intertek

Starry, Inc. TEST REPORT

SCOPE OF WORK

Emissions Testing - Model Titan 37

REPORT NUMBER

105391852BOX-001.4

ISSUE DATE

[REVISED DATE]
August 21, 2023
March 6, 2024

DOCUMENT CONTROL NUMBER
Non-Specific Radio Report Shell Rev. October 2022 © 2022 INTERTEK

EMISSIONS TEST REPORT

(FULL COMPLIANCE)

Report Number: 105391852BOX-001.4
Project Number: G105391852

Report Issue Date: August 21, 2023
Report Issue Date: March 6, 2024

Model(s) Tested: Titan 37

Standards: FCC 47CFR Part 30 Subpart C: 2023
FCC 47CFR Part 2: 2023
KDB 842590 D01 Upper Microwave Flexible Use Service v01r02 April 20, 2021

Tested by: Intertek
70 Codman Hill Road
Boxborough, MA 01719
USA

Report prepared by

Kouma Sinh / Sr. EMC Staff Engineer

Client:
Starry, Inc.
38 Chauncy St. Suite 200
Boston, MA 02111
USA

Report reviewed by

Vathana Ven / Sr. EMC Staff Engineer

This report is for the exclusive use of Intertek's Client and is provided pursuant to the agreement between Intertek and its Client. Intertek's responsibility and liability are limited to the terms and conditions of the agreement. Intertek assumes no liability to any party, other than to the Client in accordance with the agreement, for any loss, expense or damage occasioned by the use of this report. Only the Client is authorized to permit copying or distribution of this report and then only in its entirety. Any use of the Intertek name or one of its marks for the sale or advertisement of the tested material, product or service must first be approved in writing by Intertek. The observations and test results in this report are relevant only to the sample tested. This report by itself does not imply that the material, product, or service is or has ever been under an Intertek certification program.

Intertek

Table of Contents

1 Introduction and Conclusion 4
2 Test Summary 4
3 Client Information 5
4 Description of Equipment Under Test and Variant Models 5
5 System Setup and Method 7
6 Output Power 8
7 Out of Band (OOB) Domain 111
8 Radiated Spurious Emissions 178
9 Occupied Bandwidths 212
10 Frequency Stability 319
11 AC Main Conducted Emissions 323
12 Revision History 328
13 Appendix A - Mixer Conversion Loss 329
14 Appendix B - Mixer Verification Certificates 357
15 Appendix C - Test Laboratory Accreditation Scope 361

1 Introduction and Conclusion

The tests indicated in section 2.0 were performed on the product constructed as described in section 4.0. The remaining test sections are the verbatim text from the actual data sheets used during the investigation. These test sections include the test name, the specified test Method, a list of the actual Test Equipment Used, documentation Photos, Results and raw Data. No additions, deviations, or exclusions have been made from the standard(s) unless specifically noted.

Based on the results of our investigation, we have concluded the product tested complies with the requirements of the standard(s) indicated. The results obtained in this test report pertain only to the item(s) tested. Intertek does not make any claims of compliance for samples or variants which were not tested.

2 Test Summary

Section	Test full name	Result
3	Client Information	--
4	Description of Equipment Under Test and Variant Models	--
5	System Setup and Method	--
6	Output Power FCC 47CFR Part 30 Subpart C, Section 30.202 (a): 2023	Pass
7	Out of Band (OOB) Domain FCC 47CFR Part 30 Subpart C, Section 30.203 (a) (b): 2023	Pass
8	Radiated Spurious Emissions FCC 47CFR Part 30 Subpart C, Section 30.203 (a) (b): 2023	Pass
9	Occupied Bandwidths FCC 47CFR Part 2.1049(i): 2023, FCC 47CFR Part 30 Subparts E Section 30.403:2023, KDB 842590 D01 Upper Microwave Flexible Use Service v01r02 April 20, 2021 Subclause 4.3, KDB 842590 D01 Upper Microwave Flexible Use Service v01r02 April 20, 2021; Section 4.3	Pass
10	Frequency Tolerance* FCC 47CFR Part 30 Subpart E Section 30.402: 2023	Pass
11	AC Mains Conducted Emissions FCC 47CFR Part 15 Subpart B: 2023	Pass
12	Revision History	--

3 Client Information

This EUT was tested at the request of:

Client:	Starry, Inc.
	38 Chauncy St Suite 200
	Boston, MA 02111
	USA
	Ryan Lagoy
Contact:	None
Telephone:	rlagoy@starry.com
Email:	

4 Description of Equipment Under Test and Variant Models

Manufacturer:

Starry, Inc.
38 Chauncy St Suite 200
Boston, MA 02111
USA

Equipment Under Test				
Description	Manufacturer	Model Number	Serial Number	
See below	Starry, Inc.	Titan 37	2045200059	

Receive Date:	$04 / 20 / 2023$
Received Condition:	Good
Type:	Production

Description of Equipment Under Test (provided by client)

The equipment under test (EUT) is a Titan37 mmWave based station access point, operating between $37-40 \mathrm{GHz}$. It utilizes OFDMA IEEE 802.11ac, MCSO-MCS9. Channel bandwidths are 160 MHz and 20 MHz unconverted and transmitted/received at mmWave frequencies between 37 GHz and 40 GHz . Signals are conveyed in two polarizations - horizontal and vertical through patch array with a lens antenna. The antenna is a patch array (4×8) for each polarization and a lens. There are 41×8 columns per polarization. The Titan 37 base station is typically pole-mounted or building mounted.

