peak detector except for the frequency bands 9-90kHz, 110-490kHz and above 1000 MHz. Radiated emission limits in these three bands are based on measurements employing an average detector, the peak field strength of any emission shall not exceed the maximum permitted average limits specified above by more than 20 dB under any condition of modulation.

Report No.: SHEM200300156704 Page: 86 of 134

7.8.1 E.U.T. Operation


Operating Environment:


Temperature: 22 °C Humidity: 50 % RH Atmospheric Pressure: 1002 mbar Pretest these d:TX mode (Band 1) Keep the EUT in continuously transmitting mode with all modes to find modulation types. All data rates for each modulation type have been tested and the worst case: found the data rate @ 6Mbps is the worst case of IEEE 802.11a; data rate @ MCS0 is the worst case of IEEE 802.11n(HT20); data rate @ MCS0 is the worst case of IEEE 802.11n(HT40); data rate @ MCS0 is the worst case of IEEE 802.11ac(VHT20); data rate @ MCS0 is the worst case of IEEE 802.11ac(VHT40); data rate @ MCS0 is the worst case of IEEE 802.11ac(VHT80). Only the data of worst case is recorded in the report. e:TX mode (Band 3) Keep the EUT in continuously transmitting mode with all modulation types. All data rates for each modulation type have been tested and found the data rate @ 6Mbps is the worst case of IEEE 802.11a; data rate @ MCS0 is the worst case of IEEE 802.11n(HT20); data rate @ MCS0 is the worst case of IEEE 802.11n(HT40); data rate @ MCS0 is the worst case of IEEE 802.11ac(VHT20); data rate @ MCS0 is the worst case of IEEE


802.11ac(VHT40); data rate @ MCS0 is the worst case of IEEE

802.11ac(VHT80). Only the data of worst case is recorded in the report.

7.8.2 Test Setup Diagram

Report No.: SHEM200300156704 Page: 87 of 134

7.8.3 Measurement Procedure and Data

a. For below 1GHz, the EUT was placed on the top of a rotating table 0.8 meters above the ground at a 3 or 10 meter semi-anechoic chamber. The table was rotated 360 degrees to determine the position of the highest radiation.

b. For above 1GHz, the EUT was placed on the top of a rotating table 1.5 meters above the ground at a 3 meter fully-anechoic chamber. The table was rotated 360 degrees to determine the position of the highest radiation.

c. The EUT was set 3 or 10 meters away from the interference-receiving antenna, which was mounted on the top of a variable-height antenna tower.

d. The antenna height is varied from one meter to four meters above the ground to determine the maximum value of the field strength. Both horizontal and vertical polarizations of the antenna are set to make the measurement.

e. For each suspected emission, the EUT was arranged to its worst case and then the antenna was tuned to heights from 1 meter to 4 meters (for the test frequency of below 30MHz, the antenna was tuned to heights 1 meter) and the rotatable table was turned from 0 degrees to 360 degrees to find the maximum reading.

f. The test-receiver system was set to Peak Detect Function and Specified Bandwidth with Maximum Hold Mode.

g. If the emission level of the EUT in peak mode was 10dB lower than the limit specified, then testing could be stopped and the peak values of the EUT would be reported. Otherwise the emissions that did not have 10dB margin would be re-tested one by one using peak, quasi-peak or average method as specified and then reported in a data sheet.

h. Test the EUT in the lowest channel, the middle channel, the Highest channel.

i. The radiation measurements are performed in X, Y, Z axis positioning for Transmitting mode, and found the X axis positioning which it is the worst case.

j. Repeat above procedures until all frequencies measured was complete.

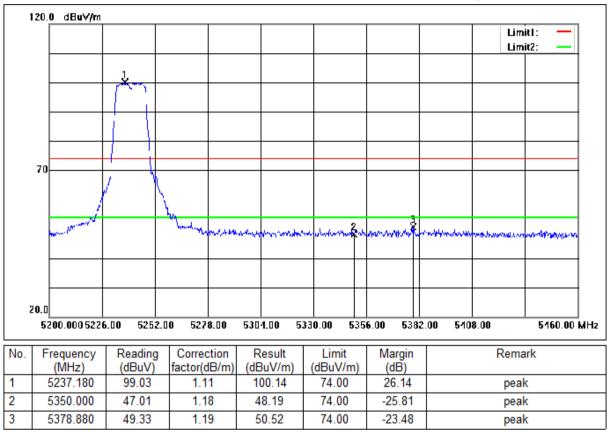
Remark: Level= Read Level+ Cable Loss+ Antenna Factor- Preamp Factor

Report No.: SHEM200300156704 Page: 88 of 134

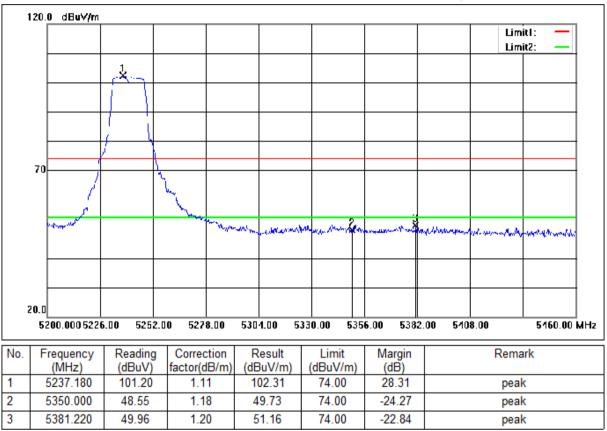
	120.	0 d⊟u∀/m							
									Limitl: —
	-								Limit2: —
	Ì								×
	70								
						1			2
		white when when	white warman	Amount when the reader	parts proved for man	Same ash stort	المرافية منار المتحدية ومحصاته	والمحسبين والمتحافظ والمحارين والم	and the second sec
2	20.0								
2		500.000 157					6.00 4997.		5210.00 MH
	15			00 1713.00 Correction	1781.00 1 Result	855.00 492			
	15 Fi	ioo.ooo 157 requency (MHz)	.00 1612.1 Reading (dBuV)	00 1713.00 Correction factor(dB/m)	1781.00 1 Result (dBuV/m)	855.00 492 Limit (dBuV/m)	6.00 1997. Margin (dB)		5210.00 MH Remark
	15 Fi	requency (MHz) 4848.610	.00 1612. Reading (dBuV) 62.45	00 1713.00 Correction factor(dB/m) -10.11	1781.00 1 Result (dBuV/m) 52.34	855.00 492 Limit (dBuV/m) 74.00	6.00 1997. Margin (dB) -21.66		5210.00 MH Remark
2	15 Fi	ioo.ooo 157 requency (MHz)	.00 1612.1 Reading (dBuV)	00 1713.00 Correction factor(dB/m)	1781.00 1 Result (dBuV/m)	855.00 492 Limit (dBuV/m)	6.00 1997. Margin (dB)		5210.00 MH Remark

