

FCC PART 15B

TEST REPORT

For

Shanghai Sunmi Technology Co.,Ltd.

Room 605, Block 7, KIC Plaza, No.388 Song Hu Road, Yang Pu District, Shanghai 200433 China

FCC ID: 2AH25D2SLITE

Report Type:		Product Type:
CIIPC Report		POS System
		Cody Lu
Test Engineer:	Cody Lu	N
Report Number:	RKSA20062300	03-00C
Report Date:	2020-07-04	
Reviewed By:	Oscar Ye EMC Manager	Oscar. Ye
Prepared By:	<i>y</i> 1	88934268

Note: This test report is prepared for the customer shown above and for the device described herein. It may not be duplicated or used in part without prior written consent from Bay Area Compliance Laboratories Corp. This report is valid only with a valid digital signature. The digital signature may be available only under the Adobe software above version 7.0.

TABLE OF CONTENTS

GENERAL INFORMATION	
PRODUCT DESCRIPTION FOR EQUIPMENT UNDER TEST (EUT)	
OBJECTIVE	
RELATED SUBMITTAL(S)/GRANT(S)	
TEST METHODOLOGY	
TEST FACILITY	4
SYSTEM TEST CONFIGURATION	5
JUSTIFICATION	5
EUT Exercise Software	5
SPECIAL ACCESSORIES	
EQUIPMENT MODIFICATIONS	
SUPPORT EQUIPMENT LIST AND DETAILS	
EXTERNAL I/O CABLE	5
BLOCK DIAGRAM OF TEST SETUP	
SUMMARY OF TEST RESULTS	7
FCC §15.107 - CONDUCTED EMISSIONS	8
APPLICABLE STANDARD	
Measurement Uncertainty	
EUT SETUP	
EMI TEST RECEIVER SETUP	
TEST PROCEDURE	
TEST EQUIPMENT LIST AND DETAILS	
TEST DATA	
FCC §15.109 - RADIATED EMISSIONS	12
Applicable Standard	
Measurement Uncertainty	
EUT Setup	
EMI TEST RECEIVER SETUP	
TEST PROCEDURE	
TEST EQUIPMENT LIST AND DETAILS	

GENERAL INFORMATION

Product Description for Equipment under Test (EUT)

Applicant	Shanghai Sunmi Technology Co.,Ltd.
Test Model	L1552
Series Model	L1551, L3552
Product	POS System
Highest Operation Frequency	2480 MHz
Rate Voltage	DC 24V from Adapter

Adapter Information: Model: CYZS36-240150 Input: AC100-240V 50/60Hz 1.5A Output: 24V, 1.5A

Note: The model difference was explained in the declaration letter.

*All measurement and test data in this report was gathered from production sample serial number: 20200320002. (Assigned by the BACL. The EUT supplied by the applicant was received on 2020-03-20)

Objective

This report is prepared on behalf of *Shanghai Sunmi Technology Co.,Ltd.* in accordance with Part 2-Subpart J, and Part 15-Subparts A and B of the Federal Communication Commission's rules.

The objective of the manufacturer is to determine the compliance of EUT with FCC Part 15, Class B device.

This is a CIIPC report base on the original report RKSA200320002-00C with FCC ID: 2AH25D2SLITE which was granted on 2020-06-02, the differences between the original device and the current one are as follows:

1. Add a new model of adapter, so we retest Conducted Emissions and Radiated Emissions.

Related Submittal(s)/Grant(s)

FCC Part 15.247 DTS and Part 15.247 DSS Submittal with FCC ID: 2AH25D2SLITE

Test Methodology

All measurements contained in this report were conducted with ANSI C63.4-2014, American National Standard for Methods of Measurement of Radio-Noise Emissions from Low-Voltage Electrical and Electronic Equipment in the range of 9 kHz to 40 GHz.

All radiated and conducted emissions measurement was performed at Bay Area Compliance Laboratories Corp. (Kunshan). The radiated testing was performed at an antenna-to-EUT distance of 3 meters.

Test Facility

The test site used by Bay Area Compliance Laboratories Corp. (Kunshan) to collect test data is located on the No.248 Chenghu Road, Kunshan, Jiangsu province, China.

Bay Area Compliance Laboratories Corp. (Kunshan) Lab is accredited to ISO/IEC 17025 by A2LA (Lab code: 4323.01) and the FCC designation No. CN1185 under the FCC KDB 974614 D01 and CAB identifier CN0004 under the ISED requirement. The facility also complies with the radiated and AC line conducted test site criteria set forth in ANSI C63.4-2014.

