

Report No.: JYTSZ-R12-2200388

FCC RF Test Report

Applicant:	Aratek Biometrics Co., Ltd.
Address of Applicant:	2F, T2-A Building, ShenZhen Software Park South Area, Hi- Tech Park
Equipment Under Test (E	UT)
Product Name:	Face Recognition Terminal
Model No.:	BA8300, BA8300-T, P80
Trade Mark:	ARATEK
FCC ID:	2AGUJBA8300
Applicable Standards:	FCC CFR Title 47 Part 15C (§15.247)
Date of Sample Receipt:	07 Mar., 2022
Date of Test:	08 Mar., to 23 Apr., 2022
Date of Report Issued:	24 Apr., 2022
Test Result:	PASS

Tested by:	Martin OU	Date:	24 Apr., 2022
Reviewed by:	Regiect Engineer	Date:	24 Apr., 2022
Approved by:	「社会控制专用車」 「ARACE」 Manager	Date:	24 Apr., 2022

This equipment has been shown to be capable of compliance with the applicable technical standards as indicated in the measurement report and was tested in accordance with the measurement procedures specified in above the application standard version. Test results reported herein relate only to the item(s) tested.

This document cannot be reproduced except in full, without prior written approval of the Company. Any unauthorized alteration, forgery or falsification of the content or appearance of this document is unlawful and offenders may be prosecuted to the fullest extent of the law. Unless otherwise stated the results shown in this test report refer only to the sample(s) tested and such sample(s) are retained for 90 days only.

