

Page 1 of 47

Report No.: UNIA20080608ER-01

FCC RADIO TEST REPORT

FCC ID: 2AGZ8-7199891

Product Name : Drone Trade Mark : N/A Main Model : 7199-89WH Additional Model : N/A Report No. : UNIA20080608ER-01

Prepared for

DOWELLIN TOYS FACTORY

1 Road FengXin ChengHai District, ShanTou City,GuangDong, China

Prepared by

Shenzhen United Testing Technology Co., Ltd.

2F, Annex Bldg, Jiahuangyuan Tech Park, #365 Baotian 1 Rd, Tiegang Community, Xixiang Str, Bao'an District, Shenzhen, China

Shenzhen Orgen Schnology Co., Ltd. United Testing Technology(Hong Kong) Limited

TEST RESULT CERTIFICATION

Applicant:	DOWELLIN TOYS FACTORY
Address:	1 Road FengXin ChengHai District, ShanTou City,GuangDong, China
Manufacturer:	DOWELLIN TOYS FACTORY
Address:	1 Road FengXin ChengHai District, ShanTou City,GuangDong, China
Product description	
Product Name:	Drone
Trade Mark:	N/A
Model Name:	7199-89WH
Test Methods	FCC Rules and Regulations Part 15 Subpart C Section 15.247 ANSI C63.10: 2013

This device described above has been tested by Shenzhen United Testing Technology Co., Ltd., and the test results show that the equipment under test (EUT) is in compliance with the FCC requirements. And it is applicable only to the tested sample identified in the report.

This report shall not be reproduced except in full, without the written approval of UNI, this document may be altered or revised by Shenzhen United Testing Technology Co., Ltd., personnel only, and shall be noted in the revision of the document.

Date of Test	
Date (s) of performance of tests	Aug. 06, 2020 ~ Aug. 28, 2020
Date of Issue	Aug. 28, 2020
Test Result	Pass

Prepared by:

Reviewer:

Approved & Authorized Signer:

Bob (in

Bob liao/Editor

Kahn yang/Supervisor

Liuze/Manager

深圳市优耐检测技术有限公司 Shenzhen United Testing Technology Co.,Ltd. United Testing Technology(Hong Kong) Limited

	Page 3 of 47	Report No.: UNIA20080)608ER-01
Les Pr	Table of Contents	J ^P	Page
1 TEST SUMMARY			5
2 GENERAL INFORMATION			8
2.1 GENERAL DESCRIPTION	ON OF EUT		8
2.2 CARRIER FREQUENCY	Y OF CHANNELS		9
2.3 TEST MODE			9
2.4 TEST SETUP			9
2.5 DESCRIPTION TEST P	ERIPHERAL AND EUT PERIP	PHERAL	10
2.6 MEASUREMENT INSTR	RUMENTS LIST		11
3 CONDUCTED EMISSION			12
3.1 TEST LIMIT			12
3.2 TEST SETUP			12
3.3 TEST PROCEDURE			13
3.4 TEST RESULT			13
4 RADIATED EMISSION			16
4.1 TEST LIMIT			16
4.2 TEST SETUP			17
4.3 TEST PROCEDURE			18
4.4 TEST RESULT			18
5 OCCUPIED BANDWIDTH			30
5.1 TEST LIMIT			30
5.2 TEST PROCEDURE			30
5.3 EQUIPMENT USED 5.4 TEST RESULT			30
	6. 2		30
6 POWER SPECTRAL DENS	SITY		34
6.1 TEST LIMIT 6.2 TEST PROCEDURE			34 34
6.3 EQUIPMENT USED			34
6.4 TEST RESULT			34
7 PEAK OUTPUT POWER			38
7.1 TEST LIMIT			38
7.2 TEST PROCEDURE			38
7.3 EQUIPMENT USED			38
7.4 TEST RESULT			38
8 OUT OF BAND EMISSION	S		39
8.1 TEST LIMIT			39

深圳市优耐检测技术有限公司 Shenzhen United Testing Technology Co.,Ltd. United Testing Technology(Hong Kong) Limited

2F, Annex Bldg, Jiahuangyuan Tech Park, #365 Baotian 1 Rd, Tiegang Community, Xixiang Str, Bao'an District, Shenzhen, China 深圳市宝安区西乡街道铁岗社区宝田一路365号嘉皇源科技园附楼2楼 邮编:518102 Tel:+86-755-86180996 Fax:+86-755-86180156

NA NOVA

	Table	e of Contents	Page
	8.2 TEST SETUP		39
	8.3 TEST PROCEDURE		39
	8.4 TEST RESULT		39
9 A	NTENNA REQUIREMENT		45
10	PHOTO OF TEST		46
	10.1 RADIATED EMISSION		46
	10.2 CONDUCTED EMISSION		47

Page 4 of 47

深圳市优耐检测技术有限公司 Shenzhen United Testing Technology Co.,Ltd. United Testing Technology(Hong Kong) Limited

2F, Annex Bldg, Jiahuangyuan Tech Park, #365 Baotian 1 Rd, Tiegang Community, Xixiang Str, Bao'an District, Shenzhen, China 深圳市宝安区西乡街道铁岗社区宝田一路365号嘉皇源科技园附楼2楼 邮编:518102 Tel:+86-755-86180996 Fax:+86-755-86180156 WANT UNIVER

1 TEST SUMMARY

1.1 TEST PROCEDURES AND RESULTS

ITEM CONDUCTED EMISSION RADIATED EMISSION OCCUPIED BANDWIDTH POWER SPECTRAL DENSITY PEAK OUTPUT POWER OUT OF BAND EMISSIONS CONDUCTED SPURIOUS EMISSION ANTENNA REQUIREMENT STANGARD FCC Part 15.207 FCC Part 15.209(a) FCC Part 15.247(a)(2) FCC Part 15.247(e) FCC Part 15.247(b) FCC Part 15.247(d) FCC Part 15.247(d) FCC Part 15.247(d) RESULT COMPLIANT COMPLIANT COMPLIANT COMPLIANT COMPLIANT COMPLIANT

深圳市优耐检测技术有限公司 Shenzhen United Testing Technology Co.,Ltd. United Testing Technology(Hong Kong) Limited

1.2 TEST FACILITY

Test Firm : Shenzhen United Testing Technology Co., Ltd.

Address : 2F, Annex Bldg, Jiahuangyuan Tech Park, #365 Baotian 1 Rd, Tiegang Community, Xixiang Str, Bao'an District, Shenzhen, China

The testing quality ability of our laboratory meet with "Quality Law of People's Republic of China" Clause 19.The testing quality system of our laboratory meets with ISO/IEC-17025 requirements. This approval result is accepted by MRA of APLAC.

Our test facility is recognized, certified, or accredited by the following organizations:

A2LA Certificate Number: 4747.01 The EMC Laboratory has been accredited by A2LA, and in compliance with ISO/IEC 17025:2017 General Requirements for testing Laboratories.

FCC Registration Number: 674885 The EMC Laboratory has been registered and fully described in a report filed with the (FCC) Federal Communications commission.

IC Registration Number: 21947 The EMC Laboratory has been registered and fully described in a report filed with the (IC) Industry Canada.

1.3 MEASUREMENT UNCERTAINTY

The reported uncertainty of measurement y \pm U, where expended uncertainty U is based on a standard uncertainty multiplied by a coverage factor of k = 2, providing a level of confidence of approximately 95%.