Mode:d; Polarization:Horizontal; Modulation:a; bandwidth:20MHz; Channel:Low

Report No.: SHEM200300156704 Page: 89 of 134


1	20.0	0 dBu∀/m							
									Limit1: — Limit2: —
	ł								
									- (h
	70								
									1
									-1/1 All
			w. Achiever	مسينا ويستر ومروجة والمعاديات	much	un la prime on the	anaraharan pheriotan	amountal sampton in	water to
		and a share of a second se							
	ł								
2	0.0								
		i00.000 157	.00 1612	.00 1713.00	4784.00 4	1855.00 492	6.00 4997.	00 5068.00	5210.00 MHz
	F	requency	Reading	Correction	Result	Limit	Margin	R	lemark
		(MHz)	(dBuV)	factor(dB/n	n) (dBuV/m)	(dBuV/m)	(dB)		
		4902.570	62.52	-9.90	52.62	74.00	-21.38		peak
	5	5150.000	59.80	-9.51	50.29	74.00	-23.71		peak
\rightarrow		5182.310	106.64	-9.51	97.13	74.00	23.13		peak

Mode:d; Polarization:Vertical; Modulation:a; bandwidth:20MHz; Channel:Low


Report No.: SHEM200300156704 Page: 90 of 134

Mode:d; Polarization:Horizontal; Modulation:a; bandwidth:20MHz; Channel:High

Report No.: SHEM200300156704 Page: 91 of 134

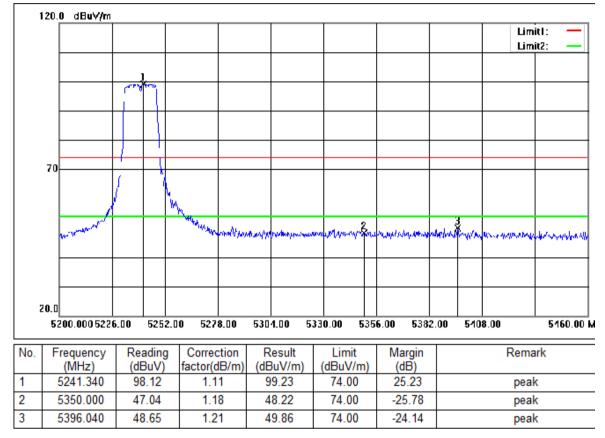
Mode:d; Polarization:Vertical; Modulation:a; bandwidth:20MHz; Channel:High

Report No.: SHEM200300156704 Page: 92 of 134

1	20.0 dBu∀/m							
								Limit1: — Limit2: —
								3
								<u> </u>
	70							
				1				
	para di seta di	an termenteriste	maaline om brude til en	ne de konstruien	underents, abstractioner	water was been a	an she she had a she	ermon and
2	20.0							
	1500.000 157	1.00 1612.0	0 4713.00	4784.00 4	855.00 492	6.00 4997.	.00 5068.00	5210.00 MHz
No.	Frequency (MHz)	Reading (dBuV)	Correction factor(dB/m)	Result (dBuV/m)	Limit (dBuV/m)	Margin (dB)		Remark
1	4779.740	63.47	-10.38	53.09	74.00	-20.91		peak
2	5150.000	60.09	-9.51	50.58	74.00	-23.42		peak
3	5181.600	99.49	-9.51	89.98	74.00	15.98		peak

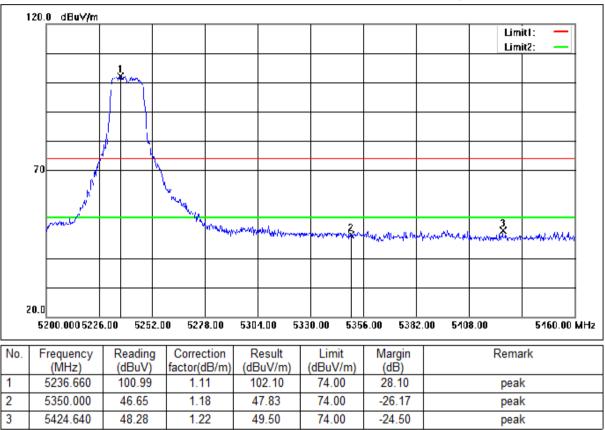
Mode:d; Polarization:Horizontal; Modulation:n; bandwidth:20MHz; Channel:Low

Report No.: SHEM200300156704 Page: 93 of 134


1	20.0	0 dBu∀/m							
									imit1: — imit2: —
	70								+ // (
		wy years we	ayy Martin and Anton and	u , Muserman, Anga	uter the second	man all market and and	and addression of	ndread an analysis and so and a	
_									
2	0.0 15	500.000 157	.00 1612.0	0 1713.00	1784.00 1	855.00 492	6.00 4997	.00 5068.00	5210.00 MHz
).	F	requency (MHz)	Reading (dBuV)	Correction factor(dB/m)	Result (dBuV/m)	Limit (dBuV/m)	Margin (dB)	R	emark
		4800.330	62.69	-10.30	52.39	74.00	-21.61		peak
		5150.000	61.99	-9.51	52.48	74.00	-21.52	I	peak
	1	5178.760	106.31	-9.51	96.80	74.00	22.80	1	peak

Mode:d; Polarization:Vertical; Modulation:n; bandwidth:20MHz; Channel:Low

Report No.: SHEM200300156704 Page: 94 of 134



Mode:d; Polarization:Horizontal; Modulation:n; bandwidth:20MHz; Channel:High

Report No.: SHEM200300156704 Page: 95 of 134

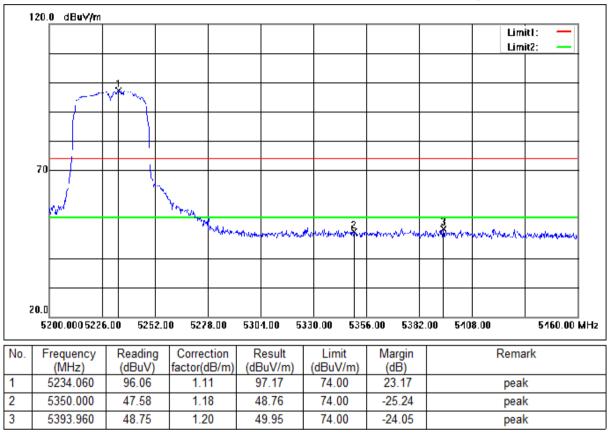
Mode:d; Polarization:Vertical; Modulation:n; bandwidth:20MHz; Channel:High

Report No.: SHEM200300156704 Page: 96 of 134

1	20.0	dBu∀/m							
	Γ								Limiti: —
	┝								Limit2: —
									3
	F								- MA
	┝								
	ŀ								
	70								
	-							- 1	2
	м	mound	www.howman	al contraction to a the the	an almosterious	weiner	- way way with	a mar the second and a second second	
	⊢								
,	20.0								
		00.000 1573	.00 1616.0	0 1719.00	1792.00 1	855.00 493	 8.00 501	.00 5084.00	5230.00 MHz
_					-				
).		equency	Reading	Correction		Limit	Margin		Remark
		(MHz)	(dBuV)	factor(dB/m		(dBuV/m)	(dB)		
	5	066.480	61.66	-9.52 -9.51	52.14 53.25	74.00 74.00	-21.86 -20.75		peak peak
	.			-9.61	1 5125	1 14 00	-20 (5	1	noak
_		150.000 193.500	62.76 109.19	-9.51	99.68	74.00	25.68		peak