2 Version

Version No.	Date	Description
00	24 Apr., 2022	Original

3 Contents

1 Cover Page 1 2 Version 2 3 Contents 3 4 General Information 4 4.1 Client Information 4 4.2 General Description of E.U.T 4 4.3 Test Mode and Test Environment 4 4.3 Test Mode and Test Environment 5 4.4 Description of Support Units 5 4.5 Measurement Uncertainty 5 4.6 Additions to, Deviations, or Exclusions From the Method 5 4.7 Laboratory Facility 5 4.8 Laboratory Location 5 4.9 Test Instruments List 6 5 Measurement Setup and Procedure 8 5.1 Test Channel 8 5.2 Test Setup 8 5.3 Test Procedure 10 6 Test Results 11 6.1 Summary 11 6.2 Antenna Requirement 13 6.3 AC Power Line Conducted Emission 14 6.4			Pa	ige
3 Contents	1	Cove	er Page	. 1
4 General Information 4 4.1 Client Information 4 4.2 General Description of E.U.T. 4 4.3 Test Mode and Test Environment 5 4.4 Description of Support Units 5 4.4 Description of Support Units 5 4.5 Measurement Uncertainty 5 4.6 Additions to, Deviations, or Exclusions From the Method 5 4.7 Laboratory Facility 5 4.8 Laboratory Location 5 4.9 Test Instruments List 6 5 Measurement Setup and Procedure 8 5.1 Test Channel 8 5.2 Test Setup 8 5.3 Test Procedure 10 6 Test Results 11 6.1 Summary 11 6.1 Summary 11 6.2 Antenna Requirement 13 6.3 AC Power Line Conducted Emission 14 6.4 Emissions in Restricted Frequency Bands 16	2	Vers	ion	. 2
4.1 Client Information 4 4.2 General Description of E.U.T. 4 4.3 Test Mode and Test Environment 5 4.4 Description of Support Units 5 4.5 Measurement Uncertainty 5 4.6 Additions to, Deviations, or Exclusions From the Method 5 4.7 Laboratory Facility 5 4.8 Laboratory Location 5 4.9 Test Instruments List 6 5 Measurement Setup and Procedure 8 5.1 Test Channel 8 5.2 Test Setup 8 5.3 Test Procedure 10 6 Test Results 11 6.1 Summary 11 6.1 Summary 11 6.2 Antenna Requirement 13 6.3 AC Power Line Conducted Emission 14 6.4 Emissions in Restricted Frequency Bands 16	3	Cont	ents	. 3
4.2 General Description of E.U.T. 4 4.3 Test Mode and Test Environment 5 4.4 Description of Support Units 5 4.4 Description of Support Units 5 4.5 Measurement Uncertainty 5 4.6 Additions to, Deviations, or Exclusions From the Method. 5 4.7 Laboratory Facility 5 4.8 Laboratory Location 5 4.9 Test Instruments List 6 5 Measurement Setup and Procedure 8 5.1 Test Channel 8 5.2 Test Setup 8 5.3 Test Procedure 8 5.3 Test Results 11 6.1 Summary 11 6.1 Summary 11 6.2 Antenna Requirement 13 6.3 AC Power Line Conducted Emission 14 6.4 Emissions in Restricted Frequency Bands 16	4	Gen	eral Information	. 4
4.3 Test Mode and Test Environment .5 4.4 Description of Support Units .5 4.5 Measurement Uncertainty .5 4.6 Additions to, Deviations, or Exclusions From the Method .5 4.7 Laboratory Facility .5 4.8 Laboratory Location .5 4.9 Test Instruments List .6 5 Measurement Setup and Procedure .8 5.1 Test Channel .8 5.2 Test Setup .8 5.3 Test Procedure .8 5.3 Test Results .10 6 Test Results .11 6.1 Summary .11 6.2 Antenna Requirement .13 6.3 AC Power Line Conducted Emission .14 6.4 Emissions in Restricted Frequency Bands .16		4.1	Client Information	4
4.4 Description of Support Units .5 4.5 Measurement Uncertainty .5 4.6 Additions to, Deviations, or Exclusions From the Method .5 4.7 Laboratory Facility .5 4.8 Laboratory Location .5 4.9 Test Instruments List .6 5 Measurement Setup and Procedure .8 5.1 Test Channel .8 5.2 Test Setup .8 5.3 Test Procedure .10 6 Test Results .11 6.1 Summary .11 6.2 Antenna Requirement .13 6.3 AC Power Line Conducted Emission .14 6.4 Emissions in Restricted Frequency Bands .16		4.2	General Description of E.U.T.	4
4.5 Measurement Uncertainty .5 4.6 Additions to, Deviations, or Exclusions From the Method .5 4.7 Laboratory Facility .5 4.8 Laboratory Location .5 4.9 Test Instruments List .6 5 Measurement Setup and Procedure .8 5.1 Test Channel .8 5.2 Test Setup .8 5.3 Test Procedure .10 6 Test Results .10 6.1 Summary .11 6.2 Antenna Requirement .13 6.3 AC Power Line Conducted Emission .14 6.4 Emissions in Restricted Frequency Bands .16		4.3	Test Mode and Test Environment	5
4.6 Additions to, Deviations, or Exclusions From the Method		4.4		
4.7 Laboratory Facility .5 4.8 Laboratory Location .5 4.9 Test Instruments List .6 5 Measurement Setup and Procedure .8 5.1 Test Channel .8 5.2 Test Setup .8 5.3 Test Procedure .8 5.3 Test Results .10 6 Test Results .11 6.1 Summary .11 6.2 Antenna Requirement .13 6.3 AC Power Line Conducted Emission .14 6.4 Emissions in Restricted Frequency Bands .16		4.5		
4.8 Laboratory Location .5 4.9 Test Instruments List .6 5 Measurement Setup and Procedure .8 5.1 Test Channel .8 5.2 Test Setup .8 5.3 Test Procedure .8 6 Test Results .10 6 Test Results .11 6.1 Summary .11 6.2 Antenna Requirement .13 6.3 AC Power Line Conducted Emission .14 6.4 Emissions in Restricted Frequency Bands .16		4.6		
4.9 Test Instruments List .6 5 Measurement Setup and Procedure .8 5.1 Test Channel .8 5.2 Test Setup .8 5.3 Test Procedure .8 6 Test Results .10 6.1 Summary .11 6.2 Antenna Requirement .13 6.3 AC Power Line Conducted Emission .14 6.4 Emissions in Restricted Frequency Bands .16		4.7		
5 Measurement Setup and Procedure 8 5.1 Test Channel 8 5.2 Test Setup 8 5.3 Test Procedure 10 6 Test Results 11 6.1 Summary 11 6.2 Antenna Requirement 13 6.3 AC Power Line Conducted Emission 14 6.4 Emissions in Restricted Frequency Bands 16		-		
5.1 Test Channel 8 5.2 Test Setup 8 5.3 Test Procedure 10 6 Test Results 11 6.1 Summary 11 6.2 Antenna Requirement 13 6.3 AC Power Line Conducted Emission 14 6.4 Emissions in Restricted Frequency Bands 16		4.9	Test Instruments List	6
5.2 Test Setup	5	Meas	surement Setup and Procedure	. 8
5.2 Test Setup		5.1	Test Channel	8
5.3 Test Procedure 10 6 Test Results 11 6.1 Summary 11 6.2 Antenna Requirement 13 6.3 AC Power Line Conducted Emission 14 6.4 Emissions in Restricted Frequency Bands 16		5.2		
6.1Summary116.2Antenna Requirement136.3AC Power Line Conducted Emission146.4Emissions in Restricted Frequency Bands16		5.3		
6.2Antenna Requirement136.3AC Power Line Conducted Emission146.4Emissions in Restricted Frequency Bands16	6	Test	Results	11
6.2Antenna Requirement136.3AC Power Line Conducted Emission146.4Emissions in Restricted Frequency Bands16		6.1	Summary	11
 6.3 AC Power Line Conducted Emission		6.2		
		6.4		
		6.5		