A. Conducted Measurement:

Test Site	Method	Measurement Frequency Range	U, (dB)	NOTE
UNI	ANSI	9kHz ~ 150kHz	2.96	
	5	150kHz ~ 30MHz	2.44	

B. Radiated Measurement:

Test Site	Method	Measurement Frequency Range	U, (dB)	NOTE
UNI	ANSI	9kHz ~ 30MHz	2.50	
		30MHz ~ 1000MHz	4.80	S
5		1000MHz ~ 6000MHz	4.13	100

深圳市优耐检测技术有限公司 Shenzhen United Testing Technology Co.,Ltd. United Testing Technology(Hong Kong) Limited

2 GENERAL INFORMATION

2.1 GENERAL DESCRIPTION OF EUT

Product Name:	Drone
Trade Mark:	N/A
Main Model:	7199-89WH
Additional Model:	N/A
Model Difference:	N/A
FCC ID:	2AGZ8-7199891
Operation Frequency:	802.11b/g/n20: 2417MHz
Number of Channels:	802.11b/g/n20: 1CH
Modulation Type:	CCK, OFDM, DBPSK, DAPSK
Antenna Type:	Internal Antenna
Antenna Gain:	2dBi
Battery:	DC 3.7V, 600mAh
Adapter:	N/A
Power Source:	DC 5.0V from adapter with AC 120(240)V/60Hz

深圳市优耐检测技术有限公司 Shenzhen United Testing Technology Co.,Ltd. United Testing Technology(Hong Kong) Limited

2F, Annex Bldg, Jiahuangyuan Tech Park, #365 Baotian 1 Rd, Tiegang Community, Xixiang Str, Bao'an District, Shenzhen, China 深圳市宝安区西乡街道铁岗社区宝田一路365号嘉皇源科技园附楼2楼 邮编:518102 Tel:+86-755-86180996 Fax:+86-755-86180156 T

2.2 CARRIER FREQUENCY OF CHANNELS

Channel List for 802.11b/g/n(20MHz)							
Channel	Frequency (MHz)	Channel	Frequency (MHz)	Channel	Frequency (MHz)	Channel	Frequency (MHz)
01	2417			-			5

2.3 TEST MODE

The EUT was programmed to be in continuously transmitting mode. (Dutycycle>98%)

Channel List for 802.11b/g/n(20MHz)					
Test Channel	Test Frequency (MHz)				
CH01	2417				

2.4 TEST SETUP

Operation of EUT during Conducted testing:

AC Power	Adapter	EUT
	10 m	

Operation of EUT during Radiation and Above1GHz Radiation testing:

深圳市优耐检测技术有限公司 Shenzhen United Testing Technology Co.,Ltd. United Testing Technology(Hong Kong) Limited

LN

2.5 DESCRIPTION TEST PERIPHERAL AND EUT PERIPHERAL

The EUT has been tested as an independent unit together with other necessary accessories or support units. The following support units or accessories were used to form a representative test configuration during the tests.

Item	Equipment	Mfr/Brand	Model/Type No.	Note
E-1	Drone	N/A	7199-89WH	EUT
E-2	Adapter	XIAOMI	MDY-08-EF	AE
			2	
	5	17		÷
			5	1

5. T. 10				
Item	Shielded Type	Ferrite Core	Length	Note
		V	5	9.
	1			~
V	5		4	
			P S	·
	1	6		

Note:

- 1. The support equipment was authorized by Declaration of Confirmation.
- 2. For detachable type I/O cable should be specified the length in cm in [Length] column.
- 3. "YES" is means "shielded" "with core"; "NO" is means "unshielded" "without core".

深圳市优耐检测技术有限公司 Shenzhen United Testing Technology Co.,Ltd. United Testing Technology(Hong Kong) Limited

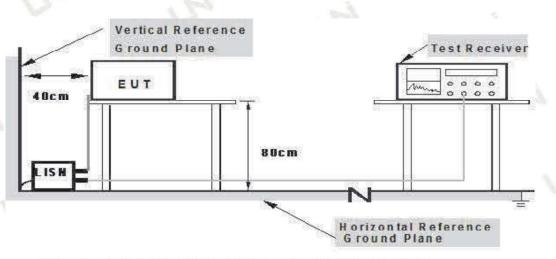
2.6 MEASUREMENT INSTRUMENTS LIST

					and the second
Item	Equipment	Manufacturer	Model No.	Serial No.	Calibrated until
		Conduction Emi	ssions Measuremer	nt	
1	Conducted Emission Test Software	EZ-EMC	Ver.CCS-3A1-CE	N/A	N/A
2	AMN	Schwarzbeck	NNLK8121	8121370	2020.10.15
3	AMN	ETS	3810/2	00020199	2020.10.15
4	AAN	TESEQ	T8-Cat6	38888	2020.10.15
5	Pulse Limiter	CYBRTEK	EM5010	E115010056	2021.05.25
6	EMI Test Receiver	Rohde&Schwarz	ESCI	101210	2020.10.15
	5	Radiated Emis	sions Measurement		5
1	Radiated Emission Test Software	EZ-EMC	Ver.CCS-03A1	N/A	N/A
2	Horn Antenna	Sunol	DRH-118	A101415	2020.10.08
3	Broadband Hybrid Antenna	Sunol	JB1	A090215	2022.03.01
4	PREAMP	HP	8449B	3008A00160	2020.10.21
5	PREAMP	HP	8447D	2944A07999	2021.05.25
6	EMI TEST RECEIVER	Rohde&Schwarz	ESR3	101891	2020.10.15
7	VECTOR Signal Generator	Rohde&Schwarz	SMU200A	101521	2020.10.15
8	Signal Generator	Agilent	E4421B	MY4335105	2020.10.15
9	MXA Signal Analyzer	Agilent	N9020A	MY50510140	2020.10.15
10	MXA Signal Analyzer	Keysight	N9020A	MY51110104	2020.10.15
11	RF Power sensor	DARE	RPR3006W	15100041SNO88	2021.05.25
12	RF Power sensor	DARE	RPR3006W	15100041SNO89	2021.05.25
13	RF power divider	Anritsu	K241B	992289	2020.10.28
14	Wideband radio communication tester	Rohde&Schwarz	CMW500	154987	2020.11.19
15	Active Loop Antenna	Com-Power	AL-130R	10160009	2021.05.25
16	Broadband Hybrid Antennas	Schwarzbeck	VULB9163	VULB9163#958	2021.05.25
17	Horn Antenna	Schwarzbeck	BBHA9120D	9120D-1680	2021.05.25
18	🗽 Horn Antenna	A-INFOMW	LB-180400-KF	J211060660	2020.10.23
19	Microwave Broadband Preamplifier	Schwarzbeck	BBV 9721	100472	2021.05.25
20	Signal Generator	Agilent	N5183A	MY47420153	2021.05.25
21	Spctrum Analyzer	Rohde&Schwarz	FSP 40	100501	2021.05.25
22	Power Meter	KEYSIGHT	N1911A	MY50520168	2021.05.25
23	Frequency Meter	VICTOR	VC2000	997406086	2021.05.25
24	DC Power Source	HYELEC	HY5020E	055161818	2021.05.25

深圳市优耐检测技术有限公司 Shenzhen United Testing Technology Co.,Ltd. United Testing Technology(Hong Kong) Limited

3 CONDUCTED EMISSION

3.1 TEST LIMIT


For unintentional device, according to § 15.207(a) Line Conducted Emission Limits is as following

	Maximum RF Line Voltage (dBµV)						
Frequency (MHz)	CLA	SS A	CLASS B				
(11112)	Q.P.	Ave.	Q.P.	Ave.			
0.15~0.50	79	66	66~56*	56~46*			
0.50~5.00	73	60	56	46			
5.00~30.0	73	60	60	50			

* Decreasing linearly with the logarithm of the frequency.

For intentional device, according to §15.207(a) Line Conducted Emission Limit is same as above table.

