

Report No: JYTSZB-R12-2101998

FCC REPORT (Bluetooth)

Applicant:	Smartmatic International Corporation		
Address of Applicant:	Pine Lodge, #26 Pine Road St. Michael, W.I. BB Barbados		
Equipment Under Test (E	EUT)		
Product Name:	Voter Identification Unit		
Model No.:	VIU-500 Model 700		
Trade mark:	SMARTMATIC		
FCC ID:	2AGVK-VIU-500A70		
Applicable standards:	FCC CFR Title 47 Part 15 Subpart C Section 15.247		
Date of sample receipt:	28 Sep., 2021		
Date of Test:	29 Sep., to 20 Oct., 2021		
Date of report issued:	21 Oct., 2021		
Test Result:	PASS *		

* In the configuration tested, the EUT complied with the standards specified above.

Authorized Signature:

This report details the results of the testing carried out on one sample. The results contained in this test report do not relate to other samples of the same product and does not permit the use of the JYT product certification mark. The manufacturer should ensure that all products in series production are in conformity with the product sample detailed in this report.

This report may only be reproduced and distributed in full. If the product in this report is used in any configuration other than that detailed in the report, the manufacturer must ensure the new system complies with all relevant standards.

This document cannot be reproduced except in full, without prior written approval of the Company. Any unauthorized alteration, forgery or falsification of the content or appearance of this document is unlawful and offenders may be prosecuted to the fullest extent of the law. Unless otherwise stated the results shown in this test report refer only to the sample(s) tested and such sample(s) are retained for 90 days only.

2 Version

Version No.	Date	Description
00	21 Oct., 2021	Original

Tested by:

Mike.OU Test Engineer Winner Mang

Date: 21 Oct., 2021

Reviewed by:

Project Engineer

Date: 21 Oct., 2021

Project No.: JYTSZE2109109

3 Contents

	Page
1 COVER PAGE	1
2 VERSION	2
3 CONTENTS	3
4 TEST SUMMARY	-
5 GENERAL INFORMATION	5
5.1 CLIENT INFORMATION	
5.2 GENERAL DESCRIPTION OF E.U.T.	-
5.3 TEST ENVIRONMENT AND MODE	
5.4 DESCRIPTION OF SUPPORT UNITS	
5.6 ADDITIONS TO, DEVIATIONS, OR EXCLUSIONS FROM THE METHOD	
5.7 LABORATORY FACILITY.	
5.8 LABORATORY LOCATION	-
5.9 TEST INSTRUMENTS LIST	7
6 TEST RESULTS AND MEASUREMENT DATA	8
6.1 ANTENNA REQUIREMENT	8
6.2 CONDUCTED EMISSIONS	-
6.3 CONDUCTED OUTPUT POWER	
6.4 20DB OCCUPY BANDWIDTH 6.5 CARRIER FREQUENCIES SEPARATION	-
6.5 CARRIER FREQUENCIES SEPARATION	
6.7 DWELL TIME	
6.8 PSEUDORANDOM FREQUENCY HOPPING SEQUENCE	
6.9 Band Edge	
6.9.1 Conducted Emission Method	
6.9.2 Radiated Emission Method	
6.10 SPURIOUS EMISSION 6.10.1 Conducted Emission Method	
6.10.2 Radiated Emission Method	
7 TEST SETUP PHOTO	
8 EUT CONSTRUCTIONAL DETAILS	

4 Test Summary

Test Items	Section in CFR 47	Test Data	Result	
Antenna Requirement	15.203 & 15.247 (b)	See Section 6.1	Pass	
AC Power Line Conducted Emission	15.207	See Section 6.2	Pass	
Conducted Peak Output Power	15.247 (b)(1)	Appendix A – BT	Pass	
20dB Occupied Bandwidth	15.247 (a)(1)	Appendix A – BT	Pass	
Carrier Frequencies Separation	15.247 (a)(1)	Appendix A – BT	Pass	
Hopping Channel Number	15.247 (a)(1)	Appendix A – BT	Pass	
Dwell Time	15.247 (a)(1)	Appendix A – BT	Pass	
Conducted Band Edge	45 005 8 45 000	Appendix A – BT	Pass	
Radiated Band Edge	15.205 & 15.209	See Section 6.9.2	Pass	
Conducted Spurious Emission		Appendix A – BT	Pass	
Radiated Spurious Emission	15.247(d)	See Section 6.10.2	Pass	
Remark:				

Pass: The EUT complies with the essential requirements in the standard. 1.

2. N/A: Not Applicable.

The cable insertion loss used by "RF Output Power" and other conduction measurement items is 0.5dB (provided by З. the customer).

Test Method:	ANSI C63.10-2013
	KDB 558074 D01 15.247 Meas Guidance v05r02

5 General Information

5.1 Client Information

Applicant:	Smartmatic International Corporation
Address:	Pine Lodge, #26 Pine Road St. Michael, W.I. BB Barbados
Manufacturer:	Aratek Biometrics Co., Ltd.
Address:	2F, T2-A Building, ShenZhen Software Park, South Area, Hi-Tech Park, Shenzhen, Guangdong, China
Factory:	Aratek Biometrics Co., Ltd.
Address:	4F, 2th building, Nangang first industrial park, Baimang Songbai Road #1029, Nanshan district, Shenzhen, Guangdong, China.

5.2 General Description of E.U.T.

Product Name:	Voter Identification Unit
Model No.:	VIU-500 Model 700
Operation Frequency:	2402MHz~2480MHz
Transfer rate:	1/2/3 Mbits/s
Number of channel:	79
Modulation type:	GFSK, π/4-DQPSK, 8DPSK
Modulation technology:	FHSS
Antenna Type:	Internal Antenna
Antenna gain:	1.59 dBi
Power supply:	Rechargeable Li-ion Battery DC3.7V, 10000mAh
AC adapter:	Model: ES568U050200XYF
	Input: AC100-240V, 50/60Hz, 0.15A
	Output: DC 5.0V, 2000mA
Test Sample Condition:	The test samples were provided in good working order with no visible defects.

Operation Frequency each of channel for GFSK, π/4-DQPSK, 8DPSK							
Channel	Frequency	Channel	Frequency	Channel	Frequency	Channel	Frequency
0	2402MHz	20	2422MHz	40	2442MHz	60	2462MHz
1	2403MHz	21	2423MHz	41	2443MHz	61	2463MHz
2	2404MHz	22	2424MHz	42	2444MHz	62	2464MHz
3	2405MHz	23	2425MHz	43	2445MHz	63	2465MHz
4	2406MHz	24	2426MHz	44	2446MHz	64	2466MHz
5	2407MHz	25	2427MHz	45	2447MHz	65	2467MHz
15	2417MHz	35	2437MHz	55	2457MHz	75	2477MHz
16	2418MHz	36	2438MHz	56	2458MHz	76	2478MHz
17	2419MHz	37	2439MHz	57	2459MHz	77	2479MHz
18	2420MHz	38	2440MHz	58	2460MHz	78	2480MHz
19	2421MHz	39	2441MHz	59	2461MHz		
Remark: Channel 0, 39 &78 selected for GFSK, π /4-DQPSK and 8DPSK.							

5.3 Test environment and mode

Operating Environment:				
Temperature:	24.0 °C			
Humidity:	54 % RH			
Atmospheric Pressure:	1010 mbar			
Test Modes:				
Non-hopping mode:	Keep the EUT in continuous transmitting mode with worst case data rate.			
Hopping mode:	Keep the EUT in hopping mode.			
Remark	GFSK (1 Mbps) is the worst case mode.			
Radiated Emission: The sample was placed 0.8m (below 1GHz)/1.5m (above 1GHz) above the ground plane				

of 3m chamber*. Measurements in both horizontal and vertical polarities were performed. During the test, each emission was maximized by: having the EUT continuously working, investigated all operating modes, rotated about all 3 axis (X, Y & Z) and considered typical configuration to obtain worst position, manipulating interconnecting cables, rotating the turntable, varying antenna height from 1m to 4m in both horizontal and vertical polarizations. The emissions worst-case are shown in Test Results of the following pages.

5.4 Description of Support Units

The EUT has been tested as an independent unit.

5.5 Measurement Uncertainty

Parameter	Expanded Uncertainty (Confidence of 95%)
Conducted Emission (9kHz ~ 150KHz) for V-AMN	3.11 dB
Conducted Emission (150kHz ~ 30MHz) for V-AMN	2.62 dB
Conducted Emission (150kHz ~ 30MHz) for AAN	3.54 dB
Radiated Emission (9kHz ~ 30MHz electric field) for 3m SAC	3.13 dB
Radiated Emission (9kHz ~ 30MHz magnetic field) for 3m SAC	3.13 dB
Radiated Emission (30MHz ~ 1GHz) for 3m SAC	4.45 dB
Radiated Emission (1GHz ~ 18GHz) for 3m SAC	5.34 dB
Radiated Emission (18GHz ~ 40GHz) for 3m SAC	5.34 dB

5.6 Additions to, deviations, or exclusions from the method

No

5.7 Laboratory Facility

The test facility is recognized, certified, or accredited by the following organizations:

• FCC - Designation No.: CN1211

JianYan Testing Group Shenzhen Co., Ltd. has been accredited as a testing laboratory by FCC(Federal Communications Commission). The test firm Registration No. is 727551.

ISED – CAB identifier.: CN0021

The 3m Semi-anechoic chamber of JianYan Testing Group Shenzhen Co., Ltd. has been Registered by Certification and Engineering Bureau of Industry Canada for radio equipment testing with Registration No.: 10106A-1.

• A2LA - Registration No.: 4346.01

This laboratory is accredited in accordance with the recognized International Standard ISO/IEC 17025:2017 General requirements for the competence of testing and calibration laboratories. The test scope can be found as below link: https://portal.a2la.org/scopepdf/4346-01.pdf

5.8 Laboratory Location

JianYan Testing Group Shenzhen Co., Ltd.