4 General Information

4.1 Client Information

Applicant:	Aratek Biometrics Co., Ltd.
Address:	2F, T2-A Building, ShenZhen Software Park South Area, Hi-Tech Park
Manufacturer:	Aratek Biometrics Co., Ltd.
Address:	2F, T2-A building, Shenzhen Hi-tech Industrial Park, 518057, Shenzhen, China
Factory:	Aratek Biometrics Co., Ltd.
Address:	4F, 2th building, Nangang first industrial park, Baimang Songbai Road #1029, Nanshan district, Shenzhen, Guangdong, China.

4.2 General Description of E.U.T.

Product Name:	Face Recognition Terminal
Model No.:	BA8300, BA8300-T, P80
Operation Frequency:	2402 MHz - 2480 MHz
Transfer Rate:	1/2/3 Mbits/s
Number of Channel:	79
Modulation Type:	GFSK, π/4-DQPSK, 8DPSK
Modulation Technology:	FHSS
Antenna Type:	Internal Antenna
Antenna Gain:	1.3 dBi (declare by applicant)
Antenna transmit mode:	SISO (1TX, 1RX)
AC Adapter:	Model: GJ27WE-1200200U
	Input: AC100-240V, 50/60Hz, 0.8A
	Output: DC 12V, 2A
Test Sample Condition:	The test samples were provided in good working order with no visible defects.
Remark:	Model No.: BA8300, BA8300-T, P80 were identical inside, the electrical circuit design, layout, components used and internal wiring, with only difference being model name.

4.3 Test Mode and Test Environment

Test Modes:				
Non-hopping mode:	Non-hopping mode: Keep the EUT in continuous transmitting mode.			
Hopping mode:	Keep the EUT in hopping mode.			
Remark: For AC power line conducted emission and radiated spurious emission, pre-scan GFSK, π /4-DQPSK, 8DPSK modulation mode, found GFSK modulation was worse case mode. The report only reflects the test data of worst mode. Operating Environment:				
Temperature:	15℃ ~ 35℃			
Humidity: 20 % ~ 75 % RH				
Atmospheric Pressure: 1010 mbar				

4.4 Description of Support Units

The EUT has been tested as an independent unit.

4.5 Measurement Uncertainty

Parameter	Expanded Uncertainty (Confidence of 95%(U = 2Uc(y)))
Conducted Emission for LISN (9kHz ~ 150kHz)	±3.11 dB
Conducted Emission for LISN (150kHz ~ 30MHz)	±2.62 dB
Radiated Emission (30MHz ~ 1GHz) (3m SAC)	±4.45 dB
Radiated Emission (1GHz ~ 18GHz) (3m SAC)	±5.34 dB
Radiated Emission (18GHz ~ 40GHz) (3m SAC)	±5.34 dB
Radiated Emission (30MHz ~ 1GHz) (10m SAC)	±4.32 dB

Note: All the measurement uncertainty value were shown with a coverage k=2 to indicate 95% level of confidence. The measurement data show herein meets or exceeds the CISPR measurement uncertainty values specified in CISPR 16-4-2 and can be compared directly to specified limit to determine compliance.