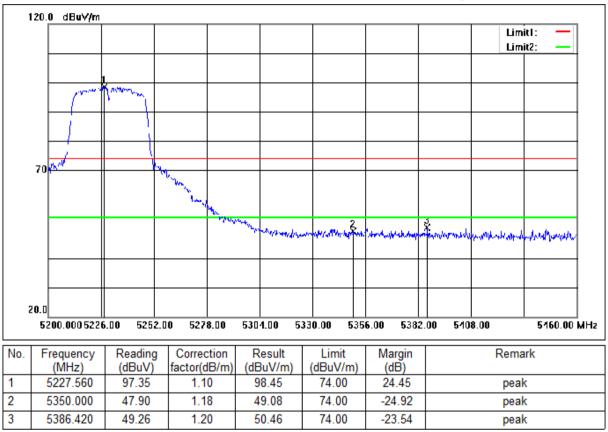
Mode:d; Polarization:Horizontal; Modulation:n; bandwidth:40MHz; Channel:Low

Report No.: SHEM200300156704 Page: 97 of 134


1	20.0	0 dBu∀/m							
									imit1: — imit2: —
									-
									()
	70								
		nyan maripulik yangin 19. d	particular and all	184 mounds	an particular and the second	phaselysteranover	motoringen	white wat all relief themesees	
						_			
Z	0.0								
	45	500.000 4573	.00 1616.0	10 1719.00	1792.00 1	855.00 493	8.00 5011	.00 5084.00	5230.00 MHz
).	F	requency (MHz)	Reading (dBuV)	Correction factor(dB/m)	Result (dBuV/m)	Limit (dBuV/m)	Margin (dB)	R	emark
	4	4962.090	62.09	-9.67	52.42	74.00	-21.58		peak
	Į	5150.000	60.48	-9.51	50.97	74.00	-23.03		peak
	_	5197.150	101.37	-9.51	91.86	74.00	17.86		peak

Mode:d; Polarization:Vertical; Modulation:n; bandwidth:40MHz; Channel:Low

Report No.: SHEM200300156704 Page: 98 of 134



Mode:d; Polarization:Horizontal; Modulation:n; bandwidth:40MHz; Channel:High

Report No.: SHEM200300156704 Page: 99 of 134

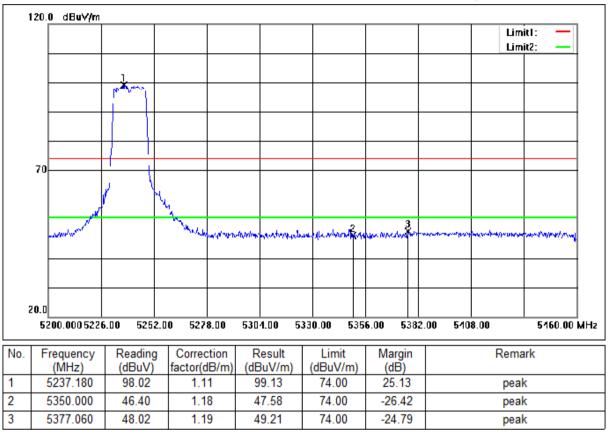
Mode:d; Polarization:Vertical; Modulation:n; bandwidth:40MHz; Channel:High

Report No.: SHEM200300156704 Page: 100 of 134

1	20.0 d⊟u∀/m							
								Limitl: —
								Limit2: —
								3 X
	70							
					1			
	repaired on the bar	an the second	ng will the state of the state	unan management	nd all a second and	here when the second of	and Any souther any many a	
2	20.0							
	1500.000 157	1.00 1612.0	10 1713.00	1784.00 1	855.00 492	6.00 4997	.00 5068.00	5210.00 MHz
0.	Frequency	Reading	Correction	Result	Limit	Margin		Remark
_	(MHz)	(dBuV)	factor(dB/m)	(dBuV/m)	(dBuV/m)	(dB)		
	4903.280	62.27	-9.90	52.37	74.00	-21.63		peak
	5150.000	59.72	-9.51	50.21	74.00	-23.79		peak
	5179.470	111.47	-9.51	101.96	74.00	27.96		peak

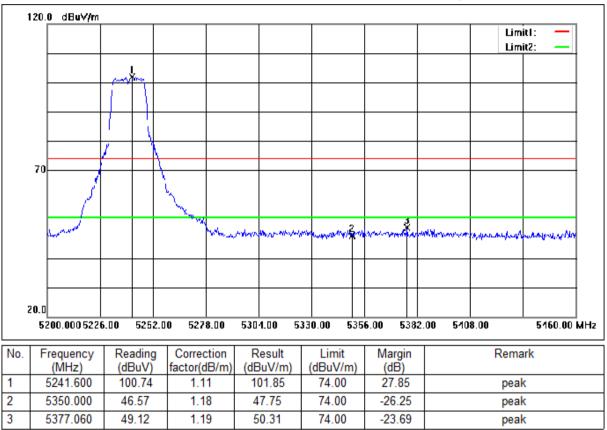
Mode:d; Polarization:Horizontal; Modulation:c; bandwidth:20MHz; Channel:Low

Report No.: SHEM200300156704 Page: 101 of 134


		0 dBu∀/m												Limit Limit		_	
																	1
																3 1	1
															ſ		1
																	1
	70														1	Ħ	1
															1	$+ \lambda$	
					1		- V	_			-				2	+ '	ų –
		ne a vour tour	mandhallerth	en ffi bler an Mi	and a start	many	reman	(** 1 97)	Ant man be	iteratur (Ma	ent to come	(m) pala ya ka	- Jan Mark	have	\$		
		and you wanted	mundudationstra	ger bje blever med ble	and the second	ines and a	reman	от установания. 	Anto ang con far	Hanaka Mat	nt to gran	(n para d	and	h-1,4-4	*		
2			mund append	on bh bha na bh	1998-00- ¹⁹⁹⁴	·~~~~	*****	·****		Hanaka Mat	int to prove	(r-fallespelles	a de Redand	 ,	*		-
2	2 0 .0				3.00	1784.1		1855.00	49 m) (r 49 20		1997.00		58.00	h		10.00	T MHz
	20.0 15	500.000 157 I	.00 1612 Reading	2.00 471	3.00	1781.I	DO 1	1855.00	4920 it	6.00 ⁴ Marg	1997.00			Rema	52	10.00	MHz
	20.0 15 Fi	500.000 157	.00 1612	2.00 171	3.00 ction	1781.I	ao r sult V/m)	1855.00	1921 it //m)	6.00	1997.00				52 ark	10.00	MH2
2 0.	20.0 15 Fi	500.000 157 requency (MHz)	Reading (dBuV)	2.00 171 Correctation (d	3.00 ction dB/m) 20	1784.1 Re: (dBu	00 / sult V/m) .14	1855.00 Lim (dBuV	4920 it //m))0	6.00	1997.00			Rema	52 ark		MH2