3.2 TEST SETUP

Note: 1.Support units were connected to second LISN. 2.Both of LISNs (AMN) are 80 cm from EUT and at least 80 from other units and other metal planes

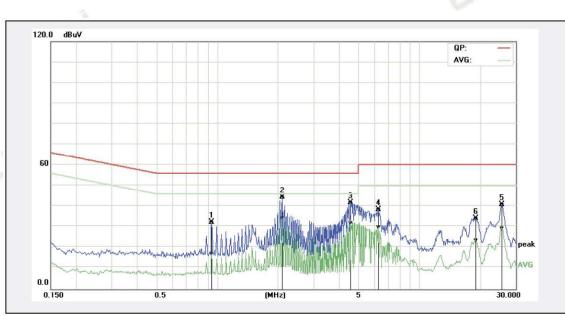
深圳市优耐检测技术有限公司 Shenzhen United Testing Technology Co.,Ltd. United Testing Technology(Hong Kong) Limited

3.3 TEST PROCEDURE

- 1. The equipment was set up as per the test configuration to simulate typical actual usage per the user's manual. The EUT is placed on a wooden table with a height of 0.8 meters is used and is placed on the ground plane as per ANSIC63.10.
- 2. Support equipment, if needed, was placed as per ANSI C63.10.
- 3. All I/O cables were positioned to simulate typical actual usage as per ANSI C63.10.
- 4. If a EUT received DC power from the USB Port of Notebook PC, the PC's adapter received AC120V/60Hz power through a Line Impedance Stabilization Network (LISN) which supplied power source and was grounded to the ground plane.
- 5. All support equipments received AC power from a second LISN, if any.
- 6. The EUT test program was started. Emissions were measured on each current carrying line of the EUT using a spectrum Analyzer / Receiver connected to the LISN powering the EUT. The LISN has two monitoring points: Line 1 (Hot Side) and Line 2 (Neutral Side). Two scans were taken: one with Line 1 connected to Analyzer / Receiver and Line 2 connected to a 50 ohm load; the second scan had Line 1 connected to a 50 ohm load and Line 2 connected to the Analyzer / Receiver.
- 7. Analyzer/Receiver scanned from 150 kHz to 30MHz for emissions in each of the test modes.

3.4 TEST RESULT

PASS


Remark:

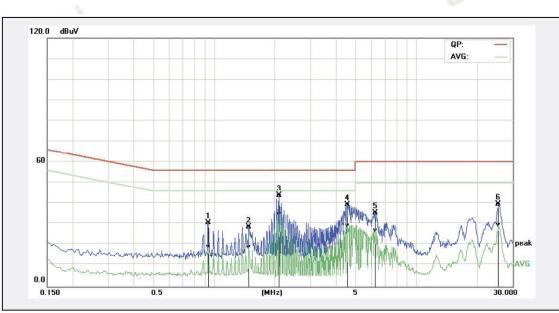
All modes were tested at AC 120V and 240V, only the worst result of AC 120V was reported.

Page 14 of 47

Report No .: UNIA20080608ER-01

Temperature:	24°C	Relative Humidity:	48%		
Test Date:	Aug. 18, 2020	Pressure:	1010hPa		
Test Voltage:	AC 120V, 60Hz	Phase:	Line		
Test Mode:	Transmitting mode of 802.11b 2417MHz				

No.	Frequency	QuasiPeak reading	Average reading	Correction factor	QuasiPeak result	Average result	QuasiPeak limit	Average limit	QuasiPeak margin	Average margin	Remark
	(MHz)	(dBuV)	(dBuV)	(dB)	(dBuV)	(dBuV)	(dBuV)	(dBuV)	(dB)	(dB)	
1P	0.9420	22.60	7.33	9.85	32.45	17.18	56.00	46.00	-23.55	-28.82	Pass
2*	2.1020	34.63	24.58	9.89	44.52	34.47	56.00	46.00	-11.48	-11.53	Pass
3P	4.5939	32.03	22.09	9.94	41.97	32.03	56.00	46.00	-14.03	-13.97	Pass
4P	6.3100	28.71	19.77	9.95	38.66	29.72	60.00	50.00	-21.34	-20.28	Pass
5P	25.6299	40.30	28.66	0.68	40.98	29.34	60.00	50.00	-19.02	-20.66	Pass
6P	19.0380	33.87	23.19	0.50	34.37	23.69	60.00	50.00	-25.63	-26.31	Pass


Remark: Factor = Insertion Loss + Cable Loss, Result = Reading + Factor, Margin = Result - Limit.

深圳市优耐检测技术有限公司 Shenzhen United Testing Technology Co.,Ltd. United Testing Technology(Hong Kong) Limited

Page 15 of 47

Report No.: UNIA20080608ER-01

Temperature:	24°C	Relative Humidity:	48%		
Test Date:	Aug. 18, 2020	Pressure:	1010hPa		
Test Voltage:	AC 120V, 60Hz	Phase:	Neutral		
Test Mode:	Transmitting mode of 802.11b 2417MHz				

No.	Frequency	QuasiPeak reading	Average reading	Correction factor	QuasiPeak result	Average result	QuasiPeak limit	Average limit	QuasiPeak margin	Average margin	Remark
	(MHz)	(dBuV)	(dBuV)	(dB)	(dBuV)	(dBuV)	(dBuV)	(dBuV)	(dB)	(dB)	
1P	0.9420	21.03	9.06	9.85	30.88	18.91	56.00	46.00	-25.12	-27.09	Pass
2P	1.4940	18.79	9.33	9.86	28.65	19.19	56.00	46.00	-27.35	-26.81	Pass
3*	2.1060	34.03	24.92	9.89	43.92	34.81	56.00	46.00	-12.08	-11.19	Pass
4P	4.5939	29.55	19.30	9.94	39.49	29.24	56.00	46.00	-16.51	-16.76	Pass
5P	6.2540	25.75	16.84	9.94	35.69	26.78	60.00	50.00	-24.31	-23.22	Pass
6P	25.5180	39.07	28.83	0.67	39.74	29.50	60.00	50.00	-20.26	-20.50	Pass

Remark: Factor = Insertion Loss + Cable Loss, Result = Reading + Factor, Margin = Result - Limit.

深圳市优耐检测技术有限公司 Shenzhen United Testing Technology Co.,Ltd. United Testing Technology(Hong Kong) Limited

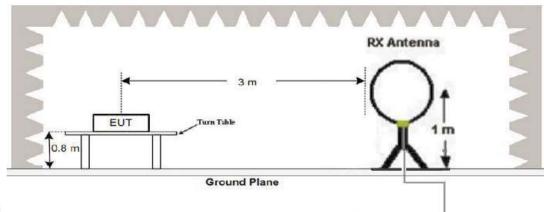
4 RADIATED EMISSION

4.1 TEST LIMIT

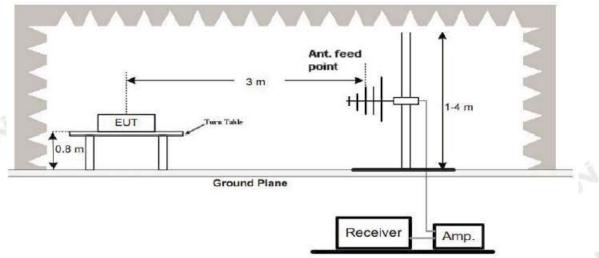
For unintentional device, according to §15.209(a), except for Class B digital devices, the field strength of radiated emissions from unintentional radiators at a distance of 3 meters shall not exceed the following values

Frequency	Field strength (microvolt/meter)	Limit (dBuV/m)	Remark	Measurement distance (m)	
0.009MHz-0.490MHz	2400/F(kHz)		Quasi-peak	300	
0.490MHz-1.705MHz	24000/F (kHz)		Quasi-peak	30	
1.705MHz-30MHz	30		Quasi-peak	30	
30MHz-88MHz	100	40.0	Quasi-peak	3	
88MHz-216MHz	150	43.5	Quasi-peak	3	
216MHz-960MHz	200	46.0	Quasi-peak	3	
960MHz-1GHz	500	54.0	Quasi-peak	3	
	500	54.0	Average	3	
Above 1GHz	500	74.0	Peak	3	

Limit calculation and transfer to 3m distance as showed in the following table:

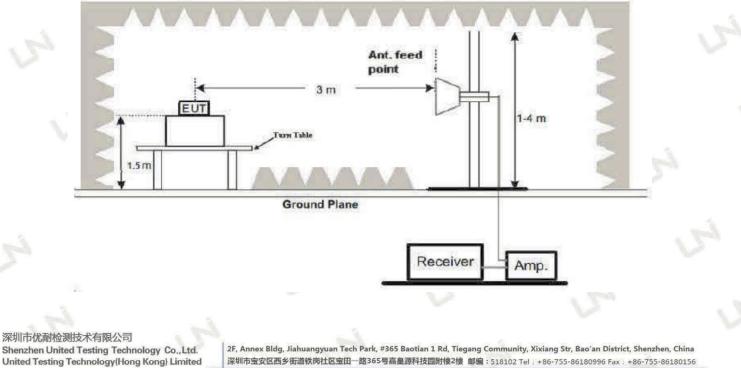

Frequency (MHz)	Limit (dBuV/m)	Distance (m)	
0.009-0.490	20log(2400/F(KHz))+40log(300/3)	3	
0.490-1.705	20log(24000/F(KHz))+40log(30/3)	3	
1.705-30.0	69.5	3	
30-88	40.0	3	
88-216	43.5	3	
216-960	46.0	3	
Above 960	54.0	3	

For intentional device, according to §15.209(a), the general requirement of field strength of radiated emissions from intentional radiators at a distance of 3 meters shall not exceed the above table.