SYSTEM TEST CONFIGURATION

Justification

The system was configured for testing in a typical fashion (as normally used by a typical user).

Test mode: Data Transmission & Print

EUT Exercise Software

"QQ Music(play music)"

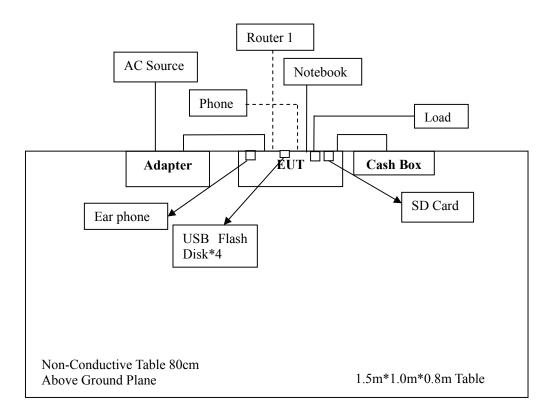
Special Accessories

No special accessory was used.

Equipment Modifications

No modification was made to the EUT tested.

Support Equipment List and Details


Manufacturer	Description	Model	Serial Number	
HUAWEI	Router	WS5102	74Y7S19B2900971210	
Shanghai Sunmi Technology Co.,Ltd.			/	
/	Card	/	/	
/	USB flash disk*4	/	/	
HUAWEI	Earphone	AM116	/	
/ Load		/	/	
Dell	Dell Notebook		3094742521	
HUAWEI Phone		MT7-TL00	P4M7N14B14004411	

External I/O Cable

Cable Description	Length (m)	From/Port	То
Power Cable1	2.0	EUT	Adapter
Power Cable2	1.0	Adapter	AC Source
RJ12 Cable	1.0	EUT	Cash Box
Audio Cable	1.0	EUT	Ear phone
Serial Cable	3.0	EUT	Load
RJ45 Cable	10.0	EUT	Notebook

Block Diagram of Test Setup

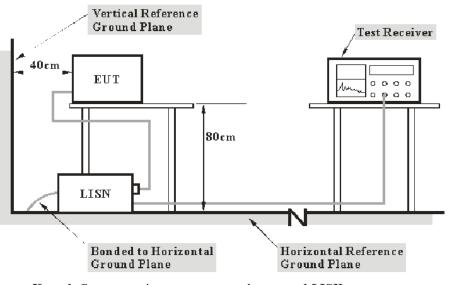
Test mode: Data Transmission & Print

SUMMARY OF TEST RESULTS

FCC Rules	Description of Test	Results
§15.107	Conducted Emissions	Compliant
§15.109	Radiated Emissions	Compliant

FCC §15.107 – CONDUCTED EMISSIONS

Applicable Standard


According to FCC§15.107

Measurement Uncertainty

Input quantities to be considered for conducted disturbance measurements maybe receiver reading, attenuation of the connection between LISN and receiver, LISN voltage division factor, LISN VDF frequency interpolation and receiver related input quantities, etc.

Item		Measurement Uncertainty	$U_{ m cispr}$
AMN	150kHz~30MHz	3.19 dB	3.4 dB

EUT Setup

Note: 1. Support units were connected to second LISN.
2. Both of LISNs (AMN) 80 cm from EUT and at the least 80 cm from other units and other metal planes support units.

The measurement procedure of EUT setup is according with ANSI C63.4-2014. The related limit was specified in FCC Part 15.107 Class B limits.

The external I/O cables were draped along the test table and formed a bundle 30 to 40 cm long in the middle.

The spacing between the peripherals was 10 cm.

EMI Test Receiver Setup

The EMI test receiver was set to investigate the spectrum from 150 kHz to 30 MHz

During the conducted emission test, the EMI test receiver was set with the following configurations:

Frequency Range	IF B/W
150 kHz – 30 MHz	9 kHz

Test Procedure

During the conducted emission test, the Adapter was connected to the outlet of the LISN.

Maximizing procedure was performed on the six (6) highest emissions of the EUT.

All final data was recorded in the Quasi-peak and average detection mode.