Mode:d; Polarization:Vertical; Modulation:c; bandwidth:20MHz; Channel:Low

Report No.: SHEM200300156704 Page: 102 of 134



Mode:d; Polarization:Horizontal; Modulation:c; bandwidth:20MHz; Channel:High

Report No.: SHEM200300156704 Page: 103 of 134

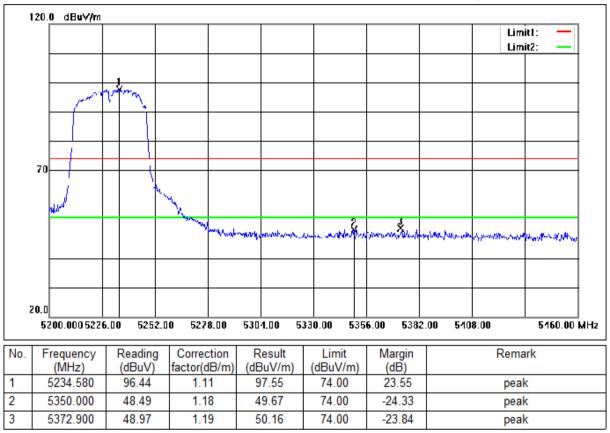
Mode:d; Polarization:Vertical; Modulation:c; bandwidth:20MHz; Channel:High

Report No.: SHEM200300156704 Page: 104 of 134

'	20.	.0 dBu∀/m									imitl: imit2:	
											Å	, ,
	70)										
				I					1	1		
		geronay thetheresty of	a Waxaanii Portha	der and the states	wanthe water	n on the second	Malaansaatashadh	ale and the second s	man'n jedentra.	ek anang santa	-2	4
2	20.0											
	20.0	500.000 1573	.00 1616. Reading	00 1719.1 Correcti	00 17 on	792.00 1 Result	855.00 493	8.00 50		H.00).00 MHz
2 0.	20.0 49 F	500.000 1573	.00 1616.	00 1719.0	00 17 on (d	/92.00 1/	865.00 493	8.00 50		1.00 R	5230).00 MHz

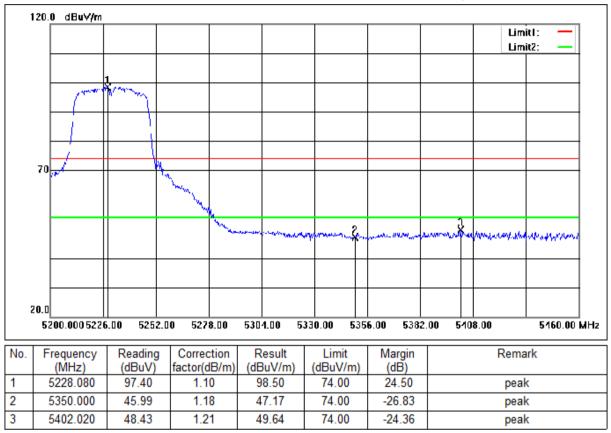
Mode:d; Polarization:Horizontal; Modulation:c; bandwidth:40MHz; Channel:Low

Report No.: SHEM200300156704 Page: 105 of 134


	20.0 dBu∀/m							1:
								Limit1: — Limit2: —
								<u>Å</u>
								M TO
	70							
			•					
	4 min May mar	where problem and	a management	h when we wanted	and a second second	n waana ka mada waa aa	al and a state of the second	
	n www.maga	unangen der	n Marina and Angelo	h water and a second	and a second second	n dynyster og skyrdigen	al for the state of the state o	
	49 m M. M. Maghania	and a start of the second s	artuariti ana ang ba		and provident	n daan taa ahadhaa	ala ana ang ang ang ang ang ang ang ang an	
	41.111. 1 944	and south for the second	arthurgen be	fr ng hannangangan		n dana kana na na ka da an	alara an	
	69 ************************************	untraand problem (art	en den ser den			n dynyd rwynddyndiau I		
21	0.0							
21						8.00 5011.		5230.00 MH
21	0.0	3.00 1616.0	10 1719.00	1792.00 1	85.00 493	8.00 5011.		5230.00 MH2
21	0.0			1792.00 1 Result				
21	0.0 1500.000 1573 Frequency	3.00 1616.0	10 17 19.00 Correction	1792.00 1 Result	855.00 493	8.00 5011. Margin		5230.00 MH2
21	0.0 1500.000 1573 Frequency (MHz)	3.00 1616.0 Reading (dBuV)	0 1719.00 Correction factor(dB/m)	1792.00 1 Result (dBuV/m)	855.00 493	8.00 5011. Margin (dB)		5230.00 MHa

Mode:d; Polarization:Vertical; Modulation:c; bandwidth:40MHz; Channel:Low

Report No.: SHEM200300156704 Page: 106 of 134



Mode:d; Polarization:Horizontal; Modulation:c; bandwidth:40MHz; Channel:High

Report No.: SHEM200300156704 Page: 107 of 134

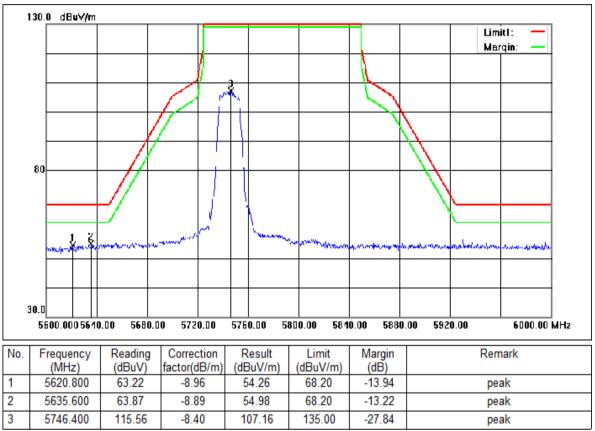
Mode:d; Polarization:Vertical; Modulation:c; bandwidth:40MHz; Channel:High

Report No.: SHEM200300156704 Page: 108 of 134

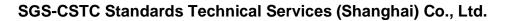
1	20.0 d⊟u∀/m							
								Limitl: —
					Limit2: —			
								month
	70							
					4		2	
	kalphan by provident part pro	Joop International Arriv	hormonic	man and a start with the	un not many	ha madala an	and and a strength	
2	20.0							
	1500.000 157	7.00 1654.0	0 1731.00	1808.00 1	885.00 496	2.00 5 039.	00 5116.00	5270.00 MHz
No.	Frequency	Reading	Correction	Result	Limit	Margin		5270.00 MHz Remark
No. 1								
	Frequency (MHz)	Reading (dBuV)	Correction factor(dB/m)	Result (dBuV/m)	Limit (dBuV/m)	Margin (dB)		Remark

