TEST REPORT

FCC ID: 2AGY9BS-22 Product: Bluetooth Speaker Model No.: BS-22 Additional Model: BS-27, BB736, BB737, BB739 Trade Mark: N/A Report No.: TCT151216E016 Issued Date: Jan. 07, 2016

Issued for:

Zhongshan World Team Electronics Co., Ltd. 3th Floor, No.3, Yi Dong Street, Kang Hua Road, Shi Qi District, Zhongshan, Guangdong, China

Issued By:

Shenzhen Tongce Testing Lab. 1F, Leinuo Watch Building, Fuyong Town, Baoan Dist, Shenzhen, China TEL: +86-755-27673339 FAX: +86-755-27673332

Note: This report shall not be reproduced except in full, without the written approval of Shenzhen Tongce Testing Lab. This document may be altered or revised by Shenzhen Tongce Testing Lab. personnel only, and shall be noted in the revision section of the document. The test results in the report only apply to the tested sample.

Hotline: 400-6611-140 Tel: 86-755-27673339 Fax: 86-755-27673332 http://www.tct-lab.com

TABLE OF CONTENTS

1. Test Certification	
2. Test Result Summary	4
3. EUT Description	5
4. Genera Information	
4.1. Test environment and mode	6
4.2. Description of Support Units	6
5. Facilities and Accreditations	
5.1. Facilities	7
5.2. Location	
5.3. Measurement Uncertainty	7
6. Test Results and Measurement Data	
6.1. Antenna requirement	
6.2. Conducted Emission	
6.3. Conducted Output Power	
6.4. 20dB Occupy Bandwidth	
6.5. Carrier Frequencies Separation	21
6.6. Hopping Channel Number	
6.7. Dwell Time	
6.8. Pseudorandom Frequency Hopping Sequence	
6.9. Conducted Band Edge Measurement	
6.10. Conducted Spurious Emission Measurement	
6.11.Radiated Spurious Emission Measurement	
Appendix A: Photographs of Test Setup	
Appendix B: Photographs of EUT	

Hotline: 400-6611-140 Tel: 86-755-27673339 Fax: 86-755-27673332 http://www.tct-lab.com

1. Test Certification

Product:	Bluetooth Speaker		
Model No.:	BS-22	(C)	6
Additional Model:	BS-27, BB736, BB737, BB739		
Applicant:	Zhongshan World Team Electronics Co., Ltd.		
Address:	3th Floor, No.3, Yi Dong Street, Kang Hua Ro Zhongshan, Guangdong, China	ad, Shi Qi District,	
Manufacturer:	Zhongshan World Team Electronics Co., Ltd.		K.
Address:	3th Floor, No.3, Yi Dong Street, Kang Hua Ro Zhongshan, Guangdong, China	ad, Shi Qi District,	
Date of Test:	Dec. 16 – Jan. 06, 2016		
Applicable Standards:	FCC CFR Title 47 Part 15 Subpart C Section	15.247	(ĉ

The above equipment has been tested by Shenzhen Tongce Testing Lab. and found compliance with the requirements set forth in the technical standards mentioned above. The results of testing in this report apply only to the product/system, which was tested. Other similar equipment will not necessarily produce the same results due to production tolerance and measurement uncertainties.

Tested By:	Beng zhan	Date:	Jan. 06, 2016	(C
Reviewed By:	Beryl Zhao Zon Zhm	Date:	Jan. 07, 2016	
Approved By:	Joe Zhou Tomsin	Date:	Jan. 07, 2016	Ś

2. Test Result Summary

Requirement	CFR 47 Section		Result	
Antenna Requirement	§15.203/§15.247 (c)	K)	PASS	K.
AC Power Line Conducted Emission	§15.207		PASS	
Conducted Peak Output Power	§15.247 (b)(1)		PASS	
20dB Occupied Bandwidth	§15.247 (a)(1)		PASS	
Carrier Frequencies Separation	§15.247 (a)(1)		PASS	
Hopping Channel Number	§15.247 (a)(1)		PASS	
Dwell Time	§15.247 (a)(1)		PASS	
Radiated Emission	§15.205/§15.209		PASS	k
Band Edge	§15.247(d)		PASS	

Note:

1. PASS: Test item meets the requirement.

2. Fail: Test item does not meet the requirement.

3. N/A: Test case does not apply to the test object.

4. The test result judgment is decided by the limit of test standard.

3. EUT Description

Product Name:	Bluetooth Speaker					
Model :	BS-22					
Additional Model:	BS-27, BB736, BB737, BB739					
Trade Mark:	N/A					
Operation Frequency:	2402MHz~2480MHz					
Transfer Rate:	1/2 Mbits/s					
Number of Channel:	79					
Modulation Type:	GFSK, π/4-DQPSK					
Modulation Technology:	FHSS					
Antenna Type:	Internal Antenna					
Antenna Gain:	0.5dBi					
Power Supply:	DC 3.7V					
Remark:	All models above are identical in interior structure, electrical circuits and components, and just model names are different for the marketing requirement.					

Operation Frequency each of channel for GFSK, π/4-DQPSK

Channel	Frequency	Channel	Frequency	Channel	Frequency	Channel	Frequency
0	2402MHz	20	2422MHz	40	2442MHz	60	2462MHz
1	2403MHz	21	2423MHz	41	2443MHz	61	2463MHz
(<u>(</u>)	(<u>(</u>)		(c).		(c)
10	2412MHz	30	2432MHz	50	2452MHz	70	2472MHz
11	2413MHz	31	2433MHz	51	2453MHz	71	2473MHz
X	(X	((X	(*
18	2420MHz	38	2440MHz	58	2460MHz	78	2480MHz
19	2421MHz	39	2441MHz	59	2461MHz		-
Remark:	Channel 0, 3	9 &78 ha	ve been tes	ted for GI	-SK, π/4-DC	PSK mo	dulation mode.

4. Genera Information

4.1. Test environment and mode

0 °C % RH 10 mbar		
10 mbar		
Keep the EUT in continuous transmitting by select channel and modulations		

operating modes, rotated about all 3 axis (X, Y & Z) and considered typical configuration to obtain worst position, manipulating interconnecting cables, rotating the turntable, varying antenna height from 1m to 4m in both horizontal and vertical polarizations. The emissions worst-case are shown in Test Results of the following pages.

4.2. Description of Support Units

The EUT has been tested as an independent unit together with other necessary accessories or support units. The following support units or accessories were used to form a representative test configuration during the tests.

Equipment	Model No.	Serial No.	FCC ID	Trade Name
Notebook	G485		G 1	Lenove

Note:

1. All the equipment/cables were placed in the worst-case configuration to maximize the emission during the test.

- 2. Grounding was established in accordance with the manufacturer's requirements and conditions for the intended use.
- 3. For conducted measurements (Output Power, 20dB Occupied Bandwidth, Carrier Frequencies Separation, Hopping Channel Number, Dwell Time, Spurious Emissions), the antenna of EUT is connected to the test equipment via temporary antenna connector, the antenna connector is soldered on the antenna port of EUT, and the temporary antenna connector is listed in the Test Instruments.

5. Facilities and Accreditations

5.1. Facilities

The test facility is recognized, certified, or accredited by the following organizations:

- FCC Registration No.: 572331
 - Shenzhen Tongce Testing Lab

The 3m Semi-anechoic chamber has been registered and fully described in a report with the (FCC) Federal Communications Commission. The acceptance letter from the FCC is maintained in our files.

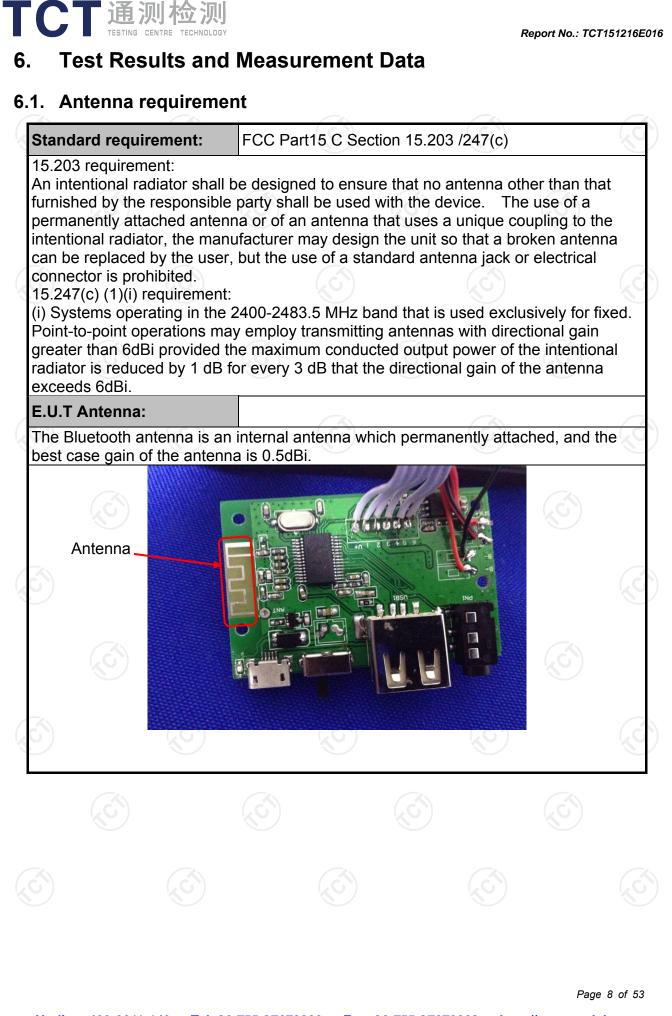
• IC - Registration No.: 10668A-1

The 3m Semi-anechoic chamber of Shenzhen TCT Testing Technology Co., Ltd. has been registered by Certification and Engineering Bureau of Industry Canada for radio equipment testing

CNAS - Registration No.: CNAS L6165

Shenzhen TCT Testing Technology Co., Ltd. is accredited to ISO/IEC 17025:2005 General Requirements for the Competence of Testing and Calibration laboratories for the competence of testing. The Registration No. is CNAS L6165.

5.2. Location


Shenzhen Tongce Testing Lab

Address: 1F, Leinuo Watch Building, Fuyong Town, Baoan Dist, Shenzhen, China Tel: 86-755-36638142

5.3. Measurement Uncertainty

The reported uncertainty of measurement $y \pm U$, where expended uncertainty U is based on a standard uncertainty multiplied by a coverage factor of k=2, providing a level of confidence of approximately 95 %.