Equipment Under Test Power Configuration			
Rated Voltage	Rated Current	Rated Frequency	Number of Phases
48 VDC	5.84 A	DC	N/A

Operating modes of the EUT:

No.	Descriptions of EUT Exercising
1	Continuous Transmitting

Software used by the EUT:

No.	Descriptions of EUT Exercising
1	Proprietary Software that controls the operation of the radio.

Intertek

Report Number: 105391852BOX-001.4
Issued: 08/21/2023, Revised: 03/06/2024

Radio/Receiver Characteristics	
Frequency Band(s)	$37.170-39.970 \mathrm{GHz}$
Modulation Type(s)	OFDMA
Maximum Output Power	55.2 dBm EIRP (With 4 Paths + beamforming, per pol)
Test Channels	$37.170 \mathrm{GHz}, 38.570 \mathrm{GHz}, 39.970 \mathrm{GHz}$ $37.100 \mathrm{GHz}, 38.500 \mathrm{GHz}, 39.900 \mathrm{GHz}$
Occupied Bandwidth	See section 9.6
MIMO Information (\# of Transmit and Receive antenna ports)	8×8
Equipment Type	Proprietary upbanded and modified 802.11AC Radio
Antenna Type and Gain	The Titan 37 antenna consists of two 37-40 GHz patch array antennas (one each for horizontal and vertical polarization) with a focusing lens. Each of the eight conducted paths drives one 1x8 patch column. There are four paths per polarization. All beamforming is digital (no analog beamforming), and beamforming is only done in azimuth (elevation beam pattern is fixed). The following table provides maximum gain per polarization (4 paths beamformed) with a 60 degree lens over the operating frequency range.

Polarity	Frequency [GHz]	Maximum Array Gain (w/ Radome Loss) [dBi]
H	37.1	21.44
H	38.5	22.72
H	39.9	20.35
V	37.1	20.37
V	38.5	21.91
V	39.9	21.41

Variant Models:

The following variant models were not tested as part of this evaluation, but have been identified by the manufacturer as being electrically identical models, depopulated models, or with reasonable similarity to the model(s) tested. Intertek does not make any claims of compliance for samples or variants which were not tested.

None

Intertek

5 System Setup and Method

Cables					
ID	Description	Length (m)	Shielding	Ferrites	Termination
--	AC Cord	1	None	None	AC Mains
--	AC Adapter	1	None	Yes	Power Supply
--	Ethernet	10	None	None	Support Equipment
--	Fiber (2)	10	Yes	None	Support Equipment

Support Equipment			
Description	Manufacturer	Model Number	Serial Number
Monitor	Dell	P2317H	CN-03GJ21-74261-6BP-3TKM-A00
Keyboard	Dell	KB216t	CN-ORKRON-71616-6CD-1FLE-A03
Mouse	Dell	MS116t	CN-ODVORH-LO300-81G-1GFC
5-Port Gigabit Ethernet Switch	Netgear	GS305v3	5U81095VA3835
FCC System Tester	Starry	JBC313U591W-31ACB	19CF319X002872
Labsat GNSS Simulator	Racelogic	LS03	082600
Wireless Router	Opengear	ACM7004	70041901043136
48VDC Power Supply	Meanwell	GST200A48	None

5.1 Method:

Configuration as required by FCC 47CFR Part 30 Subpart C: 2023, FCC 47CFR Part 2: 2023, ANSI C63.26:2015, and KDB 842590 D01 Upper Microwave Flexible Use Service v01r02 April 20, 2021.

5.2 EUT Block Diagram:

Starry FCC Tester System

Intertek

6 Output Power

6.1 Method

Tests are performed in accordance with FCC 47CFR Part 30 Subparts C: 2023, FCC 47CFR Part 2: 2023, KDB 842590 D01 Upper Microwave Flexible Use Service v01r02 April 20, 2021 Subclause 4.2, and ANSI C63.26:2015 Subclause 5.5.4. The conducted method was used, using EMI Receiver power channel integration with RMS Average detector.

TEST SITE: EMC Lab

The EMC Lab has one Semi-anechoic Chamber and one Shielded Chamber. AC Mains Power is available at 120, 230, and 277 Single Phase; 208, 400, and 480 3-Phase. Large reference ground-planes are installed in the general lab area to facilitate EMC work not requiring a shielded environment.

6.2 Limit:

Limit - FCC 47CFR Part 30 Subpart C, Section 30.202 (a): For fixed and base stations operating in connection with mobile systems, the average power of the sum of all antenna elements is limited to an equivalent isotopically radiated power (EIRP) density of $+75 \mathrm{dBm} / 100 \mathrm{MHz}$. For channel bandwidths less than 100 megahertz the EIRP must be reduced proportionally and linearly based on the bandwidth relative to 100 megahertz.

6.3 Test Equipment Used:

Asset	Description	Manufacturer	Model	Serial	Cal Date	Cal Due
Starry cable	Flexible $10^{\prime} 40 \mathrm{GHz}$ coaxial cable, $2.92 \mathrm{~mm} \mathrm{M}-2.92 \mathrm{~mm} \mathrm{M}$	San-tron	99139-02 M120	None	04/19/2023	N/A
Starry attenuator	20 dB Fixed Attenuator, $2.92 \mathrm{~mm} \mathrm{M}-2.92 \mathrm{~mm} \mathrm{F}$,	Pasternack	PE7395-20	None	04/19/2023	N/A
ROS005-1'	Signal and Spectrum Analyzer	Rohde and Shwartz	FSW43	100646	11/18/2022	11/18/2023
DAV009'	weather station	Davis Instruments	6351 Vantage VUE	DAV009	03/27/2023	03/27/2024

Software Utilized:

Name	Manufacturer	Version
None	N/A	N/A

6.4 Results

The sample tested was found to Comply.