4.6 Additions to, Deviations, or Exclusions From the Method

No

4.7 Laboratory Facility

The test facility is recognized, certified, or accredited by the following organizations:

• FCC - Designation No.: CN1211

JianYan Testing Group Shenzhen Co., Ltd. has been accredited as a testing laboratory by FCC(Federal Communications Commission). The test firm Registration No. is 727551.

• ISED – CAB identifier.: CN0021

The 3m Semi-anechoic chamber and 10m Semi-anechoic chamber of JianYan Testing Group Shenzhen Co., Ltd. has been Registered by Certification and Engineering Bureau of Industry Canada for radio equipment testing with Registration No.: 10106A-1.

• CNAS - Registration No.: CNAS L15527

JianYan Testing Group Shenzhen Co., Ltd. is accredited to ISO/IEC 17025:2017 General Requirements for the Competence of Testing and Calibration laboratories for the competence of testing. The Registration No. is CNAS L15527.

• A2LA - Registration No.: 4346.01

This laboratory is accredited in accordance with the recognized International Standard ISO/IEC 17025:2017 General requirements for the competence of testing and calibration laboratories. The test scope can be found as below link: <u>https://portal.a2la.org/scopepdf/4346-01.pdf</u>

4.8 Laboratory Location

JianYan Testing Group Shenzhen Co., Ltd. Address: No 101 Building & Innovation Wisdom Port, No 15

Address: No.101, Building 8, Innovation Wisdom Port, No.155 Hongtian Road, Huangpu Community, Xinqiao Street, Bao'an District, Shenzhen, Guangdong, People's Republic of China. Tel: +86-755-23118282, Fax: +86-755-23116366 Email: info-JYTee@lets.com, Website: http://jyt.lets.com

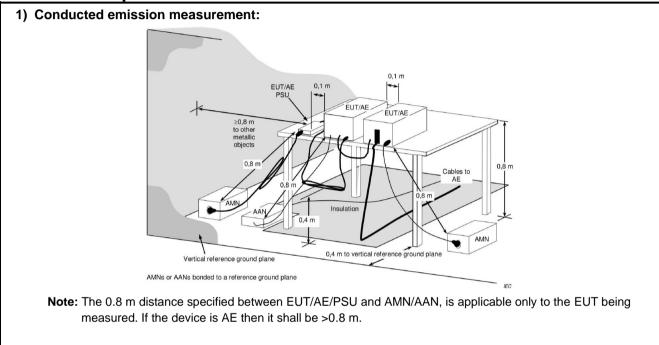
4.9 Test Instruments List

Radiated Emission(3m SAC):						
Test Equipment	Manufacturer	Model No.	Manage No.	Cal.Date (mm-dd-yy)	Cal. Due date (mm-dd-yy)	
3m SAC	ETS	9m*6m*6m	WXJ001-1	01-19-2021	01-18-2024	
BiConiLog Antenna	Schwarzbeck	VULB9163	WXJ002	02-17-2022	02-16-2023	
Biconical Antenna	Schwarzbeck	VUBA9117	WXJ002-1	06-20-2021	06-19-2022	
Horn Antenna	Schwarzbeck	BBHA9120D	WXJ002-2	02-17-2022	02-16-2023	
Horn Antenna	Schwarzbeck	BBHA9120D	WXJ002-3	06-18-2021	06-17-2022	
Pre-amplifier (30MHz ~ 1GHz)	Schwarzbeck	BBV9743B	WXG001-7	02-17-2022	02-16-2023	
Pre-amplifier (1GHz ~ 18GHz)	SKET	LNPA_0118G-50	WXG001-3	02-17-2022	02-16-2023	
Pre-amplifier (18GHz ~ 40GHz)	RF System	TRLA- 180400G45B	WXG001-9	02-17-2022	02-16-2023	
EMI Test Receiver	Rohde & Schwarz	ESRP7	WXJ003-1	02-17-2022	02-16-2023	
Spectrum Analyzer	KEYSIGHT	N9010B	WXJ004-2	11-27-2021	11-26-2022	
Band Reject Filter Group	Tonscend	JS0806-F	WXJ089	N	/A	
Coaxial Cable (30MHz ~ 1GHz)	JYTSZ	JYT3M-1G-NN-8M	WXG001-4	02-17-2022	02-16-2023	
Coaxial Cable (1GHz ~ 18GHz)	JYTSZ	JYT3M-18G-NN- 8M	WXG001-5	02-17-2022	02-16-2023	
Coaxial Cable (18GHz ~ 40GHz)	JYTSZ	JYT3M-40G-SS- 8M	WXG001-7	02-17-2022	02-16-2023	
Test Software	Tonscend	TS+		Version: 3.0.0.1		