4.2 TEST SETUP

1. Radiated Emission Test-Up Frequency Below 30MHz



2. Radiated Emission Test-Up Frequency 30MHz~1GHz

Receiver

3. Radiated Emission Test-Up Frequency Above 1GHz

Page 18 of 47

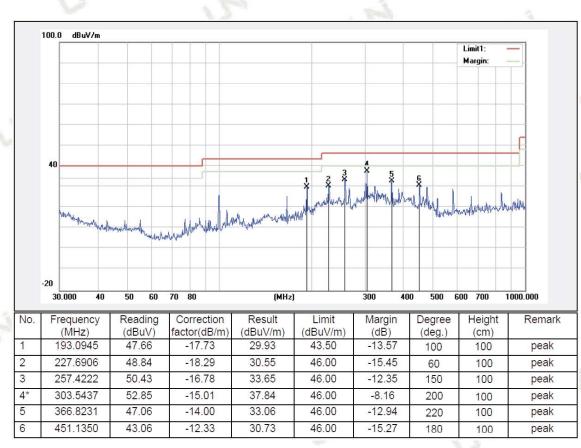
4.3 TEST PROCEDURE

- 1. Below 1GHz measurement the EUT is placed on turntable which is 0.8m above ground plane. And above 1GHz measurement EUT was placed on low permittivity and low tangent turn table which is 1.5m above ground plane.
- 2. The turntable shall be rotated for 360 degrees to determine the position of maximum emission level.
- 3. EUT is set 3m away from the receiving antenna, which is varied from 1m to 4m to find out the highest emissions.
- 4. Maximum procedure was performed on the six highest emissions to ensure EUT compliance.
- 5. And also, each emission was to be maximized by changing the polarization of receiving antenna both horizontal and vertical.
- 6. Repeat above procedures until the measurements for all frequencies are complete.
- 7. The test frequency range from 9kHz to 25GHz per FCC PART 15.33(a).

Note: For battery operated equipment, the equipment tests shall be performed using a new battery.

4.4 TEST RESULT

PASS

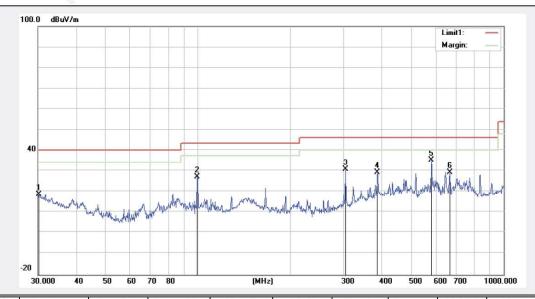

Remark:

By preliminary testing and verifying three axis (X, Y and Z) position of EUT transmitted status, it was found that "X axis" position was the worst, and test data recorded in this report.

深圳市优耐检测技术有限公司 Shenzhen United Testing Technology Co.,Ltd. United Testing Technology(Hong Kong) Limited

Below 1GHz Test Results:

Temperature:	24°C	Relative Humidity:	48%		
Test Date:	Aug. 18, 2020	Pressure:	1010hPa		
Test Voltage:	AC 120V, 60Hz	Phase:	Horizontal		
Test Mode: Transmitting mode of 802.11b 2417MHz					


Remark: Absolute Level = Reading Level + Factor, Margin = Absolute Level – Limit Factor = Ant. Factor + Cable Loss – Pre-amplifier

深圳市优耐检测技术有限公司 Shenzhen United Testing Technology Co.,Ltd. United Testing Technology(Hong Kong) Limited

Page 20 of 47

Report No.: UNIA20080608ER-01

Temperature:	24°C	Relative Humidity:	48%		
Test Date:	Aug. 18, 2020	Pressure:	1010hPa		
Test Voltage:	AC 120V, 60Hz	Phase:	Vertical		
Test Mode:	Transmitting mode of 802.11b 2417MHz				

No.	Frequency (MHz)	Reading (dBuV)	Correction factor(dB/m)	Result (dBuV/m)	Limit (dBuV/m)	Margin (dB)	Degree (deg.)	Height (cm)	Remark
1	30.2111	26.25	-7.31	18.94	40.00	-21.06	60	100	peak
2	99.5281	46.54	-19.20	27.34	43.50	-16.16	120	100	peak
3	303.5437	45.87	-15.01	30.86	46.00	-15.14	100	100	peak
4	386.6338	42.93	-13.43	29.50	46.00	-16.50	90	100	peak
5*	580.7026	45.44	-10.10	35.34	46.00	-10.66	150	100	peak
6	668.1423	38.86	-9.39	29.47	46.00	-16.53	200	100	peak

Remark: Absolute Level = Reading Level + Factor, Margin = Absolute Level – Limit Factor = Ant. Factor + Cable Loss – Pre-amplifier

Remark:

- 1. Measuring frequencies from 9 kHz to the 1 GHz, Radiated emission test from 9kHz to 30MHzwas verified, and no any emission was found except system noise floor, emission are more than 20dB below the limit form 9kHz to 30MHz
- 2.* denotes emission frequency which appearing within the Restricted Bands specified in provision of 15.205, then the general radiated emission limits in 15.209 apply.
- 3. The IF bandwidth of EMI Test Receiver between 30MHz to 1GHz was 120kHz, 1 MHz for measuring above 1 GHz, below 30MHz was 10kHz.

深圳市优耐检测技术有限公司 Shenzhen United Testing Technology Co.,Ltd. United Testing Technology(Hong Kong) Limited

Above 1 GHz Test Results:

CH01 of 802.11b Mode (2417MHz):

Horizontal:

Frequency	Reading Result	Factor	Emission Level	Limits	Margin	Detector
(MHz)	(dBµV)	(dB)	(dBµV/m)	(dBµV/m)	(dB)	Туре
4834	61.55	-3.64	57.91	74	-16.09	PK
4834	50.27	-3.64	46.63	54	-7.37	AV
7251	57.89	-0.95	56.94	74	-17.06	PK
7251	46.81	-0.95	45.86	54	-8.14	AV
Remark: Fact	tor = Antenna Facto	or + Cable Lo	ss – Pre-amplifier	. Margin = Abs	olute Level – I	Limit

Vertical:

		10				
Frequency	Reading Result	Factor	Emission Level	Limits	Margin	Detector
(MHz)	(dBµV)	(dB)	(dBµV/m)	(dBµV/m)	(dB)	Туре
4834	61.38	-3.64	57.74	74	-16.26	PK
4834	49.96	-3.64	46.32	54	-7.68	AV
7251	57.72	-0.95	56.77	74	-17.23	PK
7251	46.75	-0.95	45.80	54	-8.20	AV
Bemerk: East	tor - Antonno Footo		Dra amplifiar	Morgin - Aba		Limit

Remark: Factor = Antenna Factor + Cable Loss – Pre-amplifier. Margin = Absolute Level – Limit

深圳市优耐检测技术有限公司 Shenzhen United Testing Technology Co., Ltd. United Testing Technology(Hong Kong) Limited