No.	Item	MU
1	Conducted Emission	±2.56dB
2	RF power, conducted	±0.12dB
3	Spurious emissions, conducted	±0.11dB
4	All emissions, radiated(<1G)	±3.92dB
5	All emissions, radiated(>1G)	±4.28dB
6	Temperature	±0.1°C
7	Humidity	±1.0%

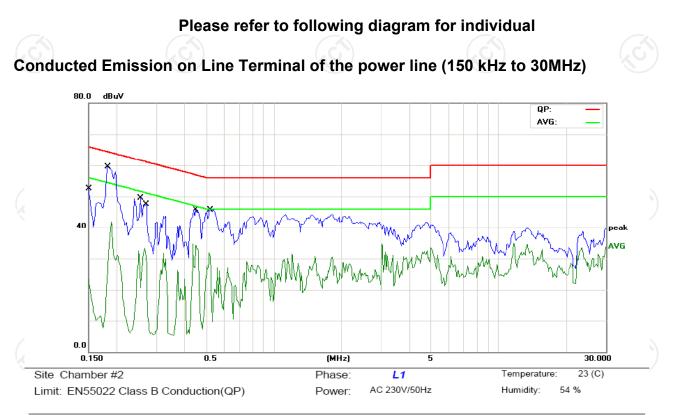
6.2. Conducted Emission

6.2.1. Test Specification

Test Requirement:	FCC Part15 C Sectior	15.207	k.	
Test Method:	ANSI C63.4:2014		C.	
Frequency Range:	150 kHz to 30 MHz			
Receiver setup:	RBW=9 kHz, VBW=30	J KHZ, Sweep time	e=auto	
	Frequency range	Limit (dBuV)	
	(MHz)	Quasi-peak	Average	
Limits:	0.15-0.5	66 to 56*	56 to 46*	
	0.5-5	56	46	
	5-30	60	50	
	Reference	ce Plane		
Test Setup: Test Mode:	E.U.T AC power Test table/Insulation plane Remark: E.U.T: Equipment Under Test LISN: Line Impedence Stabilization N Test table height=0.8m	EMI Receiver	— AC power	
Test Procedure:	 The E.U.T and sim power through a lin (L.I.S.N.). This pr impedance for the r The peripheral devin power through a L coupling impedance refer to the block photographs). Both sides of A.C conducted interfere emission, the relative 	e impedance stab ovides a 50ohm neasuring equipme ces are also conne ISN that provides e with 50ohm tern diagram of the . line are checke nce. In order to fir	oilization network a/50uH coupling ent. ected to the main a 50ohm/50uH nination. (Please test setup and ed for maximum nd the maximum	
	the interface cable ANSI C63.4: 2014 c	s must be chang	ed according to	

Page 9 of 53

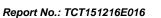
6.2.2. Test Instruments

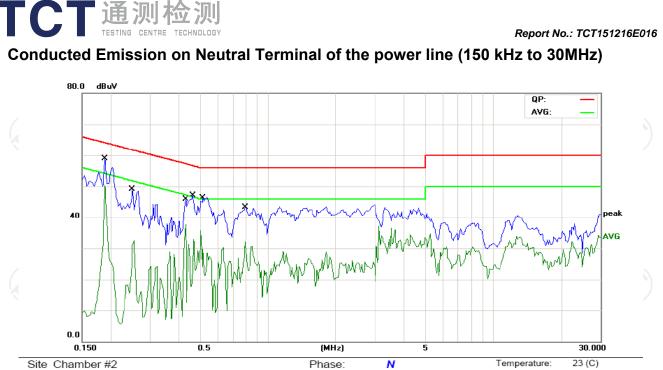

Cond	lucted Emission	Shielding R	oom Test Site (8	43)
Equipment	Manufacturer	ufacturer Model Serial Number Ca		Calibration Due
EMI Test Receiver	R&S	ESCS30	100139	Sep. 11, 2016
LISN	Schwarzbeck	NSLK 8126	8126453	Sep. 16, 2016
Coax cable	тст	CE-05	N/A	Sep. 11, 2016
EMI Test Software	Shurple Technology	EZ-EMC	N/A	N/A

Note: The calibration interval of the above test instruments is 12 months and the calibrations are traceable to international system unit (SI).

Page 10 of 53

Hotline: 400-6611-140 Tel: 86-755-27673339 Fax: 86-755-27673332 http://www.tct-lab.com


6.2.3. Test data



-	No.	Mk.	Freq.	Reading Level	Correct Factor	Measure- ment	Limit	Over			
-			MHz	dBuV	dB	dBuV	dBuV	dB	Detector	Comment	
	1		0.1500	29.05	11.49	40.54	65.99	-25.45	QP		
/	2		0.1500	1.85	11.49	13.34	55.99	-42.65	AVG		_ \
Ķ.	3	*	0.1835	44.00	11.48	55.48	64.32	-8.84	QP		-)
-	4		0.1835	29.39	11.48	40.87	54.32	-13.45	AVG		
-	5		0.2555	34.67	11.43	46.10	61.57	-15.47	QP		
-	6		0.2555	19.67	11.43	31.10	51.57	-20.47	AVG		
-	7		0.2711	31.42	11.42	42.84	61.08	-18.24	QP		
-	8		0.2711	11.98	11.42	23.40	51.08	-27.68	AVG		
-	9		0.4508	31.64	11.32	42.96	56.86	-13.90	QP		
(10		0.4508	17.57	11.32	28.89	46.86	-17.97	AVG		
2	11		0.5211	31.85	11.29	43.14	56.00	-12.86	QP		_/
-	12		0.5211	16.01	11.29	27.30	46.00	-18.70	AVG		

Note:

Freq. = Emission frequency in MHz Reading level $(dB\mu V)$ = Receiver reading Corr. Factor (dB) = Antenna factor + Cable loss Measurement $(dB\mu V)$ = Reading level $(dB\mu V)$ + Corr. Factor (dB)Limit $(dB\mu V)$ = Limit stated in standard Margin (dB) = Measurement $(dB\mu V)$ – Limits $(dB\mu V)$ Q.P. =Quasi-Peak AVG =average * is meaning the worst frequency has been tested in the frequency range 150 kHz to 30MHz

Limit: EN55022 Class B Conduction(QP) Power: AC 230V/50Hz Humidity:

No.	Mk.	Freq.	Reading Level	Correct Factor	Measure- ment	Limit	Over			
		MHz	dBuV	dB	dBuV	dBuV	dB	Detector	Comment	
1	*	0.1891	43.54	11.49	55.03	64.07	-9.04	QP		
2		0.1891	30.90	11.49	42.39	54.07	-11.68	AVG		
3		0.2516	34.17	11.45	45.62	61.70	-16.08	QP		
4		0.2516	20.72	11.45	32.17	51.70	-19.53	AVG		
5		0.4313	31.75	11.34	43.09	57.23	-14.14	QP		
6		0.4313	18.29	11.34	29.63	47.23	-17.60	AVG		
7		0.4664	32.46	11.33	43.79	56.58	-12.79	QP		6
8		0.4664	16.71	11.33	28.04	46.58	-18.54	AVG		
9		0.5172	31.67	11.30	42.97	56.00	-13.03	QP		
10		0.5172	15.38	11.30	26.68	46.00	-19.32	AVG		
11		0.7945	28.72	11.20	39.92	56.00	-16.08	QP		
12		0.7945	15.48	11.20	26.68	46.00	-19.32	AVG		
	1 2 3 4 5 6 7 8 9 9 10 11	3 4 5 6 7 8 9 10 11	MHz 1 * 0.1891 2 0.1891 3 0.2516 4 0.2516 5 0.4313 6 0.4313 7 0.4664 9 0.5172 10 0.5172 11 0.7945	No. Mk. Freq. Level MHz dBuV 1 0.1891 43.54 2 0.1891 30.90 3 0.2516 34.17 4 0.2516 20.72 5 0.4313 31.75 6 0.4313 18.29 7 0.4664 32.46 8 0.4664 16.71 9 0.5172 31.67 10 0.5172 15.38 11 0.7945 28.72	No. Mk. Freq. Level Factor MHz dBuV dB 1 0.1891 43.54 11.49 2 0.1891 30.90 11.49 3 0.2516 34.17 11.45 4 0.2516 20.72 11.45 5 0.4313 31.75 11.34 6 0.4313 18.29 11.34 7 0.4664 32.46 11.33 8 0.4664 16.71 11.30 9 0.5172 31.67 11.30 10 0.5172 28.72 11.20	No. Mk. Freq. Level Factor ment MHz dBuV dB dBuV 1 * 0.1891 43.54 11.49 55.03 2 0.1891 30.90 11.49 42.39 3 0.2516 34.17 11.45 45.62 4 0.2516 20.72 11.45 32.17 5 0.4313 31.75 11.34 43.09 6 0.4313 18.29 11.34 29.63 7 0.4664 32.46 11.33 43.79 8 0.4664 16.71 11.33 28.04 9 0.5172 31.67 11.30 42.97 10 0.5172 15.38 11.30 26.68 11 0.7945 28.72 11.20 39.92	No. Mk. Freq. Level Factor ment Limit MHz dBuV dB dBuV dBuV dBuV 1 * 0.1891 43.54 11.49 55.03 64.07 2 0.1891 30.90 11.49 42.39 54.07 3 0.2516 34.17 11.45 45.62 61.70 4 0.2516 20.72 11.45 32.17 51.70 5 0.4313 31.75 11.34 43.09 57.23 6 0.4313 18.29 11.34 29.63 47.23 7 0.4664 32.46 11.33 43.79 56.58 8 0.4664 16.71 11.33 28.04 46.58 9 0.5172 31.67 11.30 42.97 56.00 10 0.5172 15.38 11.30 26.68 46.00 11 0.7945 28.72 11.20 39.92 56.00	No. Mk. Freq. Level Factor ment Limit Over MHz dBuV dB dBuV dBuV dBuV dB dBuV dB dBuV dB dBuV dB dBuV dB dBuV dB e <td>No. Mk. Freq. Level Factor ment Limit Over MHz dBuV dB dBuV dBuV dB dBuV dB Detector 1 * 0.1891 43.54 11.49 55.03 64.07 -9.04 QP 2 0.1891 30.90 11.49 42.39 54.07 -11.68 AVG 3 0.2516 34.17 11.45 45.62 61.70 -16.08 QP 4 0.2516 20.72 11.45 32.17 51.70 -19.53 AVG 5 0.4313 31.75 11.34 43.09 57.23 -14.14 QP 6 0.4313 18.29 11.34 29.63 47.23 -17.60 AVG 7 0.4664 32.46 11.33 28.04 46.58 -18.54 AVG 9 0.5172 31.67 11.30 28.04 46.58 -18.54 AVG 9 0.</td> <td>No. Mk. Freq. Level Factor ment Limit Over MHz dBuV dB dBuV dBuV dB Detector Comment 1 * 0.1891 43.54 11.49 55.03 64.07 -9.04 QP 2 0.1891 30.90 11.49 42.39 54.07 -11.68 AVG 3 0.2516 34.17 11.45 45.62 61.70 -16.08 QP 4 0.2516 20.72 11.45 32.17 51.70 -19.53 AVG 5 0.4313 31.75 11.34 43.09 57.23 -14.14 QP 6 0.4313 18.29 11.34 29.63 47.23 -17.60 AVG 7 0.4664 32.46 11.33 43.79 56.58 -12.79 QP 8 0.4664 16.71 11.33 28.04 46.58 -18.54 AVG 9 0.5172 31.67</td>	No. Mk. Freq. Level Factor ment Limit Over MHz dBuV dB dBuV dBuV dB dBuV dB Detector 1 * 0.1891 43.54 11.49 55.03 64.07 -9.04 QP 2 0.1891 30.90 11.49 42.39 54.07 -11.68 AVG 3 0.2516 34.17 11.45 45.62 61.70 -16.08 QP 4 0.2516 20.72 11.45 32.17 51.70 -19.53 AVG 5 0.4313 31.75 11.34 43.09 57.23 -14.14 QP 6 0.4313 18.29 11.34 29.63 47.23 -17.60 AVG 7 0.4664 32.46 11.33 28.04 46.58 -18.54 AVG 9 0.5172 31.67 11.30 28.04 46.58 -18.54 AVG 9 0.	No. Mk. Freq. Level Factor ment Limit Over MHz dBuV dB dBuV dBuV dB Detector Comment 1 * 0.1891 43.54 11.49 55.03 64.07 -9.04 QP 2 0.1891 30.90 11.49 42.39 54.07 -11.68 AVG 3 0.2516 34.17 11.45 45.62 61.70 -16.08 QP 4 0.2516 20.72 11.45 32.17 51.70 -19.53 AVG 5 0.4313 31.75 11.34 43.09 57.23 -14.14 QP 6 0.4313 18.29 11.34 29.63 47.23 -17.60 AVG 7 0.4664 32.46 11.33 43.79 56.58 -12.79 QP 8 0.4664 16.71 11.33 28.04 46.58 -18.54 AVG 9 0.5172 31.67

Note1:

Freq. = Emission frequency in MHz Reading level (dBμV) = Receiver reading Corr. Factor (dB) = Antenna factor + Cable loss

Measurement ($dB\mu V$) = Reading level ($dB\mu V$) + Corr. Factor (dB)

Limit ($dB\mu V$) = Limit stated in standard

Margin (dB) = Measurement (dB μ V) – Limits (dB μ V)

Q.P. =Quasi-Peak AVG =average

* is meaning the worst frequency has been tested in the frequency range 150 kHz to 30MHz.