Mode:d; Polarization:Horizontal; Modulation:c; bandwidth:80MHz; Channel:Low

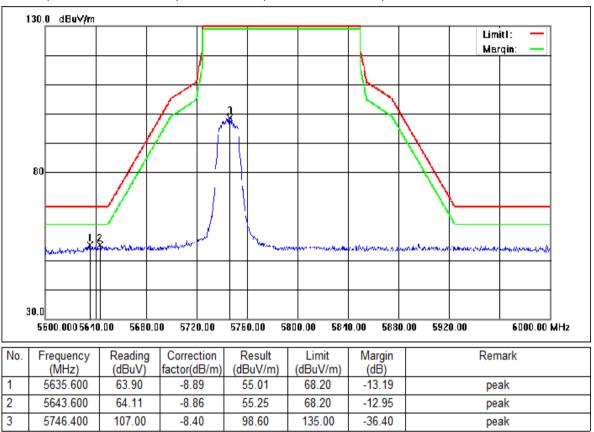
Report No.: SHEM200300156704 Page: 109 of 134


1	- 1				1								1
											Limiti: -		
	-				<u> </u>						Limit2: —		ł
	-												ł
	- 1											A way and a	ł
											(sh	1 1 7	
													ł
													1
	70												t t
												L L	
											-24		
		huber	Putroponen vonen	ومغجيدة ومحور			ware	man processing to an	and the second state of the	and the second second	-ŝe		
		however	lahingingi ing	uganan prophesis			we are de	management of the second	and a start of the st	and and a state of the state of	ŝ		
		lowners	Patringender at mer	a dana sa		ter-starter	ana ana ang ang ang ang ang ang ang ang	nn generalister fran	and the second states of the		-ŝt		
		lew par even we	latan penter atanga	adaran sadirkeya			warde	nga panandarita taran	haadaay ka ya ka	and and a second se	-2		
		lew or a second	laturgente sina	ungenun progeniunge			mana	nga pangandaritan Anara.			~\$		
2	20.0		tatungung sing	, a parton progeniko gu		• • • • • • • • • • • • • • • • • • •		nga panakatan tanan	haadaayaan da tay a	**************************************	-ŝ		
2	2 0 .0				1.00	1808					6.00	5270.00	MHz
Z	2 0 .0											5270.00	MHz
	20.0 15	500.000 4577	7.00 1651	.00 173	I.0 0	1808			i2.00 5039		6.00	5270.00	MHz
	20.0 15			.00 173	1.00	1808 Re	.00 1	885.00 496			6.00		MHz
	20.0 15 Fi	500.000 157 7	7.00 1651	.00 173	1.00 ction dB/m)	1808 Re (dBi	.00 11 esult	885.00 496	2.00 5039 Margin		6.00 Rer		MHz
2	20.0 19 Fi	500.000 1577 requency (MHz)	7.00 1651 Reading (dBuV)	00 173	1.00 ction dB/m) 16	1808 (dBi 51	.00 1 esult uV/m)	B85.00 196 Limit (dBuV/m)	2.00 5039 Margin (dB)		6.00 Rer	mark	MHz

Mode:d; Polarization:Vertical; Modulation:c; bandwidth:80MHz; Channel:Low

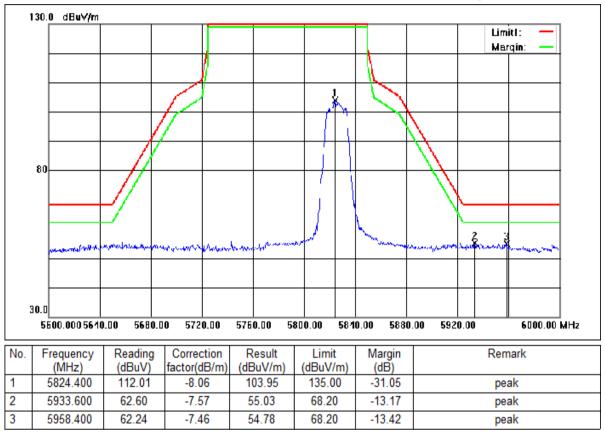


Report No.: SHEM200300156704 Page: 110 of 134



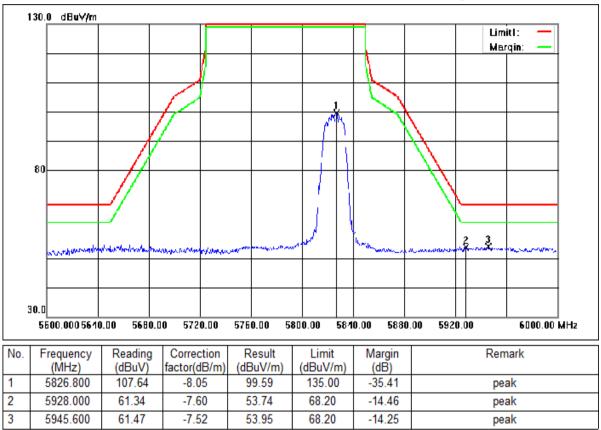
Mode:e; Polarization:Horizontal; Modulation:a; bandwidth:20MHz; Channel:Low

Report No.: SHEM200300156704 Page: 111 of 134



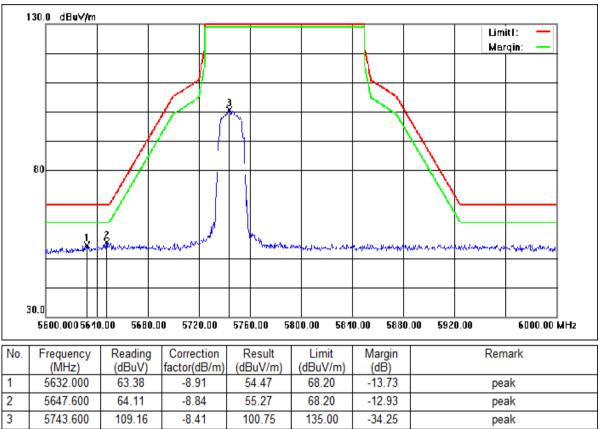
Mode:e; Polarization:Vertical; Modulation:a; bandwidth:20MHz; Channel:Low

Report No.: SHEM200300156704 Page: 112 of 134



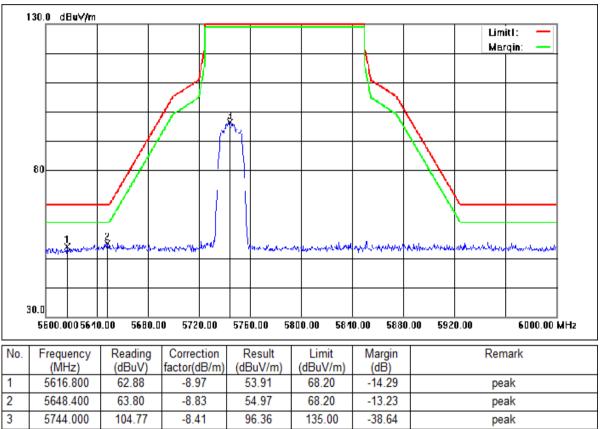
Mode:e; Polarization:Horizontal; Modulation:a; bandwidth:20MHz; Channel:High