Radiated Emission(10m SAC):						
Test Equipment	Manufacturer	Model No.	Manage No.	Cal.Date (mm-dd-yy)	Cal.Due date (mm-dd-yy)	
10m SAC	ETS	RFSD-100-F/A	WXJ090	04-28-2021	04-27-2024	
DiCaril an Antonna			W/X 1000 4	04-02-2021	04-01-2022	
BiConiLog Antenna	SCHWARZBECK	VULB 9168	WXJ090-1	03-30-2022	03-29-2023	
DiCaril an Antonna			W/X 1000 0	04-02-2021	04-01-2022	
BiConiLog Antenna	SCHWARZBECK	VULB 9168	WXJ090-2	03-30-2022	03-29-2023	
			W/X 1000 0	04-08-2021	04-07-2022	
EMI Test Receiver	R&S	ESR 3	WXJ090-3	03-30-2022	03-29-2023	
			WXJ090-4	04-08-2021	04-07-2022	
EMI Test Receiver	R&S	ESR 3	VV AJ090-4	03-30-2022	03-29-2023	
Levy Dre emplifier	Deet			04-06-2021	04-05-2022	
Low Pre-amplifier	Bost	LNA 0920N	WXG002-3	03-30-2022	03-29-2023	
Law Dec area lifter	Deat			04-06-2021	04-05-2022	
Low Pre-amplifier	Bost	LNA 0920N	WXG002-4	03-30-2022	03-29-2023	
Oshla	Deat	JYT10M-1G-NN-	X0000 7	04-02-2021	04-01-2022	
Cable	Bost	10M	XG002-7	03-30-2022	03-29-2023	
		JYT10M-1G-NN-	X0000 0	04-02-2021	04-01-2022	
Cable	Bost	10M	10M XG002-8	03-30-2022	03-29-2023	
Test Software	R&S	EMC32	Version: 10.50.40			

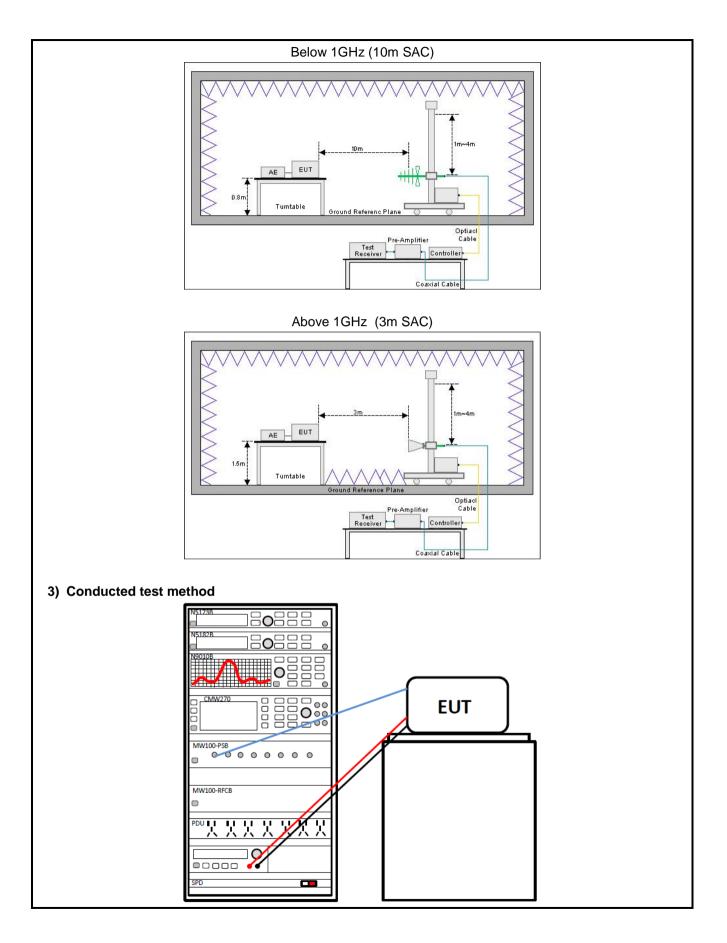
Conducted Emission:						
Test Equipment	Manufacturer	Model No.	Manage No.	Cal.Date (mm-dd-yy)	Cal. Due date (mm-dd-yy)	
EMI Test Receiver	Rohde & Schwarz	ESCI 3	WXJ003	02-17-2022	02-16-2023	
RF Switch	TOP PRECISION	RSU0301	WXG003	02-17-2022	02-16-2023	
LISN	Schwarzbeck	NSLK 8127	QCJ001-13	02-17-2022	02-16-2023	
LISN	Rohde & Schwarz	ESH3-Z5	WXJ005-1	06-18-2021	06-17-2022	
LISN Coaxial Cable (9kHz ~ 30MHz)	JYTSZ	JYTCE-1G-NN-2M	WXG003-1	02-17-2022	02-16-2023	
Test Software	AUDIX	E3	Version: 6.110919b			