Note2:

Measurements were conducted in all three channels (high, middle, low) and two modulation (GFSK, Pi/4 DQPSK), and the worst case Mode (Low channel of Pi/4 DQPSK) was submitted only.

Page 12 of 53

54 %

6.3. Conducted Output Power

6.3.1. Test Specification

Test Requirement:	FCC Part15 C Section 15.247 (b)(3)
Test Method:	ANSI C63.10:2013 and DA00-705
Limit:	Section 15.247 (b) The maximum peak conducted output power of the intentional radiator shall not exceed the following: (1) For frequency hopping systems operating in the 2400-2483.5 MHz band employing at least 75 non-overlapping hopping channels, and all frequency hopping systems in the 5725-5850 MHz band: 1 watt. For all other frequency hopping systems in the 2400-2483.5 MHz band 0.125 watts.
Test Setup:	
Test Mode:	Spectrum Analyzer EUT Transmitting mode with modulation Contraction
Test Procedure:	Use the following spectrum analyzer settings: Span = approximately 5 times the 20 dB bandwidth, centered on a hopping channel RBW > the 20 dB bandwidth of the emission being measured VBW ≥ RBW Sweep = auto Detector function = peak Trace = max hold Allow the trace to stabilize. Use the marker-to-peak function to set the marker to the peak of the emission.
Test Result:	PASS

6.3.2. Test Instruments

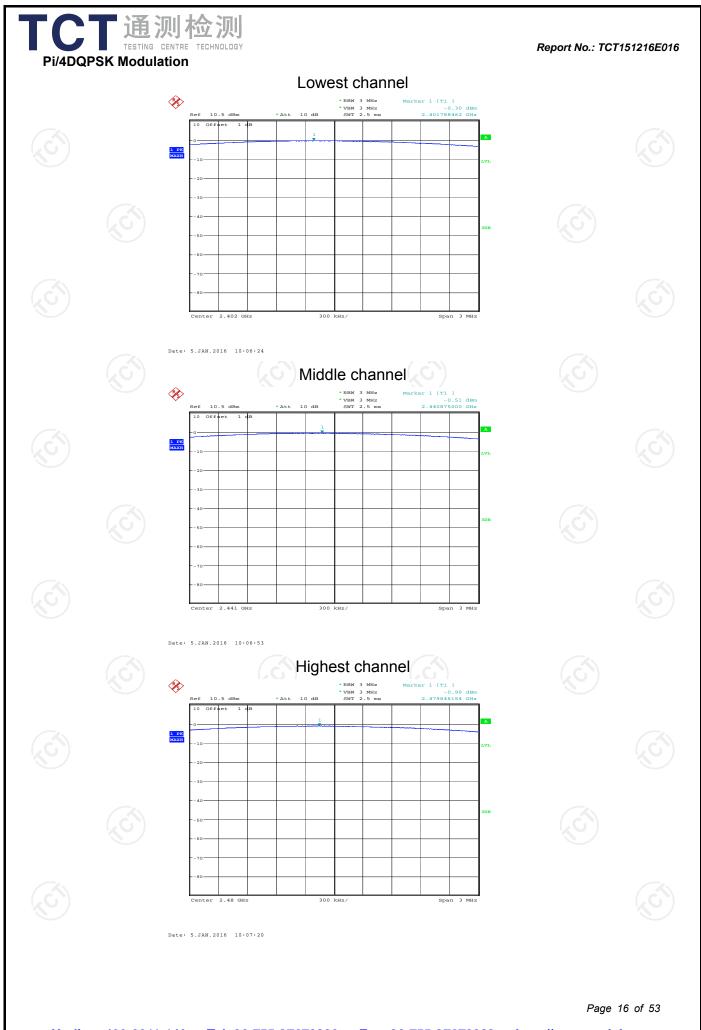
Equipment	Manufacturer	Model	Serial Number	Calibration Due
Spectrum Analyzer	R&S	FSU	200054	Sep. 11, 2016
RF Cable	тст	RE-06	N/A	Sep. 12, 2016
Antenna Connector	тст	RFC-01	N/A	Sep. 12, 2016

Note: The calibration interval of the above test instruments is 12 months and the calibrations are traceable to international system unit (SI).

GFSK mode						
Test channel	Peak Output Power (dBm)	Limit (dBm)	Result			
Lowest	-0.99	21.00	PASS			
Middle	-1.24	21.00	PASS			
Highest	-1.71	21.00	PASS			

Pi/4DQPSK mode								
Test channel	Peak Output Power (dBm)	Limit (dBm)	Result					
Lowest	-0.30	21.00	PASS					
Middle	-0.51	21.00	PASS					
Highest	-0.99	21.00	PASS					

Test plots as follows:


6.3.3. Test Data

Page 14 of 53

Hotline: 400-6611-140 Tel: 86-755-27673339 Fax: 86-755-27673332 http://www.tct-lab.com

Report No.: TCT151216E016

6.4. 20dB Occupy Bandwidth

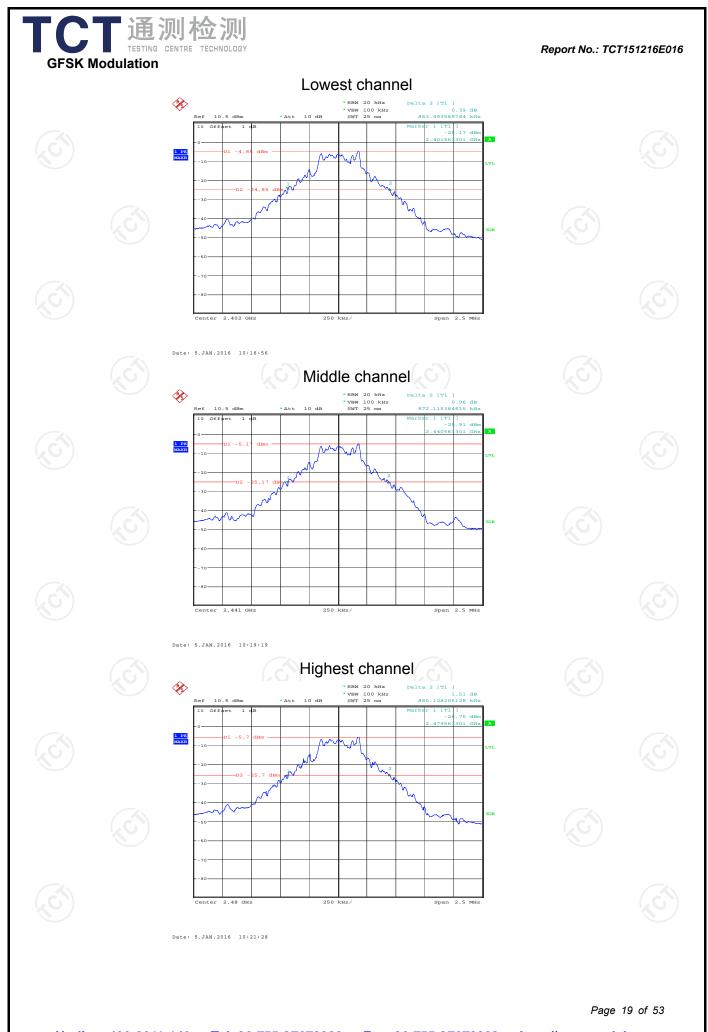
6.4.1. Test Specification

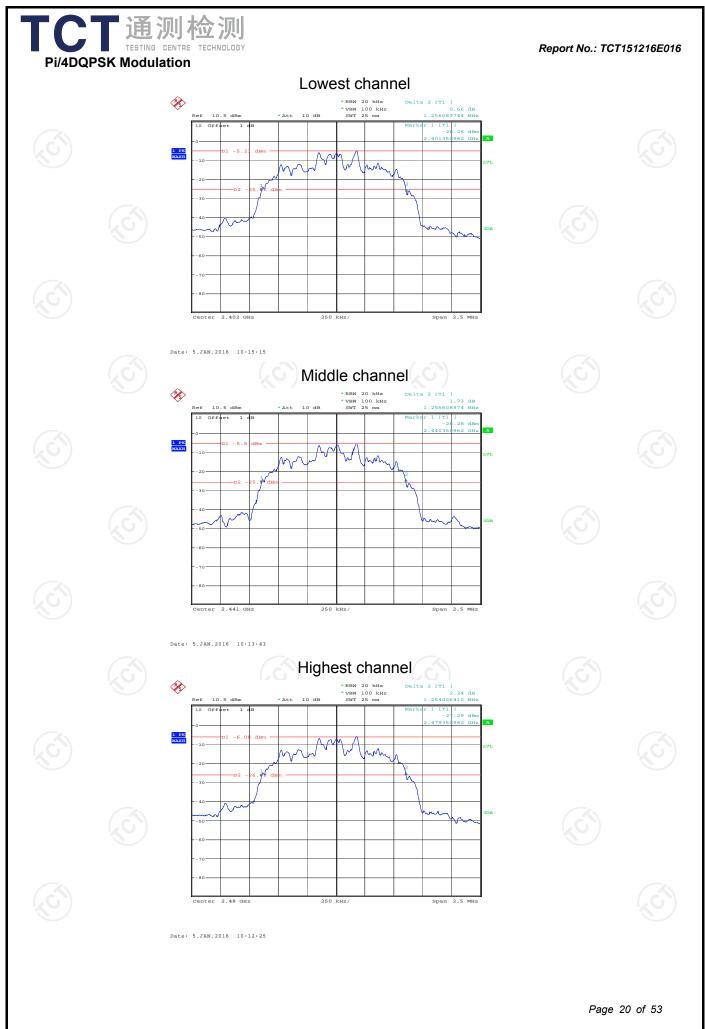
Test Requirement:	FCC Part15 C Section 15.247 (a)(1)						
Test Method:	ANSI C63.10:2013 and DA00-705						
Limit:	N/A	<u>ک</u>) (ک					
Test Setup:	Spectrum Analyzer	EUT	J.				
Test Mode:	Transmitting mode with modulation						
Test Procedure:	 Measurement Guid 2. The RF output of EU analyzer by RF cab was compensated to measurement. 3. Set to the maximum EUT transmit contin 4. Use the following sp Bandwidth measurement Span = approximate bandwidth, centered hopping channel; R VBW≥RBW; Sweep = auto; Dete hold. 	IT was connected to the le and attenuator. The p o the results for each power setting and enab nuously. ectrum analyzer setting ement. ely 2 to 3 times the 20 d	e spectrum bath loss ble the s for 20dB B andwidth; ace = max				
Test Result:	PASS						

6.4.2. Test Instruments

RF Test Room								
Equipment Manufacturer Model Serial Number Calibration								
Spectrum Analyzer	R&S	FSU	200054	Sep. 11, 2016				
RF cable	тст	RE-06	N/A	Sep. 12, 2016				
Antenna Connector	🕥 тст	RFC-01	N/A 🕓	Sep. 12, 2016				

Note: The calibration interval of the above test instruments is 12 months and the calibrations are traceable to international system unit (SI).