Address: No.101, Building 8, Innovation Wisdom Port, No.155 Hongtian Road, Huangpu Community, Xinqiao Street, Bao'an District, Shenzhen, Guangdong, People's Republic of China. Tel: +86-755-23118282, Fax: +86-755-23116366

Email: info-JYTee@lets.com, Website: http://www.ccis-cb.com

5.9 Test Instruments list

Radiated Emission:					
Test Equipment	Manufacturer	Model No.	Serial No.	Cal.Date (mm-dd-yy)	Cal.Due date (mm-dd-yy)
3m SAC	ETS	RFD-100	Q1984	04-14-2021	04-13-2024
BiConiLog Antenna	SCHWARZBECK	VULB9163	9163-1246	03-07-2021	03-06-2022
Biconical Antenna	SCHWARZBECK	VUBA 9117	9117#359	06-17-2021	06-17-2022
Horn Antenna	SCHWARZBECK	BBHA9120D	912D-916	03-07-2021	03-06-2022
Broad-Band Horn Antenna	SCHWARZBECK	BBHA9170	1067	04-02-2021	04-01-2022
Broad-Band Horn Antenna	SCHWARZBECK	BBHA9170	1068	04-02-2021	04-01-2022
EMI Test Receiver	Rohde & Schwarz	ESRP7	101070	03-03-2021	03-02-2022
Spectrum analyzer	Rohde & Schwarz	FSP30	101454	03-03-2021	03-02-2022
Spectrum analyzer	Keysight	N9010B	MY60240202	11-27-2020	11-26-2021
Low Pre-amplifier	SCHWARZBECK	BBV9743B	00305	03-07-2021	03-06-2022
High Pre-amplifier	SKET	LNPA_0118G-50	MF280208233	03-07-2021	03-06-2022
Cable	Qualwave	JYT3M-1G-NN-8M	JYT3M-1	03-07-2021	03-06-2022
Cable	Qualwave	JYT3M-18G-NN-8M	JYT3M-2	03-07-2021	03-06-2022
Cable	Qualwave	JYT3M-1G-BB-5M	JYT3M-3	03-07-2021	03-06-2022
Cable	Bost	JYT3M-40G-SS-8M	JYT3M-4	04-02-2021	04-01-2022
EMI Test Software	Tonscend	TS+	Version:3.0.0.1		

Conducted Emission:						
Test Equipment	Manufacturer	Model No.	Serial No.	Cal. Date (mm-dd-yy)	Cal. Due date (mm-dd-yy)	
EMI Test Receiver	Rohde & Schwarz	ESCI 3	101189	03-03-2021	03-02-2022	
LISN	Rohde & Schwarz	ENV432	101602	04-06-2021	04-05-2022	
LISN	Rohde & Schwarz	ESH3-Z5	843862/010	06-18-2020	06-17-2022	
ISN	Schwarzbeck	CAT3 8158	#96	03-03-2021	03-02-2022	
ISN	Schwarzbeck	CAT5 8158	#166	03-03-2021	03-02-2022	
ISN	Schwarzbeck	NTFM 8158	#126	03-03-2021	03-02-2022	
RF Switch	TOP PRECISION	RSU0301	N/A	03-03-2021	03-02-2022	
Cable	Bost	JYTCE-1G-NN-2M	JYTCE-1	03-03-2021	03-02-2022	
Cable	Bost	JYTCE-1G-BN-3M	JYTCE-2	03-03-2021	03-02-2022	
EMI Test Software	AUDIX	E3	Version: 6.110919b			

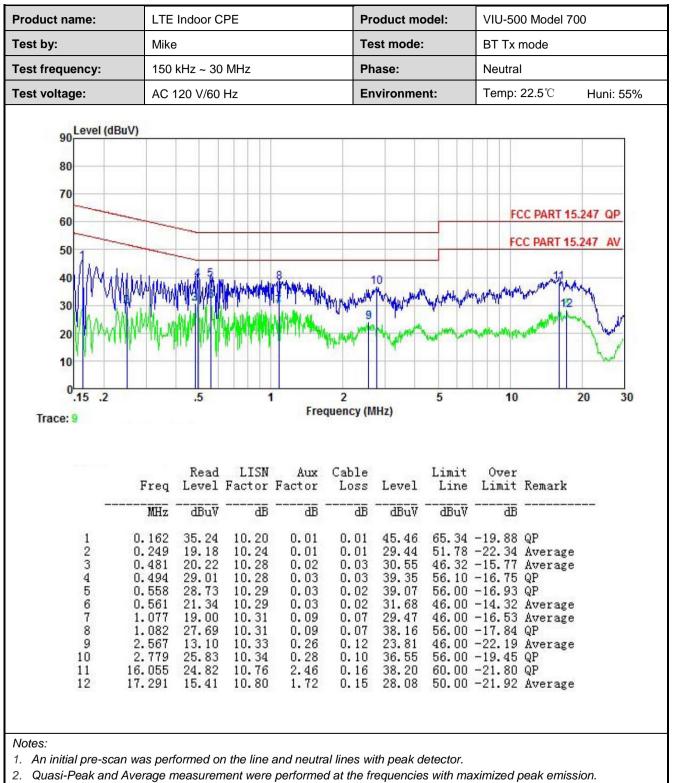
Conducted method:					
Test Equipment	Manufacturer	Model No.	Serial No.	Cal. Date (mm-dd-yy)	Cal. Due date (mm-dd-yy)
Spectrum Analyzer	Keysight	N9010B	MY60240202	11-27-2020	11-26-2021
Vector Signal Generator	Keysight	N5182B	MY59101009	11-27-2020	11-26-2021
Analog Signal Generator	Keysight	N5173B	MY59100765	11-27-2020	11-26-2021
Power Detector Box	MWRF-test	MW100-PSB	MW201020JYT	11-27-2020	11-26-2021
Simulated Station	Rohde & Schwarz	CMW270	102335	11-27-2020	11-26-2021
RF Control Box	MWRF-test	MW100-RFCB	MW200927JYT	N/A	N/A
PDU	MWRF-test	XY-G10	N/A	N/A	N/A
DC Power Supply	Keysight	E3642A	MY60296194	11-27-2020	11-26-2021
Temperature Humidity Chamber	ZhongZhi	CZ-C-150D	ZH16491	11-01-2020	10-31-2021
Test Software	MWRF-tes	MTS 8310	N N	Version: 2.0.0.0	

6 Test results and measurement data

6.1 Antenna Requirement

Standard requirement:	FCC Part 15 C Section 15.203 & 247(b)
responsible party shall be us antenna that uses a unique so that a broken antenna ca electrical connector is prohil 15.247(b) (4) requirement: (4) The conducted output po antennas with directional ga section, if transmitting anten power from the intentional ra	be designed to ensure that no antenna other than that furnished by the sed with the device. The use of a permanently attached antenna or of an coupling to the intentional radiator, the manufacturer may design the unit n be replaced by the user, but the use of a standard antenna jack or bited. wer limit specified in paragraph (b) of this section is based on the use of ins that do not exceed 6 dBi. Except as shown in paragraph (c) of this inas of directional gain greater than 6 dBi are used, the conducted output adiator shall be reduced below the stated values in paragraphs (b)(1), tion, as appropriate, by the amount in dB that the directional gain of the
E.U.T Antenna:	
The Bluetooth antenna is an the antenna is 1.59 dBi.	Internal antenna which permanently attached, and the best case gain of

6.2 Conducted Emissions


Test Requirement:	FCC Part 15 C Section 15.	207	
Test Frequency Range:	150 kHz to 30 MHz		
Class / Severity:	Class B		
Receiver setup:	RBW=9 kHz, VBW=30 kHz	z, Sweep time=auto	
Limit:	Frequency range (MHz)	Limit (d	,
		Quasi-peak	Average
	0.15-0.5	66 to 56*	56 to 46*
	0.5-5	56	46
	5-30 * Decreases with the logari	60 thm of the frequency	50
Test setup:	Reference Pl		
	AUX Equipment E.U.T Test table/Insulation plane Remark: E.U.T. Equipment Under Test LISN: Line Impedence Stabilization Networ Test table height=0.8m		
Test procedure:	 50ohm/50uH coupling in The peripheral devices a LISN that provides a 500 termination. (Please reference) Both sides of A.C. line interference. In order to positions of equipment 	tion network (L.I.S.N.). Th npedance for the measuri	his provides a ng equipment. main power through a lance with 50ohm the test setup and m conducted sion, the relative ables must be changed
Test Instruments:	Refer to section 5.9 for det	ails	
Test mode:	Hopping mode		
Test results:	Pass		

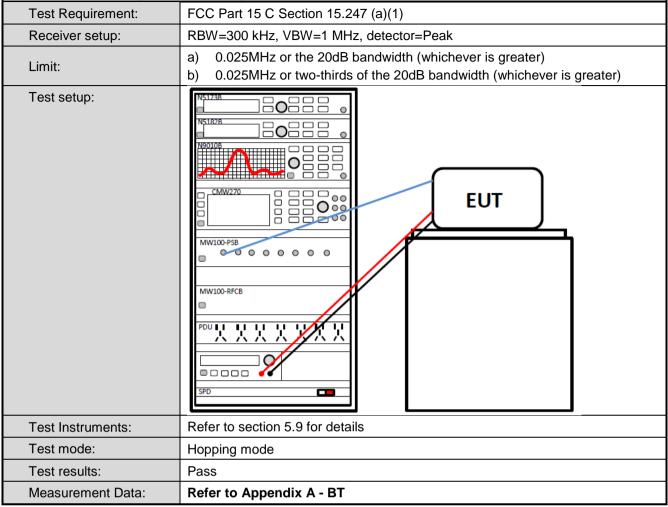
Measurement Data:

		ndoor CPE		Produ	uct mode	I: V	IU-500 Model 7	00
Test by:	Mike			Test r	mode:	В	T Tx mode	
Test frequency:	150 kł	Hz ~ 30 MHz		Phase	e:	Li	ine	
Test voltage:	AC 12	20 V/60 Hz		Envir	onment:	Т	emp: 22.5 ℃	Huni: 55%
90 Level (dB 80 70 60 50 40 30			M M M M			MAM	FCC PART 15	5.247 AV
20 10 0.15 .2	Anna anna anna anna anna anna anna anna	.5	1 Frequ	2 uency (MHz)	5		10	20 30
10	MHz	Read LIS Level Facto dBuV d	Frequ N Aux r Factor B	Cable Loss Le dB c 0.01 45) evel I HBuV c 5.05 65	.mit (.ine Li 1BuV	10 Dver imit Remark dB 0.73 QP 3.57 Average	