Page 22 of 47

CH01 of 802.11g Mode (2417MHz):

Horizontal:

Frequency	Reading Result	Factor	Emission Level	Limits	Margin	Detector
(MHz)	(dBµV)	(dB)	(dBµV/m)	(dBµV/m)	(dB)	Туре
4834	60.46	-3.64	56.82	74	-17.18	PK
4834	49.43	-3.64	45.79	54	-8.21	AV
7251	56.80	-0.95	55.85	74	-18.15	PK
7251	46.08	-0.95	45.13	54	-8.87	AV

Remark: Factor = Antenna Factor + Cable Loss - Pre-amplifier. Margin = Absolute Level - Limit

Vertical:

Frequency	Reading Result	Factor	Emission Level	Limits	Margin	Detector			
(MHz)	(dBµV)	(dB)	(dBµV/m)	(dBµV/m)	(dB)	Туре			
4834	60.31	-3.64	56.67	74	-17.33	PK			
4834	49.38	-3.64	45.74	54	-8.26	AV			
7251	56.75	-0.95	55.80	74	-18.20	PK			
7251	45.95	-0.95	45.00	54	-9.00	AV			
Remark: Fact	Remark: Factor = Antenna Factor + Cable Loss – Pre-amplifier. Margin = Absolute Level – Limit								

深圳市优耐检测技术有限公司 Shenzhen United Testing Technology Co.,Ltd. United Testing Technology(Hong Kong) Limited

Page 23 of 47

CH01 of 802.11n/H20 Mode (2417MHz):

Horizontal:

		and the second se				
Frequency	Reading Result	Factor	Emission Level	Limits	Margin	Detector
(MHz)	(dBµV)	(dB)	(dBµV/m)	(dBµV/m)	(dB)	Туре
4834	60.52	-3.64	56.88	74	-17.12	PK
4834	49.29	-3.64	45.65	54	-8.35	AV
7251	56.72	-0.95	55.77	74	-18.23	PK
7251	45.99	-0.95	45.04	54	-8.96	AV
			the second se			

Remark: Factor = Antenna Factor + Cable Loss – Pre-amplifier. Margin = Absolute Level – Limit

Vertical:

Frequency	Reading Result	Factor	Emission Level	Limits	Margin	Detector
(MHz)	(dBµV)	(dB)	(dBµV/m)	(dBµV/m)	(dB)	Туре
4834	60.47	-3.64	56.83	74	-17.17	PK
4834	49.32	-3.64	45.68	54	-8.32	AV
7251	56.83	-0.95	55.88	74	-18.12	PK
7251	46.11	-0.95	45.16	54	-8.84	AV

Remark: Factor = Antenna Factor + Cable Loss – Pre-amplifier. Margin = Absolute Level – Limit

Remark:

- 1. Measuring frequencies from 1 GHz to the 25 GHz.
- 2. "F" denotes fundamental frequency; "H" denotes spurious frequency. "E" denotes band edge frequency.
- 3.* denotes emission frequency which appearing within the Restricted Bands specified in provision of 15.205, then the general radiated emission limits in 15.209 apply.
- 4. The emissions are attenuated more than 20dB below the permissible limits are not recorded in the report.
- 5. The IF bandwidth of EMI Test Receiver between 30MHz to 1GHz was 120kHz, 1 MHz for measuring above 1 GHz, below 30MHz was 10kHz. The resolution bandwidth of test receiver/spectrum analyzer is 1MHz and video bandwidth is 3MHz for peak measurement with peak detector at frequency above 1GHz. The resolution bandwidth of test receiver/spectrum analyzer is 1MHz and video bandwidth of test receiver/spectrum analyzer is 1MHz and video bandwidth is 10Hz for Average measurement with peak detection at frequency above 1GHz.
- When the test results of Peak Detected below the limits of Average Detected, the Average Detected is not need completed. For example: Top Channel at Fundamental 73.16dBuV/m(PK Value) <93.98(AV Limit), at harmonic 53.20 dBuV/m(PK Value) <54 dBuV/m(AV Limit), the Average Detected not need to completed.
 All modes of operation were investigated and the worst-case emissions are reported.

深圳市优耐检测技术有限公司 Shenzhen United Testing Technology Co.,Ltd. United Testing Technology(Hong Kong) Limited

CH01 of 802.11b Mode (2417MHz)

Horizontal:

		and the second se	540						
Frequency	Reading Result	Factor	Emission Level	Limits	Margin	Detector			
(MHz)	(dBµV)	(dB)	(dBµV/m)	(dBµV/m)	(dB)	Туре			
2310	56.44	-5.81	50.63	74	-23.37	PK			
2310	1	-5.81	/	54	/	AV			
2390	61.58	-5.84	55.74	74	-18.26	PK			
2390	45.77	-5.84	39.93	54	-14.07	AV			
Remark: Fact	Remark: Factor = Antenna Factor + Cable Loss – Pre-amplifier. Margin = Absolute Level – Limit								

Vertical:

					and the second se	
Frequency	Reading Result	Factor	Emission Level	Limits	Margin	Detector
(MHz)	(dBµV)	(dB)	(dBµV/m)	(dBµV/m)	(dB)	Туре
2310	56.39	-5.81	50.58	74	-23.42	PK
2310	/	-5.81	/	54	1	AV
2390	62.20	-5.84	56.36	74	-17.64	PK
2390	45.53	-5.84	39.69	54	-14.31	AV
Remark: Fact	tor = Antenna Facto	or + Cable Lo	ss – Pre-amplifier	. Margin = Abs	olute Level –	Limit

深圳市优耐检测技术有限公司 Shenzhen United Testing Technology Co.,Ltd. United Testing Technology(Hong Kong) Limited

Frequency	Reading Result	Factor	Emission Level	Limits	Margin	Detector			
(MHz)	(dBµV)	(dB)	(dBµV/m)	(dBµV/m)	(dB)	Туре			
2483.5	56.87	-5.65	51.22	74	-22.78	PK			
2483.5	1	-5.65	/	54	1	AV			
2500	56.75	-5.72	51.03	74	-22.97	PK			
2500	/	-5.72	/	54	/	AV			
Remark: Fact	Remark: Factor = Antenna Factor + Cable Loss – Pre-amplifier. Margin = Absolute Level – Limit								

Vertical:

Frequency	Reading Result	Factor	Emission Level	Limits	Margin	Detector				
(MHz)	(dBµV)	(dB)	(dBµV/m)	(dBµV/m)	(dB)	Туре				
2483.5	56.95	-5.65	51.30	74	-22.70	PK				
2483.5	/	-5.65	/	54	/	AV				
2500	56.80	-5.72	51.08	74	-22.92	PK				
2500	/	-5.72	/	54	1	AV				
Pomark: East	Pomark: Easter - Antenna Easter + Cable Loss Pro amplifier Margin - Absolute Lovel Limit									

Remark: Factor = Antenna Factor + Cable Loss – Pre-amplifier. Margin = Absolute Level – Limit

深圳市优耐检测技术有限公司 Shenzhen United Testing Technology Co.,Ltd. United Testing Technology(Hong Kong) Limited

CH01 of 802.11g Mode (2417MHz)

Horizontal:

		and the second se	540			
Frequency	Reading Result	Factor	Emission Level	Limits	Margin	Detector
(MHz)	(dBµV)	(dB)	(dBµV/m)	(dBµV/m)	(dB)	Туре
2310	56.70	-5.81	50.89	74	-23.11	PK
2310	1	-5.81	/	54	/	AV
2390	62.06	-5.84	56.22	74	-17.78	PK
2390	44.90	-5.84	39.06	54	-14.94	AV
Domark: East	tor - Antonna Facto		Dro omplifior	Margin - Aba		Limit

Remark: Factor = Antenna Factor + Cable Loss – Pre-amplifier. Margin = Absolute Level – Limit

Vertical:

Frequency	Reading Result	Factor	Emission Level	Limits	Margin	Detector
(MHz)	(dBµV)	(dB)	(dBµV/m)	(dBµV/m)	(dB)	Туре
2310	56.81	-5.81	51.00	74	-23.00	PK
2310	/	-5.81	/	54	1	AV
2390	62.11	-5.84	56.27	74	-17.73	PK
2390	44.85	-5.84	39.01	54	-14.99	AV
Remark: Fact	or = Antenna Facto	or + Cable Lo	ss – Pre-amplifier	. Margin = Abs	olute Level -	Limit

深圳市优耐检测技术有限公司 Shenzhen United Testing Technology Co.,Ltd. United Testing Technology(Hong Kong) Limited

Frequency	Reading Result	Factor	Emission Level	Limits	Margin	Detector			
(MHz)	(dBµV)	(dB)	(dBµV/m)	(dBµV/m)	(dB)	Туре			
2483.5	56.86	-5.65	51.21	74	-22.79	PK			
2483.5	/	-5.65	/	54	/	AV			
2500	57.45	-5.72	51.73	74	-22.27	PK			
2500	/	-5.72	1	54	/	AV			
Remark: Fact	Remark: Factor = Antenna Factor + Cable Loss – Pre-amplifier. Margin = Absolute Level – Limit								

Vertical:

Frequency	Reading Result	Factor	Emission Level	Limits	Margin	Detector
(MHz)	(dBµV)	(dB)	(dBµV/m)	(dBµV/m)	(dB)	Туре
2483.5	56.79	-5.65	51.14	74	-22.86	PK
2483.5	/	-5.65	/	54	/	AV
2500	57.33	-5.72	51.61	74	-22.39	PK
2500	/	-5.72	/	54	1	AV
Remark: Eact	or = Antenna Facto	r + Cable I c	ss _ Pre_amplifier	Margin = Abs		Limit

Remark: Factor = Antenna Factor + Cable Loss – Pre-amplifier. Margin = Absolute Level – Limit

深圳市优耐检测技术有限公司 Shenzhen United Testing Technology Co.,Ltd. United Testing Technology(Hong Kong) Limited

2F, Annex Bldg, Jiahuangyuan Tech Park, #365 Baotian 1 Rd, Tiegang Community, Xixiang Str, Bao'an District, Shenzhen, China 深圳市宝安区西乡街道铁岗社区宝田一路365号嘉皇源科技园附楼2楼 邮编:518102 Tel:+86-755-86180996 Fax:+86-755-86180156 ノムマロシン

CH01 of 802.11n/H20 Mode (2417MHz)

Horizontal:

		Contraction of the local division of the loc	540				
Frequency	Reading Result	Factor	Emission Level	Limits	Margin	Detector	
(MHz)	(dBµV)	(dB)	(dBµV/m)	(dBµV/m)	(dB)	Туре	
2310	57.12	-5.81	51.31	74	-22.69	PK	
2310	1	-5.81	/	54	/	AV	
2390	62.10	-5.84	56.26	74	-17.74	PK	
2390	45.29	-5.84	39.45	54	-14.55	AV	
Bomork: East	Demarky Faster - Antonna Faster - Cable Loos Dre amplifar Margin - Abashta Loval - Limit						

Remark: Factor = Antenna Factor + Cable Loss – Pre-amplifier. Margin = Absolute Level – Limit

Vertical:

Frequency	Reading Result	Factor	Emission Level	Limits	Margin	Detector
(MHz)	(dBµV)	(dB)	(dBµV/m)	(dBµV/m)	(dB)	Туре
2310	56.89	-5.81	51.08	74	-22.92	PK
2310	/	-5.81	/	54	1	AV
2390	62.09	-5.84	56.25	74	-17.75	PK
2390	45.33	-5.84	39.49	54	-14.51	AV
Remark: Factor = Antenna Factor + Cable Loss – Pre-amplifier. Margin = Absolute Level – Limit					Limit	

emark: Factor = Antenna Factor + Cable Loss – Pre-amplifier. Margin = Absolute Level – Lim

深圳市优耐检测技术有限公司 Shenzhen United Testing Technology Co.,Ltd. United Testing Technology(Hong Kong) Limited

Frequency	Reading Result	Factor	Emission Level	Limits	Margin	Detector
(MHz)	(dBµV)	(dB)	(dBµV/m)	(dBµV/m)	(dB)	Туре
2483.5	57.07	-5.65	51.42	74	-22.58	PK
2483.5	1	-5.65	/	54	1	AV
2500	56.80	-5.72	51.08	74	-22.92	PK
2500	/	-5.72	/	54	/	AV
Remark: Factor = Antenna Factor + Cable Loss – Pre-amplifier. Margin = Absolute Level – Limit						

Vertical:

Frequency	Reading Result	Factor	Emission Level	Limits	Margin	Detector
(MHz)	(dBµV)	(dB)	(dBµV/m)	(dBµV/m)	(dB)	Туре
2483.5	57.10	-5.65	51.45	74	-22.55	PK
2483.5	/	-5.65	/	54	/	AV
2500	56.76	-5.72	51.04	74	-22.96	PK
2500	/	-5.72	/	54	1	AV
Pemark: Factor = Antonna Factor + Cable Loss _ Dra amplifier Margin = Al						Limit

Remark: Factor = Antenna Factor + Cable Loss – Pre-amplifier. Margin = Absolute Level – Limit

深圳市优耐检测技术有限公司 Shenzhen United Testing Technology Co.,Ltd. United Testing Technology(Hong Kong) Limited

5 OCCUPIED BANDWIDTH

5.1 TEST LIMIT

	and the second						
FCC Part15(15.247), Subpart C							
Section	Test Item	Limit	Frequency Range (MHz)	Result			
15.247(a)(2)	Bandwidth	>= 500KHz (6dB bandwidth)	2400-2483.5	PASS			

5.2 TEST PROCEDURE

- 1. The EUT was placed on a turn table which is 0.8m above ground plane.
- 2. Set EUT as normal operation.
- 3. Based on FCC Part15 C Section 15.247: RBW=100kHz, VBW=300kHz.
- 4. The useful radiated emission from the EUT was detected by the spectrum analyzer with peak detector.

5.3 EQUIPMENT USED

Same as Radiated Emission Measurement.

5.4 TEST RESULT

PASS

深圳市优耐检测技术有限公司 Shenzhen United Testing Technology Co.,Ltd. United Testing Technology(Hong Kong) Limited

and the second se						
TX 802.11b Mode						
Frequency (MHz)	6dB Bandwidth (MHz)	Channel Separation (kHz)	Result			
2417	14.56	>=500	PASS			

CH01: 2417MHz

深圳市优耐检测技术有限公司 Shenzhen United Testing Technology Co.,Ltd. United Testing Technology(Hong Kong) Limited

Page 32 of 47

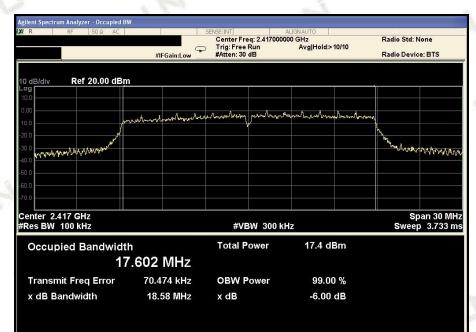
Report No.: UNIA20080608ER-01

	and the second					
TX 802.11g Mode						
	Frequency (MHz)	6dB Bandwidth (MHz)	Channel Separation (kHz)	Result		
	2417	17.80	>=500	PASS		

CH01: 2417MHz

R RF 50 Q AC	N		ALIGNAUTO	
	#IFGain:Low	Center Freq: 2.4170000 Trig: Free Run #Atten: 30 dB	000 GHz Avg Hold:>10/10	Radio Std: None Radio Device: BTS
0 dB/div Ref 20.00 dBn	1,			si ana
og 0.0				
.00				
0.0	John Marsham Marson Mar	antone present mound	how to work the start have	
0.0 Juli 100	1			Why why where the second secon
D.O MANAMANANANANA				Muran and Andrew Mary
D.0				
.0				<u> </u>
0.0				
0.0				
enter 2.417 GHz				Span 30 N
Res BW 100 kHz		#VBW 300 k	Hz	Sweep 3.733
Occupied Bandwidt	h	Total Power	17.3 dBm	
16	6.457 MHz			
Transmit Freq Error	79.852 kHz	OBW Power	99.00 %	
x dB Bandwidth	17.80 MHz	x dB	-6.00 dB	