Conducted Method:						
Test Equipment	Manufacturer	Model No.	Manage No.	Cal. Date (mm-dd-yy)	Cal. Due date (mm-dd-yy)	
Spectrum Analyzer	Keysight	N9010B	WXJ004-3	10-25-2021	10-24-2022	
Vector Signal Generator	Keysight	N5182B	WXJ006-6	10-25-2021	10-24-2022	
Signal Generator	Keysight	N5173B	WXJ006-4	10-25-2021	10-24-2022	
Wireless Connectivity Tester	Rohde & Schwarz	CMW270	WXJ008-7	10-25-2021	10-24-2022	
DC Power Supply	Keysight	E3642A	WXJ025-2	10-25-2021	10-24-2022	
Temperature Humidity Chamber	ZHONG ZHI	CZ-A-80D	WXJ032-3	03-19-2021	03-18-2023	
Power Detector Box	MWRFTEST	MW100-PSB	WXJ007-4	10-25-2021	10-24-2022	
RF Control Unit	MWRFTEST	MW100-RFCB	WXG006	N/A		
Test Software	MWRFTEST	MTS 8310		Version: 2.0.0.0		


5 Measurement Setup and Procedure

5.1 Test Channel

According to ANSI C63.10-2013 chapter 5.6.1 Table 4 requirement, select lowest channel, middle channel, and highest channel in the frequency range in which device operates for testing. The detailed frequency points are as follows:


Γ	Lowe	est channel	Midd	le channel	Highest channel		
	Channel No.	Frequency (MHz)	Channel No.	Frequency (MHz)	Channel No.	Frequency (MHz)	
	0	2402	39	2441	78	2480	

5.2 Test Setup

2) Radiated emission measurement:

Project No.: JYTSZR2203015

5.3 Test Procedure

Test method	Test step
Conducted emission	 The E.U.T and simulators are connected to the main power through a line impedance stabilization network (L.I.S.N.). This provides a 50ohm/50uH coupling impedance for the measuring equipment. The peripheral devices are also connected to the main power through a LISN that provides a 50ohm/50uH coupling impedance with 50ohm termination. (Please refer to the block diagram of the test setup and photographs). Both sides of A.C. line are checked for maximum conducted interference. In order to find the maximum emission, the relative positions of equipment and all of the interface cables must be changed according to ANSI C63.10 on conducted measurement.
Radiated emission	 For below 1GHz: The EUT was placed on the tabletop of a rotating table 0.8 m the ground at a 10 m semi anechoic chamber. The measurement distance from the EUT to the receiving antenna is 10 m. EUT works in each mode of operation that needs to be tested, and having the EUT continuously working, respectively on 3 axis (X, Y & Z) and considered typical configuration to obtain worst position. The highest signal levels relative to the limit shall be determined by rotating the EUT from 0° to 360° and with varying the measurement antenna height between 1 m and 4 m in vertical and horizontal polarizations. Open the test software to control the test antenna and test turntable. Perform the test, save the test results, and export the test data.
Conducted test method	 For above 1GHz: The EUT was placed on the tabletop of a rotating table 1.5 m the ground at a 3 m fully anechoic room. The measurement distance from the EUT to the receiving antenna is 3 m. EUT works in each mode of operation that needs to be tested, and having the EUT continuously working, respectively on 3 axis (X, Y & Z) and considered typical configuration to obtain worst position. The highest signal levels relative to the limit shall be determined by rotating the EUT from 0° to 360° and with varying the measurement antenna height between 1 m and 4 m in vertical and horizontal polarizations. Open the test software to control the test antenna and test turntable. Perform the test, save the test results, and export the test data. The Bluetooth antenna port of EUT was connected to the test port of the test system through an RF cable. The EUT is keeping in continuous transmission mode and tested in all modulation modes.
	3. Open the test software, prepare a test plan, and control the system through the software. After the test is completed, the test report is exported through the test software.