642	Toot data
6.4.3.	Test data


ТСТ通测检测

Test channel	20dB Occupy Bandwidth (kHz)				
lest channel	GFSK	π/4-DQPSK	Conclusion		
Lowest	883.49	1256.09	PASS		
Middle	872.12	1255.61	PASS		
Highest	880.13	1254.01	PASS		

Test plots as follows:

								18 of 53
<u>Hotline:</u>	<u>400-6611-</u>	<u>140 Tel: 8</u>	<u>6-755-27673</u>	<u>339 Fax:</u>	<u>86-755-2767</u>	<u>3332 http</u>	<u>://www.tct-la</u>	<u>b.com</u>

6.5. Carrier Frequencies Separation

6.5.1. Test Specification

Test Requirement:	FCC Part15 C Section 15.247 (a)(1)
Test Method:	ANSI C63.10:2013 and DA00-705
Limit:	Frequency hopping systems operating in the 2400-2483.5 MHz band may have hopping channel carrier frequencies that are separated by 25 kHz or two-thirds of the 20 dB bandwidth of the hopping channel, whichever is greater.
Test Setup:	
Test Mode:	Spectrum Analyzer EUT Hopping mode Image: Comparison of the sector of the sec
Test Procedure:	 The testing follows FCC Public Notice DA 00-705 Measurement Guidelines. The RF output of EUT was connected to the spectrum analyzer by RF cable and attenuator. The path loss was compensated to the results for each measurement. Set to the maximum power setting and enable the EUT transmit continuously. Enable the EUT hopping function. Use the following spectrum analyzer settings: Span = wide enough to capture the peaks of two adjacent channels; RBW≥1% of the span; VBW≥RBW; Sweep = auto; Detector function = peak; Trace = max hold.
	6. Measure and record the results in the test report.

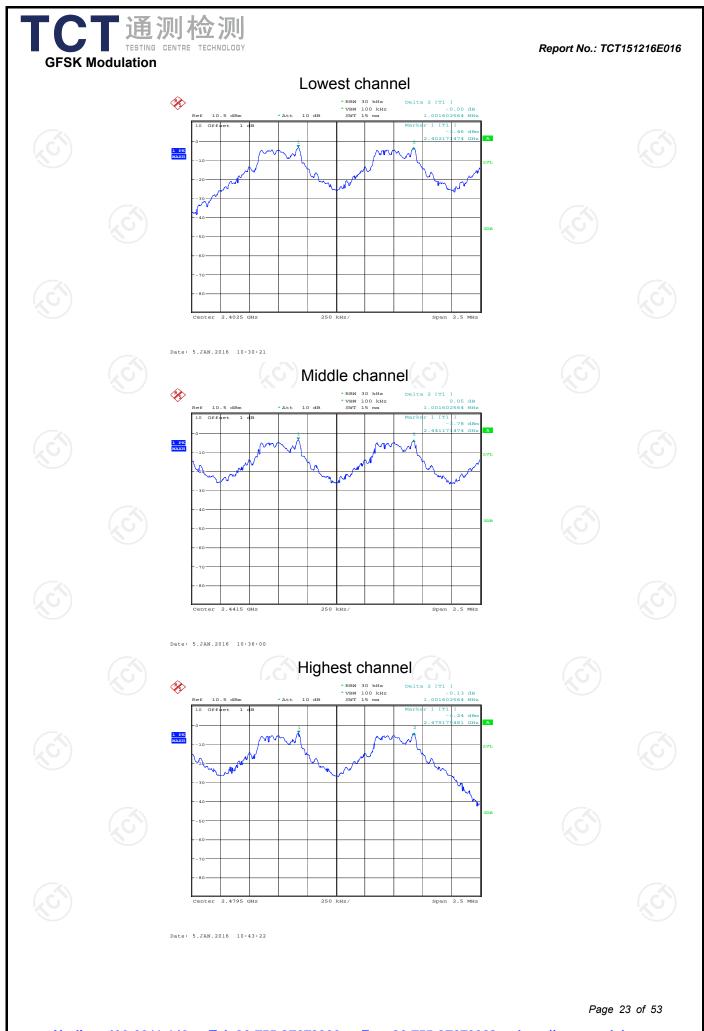
6.5.2. Test Instruments

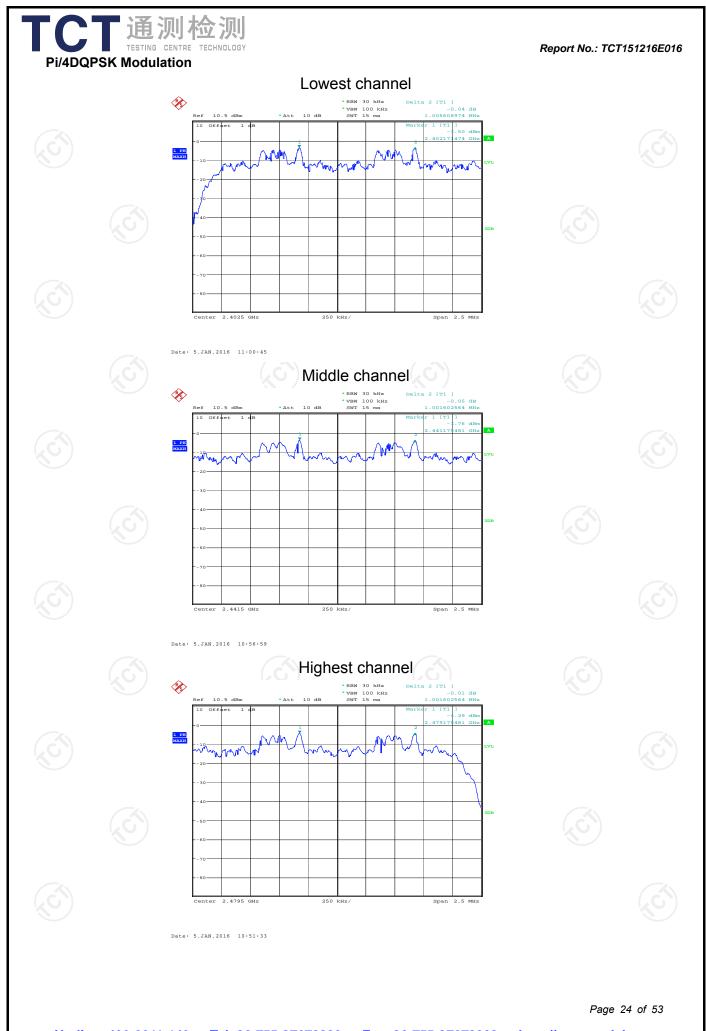
RF Test Room									
Equipment Manufacturer Model Serial Number Calibration									
Spectrum Analyzer	R&S	FSU	200054	Sep. 11, 2016					
RF cable	тст	RE-06	N/A	Sep. 12, 2016					
Antenna Connector	🕑 тст	RFC-01	N/A	Sep. 12, 2016					

Note: The calibration interval of the above test instruments is 12 months and the calibrations are traceable to international system unit (SI).

Page 21 of 53

6.5.3. Test data


Result
PASS
PASS
PASS


Pi/4 DQPSK mode					
Test channel	Carrier Frequencies Separation (kHz)	Limit (kHz)	Result		
Lowest	1005.61	837.39	PASS		
Middle	1001.60	837.39	PASS		
Highest	1001.60	837.39	PASS		

Note: According to section 6.4

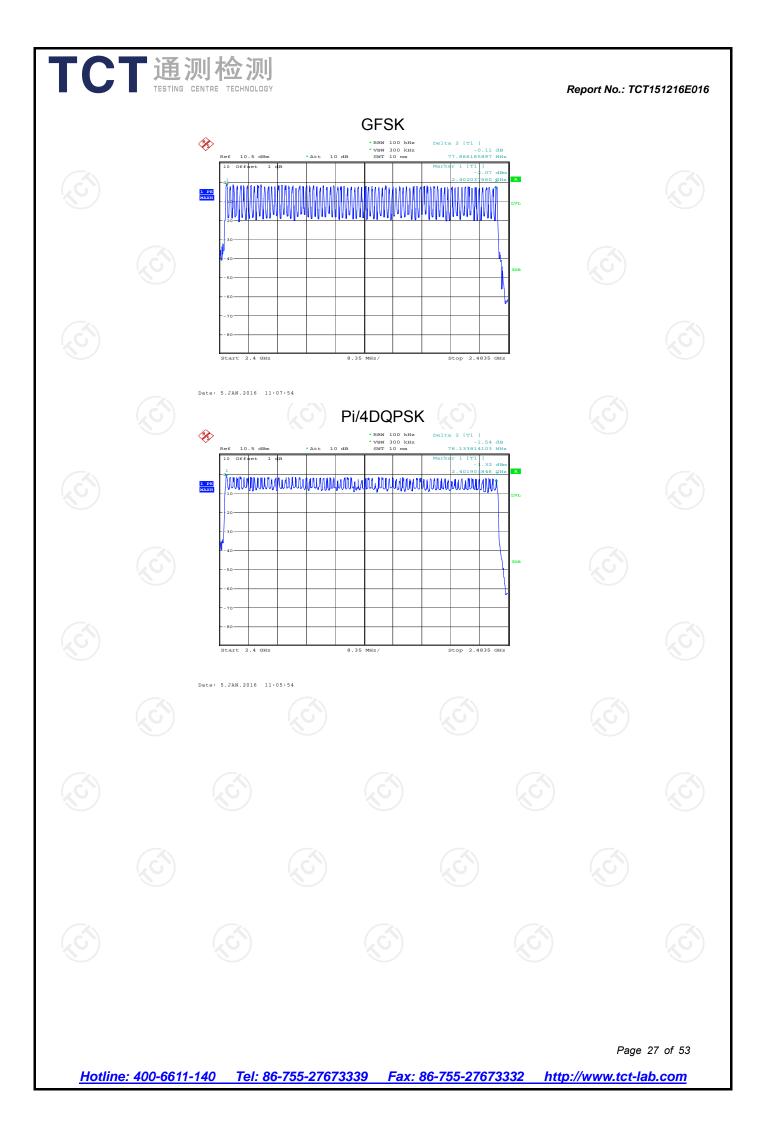
Mode	20dB bandwidth (kHz) (worse case)	Limit (kHz) (Carrier Frequencies Separation)
GFSK	883.49	588.99
π/4-DQPSK	1256.09	837.39

Test plots as follows:

6.6. Hopping Channel Number

6.6.1. Test Specification

Test Requirement:	FCC Part15 C Section 15.247 (a)(1)
Test Method:	ANSI C63.10:2013 and DA00-705
Limit:	Frequency hopping systems in the 2400-2483.5 MHz band shall use at least 15 channels.
Test Setup:	Spectrum Analyzer EUT
Test Mode:	Hopping mode
Test Procedure:	 The testing follows FCC Public Notice DA 00-705 Measurement Guidelines. The RF output of EUT was connected to the spectrum analyzer by RF cable and attenuator. The path loss was compensated to the results for each measurement. Set to the maximum power setting and enable the EUT transmit continuously. Enable the EUT hopping function. Use the following spectrum analyzer settings: Span = the frequency band of operation; RBW ≥1% of the span; VBW≥RBW; Sweep = auto; Detector function = peak; Trace = max hold. The number of hopping frequency used is defined as the number of total channel. Record the measurement data derived from spectrum analyzer.
Test Result:	PASS


6.6.2. Test Instruments

3	RF Test Room						
	Equipment	Manufacturer	Model	Serial Number	Calibration Due		
	Spectrum Analyzer	R&S	FSU	200054	Sep. 11, 2016		
	RF cable	тст	RE-06	N/A	Sep. 12, 2016		
(,	Antenna Connector	тст	RFC-01	N/A	Sep. 12, 2016		

Note: The calibration interval of the above test instruments is 12 months and the calibrations are traceable to international system unit (SI).