3. Final Level =Receiver Read level + LISN Factor + Aux Factor + Cable Loss.

Test Requirement:	FCC Part 15 C Section 15.247 (b)(1)
Receiver setup:	RBW=1MHz, VBW=3MHz, Detector=Peak (If 20dB BW ≤1 MHz) RBW=2MHz, VBW=6MHz, Detector=Peak (If 20dB BW > 1 MHz and < 3MHz)
Limit:	For frequency hopping systems operating in the 2400-2483.5 MHz band employing at least 75 non-overlapping hopping channels: 1 watt. For all other frequency hopping systems in the 2400-2483.5 MHz band: 0.125 watts.
Test setup:	
Test Instruments:	Refer to section 5.9 for details
Test mode:	Non-hopping mode
Test results:	Pass
Measurement Data:	Refer to Appendix A - BT

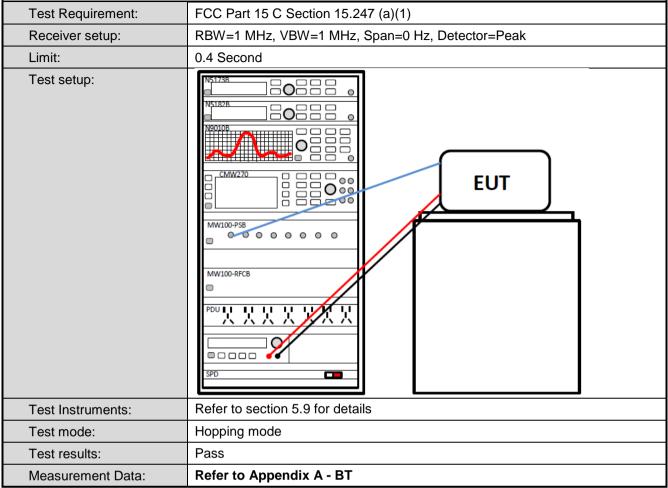
6.3 Conducted Output Power



6.4 20dB Occupy Bandwidth

Test Requirement:	FCC Part 15 C Section 15.247 (a)(1)
Receiver setup:	DH1: RBW=15 kHz, VBW=47 kHz, detector=Peak 2DH1&3DH: RBW=20 kHz, VBW=62 kHz, detector=Peak
Limit:	Within authorization band
Test setup:	
Test Instruments:	Refer to section 5.9 for details
Test mode:	Non-hopping mode
Test results:	Pass
Measurement Data:	Refer to Appendix A - BT

6.5 Carrier Frequencies Separation



6.6 Hopping Channel Number

Test Deguinement	FCC Dort 45 C Section 45 247 (c)(4)
Test Requirement:	FCC Part 15 C Section 15.247 (a)(1)
Receiver setup:	RBW=100 kHz, VBW=300 kHz, Center Frequency=2441MHz,
	Frequency Range: 2400MHz~2483.5MHz, Detector=Peak
Limit:	15 channels
Test setup:	
Test Instruments:	Refer to section 5.9 for details
Test mode:	Hopping mode
Test results:	Pass
Measurement Data:	Refer to Appendix A - BT

6.7 Dwell Time

6.8 Pseudorandom Frequency Hopping Sequence

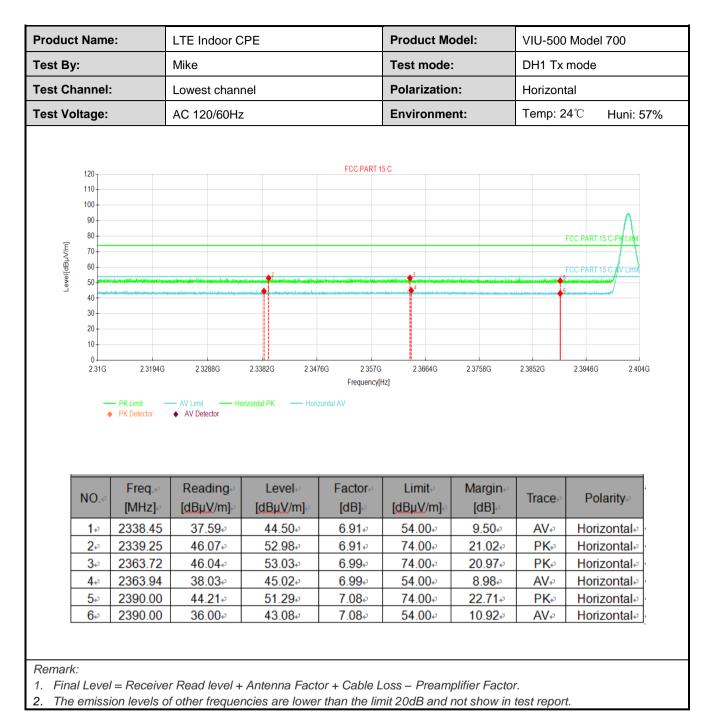
Test Requirement:	FCC Part 15 C Section 15.247 (a)(1) requirement:	
	s shall have hopping channel carrier frequencies separated by	a minimum of
25 kHz or the 20 dB bandwi	idth of the hopping channel, whichever is greater.	
	pping systems operating in the 2400-2483.5 MHz band may ha	
	that are separated by 25 kHz or two-thirds of the 20 dB bandw	
	r is greater, provided the systems operate with an output powe	
	shall hop to channel frequencies that are selected at the syster	
	ordered list of hopping frequencies. Each frequency must be u	
	nsmitter. The system receivers shall have input bandwidths tha	
synchronization with the trai	s of their corresponding transmitters and shall shift frequencies	5 10
EUT Pseudorandom Frequ		
	ice may be generated in a nine-stage shift register whose 5th a	
	lulo-two addition stage. And the result is fed back to the input o	
stage. The sequence begins with nine ones.	s with the first ONE of 9 consecutive ONEs; i.e. the shift registe	er is initialized
 Number of shift register state 	2005: Q	
Length of pseudo-random	ayes. 9 sequence: $2^9 - 1 - 511$ bits	
Longest sequence of zeros	s: 8 (non-inverted signal)	
		1
	· · · · · · · · · · · · · · · · · · ·	
	*	
Linear Feedback S	Shift Register for Generation of the PRBS sequence	
	0	
-	om Frequency Hopping Sequence as follow:	
0 2 4 6	62 64 78 1 73 75 77	
Each frequency used equal	ly on the average by each transmitter.	
	input bandwidths that match the hopping channel bandwidths	
corresponding transmitters a	and shift frequencies in synchronization with the transmitted sig	gnals.

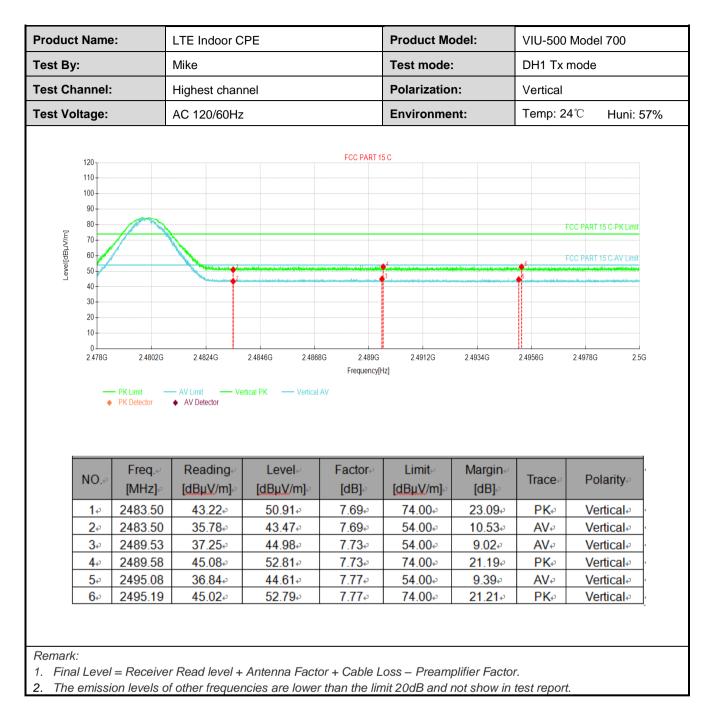
6.9 Band Edge

6.9.1 Conducted Emission Method

Test Requirement:	FCC Part 15 C Section 15.247 (d)
Receiver setup:	RBW=100 kHz, VBW=300 kHz, Detector=Peak
Limit:	In any 100 kHz bandwidth outside the frequency band in which the spread spectrum intentional radiator is operating, the radio frequency power that is produced by the intentional radiator shall be at least 20 dB below that in the 100 kHz bandwidth within the band that contains the highest level of the desired power, based on either an RF conducted or a radiated measurement.
Test setup:	
Test Instruments:	Refer to section 5.9 for details
Test mode:	Non-hopping mode and hopping mode
Test results:	Pass
Measurement Data:	Refer to Appendix A - BT