深圳市优耐检测技术有限公司 Shenzhen United Testing Technology Co.,Ltd. United Testing Technology(Hong Kong) Limited


2F, Annex Bldg, Jiahuangyuan Tech Park, #365 Baotian 1 Rd, Tiegang Community, Xixiang Str, Bao'an District, Shenzhen, China 深圳市宝安区西乡街道铁岗社区宝田一路365号嘉皇源科技园附楼2楼 邮编:518102 Tel:+86-755-86180996 Fax:+86-755-86180156 T

Page 33 of 47

Report No.: UNIA20080608ER-01

		1				
TX 802.11n/HT20 Mode						
	Frequency (MHz)	6dB Bandwidth (MHz)	Channel Separation (kHz)	Result		
	2417	18.58	>=500	PASS		

CH01: 2417MHz

深圳市优耐检测技术有限公司 Shenzhen United Testing Technology Co.,Ltd. United Testing Technology(Hong Kong) Limited

6 POWER SPECTRAL DENSITY

6.1 TEST LIMIT

	FCC Part15(15.247), Subpart C							
Section	Test Item	Limit	Frequency Range (MHz)	Result				
15.247	Power Spectral Density	8 dBm (in any 3kHz)	2400-2483.5	PASS				

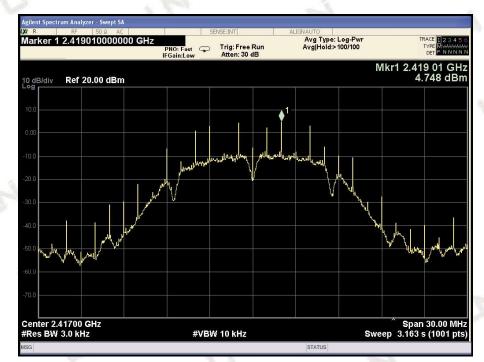
6.2 TEST PROCEDURE

- 1. The EUT was placed on a turn table which is 0.8m above ground plane.
- 2. Set EUT as normal operation.
- 3. Based on FCC Part15 C Section 15.247: RBW=3kHz, VBW=10kHz.
- 4. The useful radiated emission from the EUT was detected by the spectrum analyzer with peak detector.

6.3 EQUIPMENT USED

Same as Radiated Emission Measurement.

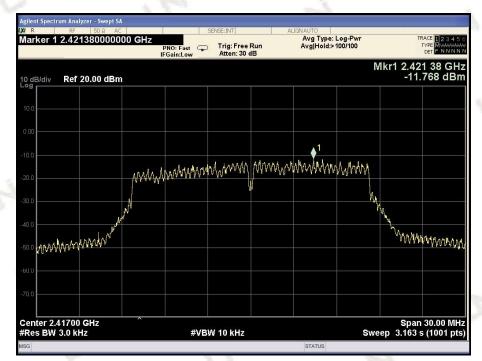
6.4 TEST RESULT


PASS

深圳市优耐检测技术有限公司 Shenzhen United Testing Technology Co.,Ltd. United Testing Technology(Hong Kong) Limited

,							
	TX 802.11b Mode						
	Frequency (MHz)	Power Density (dBm/3kHz)	Limit (dBm/3kHz)	Result			
	2417	4.748	8	PASS			

CH01: 2417MHz


深圳市优耐检测技术有限公司 Shenzhen United Testing Technology Co.,Ltd. United Testing Technology(Hong Kong) Limited

Page 36 of 47

Report No.: UNIA20080608ER-01

	TX 802.11g Mode						
TX 002. Trg Mode							
Frequency (MHz)	Power Density (dBm/3kHz)	Limit (dBm/3kHz)	Result				
2417	-11.768	8	PASS				

CH01: 2417MHz

深圳市优耐检测技术有限公司 Shenzhen United Testing Technology Co.,Ltd. United Testing Technology(Hong Kong) Limited

Page 37 of 47

Report No.: UNIA20080608ER-01

	1						
TX 802.11n/HT20 Mode							
Frequency (MHz)	Power Density (dBm/3kHz)	Limit (dBm/3kHz)	Result				
2417	-11.761	8	PASS				

CH01: 2417MHz

R R RF S Marker 1 2.41763		SEN	ISE:INT	ALIGNAUTO Avg Type: Log-Pwr	TRACE 123
Marker 12.41703		PNO: Fast 🖵 Gain:Low	Trig: Free Run Atten: 30 dB	Avg Hold:>100/100	TYPE M
0 dB/div Ref 20.0	0 dBm				Mkr1 2.417 63 G -11.761 dl
10.0					
0.00					
10.0			▲1		
20.0	1.0.0MAAAAA	hhmm	when when	www.www.www.	vvi
30.0	1990014444		Ŋ		Υ. Λ
	, A ⁿ				
40.0 50.0 mm	W				www.ww
6U.U					
70.0					
Center 2.41700 GH	z				Span 30.00 M weep 3.163 s (1001

深圳市优耐检测技术有限公司 Shenzhen United Testing Technology Co.,Ltd. United Testing Technology(Hong Kong) Limited

2F, Annex Bldg, Jiahuangyuan Tech Park, #365 Baotian 1 Rd, Tiegang Community, Xixiang Str, Bao'an District, Shenzhen, China 深圳市宝安区西乡街道铁岗社区宝田一路365号嘉皇源科技园附模2楼 邮编:518102 Tel:+86-755-86180996 Fax:+86-755-86180156 1

7.1 TEST LIMIT

	and the second se						
FCC Part15(15.247), Subpart C							
Section	Test Item	Limit	Frequency Range (MHz)	Result			
15.247(b)(3)	Peak Output Power	1 watt or 30dBm	2400-2483.5	PASS			

Page 38 of 47

7.2 TEST PROCEDURE

1. The EUT was placed on a turn table which is 0.8m above ground plane.

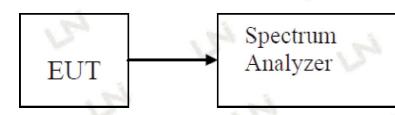
2. The EUT was directly connected to the Power meter.

7.3 EQUIPMENT USED

Same as Radiated Emission Measurement.

7.4 TEST RESULT

PASS


Test Mode	Frequency (MHz)	Maximum Peak Conducted Output Power (dBm)	LIMIT (dBm)
802.11b	2417	12.18	30
802.11g	2417	11.07	30
802.11n/HT20	2417	10.96	30

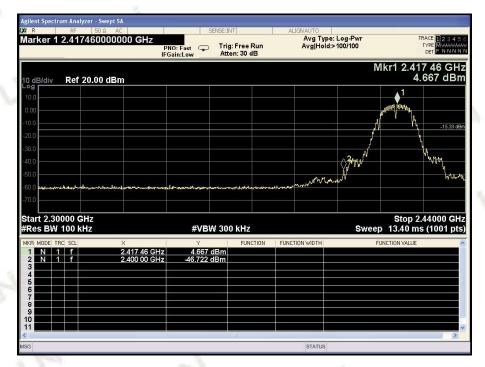
8 OUT OF BAND EMISSIONS

8.1 TEST LIMIT

In any 100 kHz bandwidth outside the frequency band in which the spread spectrum or digitally modulated intentional radiator is operating, the radio frequency power that is produced by the intentional radiator shall be at least 20 dB below that in the 100 kHz bandwidth within the band that contains the highest level of the desired power, based on either an RF conducted or a radiated measurement, provided the transmitter demonstrates compliance with the peak conducted power limits. If the transmitter complies with the conducted power limits based on the use of RMS averaging over a time interval, as permitted under paragraph (b)(3) of this section, the attenuation required under this paragraph shall be 30 dB instead of 20 dB.