Report No.: SHEM200300156704 Page: 113 of 134



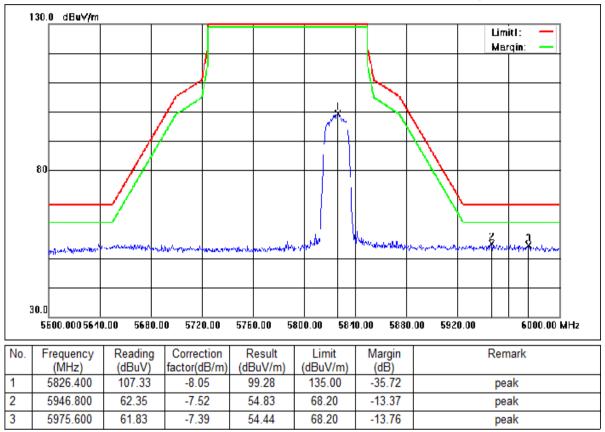
Mode:e; Polarization:Vertical; Modulation:a; bandwidth:20MHz; Channel:High

Report No.: SHEM200300156704 Page: 114 of 134



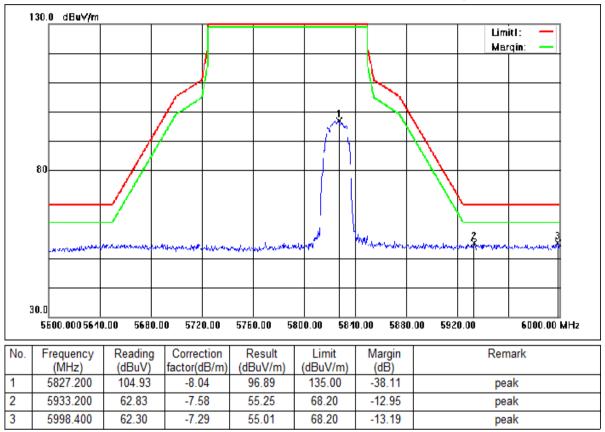
Mode:e; Polarization:Horizontal; Modulation:n; bandwidth:20MHz; Channel:Low

Report No.: SHEM200300156704 Page: 115 of 134



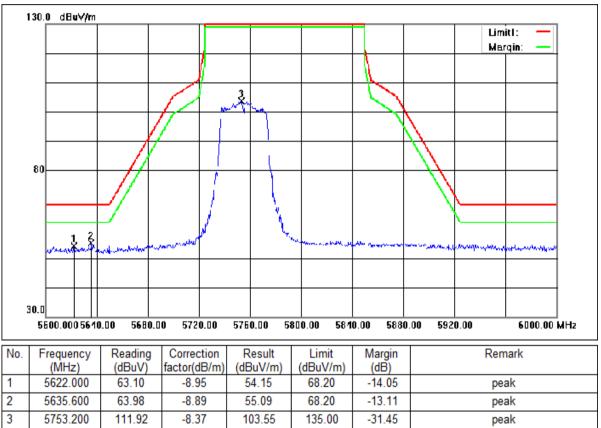
Mode:e; Polarization:Vertical; Modulation:n; bandwidth:20MHz; Channel:Low

Report No.: SHEM200300156704 Page: 116 of 134



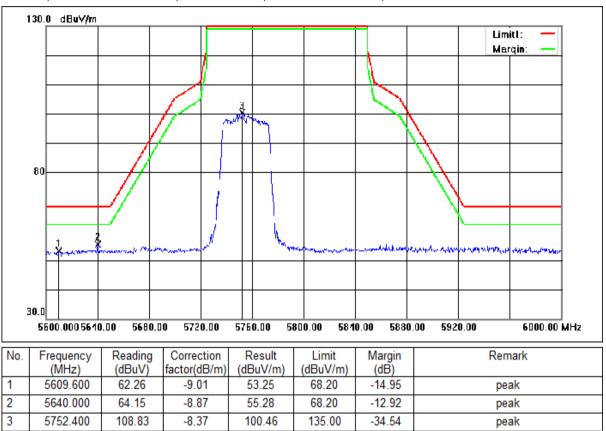
Mode:e; Polarization:Horizontal; Modulation:n; bandwidth:20MHz; Channel:High

Report No.: SHEM200300156704 Page: 117 of 134



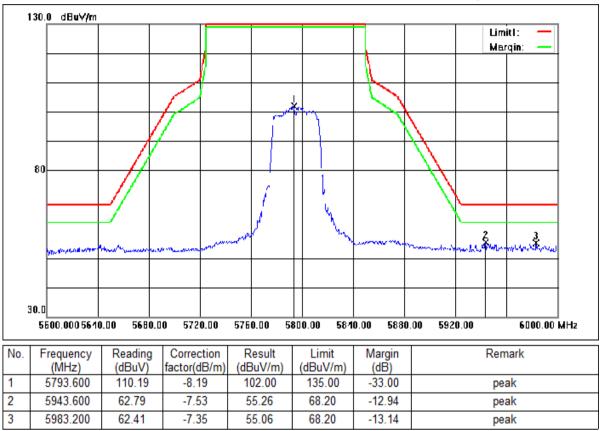
Mode:e; Polarization:Vertical; Modulation:n; bandwidth:20MHz; Channel:High

Report No.: SHEM200300156704 Page: 118 of 134



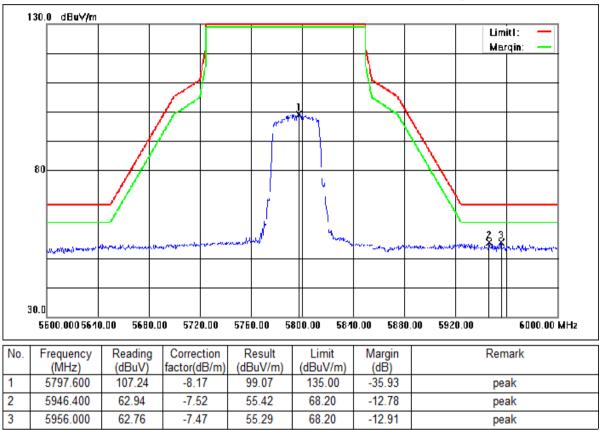
Mode:e; Polarization:Horizontal; Modulation:n; bandwidth:40MHz; Channel:Low

Report No.: SHEM200300156704 Page: 119 of 134



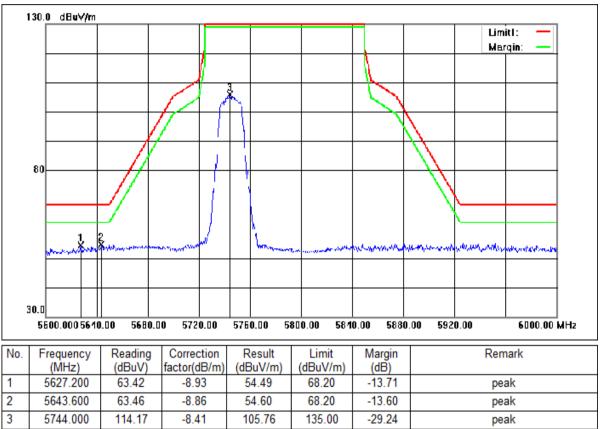
Mode:e; Polarization:Vertical; Modulation:n; bandwidth:40MHz; Channel:Low