6.9.2 Radiated Emission Method


Test Requirement:	FCC Part 15 C	Section 15.2	209 a	and 15.205			
Test Frequency Range:	2310 MHz to 23	90 MHz and	d 248	83.5 MHz to 2	500 M	lHz	
Test Distance:	3m						
Receiver setup:	Frequency	Detector	r	RBW	V	BW	Remark
	Above 1GHz	Peak		1MHz	31	MHz	Peak Value
	Above IGHZ	RMS		1MHz	31	MHz	Average Value
Limit:	Frequenc	су	Lim	it (dBuV/m @3	3m)		Remark
	Above 1G	H7		54.00		Av	verage Value
	7.000010			74.00		F	Peak Value
Test setup:	AE unitst	EUT table) Grour Test Receiver	3m A Reference A		enna Towe		
Test Procedure:	 determine the 2. The EUT was antenna, whi tower. 3. The antenna ground to de horizontal an measuremen 4. For each sus and then the the rota table maximum rea 5. The test-rece Bandwidth w 6. If the emission limit specified EUT would b margin would 	B meter camb e position of s set 3 mete ch was mou height is va termine the r d vertical po t. spected emis antenna wa was turned ading. eiver system ith Maximum on level of th d, then testin e reported. (d	ber. the ers a intec intec max blariz ssior is tur fror was n Ho ne El or or the co Othe ed or	The table was highest radiati way from the in d on the top of from one mete imum value of zations of the a h, the EUT was ned to heights n 0 degrees to s set to Peak E old Mode. JT in peak mo build be stoppe	rotat ion. nterfe a vari er to fe the fi antenr s arran from 0 360 0 Detect de wa d and ssions g pea	ed 360 or rence-re able-he our meta eld strein ha are s nged to 1 meter degrees Function as 10dB I the pea s that dia k, quasi	degrees to eceiving ight antenna ers above the ngth. Both et to make the its worst case to 4 meters and to find the on and Specified lower than the ak values of the d not have 10dB -peak or
Test Instruments:	Refer to section						
Test mode:	Non-hopping m	ode					
Test results:	Passed						


GFSK Mode:

	ne:	LTE Indoor C	PE		Product Me	odel:	VIU-500	VIU-500 Model 700 DH1 Tx mode		
est By:		Mike Test mode: DH1 Tx mode								
est Channe	el:	Lowest channel			Polarizatio	n:	Vertical			
est Voltage	:	AC 120/60Hz	2		Environme	nt:	Temp: 2	24℃ Huni: 57%		
120- 110- 100- 90- 80- [[0] 80- [0] 80- 50- [1] 80- 50- [1] 80- 80- 80- 80- 80- 80- 80- 80- 80- 80-			<u>-</u>	FCC PART 1				FCC PART 15 C-PK (mit		
40 - 30 - 20 - 10 - 2.31	3 2.3194G → PK Limit → PK Detector	2.3288G AV Limit Ve AV Detector	2.3382G 2.347 ertical PK — Vertical	Frequency[I		2.3758G	2.3852G	2.3946G 2.404G		
40	PK Limit - PK Detector	— AV Limit — Ve		Frequency[I		2.3758G Margin.∉ [dB]-2	2.3852G	2.3946G 2.404G		
40 30 20 10 2.31	PK Limit PK Detector Freq.~	AV Limit Ve AV Detector	ertical PK — Vertical	Frequency[AV Factor	lz] Limit⊮	Margin∻				
40- 30- 20- 10- 2.31	PK Limit PK Detector Freq [MHz]-2	AV Limit Ve ♦ AV Detector Reading V [dBµV/m] V	ertical PK — Vertical Levele [dBµV/m]₊₂	Frequency[AV Factor [dB]	Limit⊬ [dBµV/m]∞	Margin.∉ [dB]∘	Trace	Polarity₀		
40- 30- 20- 10- 2.311 NO.	 PK Limit PK Detector Freq [MHz] 2340.06 	AV Limit Ve AV Detector Ve	ertical PK — Vertical Level⊷ [dBµV/m]⊷ 44.35⊷	Frequency[AV Factor.e [dB].e 6.91.e	Limit. [dBµV/m]. 54.00.	Margin.∉ [dB]₽ 9.65₽	Trace.	Polarity₀ Vertical₀		
40- 30- 20- 10- 0- 2.31- NO- 1+ ³ 2+ ³	 → PK Limit → PK Detector → Freq// [MHz]/ 2340.06 2340.31 	AV Limit Ve AV Detector Ve AV Detector Ve [dBµV/m] 37.44↔ 45.69↔	Level [dBµV/m] 44.35 52.60 €	Frequency[AV Factor.e [dB].e 6.91.e 6.91.e	Limit-/ [dBµV/m]-/ 54.00/ 74.00/	Margin.∉ [dB].₂ 9.65.¢ 21.40.¢	Trace∘ AV↔ PK↔	Polarity₀ Vertical₀ Vertical₀		
40- 30- 20- 10- 0- 2.31- NO. 1- 2- 2+ - 3-	 PK Limit PK Detector Freq [MHz] 2340.06 2340.31 2363.26 	AV Limit → Ve AV Detector Reading [dBµV/m] 37.44 45.69 45.97	Eevele [dBµV/m]. 44.35. 52.60. 52.96.	Frequency[AV Factor [dB] 6.91 6.91 6.91 6.99	Limit. [dBµV/m]- 54.00¢ 74.00¢ 74.00¢	Margin.√ [dB].∕ 9.65.¢ 21.40.¢ 21.04.¢	Trace≠ AV₊ PK₊ PK₊	Polarity Vertical Vertical Vertical		

	e:	LTE Indoor C			Product Mo		VIU-500		
est By:		Mike		Test mode: DH1 Tx mod			mode		
Fest Channel	:	Highest chan	t channel Polarization: Horizontal						
Fest Voltage:		AC 120/60Hz	2		Environment:		Temp: 2	Temp: 24℃ Huni: 57	
120				FCC PART 1	5 C				
110									
100 90									
90 - 80 -								FCC PART 15 C-PK Limit	
<u>۲</u> ۲0	/								
[W/\718] eae 50				3		4 5		FCC PART 15 C-AV Limit	
\$ 50-		2.	لم المراجع من معرف من المراجع عن المراجع المراجع المراجع المراجع من معرف من المراجع من معرف المراجع من المراجع من من عن المراجع من من المراجع المراجع المراجع من المراجع المراجع المراجع المراجع من مع المراجع المراجع المراجع	a de la compañía de l A de la compañía de la	internet and a stranget in the start of the strain of t	4		delite and statistic density of a statistical so	
40									
40 30									
40 30 20 10	2 4802G	2.4824G	24846G 2486	8G 2489G	2 4912G	24934G	2 4956G	24978G 25G	
40 30 20	2.4802G	2.4824G	2.4846G 2.4866	8G 2.489G Frequency[ł	2.4912G tz]	2.4934G	2.4956G	2.4978G 2.5G	
40 30 20 10		2.4824G		Frequency[H		2.4934G	2.4956G	2.4978G 2.5G	
40 30 20 10 0 2.478G				Frequency[H		24934G	2.4956G	2 4978G 2 5G	
40 30 20 10 0 2.478G	─ PK Limit ─ ● PK Detector	— AV Limit — Ho ♦ AV Detector	prizontal PK — Horiz	Frequency[ł	Hz]		2.4956G	2.4978G 2.5G	
40 30 20 10 0 2.478G	— PK Limit —	— AV Limit —— Ho		Frequency[H		24934G Margin⊷			
40 30 20 10 0 2.478G	─ PK Limit ─ ● PK Detector	— AV Limit — Ho ♦ AV Detector	prizontal PK — Horiz	Frequency[ł	Hz]		2.4956G Trace₽	2.4978G 2.5G	
40 30 20 10 0 2.478G	PK Limit PK Detector	AV Limit Ho AV Detector	orizontal PK — Horiz Levele	Frequency[! zontal AV Factor+!	lz] Limit⊬	Margin			
40 30 20 10 0 2.478G	PK Limit → PK Detector Freq. ↔ [MHz] →	AV Limit Ho AV Detector Ho Reading () [dBµV/m]()	orizontal PK — Horiz Level∉ [dBµV/m]₽	Frequency(F zontal AV Factor	Limit [dBµV/m]	Margin.⊎ [dB]₽	Trace	Polarity	
40 30 20 10 0 2.478G NO2 1-3	PK Limit PK Detector Freq.↔ [MHz]↔ 2483.50	AV Limit Ho AV Detector Reading [dBµV/m] 44.99	Level [dBµV/m] 52.68+	Frequency[* zontal AV Factor [dB] 7.69	Limit [dBµV/m] 74.00	Margin.₀ [dB]₀ 21.32₀	Trace∘ PK₂	Polarity.₀ Horizontal.₀	
40 30 20 10 0 2.478G	PK Limit PK Detector [MHZ]. ² 2483.50 2483.50	AV Limit Ho AV Detector Ho Reading [dBµV/m] 44.99 36.95	Level [dBµV/m] 52.68₽ 44.64₽	Frequency[+ contal AV Factor [dB] 7.69 7.69 7.69	Limit [dBµV/m] 74.00 54.00	Margin.⊌ [dB].9 21.32.€ 9.36.₽	Trace= PK+ AV+	Polarity⊮ Horizontal⊮ Horizontal⊮	
40 30 20 10 0 2.478G NO2 1+2 2+2 3+2	PK Limit PK Detector [MHz] 2483.50 2483.50 2488.89	AV Limit Ho AV Detector Ho Reading ([dBµV/m] (44.99 (36.95 (45.11 (1)	Level [dBµV/m].₂ 52.68.₂ 44.64.₂ 52.83.₂	Frequency[* zontal AV Factor [dB] 7.69 7.69 7.72	Limit [dBµV/m] 74.00 54.00 74.00	Margin [dB] 21.32 9.36 21.17	Trace PK↔ AV↔ PK↔	Polarity⊮ Horizontal⊮ Horizontal⊮ Horizontal⊮	