6.5 Setup Photographs:

Conducted Power Test Setup

Intertek

6.6 Plots/Data:

The antenna gains that we have provided are not done on a per-path basis, and already include beamforming effects. Backing this information out to per-path antenna gains would not be accurate. Each polarization antenna transmits four paths simultaneously; a table showing which Path (as measured by Intertek) maps to which polarization is provided below. Then, for each combination of frequency, polarization, bandwidth, and modulation (MCS), the measured conducted powers from the relevant individual paths are summed, and then the antenna gain (with beamforming included) is applied to calculate EIRP. The total EIRP limits / margins can be applied to the data in this supplemental table.

Intertek Label	T37 Polarization
Path 1	H
Path 2	H
Path 3	H
Path 4	H
Path 5	V
Path 6	V
Path 7	V
Path 8	V

Intertek

Derivation of EIRP Calculations

Conducted power measurements were made for each individual transmit chain (eight total) for each combination of frequency, bandwidth, and MCS settings.

The radio transmits on both vertical and horizontal polarizations. Each polarization is the combination of four of the individual transmit chains, with mapping between the measured channels and the polarization shown in Section 6.

Maximum antenna array gain (as reported in section 4) is reported on a per-polarization basis, and includes beamforming effects.

EIRP is then calculated for each unique combination of the following conditions:

- Frequency (low, mid, and high band)
- MCS (MCS0 and MCS9)
- Bandwidth ($20,40,80$, and 160 MHz channels)
- Polarization (HPOL or VPOL)

Sample calculations:
P_C[x] = Conducted power for Path X, in dBm
G_[pol] = Maximum antenna array gain for specified polarization and frequency
EIRP_V = G_V + $10^{*} \log _{10} \sum_{n=5}^{8} 10^{(P-G n / 10)}$
EIRP_H = G_H + $10^{*} \log _{10} \sum_{n=1}^{4} 10^{(P-C n / 10)}$
Qualitative summary

- Convert individual transmit chain conducted powers to linear power
- For each set of frequency, MCS, and bandwidth conditions, take the sum of the linear conducted power for the four paths that correspond to a polarization
- Convert this sum to dBm
- Add the antenna array gain for the specified frequency condition and polarization to find the EIRP

The maximum reported EIRP (e.g. as reported in Form 731) is then the maximum EIRP for any combination of polarization, bandwidth, and MCS conditions within each frequency band.

Intertek

Report Number: 105391852BOX-001.4
Issued: 08/21/2023, Revised: 03/06/2024

Polarization	Frequency (GHz)	BW (MHz)	MCS	EIRP (dBm)*	Limit + $75 \mathrm{dBm} / 100 \mathrm{MHz}{ }^{* *}$
H	37.17	20	MCSO	51.14	68.01
H	37.17	20	MCS9	52.07	68.01
H	37.16	40	MCSO	51.06	71.02
H	37.16	40	MCS9	51.18	71.02
H	37.14	80	MCSO	50.5	74.03
H	37.14	80	MCS9	50.69	74.03
H	37.1	160	MCSO	53.71	75.00
H	37.1	160	MCS9	54.35	75.00
H	38.57	20	MCSO	50.73	68.01
H	38.57	20	MCS9	50.8	68.01
H	38.56	40	MCSO	50.45	71.02
H	38.56	40	MCS9	50.53	71.02
H	38.54	80	MCSO	50.19	74.03
H	38.54	80	MCS9	50.17	74.03
H	38.5	160	MCSO	54.65	75.00
H	38.5	160	MCS9	55.19	75.00
H	39.97	20	MCSO	48.61	68.01
H	39.97	20	MCS9	48.08	68.01
H	39.96	40	MCSO	46.7	71.02
H	39.96	40	MCS9	46.7	71.02
H	39.94	80	MCSO	46.44	74.03
H	39.94	80	MCS9	46.42	74.03
H	39.9	160	MCSO	50.84	75.00
H	39.9	160	MCS9	50.55	75.00
V	37.17	20	MCSO	51.42	68.01
V	37.17	20	MCS9	51.23	68.01
V	37.16	40	MCSO	50.62	71.02
V	37.16	40	MCS9	50.61	71.02
V	37.14	80	MCSO	50.09	74.03
V	37.14	80	MCS9	50.11	74.03
V	37.1	160	MCSO	53.19	75.00
V	37.1	160	MCS9	53.32	75.00
V	38.57	20	MCSO	51.47	68.01
V	38.57	20	MCS9	51.42	68.01
V	38.56	40	MCSO	49.99	71.02
V	38.56	40	MCS9	49.92	71.02
V	38.54	80	MCSO	49.64	74.03
V	38.54	80	MCS9	49.78	74.03
V	38.5	160	MCSO	54.57	75.00
V	38.5	160	MCS9	54.6	75.00
V	39.97	20	MCSO	47.57	68.01
V	39.97	20	MCS9	47.8	68.01

Intertek

Report Number: 105391852BOX-001.4 Issued: 08/21/2023, Revised: 03/06/2024

V	39.96	40	MCSO	46.25	71.02
V	39.96	40	MCS9	46.35	71.02
V	39.94	80	MCSO	46.26	74.03
V	39.94	80	MCS9	46.2	74.03
V	39.9	160	MCSO	50.72	75
V	39.9	160	MCS9	50.77	75

*Note 1 - EIRP (dBm) calculation from the conducted power on plots.