Test Equipment List and Details

Manufacturer	Description	Model	Serial Number	Calibration Date	Calibration Due Date
Rohde & Schwarz	EMI Test Receiver	ESR	1316.3003K03 -101746-zn	2019-08-05	2020-08-04
Rohde & Schwarz	LISN	ENV216	101115	2019-12-14	2020-12-13
Rohde & Schwarz	Pluse limiter	ESH3-Z2	100552		
Audix	Test Software	e3	V9		
MICRO-COAX	Coaxial Cable	Cable-6	006	2019-08-15	2020-08-14

* **Statement of Traceability:** Bay Area Compliance Laboratories Corp. (Kunshan) attests that all calibrations have been performed in accordance to requirements that traceable to National Primary Standards and International System of Units (SI).

Factor & Over Limit Calculation

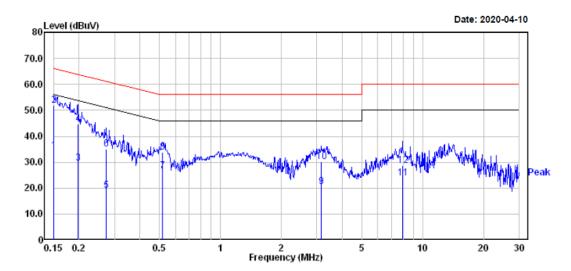
The Corrected Factor is calculated by adding LISN VDF (Voltage Division Factor), Cable Loss and Transient Limiter Attenuation. The basic equation is as follows:

Factor (dB) = LISN VDF (dB) + Cable Loss (dB) + Transient Limiter Attenuation (dB)

The "**Over Limit**" column of the following data tables indicates the degree of compliance with the applicable limit. For example, an Over Limit of 7 dB means the emission is 7 dB above the limit. The equation for Over Limit calculation is as follows:

Over Limit (dB) = Read level (dB μ V) + Factor (dB) - Limit (dB μ V)

Test Data


Environmental Conditions

Temperature:	25.0~25.5 ℃
Relative Humidity:	49~51 %
ATM Pressure:	101.1~101.3kPa

The testing was performed by Cody Lu from 2020-04-10 to 2020-04-14.

Test mode: Data Transmission & Print

Line:

	Freq	Read Level	Factor	Level	Limit Line	Over Limit	Remark
-	MHz	dBuV	dB	dBuV	dBuV	dB	
1	0.150	14.70	19.82	34.52	56.00	-21.48	Average
2	0.150	32.20	19.82	52.02	66.00	-13.98	QP
3	0.198	9.90	19.82	29.72	53.71	-23.99	Average
4	0.198	24.90	19.82	44.72	63.71	-18.99	QP
5	0.273	-0.80	19.82	19.02	51.03	-32.01	Average
6	0.273	15.30	19.82	35.12	61.03	-25.91	QP
7	0.516	6.80	19.76	26.56	46.00	-19.44	Average
8	0.516	14.00	19.76	33.76	56.00	-22.24	QP
9	3.156	1.20	19.46	20.66	46.00	-25.34	Average
10	3.156	10.70	19.46	30.16	56.00	-25.84	QP
11	7.935	4.40	19.53	23.93	50.00	-26.07	Average
12	7.935	9.10	19.53	28.63	60.00	-31.37	QP

Date: 2020-04-14 80 Level (dBuV) 70.0 60.0 50.0 Walk when all when an 40.0 40 white 30.0 ilyun. Peak 20.0 10.0 0.15 0.2 0.5 2 Frequency (MHz) 5 10 20 30 1

Neutral:

		Read			Limit	0ver	
	Freq	Level	Factor	Level	Line	Limit	Remark
	MHz	dBuV	dB	dBuV	dBuV	dB	
1	0.150	17.90	19.82	37.72	56.00	-18.28	Average
2	0.150	35.70	19.82	55.52	66.00	-10.48	QP
3	0.200	11.40	19.82	31.22	53.62	-22.40	Average
4	0.200	28.00	19.82	47.82	63.62	-15.80	QP
5	0.232	6.80	19.82	26.62	52.39	-25.77	Average
6	0.232	23.00	19.82	42.82	62.39	-19.57	QP
7	0.527	6.31	19.75	26.06	46.00	-19.94	Average
8	0.527	14.11	19.75	33.86	56.00	-22.14	QP
9	1.345	2.90	19.83	22.73	46.00	-23.27	Average
10	1.345	9.60	19.83	29.43	56.00	-26.57	QP
11	3.207	1.10	19.46	20.56	46.00	-25.44	Average
12	3.207	11.10	19.46	30.56	56.00	-25.44	QP

Note:

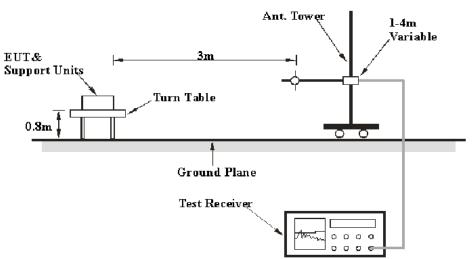
1) Factor (dB) = LISN VDF (dB) + Cable Loss (dB) + Transient Limiter Attenuation (dB)

2) Over Limit (dB) = Read level (dB μ V) + Factor (dB) - Limit (dB μ V)

FCC §15.109 - RADIATED EMISSIONS

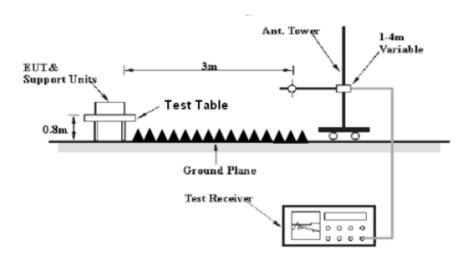
Applicable Standard

FCC §15.109


Measurement Uncertainty

All measurements involve certain levels of uncertainties, especially in field of EMC. The factors contributing to uncertainties are spectrum analyzer, cable loss, antenna factor calibration, antenna directivity, antenna factor variation with height, antenna phase center variation, antenna factor frequency interpolation, measurement distance variation, site imperfections, mismatch (average) and system repeatability.

Item		Measurement Uncertainty	$m{U}_{cispr}$	
Radiated Emission	30MHz~1GHz	6.11dB	6.3 dB	
	1GHz~6GHz	4.45dB	5.2 dB	
	6 GHz ~18 GHz	5.23dB	5.5 dB	


EUT Setup

Below 1GHz:

FCC Part 15B

Above 1GHz:

The radiated emission tests were performed in the 3 meters chamber test site, using the setup accordance with the ANSI C63.4-2014. The specification used was the FCC Part 15.109 Class B limits.

The external I/O cables were draped along the test table and formed a bundle 30 to 40 cm long in the middle.

The spacing between the peripherals was 10 cm.

EMI Test Receiver Setup

The system was investigated from 30 MHz to 12.5 GHz.

During the radiated emission test, the EMI test receiver was set with the following configurations:

Frequency Range RBW		Video B/W	IF B/W	Detector
30MHz – 1000 MHz	120 kHz	300 kHz	120kHz	QP
Alterna 1 CUL-	1MHz	3 MHz	/	Peak
Above 1 GHz	1MHz	3 MHz	1MHz	AVG

Test Procedure

Maximizing procedure was performed on the highest emissions to ensure that the EUT complied with all installation combinations.

All data was recorded in the Quasi-peak detector mode from 30 MHz to 1 GHz.

Manufacturer	Description	Model	Serial Number	Calibration Date	Calibration Due Date	
Sonoma Instrument	Pre-amplifier	310N	185700	2019-08-14	2020-08-13	
Rohde & Schwarz	EMI Test Receiver	ESCI	100195	2019-12-14	2020-12-13	
Sunol Sciences	Broadband Antenna	JB3	A090413-1	2017-08-04	2020-08-03	
Champrotek	Chamber	Chamber A	T-KSEMC049	-	-	
Champrotek	Chamber	Chamber B	T-KSEMC080	-	-	
R&S	Auto test Software	EMC32	100361	-	-	
ETS	Horn Antenna	3115	9207-3900	2017-07-15	2020-07-14	
Rohde & Schwarz	EMI Receiver	ESU40	100207	2020-04-01	2021-03-31	
A.H.Systems, inc	Amplifier	2641-1	491	2020-02-20	2021-02-19	
MICRO-COAX	Coaxial Cable	Cable-8	008	2019-08-15	2020-08-14	
MICRO-COAX	CRO-COAX Coaxial Cable		009	2019-08-15	2020-08-14	
MICRO-COAX	Coaxial Cable	Cable-10	010	2019-08-15	2020-08-14	
MICRO-COAX	Coaxial Cable	Cable-4	004	2019-12-12	2020-12-11	
MICRO-COAX	Coaxial Cable	Cable-5	005	2019-12-12	2020-12-11	

Test Equipment List and Details

* **Statement of Traceability:** Bay Area Compliance Laboratories Corp. (Kunshan) attests that all calibrations have been performed in accordance to requirements that traceable to National Primary Standards and International System of Units (SI).