6.6.3. Test data

Mode		Hopping	g channel nbers	Lim	nit	Result	
GFSK,	P/4-DQPSK		79	15		PASS	
Test plots as f	ollows:						
						Page	26 of 53

6.7. Dwell Time

6.7.1. Test Specification

TCT 通测检测 TESTING CENTRE TECHNOLOGY

FCC Part15 C Section 15.247 (a)(1)
ANSI C63.10:2013 and DA00-705
The average time of occupancy on any channel shall not be greater than 0.4 seconds within a period of 0.4 seconds multiplied by the number of hopping channels employed.
Spectrum Analyzer EUT
Hopping mode
 The testing follows FCC Public Notice DA 00-705 Measurement Guidelines. The RF output of EUT was connected to the spectrum analyzer by RF cable and attenuator. The path loss was compensated to the results for each measurement. Set to the maximum power setting and enable the EUT transmit continuously. Enable the EUT hopping function. Use the following spectrum analyzer settings: Span = zero span, centered on a hopping channel; RBW = 1 MHz; VBW≥RBW; Sweep = as necessary to capture the entire dwell time per hopping channel; Detector function = peak; Trace = max hold. Measure and record the results in the test report.
PASS

6.7.2. Test Instruments

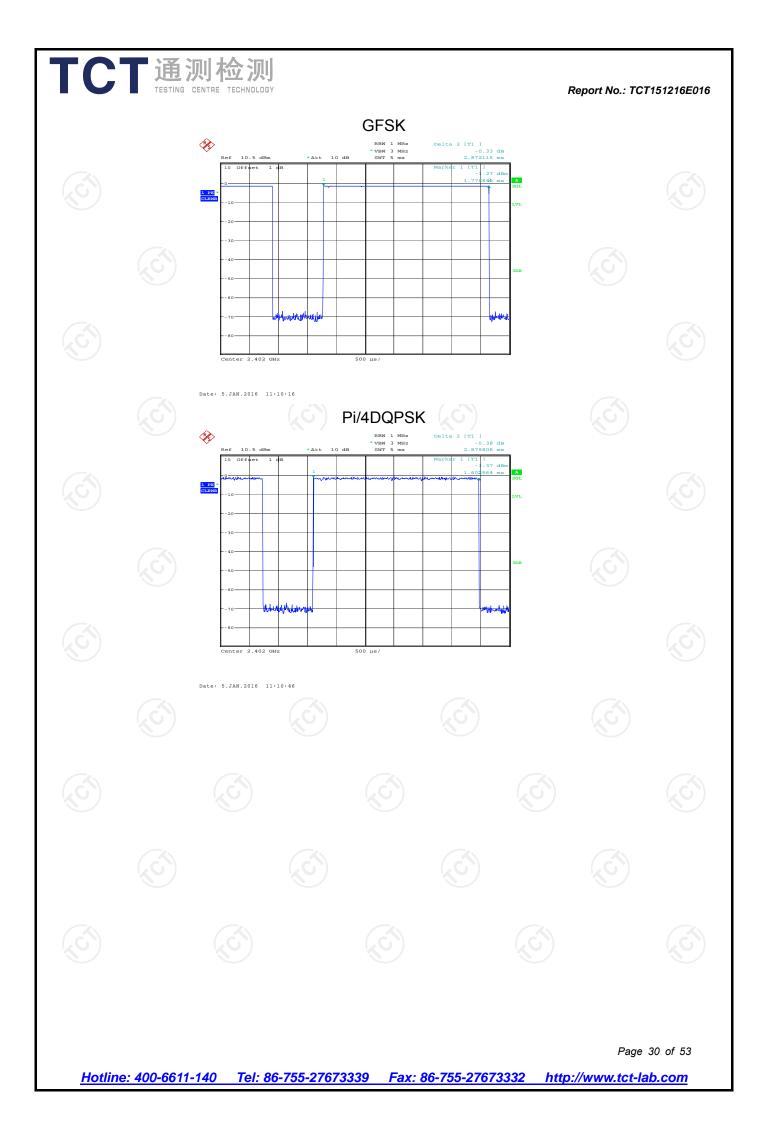
N.	RF Test Room						
	Equipment	Manufacturer	Model	Serial Number	Calibration Due		
	Spectrum Analyzer	R&S	FSU	200054	Sep. 11, 2016		
	RF cable	тст	RE-06	N/A	Sep. 12, 2016		
(Antenna Connector	тст	RFC-01	N/A	Sep. 12, 2016		

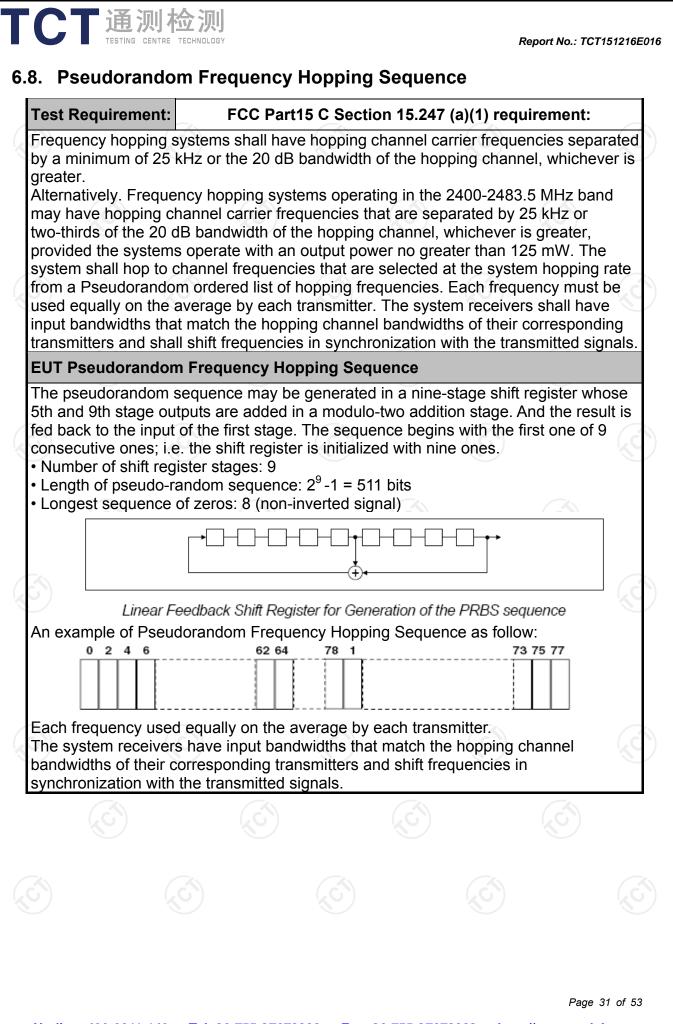
Note: The calibration interval of the above test instruments is 12 months and the calibrations are traceable to international system unit (SI).

Report No.: TCT151216E016

Page 28 of 53

6.7.3. Test Data


Mode	Packet	Hops Over Occupancy Time (hops)	Package Transfer Time (ms)	Dwell time (second)	Limit (second)	Result
GFSK	DH5	106.67	2.87	0.31	0.4	PASS
Pi/4 DQPSK	2-DH5	106.67	2.88	0.31	0.4	PASS


Note: 1. In normal mode, hopping rate is 1600 hops/s with 6 slots in 79 hopping channels. With channel hopping rate (1600 / 6 / 79) in Occupancy Time Limit (0.4 x 79) (s), Hops Over Occupancy Time comes to (1600 / 6 / 79) x (0.4 x 79) = 106.67 hops

2. Dwell Time(s) = Hops Over Occupancy Time (hops) x Package Transfer Time

Test plots as follows:

Page 29 of 53

Hotline: 400-6611-140 Tel: 86-755-27673339 Fax: 86-755-27673332 http://www.tct-lab.com

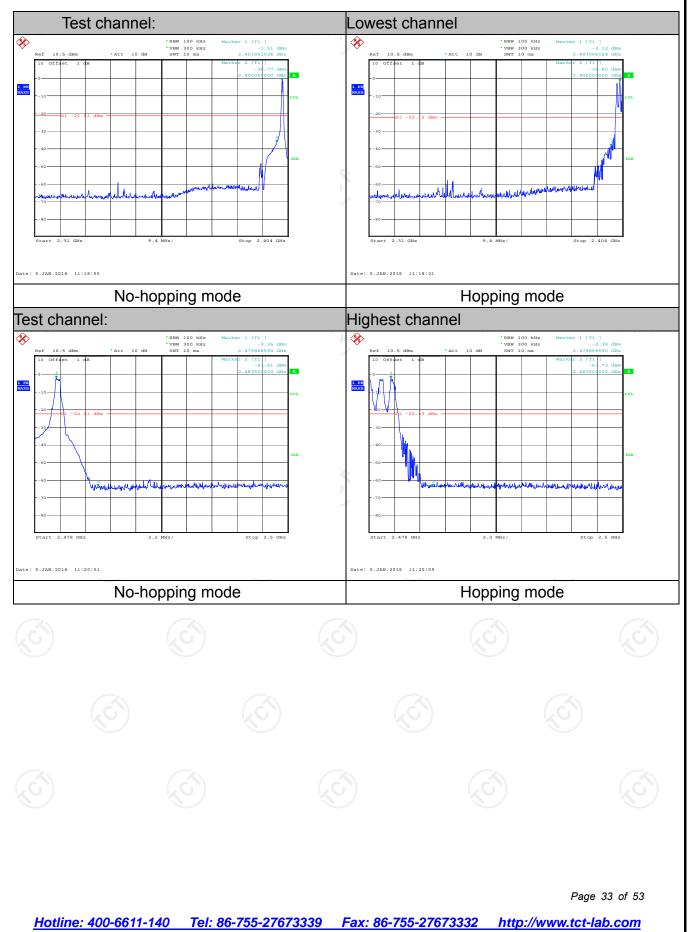
ТСТ通测检测

6.9. Conducted Band Edge Measurement

6.9.1. Test Specification

Test Requirement:	FCC Part15 C Section 15.247 (d)				
Test Method:	ANSI C63.10:2013 and DA00-705				
Limit:	In any 100 kHz bandwidth outside the intentional radiation frequency band, the radio frequency power shall be at least 20 dB below the highest level of the radiated power. In addition, radiated emissions which fall in the restricted bands must also comply with the radiated emission limits.				
Test Setup:	Spectrum Analyzer				
Test Mode:	Transmitting mode with modulation				
Test Procedure:	 The testing follows the guidelines in Band-edge Compliance of RF Conducted Emissions of FCC Public Notice DA 00-705 Measurement Guidelines. Set to the maximum power setting and enable the EUT transmit continuously. Set RBW = 100 kHz (≥1% span=10MHz), VBW = 300 kHz (≥RBW). Band edge emissions must be at least 20 dB down from the highest emission level within the authorized band as measured with a 100kHz RBW. The attenuation shall be 30 dB instead of 20 dB when RMS conducted output power procedure is used. Enable hopping function of the EUT and then repeat step 2 and 3. Measure and record the results in the test report. 				
Test Result:	PASS				
	(の) (の) (の)				