1) There are 4 paths for horizontal (H) polarization; refer to the table on page 10 to map paths to polarization.
Find the conducted powers for $\mathrm{H} 3, \mathrm{H} 2, \mathrm{H} 1, \mathrm{H} 0$.
a) H3 - Path $1(37.17 \mathrm{GHz}, 20 \mathrm{MHz}, \mathrm{MCSO})=22.14 \mathrm{dBm}$, from plot on page 14 .
b) H2 - Path $2(37.17 \mathrm{GHz}, 20 \mathrm{MHz}, \mathrm{MCSO})=25.53 \mathrm{dBm}$, from plot on page 20 .
c) H1 - Path $3(37.17 \mathrm{GHz}, 20 \mathrm{MHz}, \mathrm{MCSO})=25.43 \mathrm{dBm}$, from plot on page 26 .
c) HO - Path $4(37.17 \mathrm{GHz}, 20 \mathrm{MHz}, \mathrm{MCSO})=18.04 \mathrm{dBm}$, from plot on page 32 .
2) Convert the conducted powers in dBm to linear power with equation: 10^{\wedge} (conducted power $\left.(\mathrm{dBm}) / 10\right)$.

Path	Frequency $(\mathbf{G H z})$	Bandwidth $(\mathbf{M H z})$	Modulation	Power $(\mathbf{d B m})$	Linear Power $(\mathbf{m W})$
1	37.17	20	MCS0	22.14	163.68
2	37.17	20	MCS0	25.53	357.27
3	37.17	20	MCS0	25.43	349.14
4	37.17	20	MCS0	18.04	63.68

3) Sum the linear powers: $163.68+357.27+349.14+63.68=933.77 \mathrm{~mW}$
4) Convert back to dBm: $10^{*} \log (933.77)=29.7 \mathrm{dBm}$
5) Add the antenna gain for the 37.1 GHz frequency: $29.7 \mathrm{dBm}+21.44 \mathrm{dBi}=51.14 \mathrm{dBm}$, refer to page 6 for antenna gain.
**Note 2: Limit $+75 \mathrm{dBm} / 100 \mathrm{MHz}$ calculation
The "EIRP (dBm) column" is measured (see below for a sample calculation), and "Limit $+75 \mathrm{dBm} / 100$ MHz " is the adjusted limit (not a measurement).

The limit for bandwidth less than 100 MHz is calculated as follows: $75 \mathrm{dBm}+10 * \log [B W(\mathrm{MHz}) / 100 \mathrm{MHz}]$. This is per 47 CFR 30.202 Limits.

For 20 MHz , this calculation is: $75 \mathrm{dBm}+10^{*} \log [20 \mathrm{MHz} / 100 \mathrm{MHz}]=68.01 \mathrm{dBm}$

Intertek

Report Number: 105391852BOX-001.4
Path 1 Output Power - Low 37.170 GHz, Modulation MCSO, Bandwidth 20 MHz

$02: 21: 41$ PM 04/20/2023

Path 1 Output Power - Mid 38.570 GHz, Modulation MCSO, Bandwidth 20 MHz

$01: 50: 43$ PM 04/20/2023

Intertek

Report Number: 105391852BOX-001.4
Output Power - Path 1, High 39.97 GHz, Modulation MCSO, Bandwidth 20 MHz

02:26:20 PM 04/20/2023

Output Power - Path 1, Low 37.170 GHz, Modulation MCS9, Bandwidth 20 MHz

[^0]Output Power - Path 1, Mid 38.570 GHz, Modulation MCS9, Bandwidth 20 MHz

02:35:27 PM 04/20/2023

Output Power - Path 1, High 39.970 GHz, Modulation MCS9, Bandwidth 20 MHz

02:32:34 PM 04/20/2023

Intertek

Report Number: 105391852BOX-001.4
Output Power - Path 1, Low 37.100 GHz , Modulation MCSO, Bandwidth 160 MHz

12:48:35 PM 04/20/2023

Output Power - Path 1, Mid 38.500 GHz, Modulation MCSO, Bandwidth 160 MHz

12:53:18 PM 04/20/2023

Intertek

Report Number: 105391852BOX-001.4
Output Power - Path 1, High 39.900 GHz , Modulation MCSO, Bandwidth 160 MHz

12:58:22 PM 04/20/2023

Output Power - Path 1, Low 37.100 GHz, Modulation MCS9, Bandwidth 160 MHz

01:14:18 PM 04/20/2023

Intertek

Report Number: 105391852BOX-001.4
Output Power - Path 1, Mid 38.500 GHz, Modulation MCS9, Bandwidth 160 MHz

01:10:56 PM 04/20/2023

Output Power - Path 1, High 39.900 GHz, Modulation MCS9, Bandwidth 160 MHz

01:07:59 PM 04/20/2023

Intertek

Report Number: 105391852BOX-001.4
Output Power - Path 2, Low 37.170 GHz, Modulation MCSO, Bandwidth 20 MHz

09:18:11 AM 04/21/2023

Output Power - Path 2, Mid 38.570 GHz, Modulation MCSO, Bandwidth 20 MHz

09:15:23 AM 04/21/2023

Intertek

Report Number: 105391852BOX-001.4
Output Power - Path 2, High 39.970 GHz, Modulation MCSO, Bandwidth 20 MHz

09:10:43 AM 04/21/2023

Output Power - Path 2, Low 37.170 GHz, Modulation MCS9, Bandwidth 20 MHz

08:50:01 AM 04/21/2023

Intertek

Report Number: 105391852BOX-001.4
Output Power - Path 2, Mid 38.570 GHz, Modulation MCS9, Bandwidth 20 MHz

