RF Exposure Report

FCC ID: 2AGZGX70001

RF Exposure Measurement

The limit for Maximum Permissible Exposure (MPE) specified in FCC 1.1310 is followed. The gain of the antennas used in the product is extracted from the Antenna data sheets provided and also the maximum total power input to the antenna is measured. Through the Friis transmission formula and the maximum gain of the antenna, we can calculate the distance, away from the product, where the limit of MPE is reached.

Although the Friis Transmission formula is far field assumption, the calculated result of that is an over-prediction for near field power density. It is taken as worst case to specify the safety range.

RF Exposure Limit

According to FCC 1.1310: The criteria listed in the following table shall be used to evaluate the environmental impact of the human exposure to radio-frequency (RF) radiation as specified in 1.1307 (b)

Frequency Range	Electric Field	Magnetic Field	Power Density		
(MHz)	Strength (V/m)	Strength (A/m)	(mW/cm²)		
Limits for Occupational / controlled Exposures					
300 - 1500			F/300		
1500 – 100000			5.0		
Limits for General population / Uncontrolled Exposure					
300 - 1500			F/1500		
1500 – 100000			1.0		

Limits for Maximum Permissible Exposure (MPE)

F= Frequency in MHz

Friss Formula

Friss Transmission Formula: $Pd = (Pout * G) / (4*pi*r^2)$

Where

Pd = power density in mW/cm²

Pout = output power to antenna in mW

G = gain of antenna in linear scale

Pi = 3.1416

R = Distance between observation point and the center of radiator in cm

If we know the maximum gain of the antenna and the total output power to the antenna, through calculation, we will know MPE value at distance 20cm.

EUT Operation condition

EUT was enabled to transmit and receive at lowest, middle and highest channels.

Classification

The antenna of this product, under normal use condition, is at least 20cm away from the body of the user. Warning statement to the user for keeping at least 20cm or more separation distance from the antenna should be included in the User manual. So, this device is classified as Mobile device.

2.4G

Mode	2406~2466 MHz	
Detector	PEAK	
	21±1dBm	

ANT Gain (G)

Antenna number: 2*Dipole Antenna A gain : 1.5dBi Antenna B gain : 1.5dBi

MIMO technology Directional gain= 4.51dBi

(gain of antenna in linear scale=2.82)

ANT Gain(gain of antenna in linear scale)	Channel Frequency (MHz)	Output Power to Antenna (dBm)	Output Power to Antenna (mW)	Power Density (mW/cm²	Limit (mW/cm²)
2.82	2406	22	158.4893	0.088916	1

5G

ANT Gain (G)

Mode	5740MHz~5830MHz
Detector	PEAK
	15±1.5dBm

ANT Gain (G)

Antenna number: 2*Dipole Antenna A gain : 2.5dBi Antenna B gain : 2.5dBi

MIMO technology Directional gain= 5.51dBi

(gain of antenna in linear scale=3.56)

ANT Gain(gain of antenna in linear scale)	Channel Frequency (MHz)	Output Power to Antenna (dBm)	Output Power to Antenna (mW)	Power Density (mW/cm²	Limit (mW/cm²)
2.82	5740	16.5	44.66836	0.02506	1