$\pi/4$ -DQPSK mode

	t Name	e :	LTE Indoor C	CPE		Product Mo	odel:	VIU-500	0 Model 700
Fest By	:		Mike			Test mode:	:	2DH1 T	x mode
Fest Ch	annel:		Lowest channel			Polarization:		Vertical	
Test Vo	Itage:		AC 120/60Hz			Environment:		Temp: 24°C Huni: 5	
	120				FCC PART 1	5 C			
	110								
	100								
	90 80								0
Ę,	70								FCC PART 15 C-PK Cimit
(dBµ	60								FCC PART 15 C-AV LINK
Level[dBµV/m]	50	al for high section and a for a poly location	dellentiradiktel kyrtestrijter fritenesere	kalanan atalah dina birta mana	un and the second second	dammin at his district and have had	Mahidan (nagaritikan bermudan	ela deseria data da si hisko (11	5
	40	er of the original sector of the	#\$6.j####\$6.46.66.469.66.67.66.7994866.4.66.4		lisiii an in a shakara		hiliteteliss den in Billinstei den beserver an Billins	hluudidaan) ataamiddadaa 🔶	Sector de la constance de la co
	30 20								
	10								
	0								
	2.31G	2.3194G	2.3288G	2.3382G 2.347			2.3758G	2.3852G	2.3946G 2.404G
					Frequency[ł		2.3758G	2.3852G	2.3946G 2.404G
	_	2.3194G – PK Limit – PK Detector		2.3382G 2.347 ertical PK Vertical	Frequency[ł		2.3758G	2.3852G	2.3946G 2.404G
	_	– PK Limit –	— AV Limit — Ve		Frequency[ł		2.3758G	2.3852G	2.3946G 2.404G
Γ	•	– PK Limit –	— AV Limit — Ve		Frequency[ł		2.3758G Margin⊷		
	_	─ PK Limit - PK Detector	AV Limit Vi AV Detector	ertical PK — Vertical	Frequency[ł	Hz]		2.3852G	2.3946G 2.404G
	•	PK Limit PK Detector	AV Limit Vi AV Detector Vi Reading	ertical PK Vertical	Frequency[! AV Factor⊷	tz] Limit⊷	Margin⊬		
-	NO.43	PK Limit PK Detector Freq. 4 [MHz] 4	AV Limit AV Detector Reading [dBµV/m] →	ertical PK — Vertical Level⊷ [dBµV/m].∘	Frequency[I AV Factor.e [dB].e	^{⊦z]} Limit⊷ [dBµV/m]∘	Margin⊮ [dB]∂	Trace	Polarity
-	• NO.₽ 1₽	- PK Limit • PK Detector Freq.↔ [MHz]↔ 2337.73	AV LimitV ◆ AV DetectorV Reading [dBµV/m] ↓ 45.67* ³	ertical PK — Vertical Level [dBµV/m] ² 52.57+ ³	Frequency[! AV Factor.e [dB].e 6.90.e	Limit.₀ [dBµV/m].₀ 74.00.₀	Margin.⊌ [dB]⊌ 21.43₽	Trace.₀ PK⊷	Polarity.
-	NO.∉ 1∉ 2₽	PKLimit PK Detector Freq.* ¹ [MHz]→ 2337.73 2337.85	AV Limit V	ertical PK — Vertical Level↔ [dBµV/m]↔ 52.57↔ 44.24↔	Frequency[! AV [dB],- 6.90,- 6.90,-	Limit [dBµV/m] 74.00 54.00	Margin⊮ [dB]∉ 21.43₽ 9.76₽	Trace PKe AVe	Polarity Vertical Vertical
-	NO 1 2 3	Freq.e ² [MHz] ² 2337.73 2337.85 2361.71	AV Limit AV Detector Reading [dBµV/m] 45.67₄ ³ 37.34₄ ³ 37.29₄ ³	ertical PK — Vertical Level↔ [dBµV/m]↔ 52.57↔ 44.24↔ 44.27↔	Frequency[I AV Factor/ [dB],-/ 6.90,-/ 6.90,-/ 6.98,-/	Limit [dBµV/m]- 74.00+ 54.00+ 54.00+	Margin⊷ [dB]₀ 21.43₀ 9.76₀ 9.73₀	Trace. PK. AV. AV.	Polarity Vertical Vertical

	t Name	ə:	LTE Indoor CPE			Product Mo	odel:	VIU-500 Model 700	
Fest By	:		Mike			Test mode:		2DH1 T	x mode
Test Ch	annel:	:	Lowest channel			Polarization:		Horizontal	
Test Vo	Itage:		AC 120/60Hz	,		Environment:		Temp: 24°C Huni: 57°	
	illago.		120/00112	-				· •	
	120 ₁				FCC PART 1	15 C			
	110								
	100								
	90								\wedge
Ē	80								FCC PART 15 C-PK Limit
Level[dBµV/m]	70 60								
evel[c	50	inderse internet water to the day of some	Handipery total back indices when a house the starting	dalphilitere setting of printers of stal the free lands	de anderskeiten 🕈 🔐 en stad skaar	Adarma hiji karata ta ta ta ta da a da a	والمركحة والمراجع المراجع والمراجع والمحافظة		FCC PART 15 C-AV Limit
	40	ana talan dalah sa		สมันของการแขน เป็นเป็นเป็นเป็นเป็นเป็นเป็นเป็นเป็นเป็น		والمستردر ومسترك ومعترك والمحالي والمروم والمحاري والمحاري والمحاري	anar Alfréinean an chini china an Sinta na Sinta		and a star and the star and the star
	30								
	20								
	10+								
	0								
		2.3194G	2.3288G	2.3382G 2.347			2.3758G	2.3852G	2.3946G 2.404G
	0				Frequency[I		2.3758G	2.3852G	2 3946G 2.404G
	0 2.31G			2.3382G 2.347 prizontal PK — Horiz	Frequency[I		2.3758G	2.3852G	2.3946G 2.404G
	0 2.31G	– PK Limit –	— AV Limit — Ho		Frequency[I		2.3758G	2.3852G	2.3946G 2.404G
Γ	0 2.31G	─ PK Limit → PK Detector	AV Limit Ho	prizontal PK — Horiz	Frequency[Hz]		2.3852G	
	0 2.31G	PK Limit - PK Detector	AV Limit Ho AV Detector Ho Reading	orizontal PK — Horiz	Frequency[zontal AV Factor.e	Hz]	Margin⇔	2.3852G	2.3946G 2.404G
	0 231G	PK Limit PK Detector Freq. [MHz]	AV Limit Ho ◆ AV Detector Reading e [dBµV/m] e	nizontal PK — Horiz Level.⊎ [dBµV/m].∂	Frequency[zontal AV Factor	Limit≓ [dBμV/m]≓	Margin⊮ [dB]₀	Trace	Polarity₽
	0 231G NO.₽ 1₽	PK Limit PK Detector Freq.≁ [MHz]↓ 2332.36	AV Limit Ho AV Detector Reading [dBµV/m] 37.43+ ³	Level↔ [dBµV/m]↔ 44.32↔	Frequency[zontal AV Factor⊷ [dB]⊷ 6.89⊷	H₂] Limit⊮ [dBµV/m]₽ 54.0043	Margin⊮ [dB]⊮ 9.68⊮	Trace. AV.	Polarity₀ Horizontal₽
	0 2316 NO 1+ 2+	PK Limit PK Detector [MHz].∂ 2332.36 2332.60	AV Limit → Ho AV Detector → Ho Reading [dBµV/m] 37.43+2 45.82+2	Level [dBµV/m] 44.32 52.71	Frequency[zontal AV Factor.↓ [dB].↓ 6.89.↓ 6.89.↓	Hz] Limit- [dBµV/m]- 54.00+ 74.00+	Margin [dB] 9.68.₀ 21.29.₀	Trace. AV. PK.	Polarity₀ Horizontal₀ Horizontal₀
	0 2316 NO.≁ 1↔ 2↔ 3↔	PK Limit PK Detector [MHz]. ²¹ 2332.36 2332.60 2353.66	AV Limit Ho AV Detector Reading ([dBµV/m]= 37.43+ 45.82+ 45.29+ 2	Level↔ [dBµV/m]↔ 44.32↔ 52.71↔ 52.25↔	Frequency[zontal AV Factor [dB]. ² 6.89. ² 6.89. ² 6.89. ²	Hz] Limit⊷ [dBµV/m]∘ 54.00₊³ 74.00₊³ 74.00₊³	Margin.↓ [dB].↓ 9.68.↓ 21.29.↓ 21.75.↓	Trace AV PK PK	Polarity Horizontal Horizontal Horizontal
	0 2316 NO 1+ 2+	PK Limit PK Detector [MHz].∂ 2332.36 2332.60	AV Limit → Ho AV Detector → Ho Reading [dBµV/m] 37.43+2 45.82+2	Level [dBµV/m] 44.32 52.71	Frequency[zontal AV Factor.↓ [dB].↓ 6.89.↓ 6.89.↓	Hz] Limit- [dBµV/m]- 54.00+ 74.00+	Margin [dB] 9.68.₀ 21.29.₀	Trace. AV. PK.	Polarity₀ Horizontal₀ Horizontal₀