08:53:38 AM 04/21/2023

Output Power - Path 2, High 39.970 GHz, Modulation MCS9, Bandwidth 20 MHz

08:56:01 AM 04/21/2023

Intertek

Report Number: 105391852BOX-001.4
Output Power - Path 2, Low 37.100 GHz, Modulation MCSO, Bandwidth 160 MHz

08:18:54 AM 04/21/2023

Output Power - Path 2, Mid 38.500 GHz, Modulation MCSO, Bandwidth 160 MHz

$08: 23: 35$ AM 04/21/2023

Intertek

Report Number: 105391852BOX-001.4
Output Power - Path 2, High 39.900 GHz, Modulation MCSO, Bandwidth 160 MHz

08:29:11 AM 04/21/2023

Output Power - Path 2, Low 37.100 GHz, Modulation MCS9, Bandwidth 160 MHz

08:43:52 AM 04/21/2023

Intertek

Report Number: 105391852BOX-001.4
Output Power - Path 2, Mid 38.500 GHz, Modulation MCS9, Bandwidth 160 MHz

08:40:02 AM 04/21/2023

Output Power - Path 2, High 39.900 GHz, Modulation MCS9, Bandwidth 160 MHz

08:36:02 AM 04/21/2023

Intertek

Report Number: 105391852BOX-001.4
Output Power - Path 3, Low 37.170 GHz, Modulation MCSO, Bandwidth 20 MHz

09:48:56 AM 04/21/2023

Output Power - Path 3, Mid 38.570 GHz, Modulation MCSO, Bandwidth 20 MHz

00:55:20 AM 04/21/2023

Intertek

Report Number: 105391852BOX-001.4
Output Power - Path 3, High 39.970 GHz, Modulation MCSO, Bandwidth 20 MHz

09:51:28 AM 04/21/2023

Output Power - Path 3, Low 37.100 GHz, Modulation MCS9, Bandwidth 20 MHz

10:05:03 AM 04/21/2023

Intertek

Report Number: 105391852BOX-001.4
Output Power - Path 3, Mid 38.570 GHz, Modulation MCS9, Bandwidth 20 MHz

Output Power - Path 3, High 39.970 GHz, Modulation MCS9, Bandwidth 20 MHz

$00: 58: 41$ AM 04/21/2023

Intertek

Report Number: 105391852BOX-001.4
Output Power - Path 3, Low 37.100 GHz, Modulation MCSO, Bandwidth 160 MHz

09:27:31 AM 04/21/2023

Output Power - Path 3, Mid 38.500 GHz, Modulation MCSO, Bandwidth 160 MHz

00:30:48 AM 04/21/2023

Intertek

Report Number: 105391852BOX-001.4
Output Power - Path 3, High 39.970 GHz, Modulation MCSO, Bandwidth 160 MHz

09:33:34 AM 04/21/2023

Output Power - Path 3, Low 37.100 GHz, Modulation MCS9, Bandwidth 160 MHz

$09: 41: 42$ AM 04/21/2023

Intertek

Report Number: 105391852BOX-001.4
Output Power - Path 3, Mid 38.500 GHz, Modulation MCS9, Bandwidth 160 MHz

09:39:33 AM 04/21/2023

Output Power - Path 3, High 39.900 GHz, Modulation MCS9, Bandwidth 160 MHz

[^1]
Intertek

Report Number: 105391852BOX-001.4
Output Power - Path 4, Low 37.170 GHz, Modulation MCSO, Bandwidth 20 MHz

Output Power - Path 4, Mid 38.570 GHz, Modulation MCSO, Bandwidth 20 MHz

10:44:21 AM 04/21/2023

Intertek

Report Number: 105391852BOX-001.4
Output Power - Path 4, High 39.970 GHz, Modulation MCSO, Bandwidth 20 MHz

Output Power - Path 4, Low 37.170 GHz, Modulation MCS9, Bandwidth 20 MHz

[^2]
Intertek

Report Number: 105391852BOX-001.4
Output Power - Path 4, Mid 38.570 GHz, Modulation MCS9, Bandwidth 20 MHz

10:37:28 AM 04/21/2023

Output Power - Path 4, High 39.970 GHz, Modulation MCS9, Bandwidth 20 MHz

[^3]
Intertek

Report Number: 105391852BOX-001.4
Output Power - Path 4, Low 37.100 GHz, Modulation MCSO, Bandwidth 160 MHz

10:17:28 AM 04/21/2023

Output Power - Path 4, Mid 38.500 GHz, Modulation MCSO, Bandwidth 160 MHz

10:20:01 AM 04/21/2023

Intertek

Report Number: 105391852BOX-001.4
Output Power - Path 4, High 39.900 GHz, Modulation MCSO, Bandwidth 160 MHz

Output Power - Path 4, Low 37.100 GHz, Modulation MCS9, Bandwidth 160 MHz

[^4]
Intertek

Report Number: 105391852BOX-001.4
Output Power - Path 4, Mid 38.500 GHz, Modulation MCS9, Bandwidth 160 MHz

10:28:32 AM 04/21/2023

Output Power - Path 4, High 39.900 GHz, Modulation MCS9, Bandwidth 160 MHz

[^5]
Intertek

Report Number: 105391852BOX-001.4
Output Power - Path 5, Low 37.170 GHz, Modulation MCSO, Bandwidth 20 MHz

11:19:35 AM 04/21/2023

Output Power - Path 5, Mid 38.570 GHz, Modulation MCSO, Bandwidth 20 MHz

[^6]
Intertek

Report Number: 105391852BOX-001.4
Output Power - Path 5, High 39.970 GHz, Modulation MCSO, Bandwidth 20 MHz