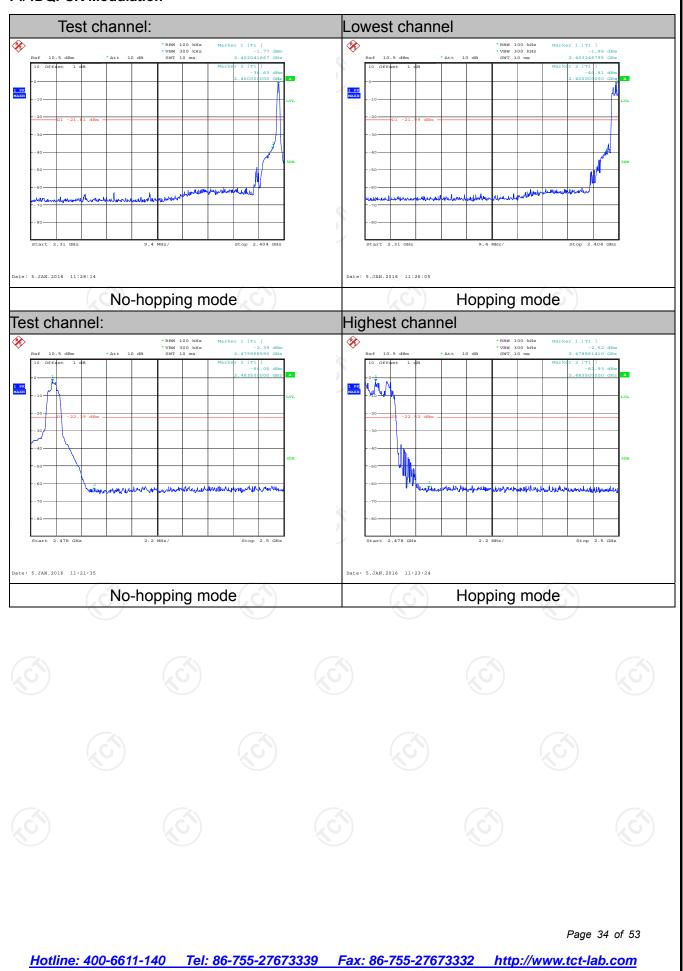
6.9.2. Test Instruments


RF Test Room						
Equipment	Manufacturer	Model	Serial Number	Calibration Due		
Spectrum Analyzer	R&S	FSU	200054	Sep. 11, 2016		
RF cable	б тст	RE-06	N/A	Sep. 12, 2016		
Antenna Connector	тст	RFC-01	N/A	Sep. 12, 2016		

Note: The calibration interval of the above test instruments is 12 months and the calibrations are traceable to international system unit (SI).

Page 32 of 53

6.9.3. Test Data

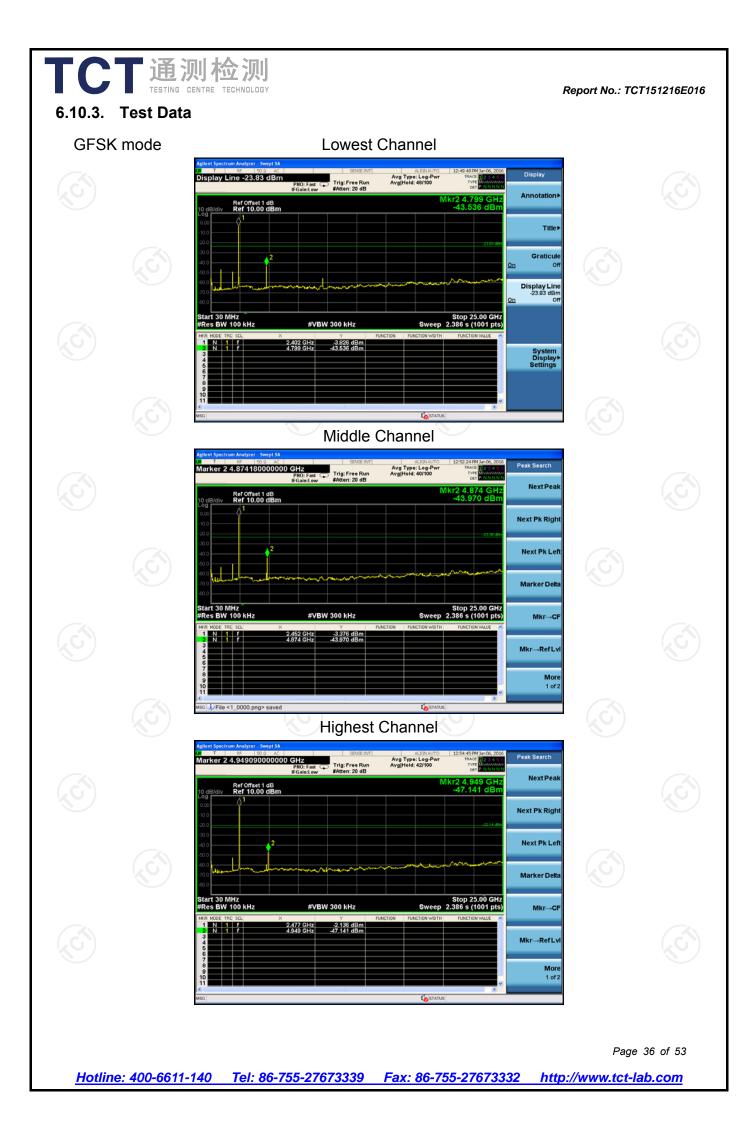

GFSK Modulation

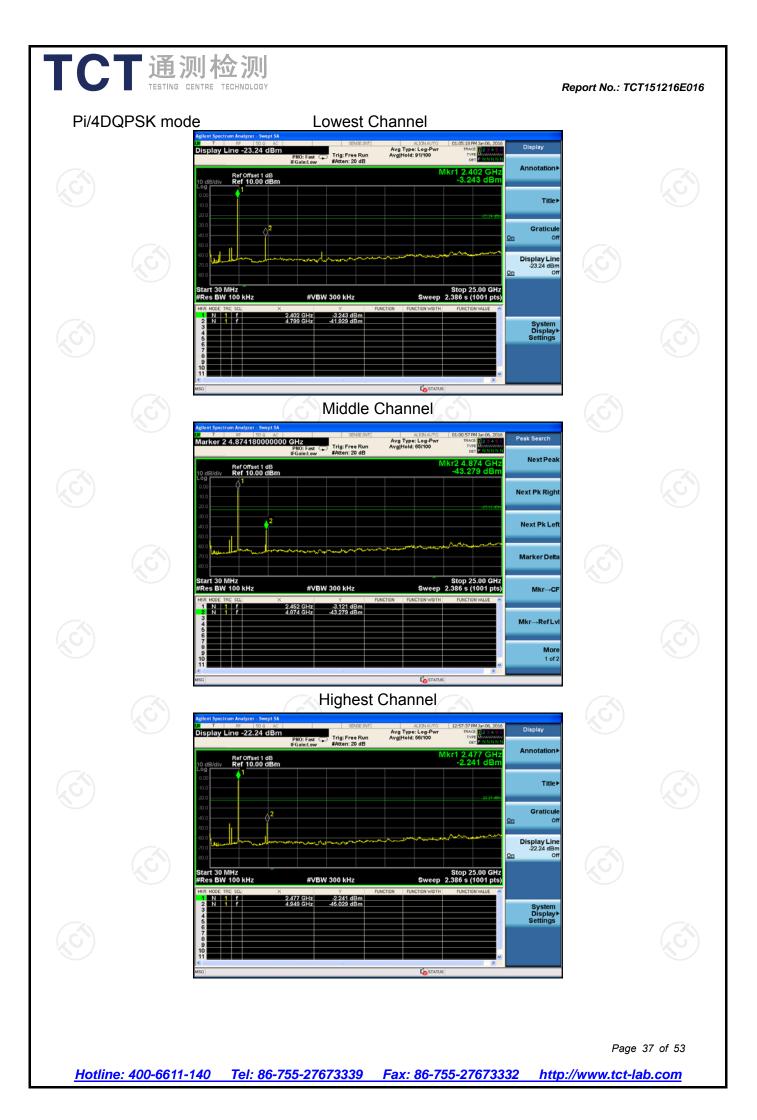
Report No.: TCT151216E016

Pi/4DQPSK Modulation

6.10. Conducted Spurious Emission Measurement

6.10.1. Test Specification


Test Requirement:	FCC Part15 C Section 15.247 (d)
Test Method:	ANSI C63.10:2013 and DA00-705
Limit:	In any 100 kHz bandwidth outside the intentional radiation frequency band, the radio frequency power shall be at least 20 dB below the highest level of the radiated power. In addition, radiated emissions which fal in the restricted bands must also comply with the radiated emission limits.
Test Setup:	Spectrum Analyzer EUT
Test Mode:	Transmitting mode with modulation
Test Procedure:	 The testing follows the guidelines in Spurious RF Conducted Emissions of FCC Public Notice DA 00-705 Measurement Guidelines The RF output of EUT was connected to the spectrum analyzer by RF cable and attenuator. The path loss was compensated to the results for each measurement. Set to the maximum power setting and enable the EUT transmit continuously. Set RBW = 100 kHz, VBW = 300kHz, scan up through 10th harmonic. All harmonics / spurs must be at least 20 dB down from the highest emission level within the authorized band as measured with a 100 kHz RBW. Measure and record the results in the test report. The RF fundamental frequency should be excluded against the limit line in the operating frequency band.
Test Result:	PASS


6.10.2. Test Instruments

RF Test Room				
Equipment	Manufacturer	Model	Serial Number	Calibration Due
Spectrum Analyzer	Agilent	N9020A	MY49100060	Sep. 12, 2016
RF cable	тст	RE-06	N/A	Sep. 12, 2016
Antenna Connector	тст	RFC-01	N/A	Sep. 12, 2016

Note: The calibration interval of the above test instruments is 12 months and the calibrations are traceable to international system unit (SI).

Page 35 of 53

6.11.1. Test Specification

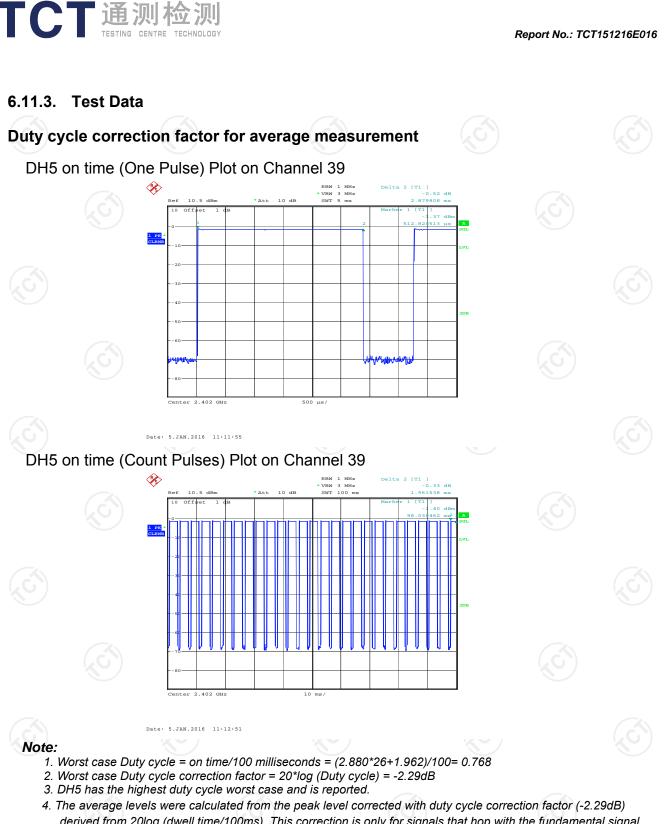
TCT通测检测 TESTING CENTRE TECHNOLOGY

Test Requirement:	FCC Part15	C Section	15.209	9		K			
Test Method:	ANSI C63.4:	ANSI C63.4: 2014 and ANSI C63.10: 2013							
Frequency Range:	9 kHz to 25 (GHz	3			6			
Measurement Distance:	3 m	X	9		K.				
Antenna Polarization:	Horizontal &	Vertical							
	Frequency	Detector	RBW	VBW		Remark			
Receiver Setup:	9kHz- 150kHz 150kHz- 30MHz	Quasi-peal Quasi-peal		1kHz 30kHz	1	i-peak Value i-peak Value			
	30MHz-1GHz	Quasi-peal		300KHz	1	i-peak Value			
	Above 1GHz	Peak Peak	1MHz 1MHz	3MHz 10Hz		eak Value rage Value			
	Frequen		Field Stre (microvolts	ength	Меа	asurement nce (meters)			
	0.009-0.4	1	2400/F(I	KHz)		300			
	0.490-1.7		24000/F((KHz)		30			
	1.705-3		30		30				
Limit:	30-88	1	100		3				
	216-96		200		3				
	Above 9		500			3			
	Frequency Above 1GHz	(micro	500 500	Distan (mete 3 3	ers) Average				
Test setup:	For radiated emis	stance = 3m	30MHz		Comput				
\mathcal{O}		5)	(,	0					
						Page 38 of 5			
Hotline: 400-6611-140 Tel: 86	<u>6-755-27673339</u>	Fax: 86-7	5 <mark>5-2767333</mark>	2 http://	//www.	tct-lab.con			