1. Final Level = Receiver Read level + Antenna Factor + Cable Loss – Preamplifier Factor.

	e:	LTE Indoor C	PE		Product Mo	odel:	VIU-500	Model 700
est By:		Mike			Test mode:		2DH1 T>	k mode
est Channel	:	Highest chan	nel	Polarizatio	n:	Vertical		
est Voltage:		AC 120/60Hz			Environment:		Temp: 24℃ Huni: 57	
120 110 100 90 80 80 80 70 60 90 80 80 80 80 80 80 80 80 80 80 80 80 80				FCC PART 1		5 4 6		FCC PART 15 C-PK Limit
40 30 20 10 0 2 478G	2.4802G PK Limit - PK Detector	2.4824G AV Limit Vi AV Detector	2.4846G 2.486 ertical PK — Vertical	Frequency[ł	2.4912G iz]	2.4934G	2.4956G	2.4978G 2.5G
40 30 20 10	— PK Limit —	— AV Limit — V		Frequency[ł		2.4934G Margin⊮ [dB]⊮	2.4956G	2.4978G 2.5G
40 30 20 10 0 2.4786	PK Limit PK Detector	AV Limit Vi ◆ AV Detector Vi Reading⊷	ertical PK Vertical	Frequency[I AV Factor	lız] Limit⊷	Margin∉		
40 30 20 10 0 2.478G	PK Limit PK Detector	AV Limit	ertical PK — Vertical Level₊ [dBµV/m]₊₂	Frequency[! AV Factor.e ² [dB].e ²	Limit⊮ [dBµV/m]⊮	Margin⊮ [dB]⊮	Trace	Polarity₀
40 30 20 10 0 2.478G	PK Limit PK Detector Freq.↔ [MHz].→ 2483.50	AV Limit V AV Detector V Reading ↓ [dBµV/m]↓ 43.28+3	ertical PK — Vertical Level↔ [dBµV/m],∂ 50.97↔	Frequency[I AV Factor.e ¹ [dB]. ² 7.69.e	Limit.⊷ [dBµV/m]⊷ 74.00⊷	Margin.⊮ [dB].ø 23.03₽	Trace.₀ PK.₀	Polarity∞ Vertical⊷
40 30 20 10 0 2.478G NO2 12 22	PK Limit PK Detector [MHz]- ² 2483.50 2483.50	AV Limit	ertical PK — Vertical Level ↔ [dBµV/m],-> 50.97,+> 43.75,+>	Frequency[i AV Factor, [dB], 7.69, 7.69,	Limit [dBµV/m] 74.00 54.00	Margin⊮ [dB]⊮ 23.03₽ 10.25₽	Trace. PK+ AV+	Polarity₀ Vertical₀ Vertical₀
40 30 20 10 0 2.478G NO.47 1.47 2.47 3.47	PK Limit PK Detector [MHz]- ³ 2483.50 2483.50 2488.60	AV LimitV ♦ AV Detector Reading [dBµV/m] 43.28+ ³ 36.06+ ³ 44.98+ ³	ertical PK — Vertical Level↔ [dBµV/m]↔ 50.97↔ 43.75↔ 52.70↔	Frequency[! AV Factor.e ² [dB].e ² 7.69.e ² 7.69.e 7.72.e	Limit [dBµV/m] 74.00 54.00 74.00	Margin.∉ [dB]. ^J 23.03.¢ 10.25.¢ 21.30.¢	Trace PK AV PK	Polarity- Vertical- Vertical- Vertical-

		LTE Indoor C			Product Mc	odel:	VIU-500	Model 700	
est By:		Mike			Test mode:	:	2DH1 T	x mode	
est Channel	:	Highest channel			Polarization:		Horizontal		
est Voltage:		AC 120/60Hz			Environment:		Temp: 2	4℃ Huni: 5	57%
120 110 90 80 70 70 60 60 50				FCC PART 1	5 C			FCC PART 15 C-PK Limit	
40 30 20 10 0 2.478G	2.4802G PK Limit PK Detector	2.4824G → AV Limit — Ho AV Detector	2.4846G 2.4860 prizontal PK — Horiz	Frequency[ł	2.4912G tz]	2.4934G	2.4956G	2.4978G 2.50	G
40 30 20 10 0 2.478G	— PK Limit —	— AV Limit —— Ho		Frequency[ł		2 4934G Margin⊮ [dB]⊮	2.4956G Trace-	24978G 2.50 Polarity•	G
40 30 20 10 0 2.478G	PK Limit - PK Defector -	AV Limit Ho ◆ AV Detector Readinge	orizontal PK Horiz	Frequency[I contal AV	^{Iz]}	Margin⇔			G
40 30 20 10 0 2.478G	PK Limit PK Detector Freq.44 [MHz]-2	AV Limit — Ho ◆ AV Detector Reading [dBµV/m] ₽	Drizontal PK — Horiz Level∉ [dBµV/m].₂	Frequency[i contal AV Factore ² [dB] ²	Limit⊮ [dBµV/m]⊮	Margin∉ [dB]₽	Trace	Polarity⇔	G
40 30 20 10 0 2.478G	PK Limit PK Detector Freq.44 [MHz]-2 2483.50	AV Limit Ho AV Detector Ho AV Detector Reading ← [dBµV/m] ← 43.49 ←	Level [dBµV/m] 51.18₽	Frequency[tontal AV Factor.e [dB].e 7.69.e	Limit⊮ [dBµV/m]⊮ 74.00⊷	Margin.∉ [dB]⊮ 22.82₊	Trace.₀ PK₀	Polarity∂ Horizontal⊮	G
40 30 20 10 0 2.478G	PK Limit PK Detector [MHz]. ³ 2483.50 2483.50	AV Limit Ho AV Detector Ho Reading ← [dBµV/m] ← 43.49 ← 36.18 ←	Level↔ [dBµV/m]↔ 51.18↔ 43.87↔	Frequency[contal AV Factor [dB] 7.69 7.69	Limit [dBµV/m] 74.00 54.00	Margin.∉ [dB].∉ 22.82.∉ 10.13.€	Trace∍ PK÷ AV₊	Polarity⊶ Horizontal⊷ Horizontal⊮	G
40 30 20 10 0 2.478G 2.478G	PK Limit PK Detector Freq.₄ [MHz]→ 2483.50 2483.50 2489.11	AV Limit Ho AV Detector Ho AV Detector [dBµV/m]↔ 43.49↔ 36.18↔ 37.03↔	Level⊷ [dBµV/m]∘ 51.18↔ 43.87↔ 44.75↔	Frequency[I contal AV Factor [dB] 7.69 7.69 7.72 7.72 7.72	Limit [dBµV/m]¢ 74.00¢ 54.00¢ 54.00¢	Margin.∉ [dB].₀ 22.82.¢ 10.13.¢ 9.25.¢	Trace PKe AVe AVe	Polarity.₀ Horizontal.₀ Horizontal.₀ Horizontal.₀	

8DPSK mode

roduct Name:			LTE Indoor CPE			Product Model:		VIU-500 Model 700	
est By	:		Mike			Test mode:		3DH1 T	x mode
est Ch	annel:	:	Lowest chan	nel	Polarization:		Vertical		
est Vo	Itage:		AC 120/60Hz			Environment:		Temp: 24℃ Huni: 57	
Level(dBµV/m)	120 110 100 90 80 70 60 50 90 80 70 60 50				FCC PART 1				FCC PART 15 C-PK (Imit
	20 10 0 2.31G	2.3194G PK Limit - PK Detector	2.3288G AV Limit Ve AV Detector	2 3382G 2 347 ertical PK — Vertical	Frequency[I		2.3758G	2.3852G	2.3946G 2.404G
	20 10 0 2.31G	— PK Limit —	— AV Limit — Ve		Frequency[I		2.3758G Margin⊮ [dB]⊮	2.3852G	2.3946G 2.404G
	20 10 0 2.31G	PK Limit - PK Detector -	AV Limit Ve ◆ AV Detector	ertical PK Vertical Level+J	Frequency[AV Factor	tz] Limit⊷	Margine		
	20- 10- 2.31G	PK Limit PK Detector Freq.e [MHz]	AV Limit Ve AV Detector Ve	ertical PK — Vertical Level↔ [dBµV/m],₂	Frequency(I AV Factor	Limit⊮ [dBμV/m]⊷	Margin.∉ [dB]₽	Trace	Polarity₀
	20- 10- 2.316	Freq.** [MHz].* 2336.59	AV Limit Ve AV Detector Ve Reading (dBµV/m) 45.80+2	Level↔ [dBµV/m]↔ 52.70↔	Frequency[AV Factor.e [dB].e 6.90.e	Limit. [dBµV/m]⊷ 74.00⊷	Margin.∉ [dB]∉ 21.30⊷	Trace.∞ PK∞	Polarity⇔ Vertical.₂
	20 10 0 231G	PK Limit PK Detector [MHz] 2336.59 2336.94	AV Limit Ve AV Detector Ve (dBµV/m] 45.80+ 37.55+	Evel [dBµV/m], 52.70, 44.45,	Frequency(I AV Factor.e ¹ [dB]. ² 6.90.e ²	Limit [dBµV/m] 74.00+ 54.00+	Margin.∉ [dB].₀ 21.30₊₀ 9.55₊₀	Trace. PK. AV.	Polarity Vertical Vertical
	20- 10- 2.31G • NO.• 1.• 2.• 3.•	PK Limit PK Detector Freq.₄ [MHz]₄ 2336.59 2336.94 2354.90	AV Limit Ve AV Detector Ve [dBµV/m]= 45.80+ 37.55+ 45.43+	Eevel↔ [dBµV/m]↔ 52.70↔ 44.45↔ 52.39↔	Frequency[AV Factor, [dB], 6.90, 6.90, 6.90, 6.90, 6.90, 6.90, 6.90, 6.90, 6.90, 6.90, 6.90, 6.90, 6.90, 7.00, 7.	Limit [dBµV/m] 74.00+ 54.00+ 74.00+	Margin.∉ [dB]. 21.30. 9.55. 21.61.	Trace PK AV PK	Polarity Vertical Vertical Vertical