11:15:25 AM 04/21/2023

Output Power - Path 5, Low 37.170 GHz, Modulation MCS9, Bandwidth 20 MHz

11:08:15 AM 04/21/2023

Intertek

Report Number: 105391852BOX-001.4
Output Power - Path 5, Mid 38.570 GHz, Modulation MCS9, Bandwidth 20 MHz

11:10:37 AM 04/21/2023

Output Power - Path 5, High 39.970 GHz, Modulation MCS9, Bandwidth 20 MHz

[^7]
Intertek

Report Number: 105391852BOX-001.4
Output Power - Path 5, Low 37.100 GHz, Modulation MCSO, Bandwidth 160 MHz

10:54:50 AM 04/21/2023

Output Power - Path 5, Mid 38.500 GHz, Modulation MCSO, Bandwidth 160 MHz

10:57:29 AM 04/21/2023

Intertek

Report Number: 105391852BOX-001.4
Output Power - Path 5, High 39.900 GHz, Modulation MCSO, Bandwidth 160 MHz

Output Power - Path 5, Low 37.100 GHz, Modulation MCS9, Bandwidth 160 MHz

11:05:41 AM 04/21/2023

Intertek

Report Number: 105391852BOX-001.4
Output Power - Path 5, Mid 38.500 GHz, Modulation MCS9, Bandwidth 160 MHz

11:04:03 AM 04/21/2023

Output Power - Path 5, High 39.900 GHz, Modulation MCS9, Bandwidth 160 MHz

[^8]
Intertek

Report Number: 105391852BOX-001.4
Output Power - Path 6, Low 37.170 GHz, Modulation MCSO, Bandwidth 20 MHz

01:00:48 PM 04/21/2023

Output Power - Path 6, Mid 38.570 GHz, Modulation MCSO, Bandwidth 20 MHz

[^9]
Intertek

Report Number: 105391852BOX-001.4
Output Power - Path 6, High 39.970 GHz, Modulation MCSO, Bandwidth 20 MHz

12:53:32 PM 04/21/2023

Output Power - Path 6, Low 37.170 GHz, Modulation MCS9, Bandwidth 20 MHz

[^10]
Intertek

Report Number: 105391852BOX-001.4
Output Power - Path 6, Mid 38.570 GHz, Modulation MCS9, Bandwidth 20 MHz

Output Power - Path 6, High 39.970 GHz, Modulation MCS9, Bandwidth 20 MHz

[^11]
Intertek

Report Number: 105391852BOX-001.4
Output Power - Path 6, Low 37.100 GHz, Modulation MCSO, Bandwidth 160 MHz

12:29:16 PM 04/21/2023

Output Power - Path 6, Mid 38.500 GHz, Modulation MCSO, Bandwidth 160 MHz

[^12]
Intertek

Report Number: 105391852BOX-001.4
Output Power - Path 6, High 39.900 GHz, Modulation MCSO, Bandwidth 160 MHz

12:34:03 PM 04/21/2023

Output Power - Path 6, Low 37.100 GHz, Modulation MCS9, Bandwidth 160 MHz

[^13]
Intertek

Report Number: 105391852BOX-001.4
Output Power - Path 6, Mid 38.500 GHz, Modulation MCS9, Bandwidth 160 MHz

12:38:12 PM 04/21/2023

Output Power - Path 6, High 39.900 GHz, Modulation MCS9, Bandwidth 160 MHz

[^14]
Intertek

Report Number: 105391852BOX-001.4
Output Power - Path 7, Low 37.170 GHz, Modulation MCSO, Bandwidth 20 MHz

01:39:25 PM 04/21/2023

Output Power - Path 7, Mid 38.570 GHz, Modulation MCSO, Bandwidth 20 MHz

01:37:04 PM 04/21/2023

Intertek

Report Number: 105391852BOX-001.4
Output Power - Path 7, High 39.970 GHz, Modulation MCSO, Bandwidth 20 MHz

01:33:57 PM 04/21/2023

Output Power - Path 7, Low 37.170 GHz, Modulation MCS9, Bandwidth 20 MHz

[^15]
Intertek

Report Number: 105391852BOX-001.4
Output Power - Path 7, Mid 38.570 GHz, Modulation MCS9, Bandwidth 20 MHz

01:27:42 PM 04/21/2023

Output Power - Path 7, High 39.970 GHz, Modulation MCS9, Bandwidth 20 MHz

[^16]
Intertek

Report Number: 105391852BOX-001.4
Output Power - Path 7, Low 37.100 GHz, Modulation MCSO, Bandwidth 160 MHz

01:08:26 PM 04/21/2023

Output Power - Path 7, Mid 38.500 GHz, Modulation MCSO, Bandwidth 160 MHz

$01: 10: 17 \mathrm{PM} 04 / 21 / 2023$

Intertek

Report Number: 105391852BOX-001.4
Output Power - Path 7, High 39.900 GHz, Modulation MCSO, Bandwidth 160 MHz

Output Power - Path 7, Low 37.100 GHz, Modulation MCS9, Bandwidth 160 MHz

[^17]
Intertek

Report Number: 105391852BOX-001.4
Output Power - Path 7, Mid 38.500 GHz, Modulation MCS9, Bandwidth 160 MHz

01:20:43 PM 04/21/2023

Output Power - Path 7, High 39.900 GHz, Modulation MCS9, Bandwidth 160 MHz

[^18]
Intertek

Report Number: 105391852BOX-001.4
Output Power - Path 8, Low 37.170 GHz, Modulation MCSO, Bandwidth 20 MHz