8.2 TEST SETUP

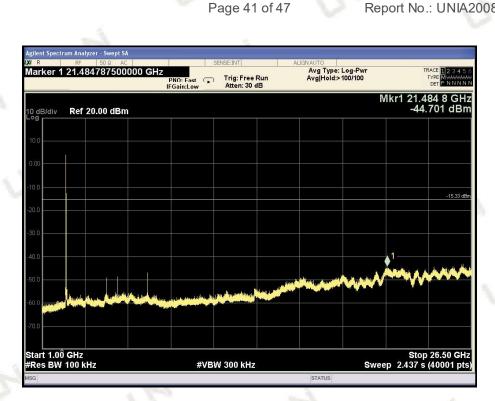
8.3 TEST PROCEDURE


- 1. The EUT was placed on a turn table which is 0.8m above ground plane.
- 2. Set EUT as TX operation and connect directly to the spectrum analyzer.
- 3. Based on FCC Part15 C Section 15.247: RBW=100kHz, VBW=300kHz.
- 4. Set detected by the spectrum analyzer with peak detector.

8.4 TEST RESULT

PASS

CH01: 2417MHz



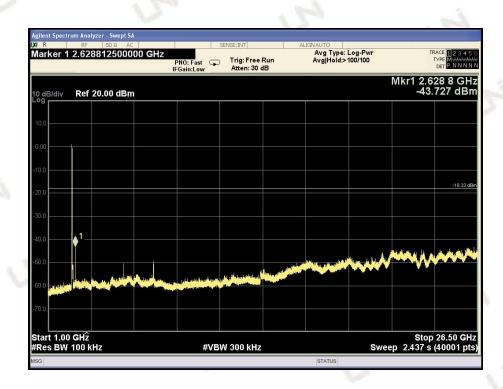
R RE 50 Q AC arker 1 948.590000000 MHz		SENSE:INT	ALIGNAUTO Avg Type: L	ng-Pwr	TR	
arker 1 948.590000000 MHz	PNO: Fast G	Trig: Free Run Atten: 30 dB	Avg Hold:>10		Т	ACE 1 2 3 4 5 YPE MUNUM DET P N N N N
dB/div Ref 20.00 dBm				Μ	kr1 948. -57.	590 MH 517 dBr
ō						
						-15.33 di
0						
) 						
						∮ ¹
						an an a san a Na san a s
0						
art 30.0 MHz					Ctop 1	.0000 GH
es BW 100 kHz	#VB	W 300 kHz		Sweep	93.33 ms (40001 pt

HOIR C

alex I

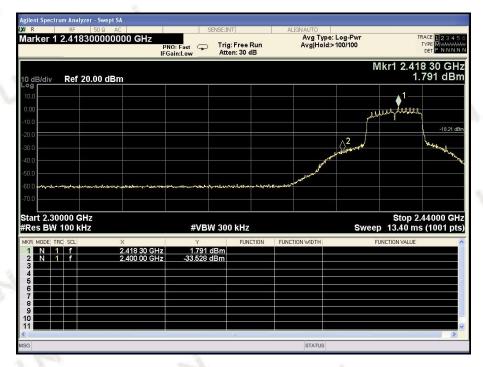
深圳市优耐检测技术有限公司 Shenzhen United Testing Technology Co.,Ltd. United Testing Technology(Hong Kong) Limited

TX 802.11g Mode:


CH01: 2417MHz

深圳市优耐检测技术有限公司 Shenzhen United Testing Technology Co., Ltd. United Testing Technology(Hong Kong) Limited

Dere	10	- f	47	
Page	42	0I	47	


gilent Spectrum Analyzer - Swept SA				
7 R RF 50 Q AC Marker 1 967.505000000 MHz		Trig: Free Run Atten: 30 dB	ALIGNAUTO Avg Type: Log-Pwr Avg Hold:>100/100	TRACE 1234 TYPE MWWW DET PNNN
0 dB/div Ref 20.00 dBm				Mkr1 967.505 Mi -58.922 dB
10.0				
0.00				
10.0				-18.3
20.0				
30.0				
40.0				
50.0				
50.0	in de ster fin en	The second s	nd pitela, ed and income a deliver of the second distribution	n a libra a manina y alian di sensa dalama se da se
	a in the case of particular test of the life of the second second second second second second second second sec	and an a set is first in this way of a		nder an der State der State der State an der State der
itart 30.0 MHz				Stop 1.0000 G
Res BW 100 kHz	#VBW	300 kHz	Swee	ep 93.33 ms (40001 j

深圳市优耐检测技术有限公司 Shenzhen United Testing Technology Co.,Ltd. United Testing Technology(Hong Kong) Limited

TX 802.11n/HT20 Mode:

CH01: 2417MHz

R RF	50 Q AC		SENSE:INT	ALIGNAUTO Avg Type: Log-Pwr	TRACE 12 3 4 5
irker i 675	.788500000 M	PNO: Fast G	Trig: Free Run Atten: 30 dB	Avg Hold:>100/100	TRACE 12345 TYPE MUNAN DET PNNNN
dB/div Ref	f 20.00 dBm				Mkr1 879.769 MH -60.374 dBi
0					
0					
o					
					-18.21 d
0					
0					
0					. 1
	the Instantian and the st	an an in the first of the state of the	ويعرفهم والمعرفين والمحالية المحرور والمحالية والمحالية والمحالية والمحالية والمحالية والمحالية والمحالية والم	a i mandria pia ana dipangkan di kati padalah kati kati pia	
	a na se a company a company a segure A na se a company a segure a segure a segure a segure a segure a segure a	dine di te dine a ne angli and alcost militic	and the second		and the second state of th
art 30.0 MHz	z kHz		3W 300 kHz	The second	Stop 1.0000 GH 93.33 ms (40001 pt

深圳市优耐检测技术有限公司 Shenzhen United Testing Technology Co.,Ltd. United Testing Technology(Hong Kong) Limited

2F, Annex Bldg, Jiahuangyuan Tech Park, #365 Baotian 1 Rd, Tiegang Community, Xixiang Str, Bao'an District, Shenzhen, China 深圳市宝安区西乡街道铁岗社区宝田一路365号嘉皇源科技园附楼2楼 邮编:518102 Tel:+86-755-86180996 Fax:+86-755-86180156 N/N/N

 Applent Spectrum Analyzer - Swept SA.

 Marker 1 24.283412500000 GHz
 PNO: Ever IFGainLow
 Trig: Free Run Atten: 30 dB
 Aug Type: Log-Pwr Avg Type: Log-Pwr Avg

Page 44 of 47

深圳市优耐检测技术有限公司 Shenzhen United Testing Technology Co.,Ltd. United Testing Technology(Hong Kong) Limited

9 ANTENNA REQUIREMENT

Standard Applicable:

For intentional device, according to FCC 47 CFR Section 15.203, an intentional radiator shall be designed to ensure that no antenna other than that furnished by the responsible party shall be used with the device.

Antenna Connected Construction

00

The antenna used in this product is an Internal Antenna, The directional gains of antenna used for transmitting is 2dBi.

ANTENNA:

深圳市优耐检测技术有限公司 Shenzhen United Testing Technology Co.,Ltd. United Testing Technology(Hong Kong) Limited

Page 46 of 47

10 PHOTO OF TEST

10.1 RADIATED EMISSION

深圳市优耐检测技术有限公司 Shenzhen United Testing Technology Co.,Ltd. United Testing Technology(Hong Kong) Limited

2F, Annex Bldg, Jiahuangyuan Tech Park, #365 Baotian 1 Rd, Tiegang Community, Xixiang Str, Bao'an District, Shenzhen, China 深圳市宝安区西乡街道铁岗社区宝田一路365号嘉皇源科技园附楼2楼 邮编:518102 Tel:+86-755-86180996 Fax:+86-755-86180156

Page 47 of 47

End of Report

深圳市优耐检测技术有限公司 Shenzhen United Testing Technology Co.,Ltd. United Testing Technology(Hong Kong) Limited