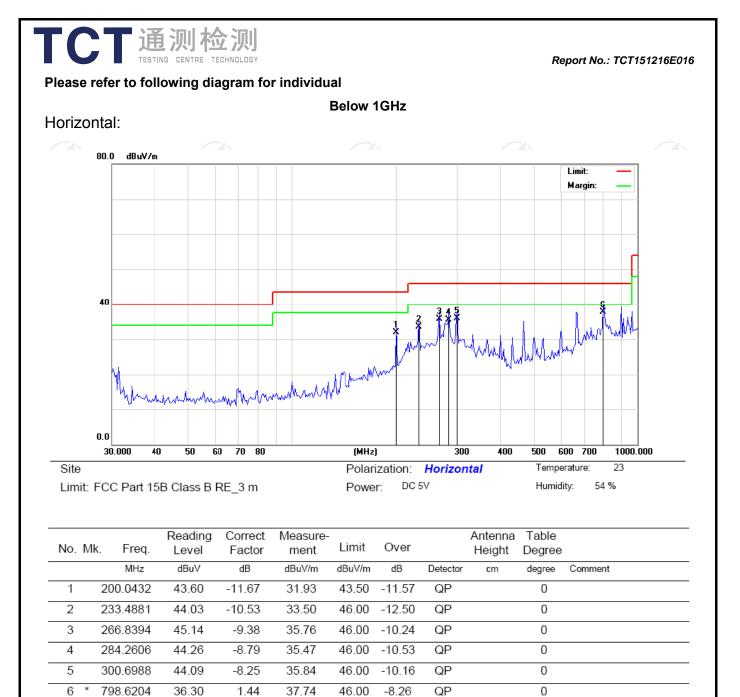
	Report No.: TCT151216
	EUT Antenna Tower EUT Antenna Turm 0.8m Table 0.8m Antenna RF T est Receiver Turm 0.8m Antenna RF T est Receiver Turm 0.8m
	Ground Plane Above 1GHz
	AE EUT Horn Antenna Tower AE EUT (Turntable) Ground Reference Plane Test Receiver
Test Mode:	Transmitting mode with modulation
Test Procedure:	 The testing follows the guidelines in Spurious Radiated Emissions of FCC Public Notice DA 00-705 Measurement Guidelines. For the radiated emission test below 1GHz: The EUT was placed on a turntable with 1.5 meter above ground. The EUT was set 3 meters from the interference receiving antenna, which was mounted on the top of a variable height antenna tower. The EUT was arranged to its worst case and then tune the antenna tower (from 1 m to 4 m) and turntable (from 0 degree to 360 degrees) to find the maximum reading. A pre-amp and a high PASS filter are used for the test in order to get better signal level. For the radiated emission test above 1GHz: Place the measurement antenna on a turntable with 1.5 meter above ground, which is away from each area of the EUT determined to be a source of emissions at the specified measurement distance, while keeping the measurement antenna aimed at the source of emissions at each frequency of significant emissions, with polarization oriented for maximum response. The measurement antenna may have to be higher or lower than the EUT,

	 depending on the radiation pattern of the emission and staying aimed at the emission source for receiving the maximum signal. The final measurement antenna elevation shall be that which maximizes the emissions. The measurement antenna elevation for maximum emissions shall be restricted to a range of heights of from 1 m to 4 m above the ground or reference ground plane. Set to the maximum power setting and enable the EUT transmit continuously. Use the following spectrum analyzer settings: (1) Span shall wide enough to fully capture the emission being measured; (2) Set RBW=100 kHz for f < 1 GHz, RBW=1MHz for f>1GHz; VBW≥RBW; Sweep = auto; Detector function = peak; Trace = max hold for peak (3) For average measurement: use duty cycle correction factor method per 15.35(c). Duty cycle = On time/100 milliseconds On time =N1*L1+N2*L2++Nn-1*LNn-1+Nn*Ln Where N1 is number of type 1 pulses, L1 is length of type 1 pulses, etc. Average Emission Level = Peak Emission Level + 20*log(Duty cycle) Corrected Reading: Antenna Factor + Cable Loss + Read Level - Preamp Factor = Level
Test results:	PASS

Report No.: TCT151216E016

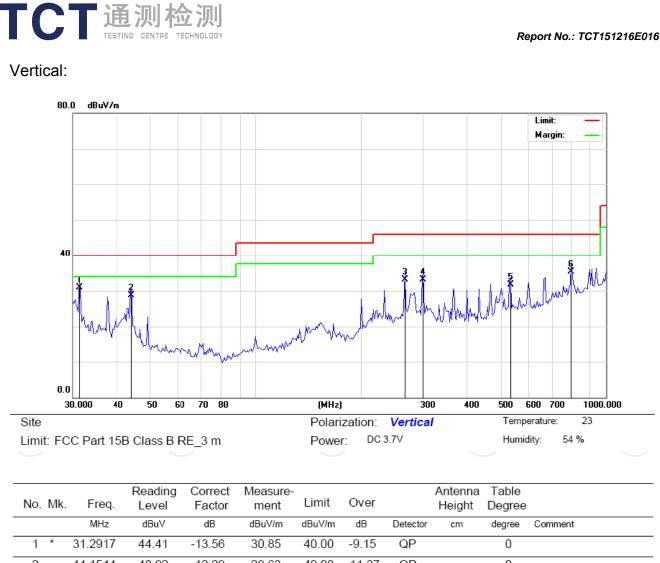

6.11.2. Test Instruments

	Radiated Emission Test Site (966)										
Name of Equipment	Manufacturer	Model	Serial Number	Calibration Due							
ESPI Test Receiver	ROHDE&SCHW ARZ	ESVD	100008	Sep. 11, 2016							
Spectrum Analyzer	ROHDE&SCHW ARZ	FSEM	848597/001	Sep. 11, 2016							
Spectrum Analyzer	Agilent	N9020A	MY49100060	Sep. 12, 2016							
Pre-amplifier	EM Electronics Corporation CO.,LTD	EM30265	07032613	Sep. 11, 2016							
Pre-amplifier	HP	8447D	2727A05017	Sep. 11, 2016							
Loop antenna	ZHINAN	ZN30900A	12024	Sep. 13, 2016							
Broadband Antenna	Schwarzbeck	VULB9163	340	Sep. 13, 2016							
Horn Antenna	Schwarzbeck	BBHA 9120D	631	Sep. 13, 2016							
Horn Antenna	Schwarzbeck	BBHA 9170	373	Sep. 13, 2016							
Antenna Mast	CCS	CC-A-4M	N/A	N/A							
Coax cable	тст	RE-low-01	N/A	Sep. 11, 2016							
Coax cable	тст	RE-high-02	N/A	Sep. 11, 2016							
Coax cable	тст	RE-low-03	N/A	Sep. 11, 2016							
Coax cable	тст	RE-high-04	N/A	Sep. 11, 2016							
EMI Test Software	Shurple Technology	EZ-EMC	N/A	N/A							


Note: The calibration interval of the above test instruments is 12 months and the calibrations are traceable to international system unit (SI).

Page 41 of 53

Hotline: 400-6611-140 Tel: 86-755-27673339 Fax: 86-755-27673332 http://www.tct-lab.com


derived from 20log (dwell time/100ms). This correction is only for signals that hop with the fundamental signal, such as band-edge and harmonic. Other spurious signals that are independent of the hopping signal would not use this correction.

6 *

Hotline: 400-6611-140 Tel: 86-755-27673339 Fax: 86-755-27673332 http://www.tct-lab.com

Page 43 of 53

1 *	31.2917	44.41	-13.56	30.85	40.00 -9.15	QP	0
2	44.1544	40.92	-12.29	28.63	40.00 -11.37	QP	0
3	266.8394	42.46	-9.38	33.08	46.00 -12.92	QP	0
4	300.6988	41.39	-8.25	33.14	46.00 -12.86	QP	0
5	535.0375	34.24	-2.60	31.64	46.00 -14.36	QP	0
6	798.6204	33.91	1.44	35.35	46.00 -10.65	QP	0

Note: 1. The low frequency, which started from 9KHz~30MHz, was pre-scanned and the result which was 20dB lower than the limit line per 15.31(o) was not reported

2. Measurements were conducted in all three channels (high, middle, low) and two modulation (GFSK, Pi/4 DQPSK), and the worst case Mode (Low channel of Pi/4 DQPSK) was submitted only.

Page 44 of 53

Hotline: 400-6611-140 Tel: 86-755-27673339 Fax: 86-755-27673332 http://www.tct-lab.com

Above 1GHz

Modulation	Type: Pi/4	4 DQPSK							
Low chann	el: 2402 N	IHz							
Frequency (MHz)	Ant. Pol. H/V	Peak reading (dBµV)	AV reading (dBuV)	Correction Factor (dB/m)	Peak	on Level AV (dBµV/m)	Peak limit (dBµV/m)	AV limit (dBµV/m)	Margin (dB)
2390	Н	45.21		-8.27	36.94		74	54	-17.06
4804	Н	47.69		0.66	48.35		74	54	-5.65
7206	Н	35.46		9.5	44.96		74	54	-9.04
	, GH)		-4.6		()	<u> </u>		(
2390	V	40.98		-8.27	32.71		74	54	-21.29
4804	V	41.3		0.66	41.96		74	54	-12.04
7206	V	39.61		9.5	49.11		74	54	-4.89
	V	(C)		{)				

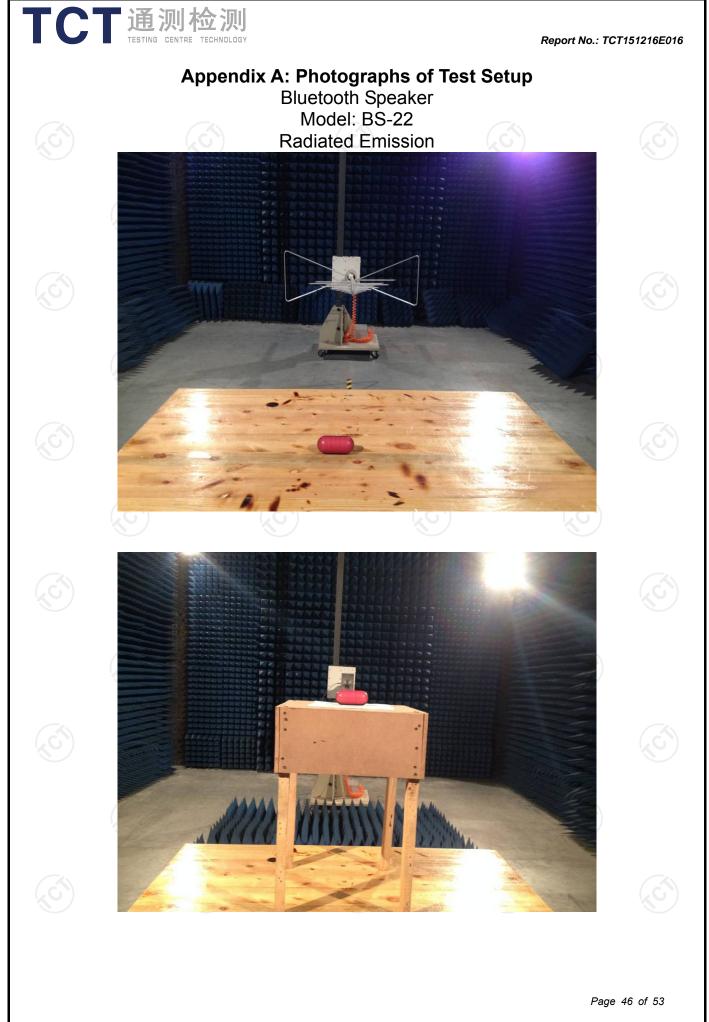
Middle channel: 2441 MHz

Frequency Ant. Pol.		Peak		Correction	Emissic	on Level	Peak limit	Δ\/ limit	Margin
(MHz)	H/V	reading (dBµV)	reading (dBµV)	Factor (dB/m)	Peak (dBµV/m)			(dBµV/m)	(dB)
4882	Ĥ	42.29		0.99	43.28		74	54	-10.72
7323	Н	39.85		9.87	49.72		74	54	-4.28
	Н	1							
									(ć
4882	V	41.74		0.99	42.73		74	54	-11.27
7323	V	39.7		9.87	49.57		74	54	-4.43
	V								