Report No.: SHEM200300156704 Page: 120 of 134



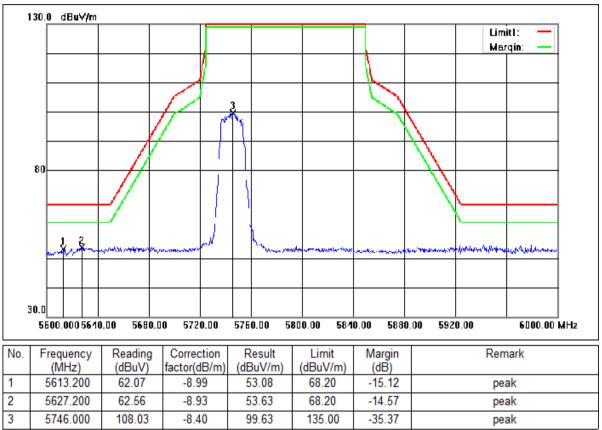
Mode:e; Polarization:Horizontal; Modulation:n; bandwidth:40MHz; Channel:High

Report No.: SHEM200300156704 Page: 121 of 134



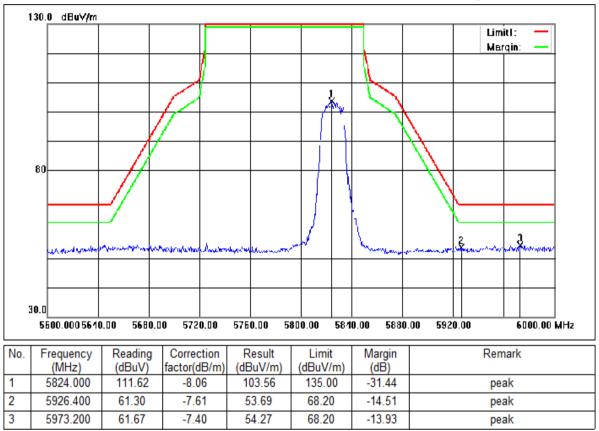
Mode:e; Polarization:Vertical; Modulation:n; bandwidth:40MHz; Channel:High

Report No.: SHEM200300156704 Page: 122 of 134



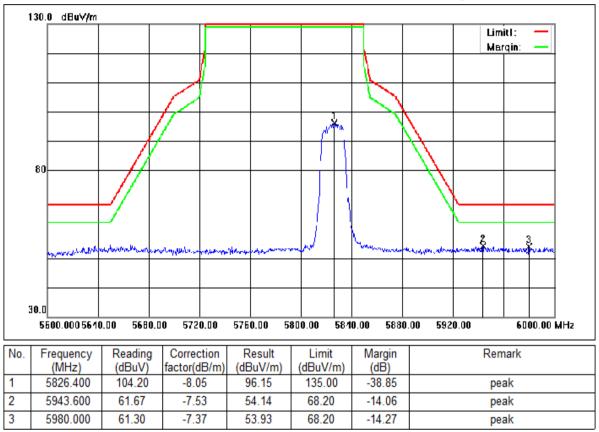
Mode:e; Polarization:Horizontal; Modulation:c; bandwidth:20MHz; Channel:Low

Report No.: SHEM200300156704 Page: 123 of 134



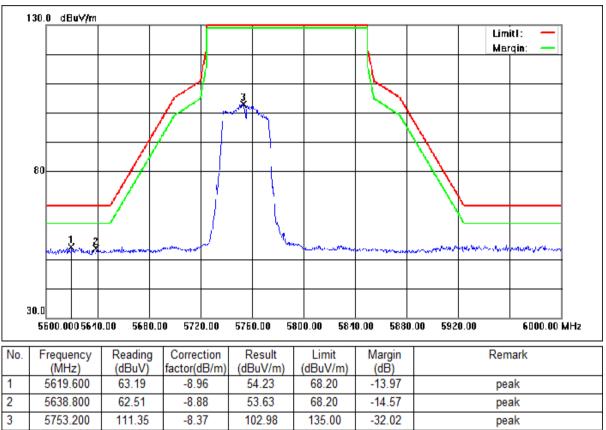
Mode:e; Polarization:Vertical; Modulation:c; bandwidth:20MHz; Channel:Low

Report No.: SHEM200300156704 Page: 124 of 134



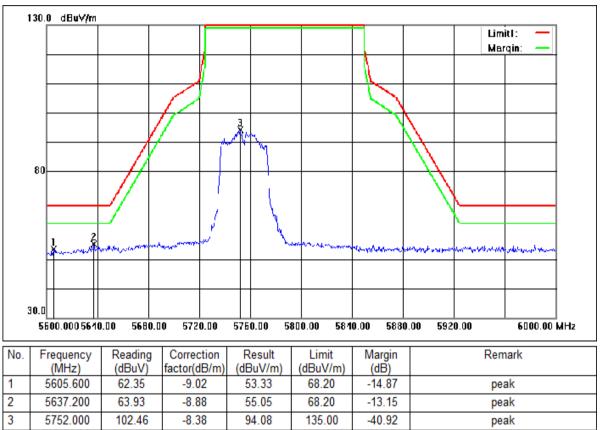
Mode:e; Polarization:Horizontal; Modulation:c; bandwidth:20MHz; Channel:High

Report No.: SHEM200300156704 Page: 125 of 134



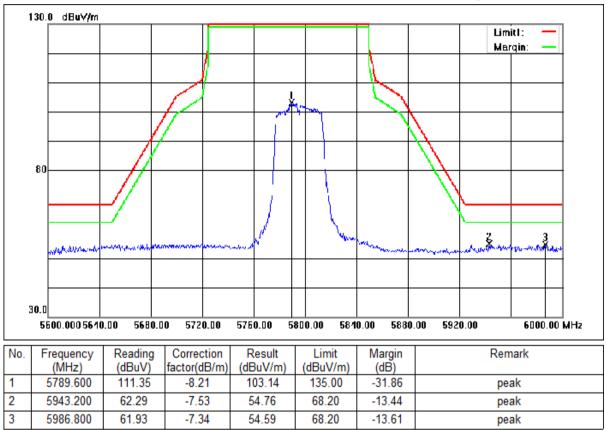
Mode:e; Polarization:Vertical; Modulation:c; bandwidth:20MHz; Channel:High

Report No.: SHEM200300156704 Page: 126 of 134



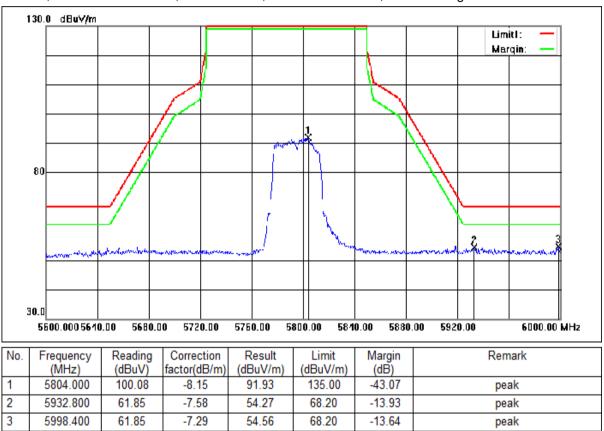
Mode:e; Polarization:Horizontal; Modulation:c; bandwidth:40MHz; Channel:Low