Corrected Amplitude & Margin Calculation

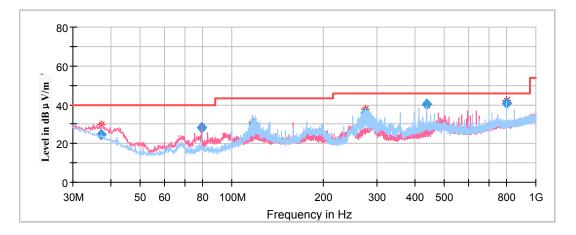
The Corrected Amplitude is calculated by adding the Antenna Factor and Cable Loss, and subtracting the Amplifier Gain from the Meter Reading. The basic equation is as follows:

Corrected Amplitude = Meter Reading + Antenna Factor + Cable Loss - Amplifier Gain

The "**Margin**" column of the following data tables indicates the degree of compliance with the applicable limit. For example, a margin of 7 dB means the emission is 7 dB below the limit. The equation for margin calculation is as follows:

Margin = Limit – Corrected Amplitude

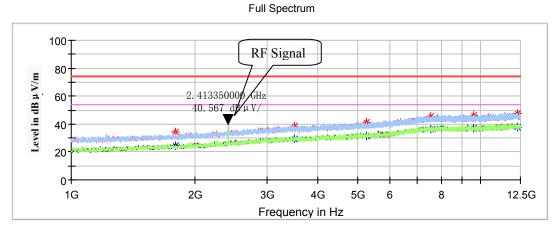
Test Data


Environmental Conditions

Temperature:	25.2 °C		
Relative Humidity:	51 %		
ATM Pressure:	101.1 kPa		

The testing was performed by Cody Lu on 2020-04-17

Test mode: Data Transmission & Print


1) 30MHz ~ 1GHz:

Frequency (MHz)	Quasi-Peak (dBµV/m)	Limit (dBµV/m)	Margin (dB)	Height (cm)	Pol	Azimuth (deg)	Corr. (dB/m)
37.144500	24.42	40.00	15.58	100	V	105.0	-8.8
79.539600	28.17	40.00	11.83	100	V	185.0	-17.8
117.125750	30.13	43.50	13.37	200	Н	260.0	-11.7
274.343200	35.78	46.00	10.22	100	Н	272.0	-11.3
437.472050	40.41	46.00	5.59	200	Н	326.0	-7.6
800.019450	40.86	46.00	5.14	100	Н	320.0	-1.7

Report No.: RKSA200623003-00C

Above 1 GHz:

Frequency (MHz)	Max Peak (dBµV/m)	Average (dBµV/m)	Limit (dBµV/m)	Margin (dB)	Height (cm)	Pol	Azimuth (deg)	Corr. (dB/m)
1799.250000		24.20	54.00	29.80	150	V	301.0	-15.2
1799.250000	33.94		74.00	40.06	150	V	301.0	-15.2
3504.700000		29.53	54.00	24.47	150	Н	120.0	-8.8
3504.700000	38.81		74.00	35.19	200	V	193.0	-8.8
5261.900000		31.70	54.00	22.30	200	V	314.0	-4.5
5261.900000	41.56		74.00	32.44	150	Н	106.0	-4.5
7567.650000		36.68	54.00	17.32	150	V	330.0	1.1
7567.650000	45.26		74.00	28.74	150	V	330.0	1.1
9615.800000		37.10	54.00	16.90	200	Н	259.0	2.1
9615.800000	46.41		74.00	27.59	200	Н	259.0	2.1
12324.050000		37.65	54.00	16.35	200	Н	79.0	3.2
12324.050000	47.62		74.00	26.38	200	Н	79.0	3.2

Declarations

1: BACL is not responsible for the authenticity of any test data provided by the applicant. Data included from the applicant that may affect test results are marked with an asterisk '*'. Customer model name, addresses, names, trademarks etc. are not considered data.

2: Unless otherwise stated the results shown in this test report refer only to the sample(s) tested.

3: Otherwise required by the applicant or Product Regulations, Decision Rule in this report did not consider the uncertainty.

4: The extended uncertainty given in this report is obtained by combining the standard uncertainty times the coverage factor K with the 95% confidence interval.

5: This report cannot be reproduced except in full, without prior written approval of the Company.

6: This report is valid only with a valid digital signature. The digital signature may be available only under the Adobe software above version 7.0.

*****END OF REPORT*****

FCC Part 15B