High channel: 2480 MHz

rign chanr	iei. 2400 iv	/INZ		·)					
Frequency (MHz)	Ant. Pol. H/V	Peak reading (dBµV)	AV reading (dBµV)	Correction Factor (dB/m)	Peak	n Level AV (dBµV/m)	Peak limit (dBµV/m)	AV limit (dBµV/m)	Margin (dB)
2483.5	Н	45.5		-7.83	37.67		74	54	-16.33
4960	Н	48.42		1.33	49.75		74	54	-4.25
7440	Н	39.76		10.22	49.98		74	54	-4.02
	Н								
2483.5	V	46.93		-7.83	39.1		74	54	-14.9
4960	V	48.67	-40	1.33	50		74	54	-4
7440	V	38.19		10.22	48.41		74	54	-5.59
	V								

Note:

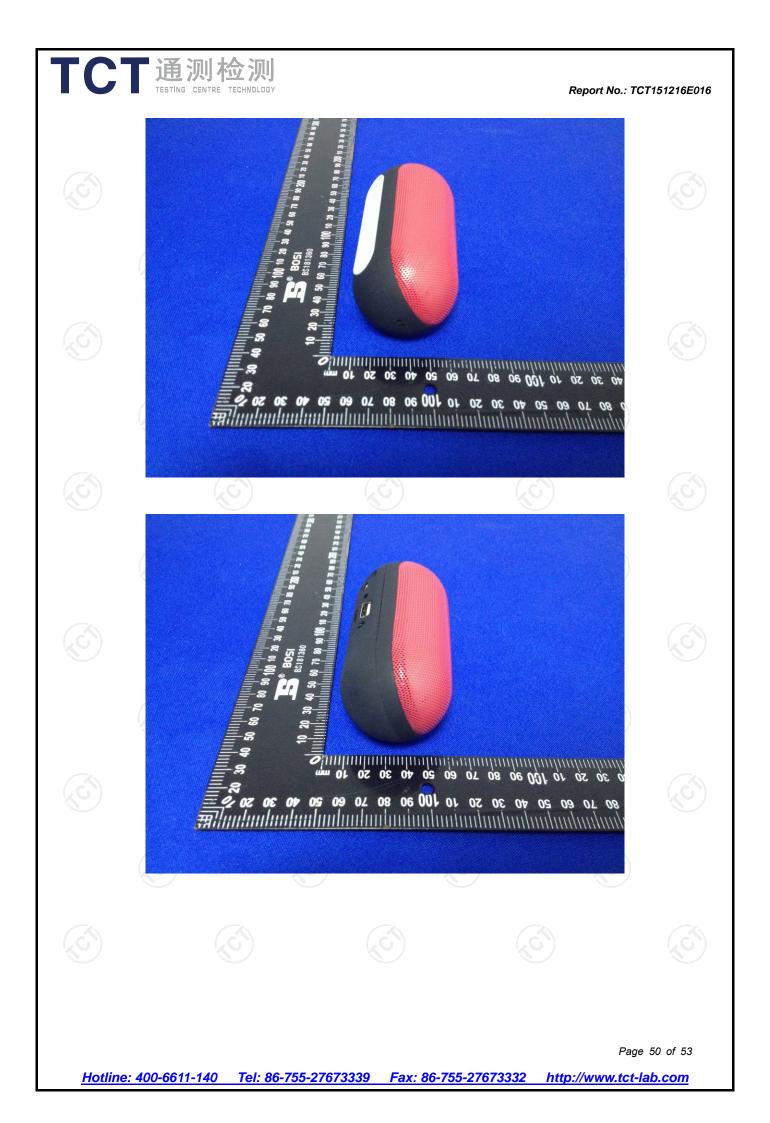

1. Emission Level=Peak Reading + Correction Factor; Correction Factor= Antenna Factor + Cable loss – Pre-amplifier

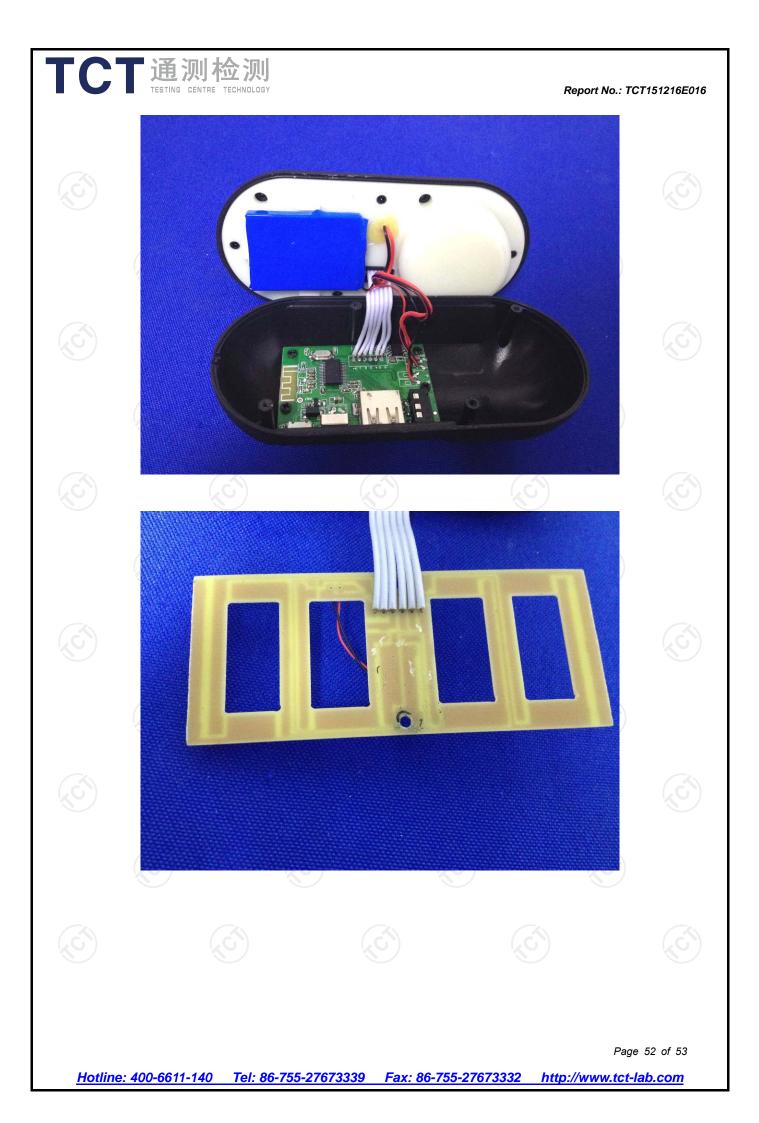
2. Margin (dB) = Emission Level (Peak) (dB μ V/m)-Average limit (dB μ V/m)

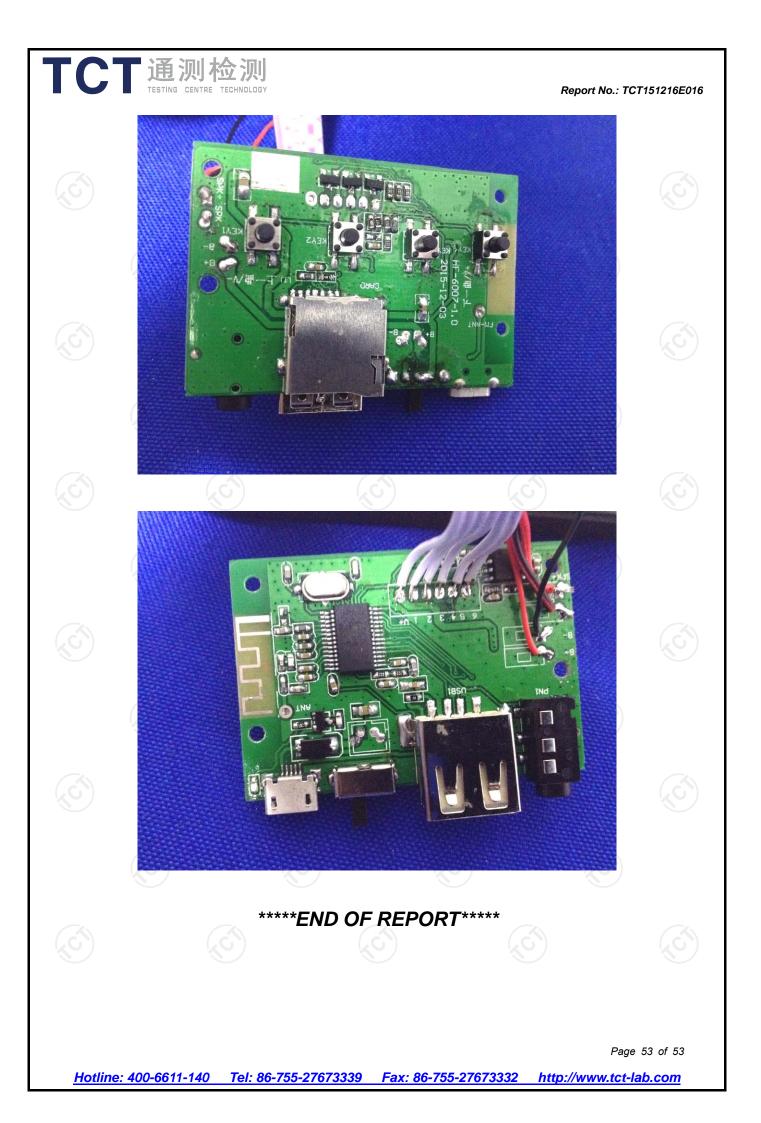

3. The emission levels of other frequencies are very lower than the limit and not show in test report.

4. Measurements were conducted from 1 GHz to the 10th harmonic of highest fundamental frequency.

- 5. Data of measurement shown "---"in the above table mean that the reading of emissions is attenuated more than 20 dB below the limits or the field strength is too small to be measured.
- 6. Measurements were conducted in all two modulation (GFSK, Pi/4 DQPSK), and the worst case Mode (Pi/4 DQPSK) was submitted only.


Hotline: 400-6611-140 Tel: 86-755-27673339 Fax: 86-755-27673332 http://www.tct-lab.com




Hotline: 400-6611-140 Tel: 86-755-27673339 Fax: 86-755-27673332 http://www.tct-lab.com