02:14:56 PM 04/21/2023

Output Power - Path 8, Mid 38.570 GHz, Modulation MCSO, Bandwidth 20 MHz

Intertek

Report Number: 105391852BOX-001.4
Output Power - Path 8, High 39.970 GHz, Modulation MCSO, Bandwidth 20 MHz

Output Power - Path 8, Low 37.170 GHz, Modulation MCS9, Bandwidth 20 MHz

Intertek

Report Number: 105391852BOX-001.4
Output Power - Path 8, Mid 38.570 GHz, Modulation MCS9, Bandwidth 20 MHz

Output Power - Path 8, High 39.970 GHz, Modulation MCS9, Bandwidth 20 MHz

02:08:39 PM 04/21/2023

Intertek

Report Number: 105391852BOX-001.4
Output Power - Path 8, Low 37.100 GHz, Modulation MCSO, Bandwidth 160 MHz

01:49:05 PM 04/21/2023

Output Power - Path 8, Mid 38.500 GHz, Modulation MCSO, Bandwidth 160 MHz

01:52:17 PM 04/21/2023

Intertek

Report Number: 105391852BOX-001.4
Output Power - Path 8, High 39.900 GHz, Modulation MCSO, Bandwidth 160 MHz

01:54:30 PM 04/21/2023

Output Power - Path 8, Low 37.100 GHz, Modulation MCS9, Bandwidth 160 MHz

02:01:57 PM 04/21/2023

Intertek

Report Number: 105391852BOX-001.4
Output Power - Path 8, Mid 38.500 GHz, Modulation MCS9, Bandwidth 160 MHz

Output Power - Path 8, High 39.900 GHz, Modulation MCS9, Bandwidth 160 MHz

[^19]Output Power - Path 1, Low 37.160 GHz, Modulation MCSO, Bandwidth 40 MHz

09:08:40 AM 08/03/2023

Output Power - Path 1, Mid 38.56 GHz, Modulation MCSO, Bandwidth 40 MHz

09:24:52 AM 08/03/2023

Output Power - Path 1, High 39.96 GHz, Modulation MCSO, Bandwidth 40 MHz

09:34:42 AM 08/03/2023

Output Power - Path 1, Low 37.160 GHz, Modulation MCS9, Bandwidth 40 MHz

09:13:24 AM 08/03/2023

Output Power - Path 1, Mid 38.56 GHz, Modulation MCS9, Bandwidth 40 MHz

09:27:10 AM 08/03/2023
Output Power - Path 1, High 39.96 GHz, Modulation MCS9, Bandwidth 40 MHz