roduct Name:			LTE Indoor CPE			Product Mo	VIU-500 Model 700			
est By:			Mike			Test mode	:	3DH1 T	x mode	
est Channel: est Voltage:			Lowest channel			Polarization:		Horizontal		
est Vo	Itage:		AC 120/60Hz	7		Environment:		Temp: 24℃ Huni: 57		Huni: 57%
Level[dBµV/m]	120 110 100 90 80 70 60 50 40				FCC PART 1	5 C			FCC PART 15 FCC PART 15 Port of the second s	
_	30 20 10 0 2.31G	2.3194G PK Limit - PK Detector	AV Detector	2.3382G 2.347 orizontal PK — Horiz	Frequency[Hz]	2.3758G	2.3852G	2.3946G	2.404G
	20 10 0	— PK Limit —	— AV Limit — He		Frequency[2.3758G Margin [dB]	2.3852G		2.404G
	20 10 2.31G	PK Limit - PK Detector -	AV Limit He ◆ AV Detector He Readinge	orizontal PK Horiz Level+4	Frequency[zontal AV Factor	Hz] Limite	Margin∉		Pola	4
	20 10 2.31G	PK Limit PK Detector	AV Limit H ◆ AV Detector H Reading∉ [dBµV/m] 3	orizontal PK — Horiz Level₊ [dBµV/m]₊₂	Frequency[zontal AV Factor [dB]	Limit⊮ [dΒμV/m]∻	Margin∉ [dB]₽	Trace	Pola	arity <i>⇔</i>
	20 10 231G NO.+ ³	Freq.** [MHz].* 2339.84	AV Limit H AV Detector H Reading (dBµV/m) 37.68+3	orizontal PK — Horiz Level⊮ [dBµV/m]₽ 44.59₽	Frequency[zontal AV Factor= [dB]= 6.91+2	Limit.⊷ [dBµV/m].∘ 54.00.∘	Margin.∉ [dB].∘ 9.41.∘	Trace.	Pola Horiz Horiz	arity∉ ontal₽
	20 10 0 2.31G NO.↔ 1.↔ 2.↔	PK Limit PK Detector [MHz] 2339.84 2340.24	AV Limit H AV Detector H Reading ([dBµV/m] (37.68+) 46.08+)	Level ← [dBµV/m] ← 44.59 ← 52.99 ←	Frequency[zontal AV Factor [dB] 6.91 6.91	Limit. [dBµV/m] 54.00. 74.00.	Margin.∉ [dB].₀ 9.41.₀ 21.01.₽	Trace.₀ AV.₀ PK.₀	Pola Horiz Horiz Horiz	arity∂ ontal₽ ontal₽
	20 10 0 2,31G	Freq.# [MHz]# 2339.84 2340.24 2362.00	AV Limit H ◆ AV Detector H (dBµV/m) 37.68+ ³ 46.08+ ³ 37.24+ ³	Level [dBµV/m] 44.59 52.99 44.22 √	Frequency[zontal AV Factor, [dB], 6.91, 6.91, 6.91, 6.91, 3 6.98, 3	Limit [dBµV/m] 54.00+ 74.00+ 54.00+	Margin.∉ [dB].ª 9.41.¢ 21.01.¢ 9.78.¢	Trace AV PK AV	Pola Horiz Horiz Horiz Horiz	arity≠ ontal≠ ontal≠ ontal≠

1. Final Level = Receiver Read level + Antenna Factor + Cable Loss – Preamplifier Factor.

roduct Na	ime:	LTE Indoor C	PE		Product Mo	odel:	VIU-500	Model 700	
est By:		Mike			Test mode:		3DH1 Tx	mode	
est Chanr	nel:	Highest channel			Polarization:		Vertical		
est Voltag	je:	AC 120/60Hz	2		Environment:		Temp: 24℃ Huni: 57		57%
120 110 90 80 100 80 80 60 80 90 90 90 90 90 90 90 90 90 90 90 90 90		2		FCC PART 1	5 C	5 5		FCC PART 15 C-PK Lin	
40 30 20 10 0 2.4		2.4824G AV Limit V AV Detector	2.4846G 2.486 ertical PK — Vertical	Frequency[2.4912G Hz]	2.4934G	2.4956G	2.4978G	2.5G
30 20 10 0	PK Limit PK Detector	— AV Limit — V		Frequency[2.4934G Margin⊷ [dB]₊	2.4956G	2.4978G Polarity,₽	2.5G
30 20 10 2.4		AV Limit V AV Detector V Reading	ertical PK — Vertical	Frequency[AV Factor	tz] Limit⊷	Margin∉			
30 20 10 2.4	Image: Transmit of the second seco	AV Limit V ◆ AV Detector V Reading [dBµV/m]	ertical PK	Frequency[AV Factore [dB]	Limite [dBµV/m]e	Margin⊮ [dB]⊮	Trace	Polarity∉	2.56
30 20 10 2.4 NC		AV Limit V AV Detector V Reading [dBµV/m] 43.66+ ³	ertical PK → Vertical Level↔ [dBµV/m]↔ 51.35↔	Frequency[AV Factor.e [dB].a 7.69.a	Limit.√ [dBµV/m].∞ 74.00.∞	Margin.⊮ [dB].∉ 22.65.₽	Trace.∘ PK.∘	Polarity. Vertical.	2.5G
30 20 10 2.4 NC 1 2 3		AV Limit V AV Detector V AV Detector V Reading 4 [dBµV/m] 3 43.66+3 36.06+3	ertical PK — Vertical Level↔ [dBµV/m]↔ 51.35↔ 43.75↔	Frequency[AV Factor [dB] 7.69 7.69	Limit. [dBµV/m]. 74.00. 54.00.	Margin.⊮ [dB].₀ 22.65.₀ 10.25.₀	Trace.₀ PK.₀ AV.₀	Polarity⊮ Vertical⊮ Vertical⊮	2.56
30 20 10 2.4 NC 1 2 3	Image: PK limit PK limit ● PK Detector PK Detector Image: PK Detector	AV Limit V AV Detector V AV Detector [dBµV/m] ² 43.66+ ³ 36.06+ ³ 45.38+ ³	ertical PK — Vertical Level↔ [dBµV/m]↔ 51.35↔ 43.75↔ 53.10↔	Frequency[AV Factor [dB] 7.69 7.69 7.69 7.72 7.72	Limite [dBµV/m]e 74.00e 54.00e 74.00e	Margin.∉ [dB].ª 22.65.ª 10.25.ª 20.90.ª	Trace PKe AVe PKe	Polarity Vertical Vertical Vertical	2.56

Product Nan	ne:	LTE Indoor C	PE		Product Mo	odel:	VIU-500) Model	700
Test By:		Mike			Test mode	:	3DH1 T	x mode	l
Test Channe	d:	Highest channel			Polarization:		Horizontal		
Test Voltage	:	AC 120/60Hz	2		Environme	nt:	Temp: 2	24℃	Huni: 57
120				FCC PART 1	5 C			FCC PART 1	
40	G 2.4802G PK Limit PK Detector	2.4824G — AV Limit — Ho AV Detector	2.4846G 2.486 prizontal PK — Horiz	Frequency[ł	2.4912G iz]	2.4934G	2.4956G	2.4978G	2.5G
30 20 10 0	PK Limit -	— AV Limit — Ho		Frequency[ł		2.4934G 2.4934G Margin.∉ [dB].₽	2.4956G		2.5G
30 20 10 0 2.478	PK Limit ◆ PK Detector →	AV Limit Ho AV Detector	orizontal PK Horizontal PK Horizontal PK	Frequency[i zontal AV	iz] Limit⊮	Margin∉		Pol	
30 20 10 0 2.478	PK Limit PK Detector Freq.↔ [MHz]↔	AV Limit Ho AV Detector Ho Reading∉ [dBµV/m]⇒	onzontal PK — Hori: Level⊷ [dBµV/m]∂	Frequency[i zontal AV Factor- [dB]-2	Limit⊬ [dBµV/m]∞	Margin.⊎ [dB]₽	Trace₽	Pol	arity₊∍
30 20 10 0 2.478 NO. 1 e ²	 PK Limit PK Detector Freq.e [MHz] 2483.50 2483.50 2489.22 	AV Limit Ho AV Detector Ho AV Detector Reading ↓ [dBµV/m] ↓ 44.36 ↓ ³	Level₊ [dBµV/m]₀ 52.05₊ ³	Frequency[i zontal AV Factor [dB] 7.69 7.69 7.73	Limit/ [dBµV/m]-∕ 74.00⁄	Margin [dB] 21.95 10.11 20.53	Trace. PK₂	Pola Horiz Horiz	arity* contal*
30- 20- 10- 0- 2.478 NO. 147 2478	 PK Limit PK Detector Freq. [MHz] 2483.50 2483.20 2489.22 2489.28 	AV Limit Ho AV Detector Ho AV Detector [dBµV/m]+ ² 44.36+ ² 36.20+ ³ 45.74+ ² 36.93+ ³	Level↔ [dBµV/m]↔ 52.05↔ 43.89↔ 53.47↔ 44.66↔	Frequency[i zontal AV Factor [dB] 7.69 7.69 7.73 7.73 7.73	Limit。 [dBµV/m]- 74.00¢ 54.00¢ 74.00¢ 54.00¢	Margin.↓ [dB].↓ 21.95↓ 10.11↓↓ 20.53↓↓ 9.34↓	Trace- PK- AV- PK- AV-	Pola Horiz Horiz Horiz	arity contal contal *
30 20 10 0 2.478 NO. 1478 2.478	 PK Limit PK Detector Freq.e [MHz] 2483.50 2483.50 2489.22 	AV Limit Ho AV Detector Ho AV Detector Reading ← [dBµV/m] → 44.36 ↔ 36.20 ↔ 45.74 ↔	Level [dBµV/m] 52.05+ 43.89+ 53.47+	Frequency[i zontal AV Factor [dB] 7.69 7.69 7.73	Limit. [dBµV/m]- 74.00¢ 54.00¢ 74.00¢	Margin [dB] 21.95 10.11 20.53	Trace∞ PK∘ AV₊ PK₂	Poli Horiz Horiz Horiz	arity contal contal contal contal contal