Report No.: SHEM200300156704 Page: 127 of 134



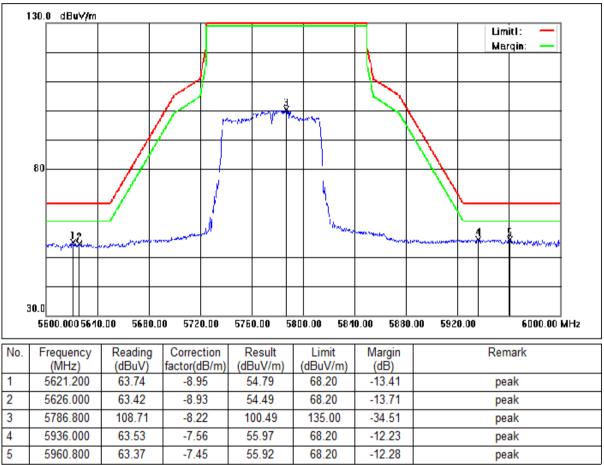
Mode:e; Polarization:Vertical; Modulation:c; bandwidth:40MHz; Channel:Low

Report No.: SHEM200300156704 Page: 128 of 134

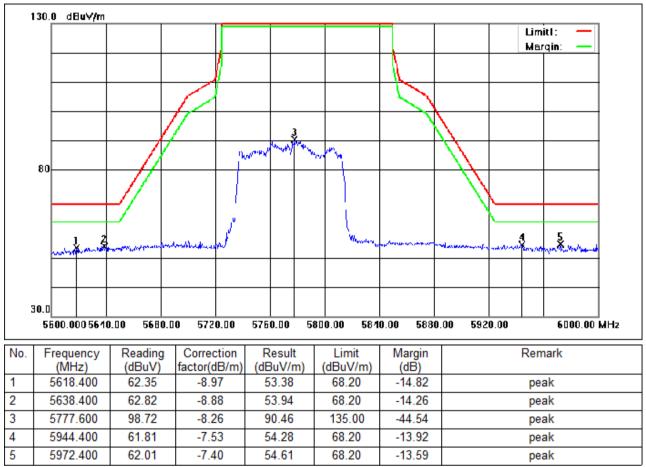


Mode:e; Polarization:Horizontal; Modulation:c; bandwidth:40MHz; Channel:High

Report No.: SHEM200300156704 Page: 129 of 134



Mode:e; Polarization:Vertical; Modulation:c; bandwidth:40MHz; Channel:High


Report No.: SHEM200300156704 Page: 130 of 134

Mode:e; Polarization:Horizontal; Modulation:c; bandwidth:80MHz; Channel:Low

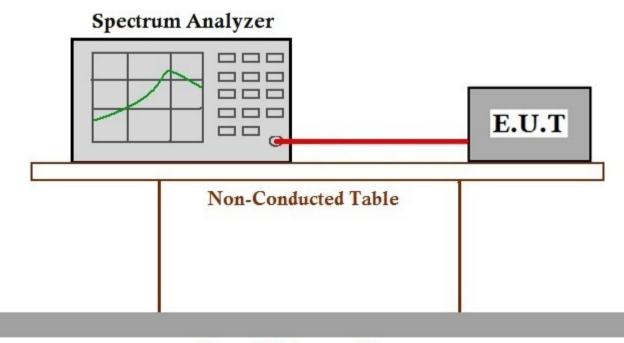
Report No.: SHEM200300156704 Page: 131 of 134

Mode:e; Polarization:Vertical; Modulation:c; bandwidth:80MHz; Channel:Low

Report No.: SHEM200300156704 Page: 132 of 134

7.9 Frequency Stability

Test Requirement	47 CFR Part 15, Subpart C 15.407 (g)
Test Method:	ANSI C63.10 (2013) Section 6.8
Limit:	The frequency tolerance shall be maintained within the band of operation frequency over a temperature variation of 0 degrees to 35 degrees C at normal supply voltage, and for a variation in the primary supply voltage from 85% to 115% of the rated supply voltage at a temperature of 20 degrees C.


Report No.: SHEM200300156704 Page: 133 of 134

7.9.1 E.U.T. Operation

Operating Environment:

1 0								
Temperature:	22 °C Hu	midity: 50 % RH	Atmospheric Pressure:	1002 mbar				
Pretest these modes to find the worst case:	d:TX mode (Band 1)_Keep the EUT in continuously transmitting mode with all modulation types. All data rates for each modulation type have been tested and found the data rate @ 6Mbps is the worst case of IEEE 802.11a; data rate @ MCS0 is the worst case of IEEE 802.11n(HT20); data rate @ MCS0 is the worst case of IEEE 802.11n(HT20); data rate @ MCS0 is the worst case of IEEE 802.11ac(VHT20); data rate @ MCS0 is the worst case of IEEE 802.11ac(VHT20); data rate @ MCS0 is the worst case of IEEE 802.11ac(VHT40); data rate @ MCS0 is the worst case of IEEE 802.11ac(VHT40); data rate @ MCS0 is the worst case of IEEE 802.11ac(VHT40); data rate @ MCS0 is the worst case of IEEE 802.11ac(VHT40); data rate @ MCS0 is the worst case of IEEE 802.11ac(VHT40); data rate @ MCS0 is the worst case of IEEE 802.11ac(VHT40); data rate @ MCS0 is the worst case of IEEE 802.11ac(VHT40); data rate @ MCS0 is the worst case of IEEE 802.11ac(VHT40); data rate @ MCS0 is the worst case of IEEE 802.11ac(VHT40); data rate @ MCS0 is the worst case of IEEE 802.11ac(VHT40); data rate @ MCS0 is the worst case of IEEE 802.11ac(VHT40); data rate @ MCS0 is the worst case of IEEE 802.11ac(VHT40); data rate @ MCS0 is the worst case of IEEE 802.11ac(VHT40); data rate @ MCS0 is the worst case of IEEE 802.11ac(VHT80). Only the data of worst case is recorded in the report.							
	modulation types. A found the data rate MCS0 is the worst case of IEEE 802.1 802.11ac(VHT20); 802.11ac(VHT40);	II data rates for each @ 6Mbps is the wors case of IEEE 802.11n 1n(HT40); data rate @ data rate @ MCS0 is data rate @ MCS0 is	ontinuously transmitting mod modulation type have been t case of IEEE 802.11a; data (HT20); data rate @ MCS0 @ MCS0 is the worst case of the worst case of IEEE the worst case of IEEE t case is recorded in the repo	tested and a rate @ is the worst f IEEE				

7.9.2 Test Setup Diagram

Ground Reference Plane

7.9.3 Measurement Procedure and Data

The detailed test data see: Appendix D for SHEM200300156704

Report No.: SHEM200300156704 Page: 134 of 134

8 Test Setup Photographs

Refer to the < Test Setup photos-FCC>.

9 EUT Constructional Details

Refer to the < External Photos > & < Internal Photos >.

- End of the Report -