09:38:03 AM 08/03/2023

Output Power - Path 2, Low 37.160 GHz, Modulation MCSO, Bandwidth 40 MHz

09:45:33 AM 08/03/2023

Output Power - Path 2, Mid 38.56 GHz, Modulation MCSO, Bandwidth 40 MHz

09:53:34 AM 08/03/2023

Output Power - Path 2, High 39.96 GHz, Modulation MCSO, Bandwidth 40 MHz

$09: 58: 28$ AM 08/03/2023

Output Power - Path 2, Low 37.160 GHz, Modulation MCS9, Bandwidth 40 MHz

Output Power - Path 2, Mid 38.56 GHz, Modulation MCS9, Bandwidth 40 MHz

$09: 55: 24$ AM 08/03/2023

Output Power - Path 2, High 39.96 GHz, Modulation MCS9, Bandwidth 40 MHz

Output Power - Path 3, Low 37.160 GHz, Modulation MCSO, Bandwidth 40 MHz

10:10:40 AM 08/03/2023

Output Power - Path 3, Mid 38.56 GHz, Modulation MCSO, Bandwidth 40 MHz

Output Power - Path 3, High 39.96 GHz, Modulation MCSO, Bandwidth 40 MHz

10:23:07 AM 08/03/2023

Output Power - Path 3, Low 37.160 GHz, Modulation MCS9, Bandwidth 40 MHz

Output Power - Path 3, Mid 38.56 GHz, Modulation MCS9, Bandwidth 40 MHz

10:19:16 AM 08/03/2023

Output Power - Path 3, High 39.96 GHz, Modulation MCS9, Bandwidth 40 MHz

Output Power - Path 4, Low 37.160 GHz, Modulation MCSO, Bandwidth 40 MHz

10:31:04 AM 08/03/2023

Output Power - Path 4, Mid 38.56 GHz, Modulation MCSO, Bandwidth 40 MHz

[^20]Output Power - Path 4, High 39.96 GHz, Modulation MCSO, Bandwidth 40 MHz

10:40:56 AM 08/03/2023

Output Power - Path 4, Low 37.160 GHz, Modulation MCS9, Bandwidth 40 MHz

Output Power - Path 4, Mid 38.56 GHz, Modulation MCS9, Bandwidth 40 MHz

10:38:26 AM 08/03/2023

Output Power - Path 4, High 39.96 GHz, Modulation MCS9, Bandwidth 40 MHz

Output Power - Path 5, Low 37.160 GHz, Modulation MCSO, Bandwidth 40 MHz

10:54:30 AM 08/03/2023

Output Power - Path 5, Mid 38.56 GHz, Modulation MCSO, Bandwidth 40 MHz

Output Power - Path 5, High 39.96 GHz, Modulation MCSO, Bandwidth 40 MHz

11:02:52. AM 08/03/2023

Output Power - Path 5, Low 37.160 GHz, Modulation MCS9, Bandwidth 40 MHz

Output Power - Path 5, Mid 38.56 GHz, Modulation MCS9, Bandwidth 40 MHz

11:00:41 AM 08/03/2023

Output Power - Path 5, High 39.96 GHz, Modulation MCS9, Bandwidth 40 MHz

Output Power - Path 6, Low 37.160 GHz, Modulation MCSO, Bandwidth 40 MHz

11:10:55 AM 08/03/2023

Output Power - Path 6, Mid 38.56 GHz, Modulation MCSO, Bandwidth 40 MHz

Output Power - Path 6, High 39.96 GHz, Modulation MCSO, Bandwidth 40 MHz

11:22:10 AM 08/03/2023

Output Power - Path 6, Low 37.160 GHz, Modulation MCS9, Bandwidth 40 MHz

Output Power - Path 6, Mid 38.56 GHz, Modulation MCS9, Bandwidth 40 MHz

11:19:46 AM 08/03/2023

Output Power - Path 6, High 39.96 GHz, Modulation MCS9, Bandwidth 40 MHz

Output Power - Path 7, Low 37.160 GHz, Modulation MCSO, Bandwidth 40 MHz

11:28:19 AM 08/03/2023

Output Power - Path 7, Mid 38.56 GHz, Modulation MCSO, Bandwidth 40 MHz

11:33:01 AM 08/03/2023

Output Power - Path 7, High 39.96 GHz, Modulation MCSO, Bandwidth 40 MHz

11:36:56 AM 08/03/2023

Output Power - Path 7, Low 37.160 GHz, Modulation MCS9, Bandwidth 40 MHz

11:30:27 AM 08/03/2023

Output Power - Path 7, Mid 38.56 GHz, Modulation MCS9, Bandwidth 40 MHz

11:34:43 AM 08/03/2023

Output Power - Path 7, High 39.96 GHz, Modulation MCS9, Bandwidth 40 MHz

11:38:41 AM 08/03/2023

Output Power - Path 8, Low 37.160 GHz, Modulation MCSO, Bandwidth 40 MHz

12:39:42 PM 08/03/2023

Output Power - Path 8, Mid 38.56 GHz, Modulation MCSO, Bandwidth 40 MHz

12:44:10 PM 08/03/2023

Output Power - Path 8, High 39.96 GHz, Modulation MCSO, Bandwidth 40 MHz

12:47:20 PM 08/03/2023

Output Power - Path 8, Low 37.160 GHz, Modulation MCS9, Bandwidth 40 MHz

12:41:26 PM 08/03/2023

Output Power - Path 8, Mid 38.56 GHz, Modulation MCS9, Bandwidth 40 MHz

12:45:25 PM 08/03/2023
Output Power - Path 8, High 39.96 GHz, Modulation MCS9, Bandwidth 40 MHz

12:48:48 PM 08/03/2023

Output Power - Path 1, Low 37.14 GHz, Modulation MCSO, Bandwidth 80 MHz

01:00:35 PM 08/03/2023
Output Power - Path 1, Mid 38.54 GHz, Modulation MCSO, Bandwidth 80 MHz

01:09:26 PM 08/03/2023

Output Power - Path 1, High 39.94 GHz , Modulation MCSO, Bandwidth 80 MHz

$01: 12: 44 \mathrm{PM} 08 / 03 / 2023$

Output Power - Path 1, Low 37.14 GHz, Modulation MCS9, Bandwidth 80 MHz

01:05:16 PM 08/03/2023

Output Power - Path 1, Mid 38.54 GHz, Modulation MCS9, Bandwidth 80 MHz

01:10:50 PM 08/03/2023

Output Power - Path 1, High 39.94 GHz, Modulation MCS9, Bandwidth 80 MHz

01:14:37 PM 08/03/2023

Output Power - Path 2, Low 37.14 GHz , Modulation MCSO, Bandwidth 80 MHz

01:18:09 PM 08/03/2023

Output Power - Path 2, Mid 38.54 GHz, Modulation MCSO, Bandwidth 80 MHz

$01: 22: 54 \mathrm{PM} 08 / 03 / 2023$

Output Power - Path 2, High 39.94 GHz, Modulation MCSO, Bandwidth 80 MHz

$01: 27: 12 \mathrm{PM} 08 / 03 / 2023$

Output Power - Path 2, Low 37.14 GHz, Modulation MCS9, Bandwidth 80 MHz

01:20:00 PM 08/03/2023

[^0]: 02:40:25 PM 04/20/2023

[^1]: 09:37:02 AM 04/21/2023

[^2]: 10:35:21 AM 04/21/2023

[^3]: 10:39:34 AM 04/21/2023

[^4]: 10:32:19 AM 04/21/2023

[^5]: 10:25:00 AM 04/21/2023

[^6]: 11:17:47 AM 04/21/2023

[^7]: 11:12:50 AM 04/21/2023

[^8]: 11:02:18 AM 04/21/2023

[^9]: 12:58:25 PM 04/21/2023

[^10]: 12:43:45 PM 04/21/2023

[^11]: 12:51:17 PM 04/21/2023

[^12]: 12:32:20 PM 04/21/2023

[^13]: 12:39:40 PM 04/21/2023

[^14]: 12:36:16 PM 04/21/2023

[^15]: 01:25:20 PM 04/21/2023

[^16]: 01:31:33 PM 04/21/2023

[^17]: $01: 22: 20 \mathrm{PM} 04 / 21 / 2023$

[^18]: $01: 18: 44$ PM 04/21/2023

[^19]: 01:58:08 PM 04/21/2023

[^20]: 10:36:41 AM 08/03/2023