2. The emission levels of other frequencies are lower than the limit 20dB and not show in test report.

6.10 Spurious Emission

6.10.1 Conducted Emission Method

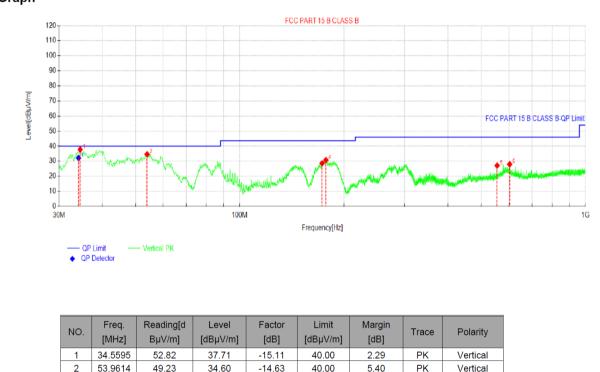
Test Requirement:	FCC Part 15 C Section 15.247 (d)
Limit:	In any 100 kHz bandwidth outside the frequency band in which the spread spectrum intentional radiator is operating, the radio frequency power that is produced by the intentional radiator shall be at least 20 dB below that in the 100 kHz bandwidth within the band that contains the highest level of the desired power, based on either an RF conducted or a radiated measurement.
Test setup:	
Test Instruments:	Refer to section 5.9 for details
Test mode:	Non-hopping mode
Test results:	Pass
Measurement Data:	Refer to Appendix A - BT

6.10.2 Radiated Emission Method

Test Requirement:	FCC Part 15 C S	Section 15	.209			
Test Frequency Range:	9 kHz to 25 GHz					
Test Distance:	3m					
Receiver setup:	Frequency	Detecto	or	RBW	VBW	Remark
	30MHz-1GHz	Quasi-pe	eak	120kHz	300kH	z Quasi-peak Value
		Peak		1MHz	3MHz	z Peak Value
	Above 1GHz	RMS		1MHz	3MHz	Average Value
Limit:	Frequenc	;y	Lin	nit (dBuV/m	@3m)	Remark
	30MHz-88M	/Hz		40.0		Quasi-peak Value
	88MHz-216	MHz		43.5		Quasi-peak Value
	216MHz-960	MHz		46.0		Quasi-peak Value
	960MHz-10	GHz		54.0		Quasi-peak Value
	41			54.0		Average Value
	Above 1GI	HZ		74.0		Peak Value
Test setup:	Ta	d Plane	4m	·/////////////////////////////////////		Antenna Tower
Test Procedure:	 /1.5m(above was rotated 3 radiation. 2. The EUT was 	1GHz) abo 60 degree set 3 met	n the ove th is to o ers a	top of a rotate top ground at determine the way from the	a 3 mete e position e interfer	e 0.8m(below 1GHz) er chamber. The table n of the highest

Project No.: JYTSZE2109109

	tower.3. The antenna height is varied from one meter to four meters above the ground to determine the maximum value of the field strength. Both horizontal and vertical polarizations of the antenna are set to make the measurement.
	4. For each suspected emission, the EUT was arranged to its worst case and then the antenna was tuned to heights from 1 meter to 4 meters and the rota table was turned from 0 degrees to 360 degrees to find the maximum reading.
	 The test-receiver system was set to Peak Detect Function and Specified Bandwidth with Maximum Hold Mode.
	6. If the emission level of the EUT in peak mode was 10dB lower than the limit specified, then testing could be stopped and the peak values of the EUT would be reported. Otherwise the emissions that did not have 10dB margin would be re-tested one by one using peak, quasi-peak or average method as specified and then reported in a data sheet.
Test Instruments:	Refer to section 5.9 for details
Test mode:	Non-hopping mode
Test results:	Pass
Remark:	 Pre-scan all kind of the place mode (X-axis, Y-axis, Z-axis), and found the Y-axis is the worst case. 9 kHz to 30 MHz is noise floor and lower than the limit 20dB, so only shows the data of above 30MHz in this report.



Measurement Data (worst case):

Below 1GHz:

Product Name:	LTE Indoor CPE	Product Model:	VIU-500 Model 700
Test By:	Mike	Test mode:	BT Tx mode
Test Frequency:	30 MHz ~ 1 GHz	Polarization:	Vertical
Test Voltage:	AC 120/60Hz	Environment:	Temp: 24°C Huni: 57%

Test Graph

1. Final Level = Receiver Read level + Antenna Factor + Cable Loss – Preamplifier Factor.

2. The emission levels of other frequencies are lower than the limit 20dB and not show in test report.

28.56

30.72

27.04

27.90

QP Value

[dBµV/m]

32.10

-16.99

-16.87

-6.71

-5.43

QP Limit

[dBµV/m]

40.00

43.50

43.50

46.00

46.00

QP Margin

[dB]

7.90

14.94

12.78

18.96

18.10

QP Reading

[dBµV/m]

47.21

ΡK

ΡK

ΡK

ΡK

Angle

203.8

[°]

Vertical

Vertical

Vertical

Vertical

Verdict

PASS

3. The Aux Factor is a notch filter switch box loss, this item is not used.

3

4

5

6

NO.

1

Final Data List

173.089

177.551

555.113

603.424

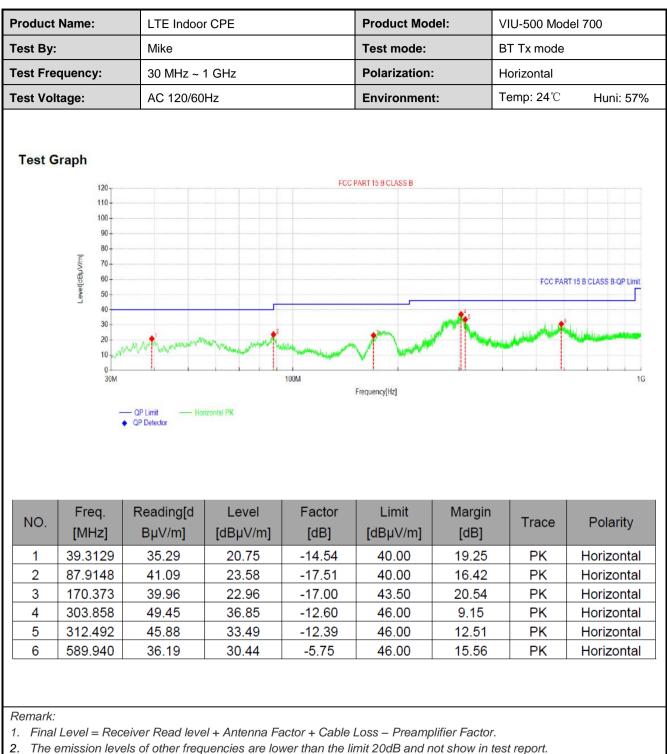
[MHz]

34.1794

45.55

47.59

33.75


33.33

Factor

[dB]

-15.11

3. The Aux Factor is a notch filter switch box loss, this item is not used.

Project No.: JYTSZE2109109

Above 1GHz:

		Test ch	annel: Lowest ch	nannel			
		De	tector: Peak Valu	le			
Frequency (MHz)	Read Level (dBuV)	Factor(dB)	Level (dBuV/m)	Limit Line (dBuV/m)	Margin (dB)	Polarizatio	
4804.00	55.46	-9.60	45.86	74.00	28.14	Vertical	
4804.00	59.61	-9.60	50.01	74.00	23.99	Horizonta	
		Dete	ctor: Average Va	lue			
Frequency (MHz)	Read Level (dBuV)	Factor(dB)	Level (dBuV/m)	Limit Line (dBuV/m)	Margin (dB)	Polarizatio	
4804.00	49.11	-9.60	39.51	54.00	14.49	Vertical	
4804.00	55.40	-9.60	45.80	54.00	8.20	Horizonta	
		Tast ch	annel: Middle ch	annal			
			tector: Peak Valu				
Frequency	Read Level		Level	Limit Line	Margin	1	
(MHz)	(dBuV)	Factor(dB)	(dBuV/m)	(dBuV/m)	(dB)	Polarizatio	
4882.00	55.22	-9.05	46.17	74.00	27.83	Vertical	
4882.00	59.79	-9.05	50.74	74.00	23.26	Horizonta	
	T	Dete	ctor: Average Va	lue	1		
Frequency (MHz)	Read Level (dBuV)	Factor(dB)	Level (dBuV/m)	Limit Line (dBuV/m)	Margin (dB)	Polarizatio	
4882.00	49.03	-9.05	39.98	54.00	14.02	Vertical	
4882.00	55.35	-9.05	46.30	54.00	7.70	Horizonta	
			annel: Highest cl tector: Peak Valu				
Frequency (MHz)	Read Level (dBuV)	Factor(dB)	Level (dBuV/m)	Limit Line (dBuV/m)	Margin (dB)	Polarizatio	
4960.00	55.61	-8.45	47.16	74.00	26.84	Vertical	
4960.00	59.51	-8.45	51.06	74.00	22.94	Horizonta	
		Dete	ctor: Average Va	lue			
	Read Level	Factor(dB)	Level (dBuV/m)	Limit Line (dBuV/m)	Margin (dB)	Polarizatio	
Frequency (MHz)	(dBuV)			(**= ******)	()		
• •	(dBuV) 49.34	-8.45	40.89	54.00	13.11	Vertical	

2. The emission levels of other frequencies are lower than the limit 20dB and not show in test report.

Project No.: JYTSZE2109109