6 Test Results

6.1 Summary

6.1.1 Clause and data summary

15.203 15.247 (b)(4) 15.207	See Section 6.2	Pass
15.207	Cas Castion C 2	
	See Section 6.3	Pass
15.247 (b)(1)	Appendix A– BT	Pass
15.247 (a)(1)	Appendix A– BT	Pass
15.247 (a)(1)	Appendix A– BT	Pass
5.247 (a)(1)(iii)	Appendix A– BT	Pass
15.247 (a)(1)(iii)	Appendix A– BT	Pass
15.247 (d)	Appendix A– BT	Pass
15.205 15.247 (d)	See Section 6.4	Pass
15.209 15.247(d)	See Section 6.5	Pass
	15.247 (a)(1) 5.247 (a)(1)(iii) 15.247 (a)(1)(iii) 15.247 (d) 15.205 15.247 (d) 15.209	15.247 (a)(1) Appendix A- BT 5.247 (a)(1)(iii) Appendix A- BT 15.247 (a)(1)(iii) Appendix A- BT 15.247 (a)(1)(iii) Appendix A- BT 15.247 (d) Appendix A- BT 15.205 See Section 6.4 15.209 See Section 6.5 15.247 (d) See Section 6.5

- 2. N/A: Not Applicable.
- 3. The cable insertion loss used by "RF Output Power" and other conduction measurement items is 0.5dB (provided by the customer).

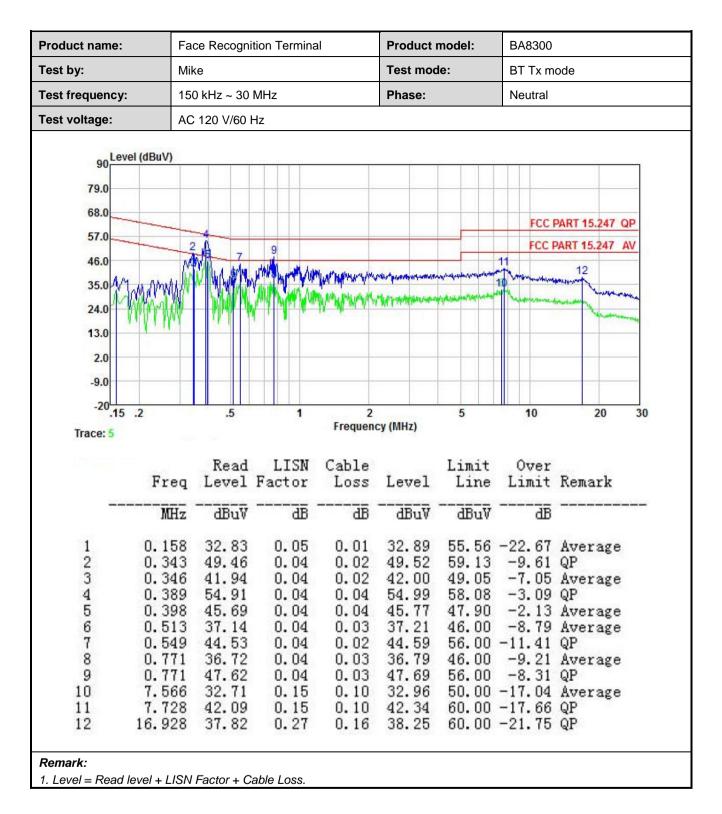
Test Method:

ANSI C63.10-2013 KDB 558074 D01 15.247 Meas Guidance v05r02

6.1.2 Test Limit

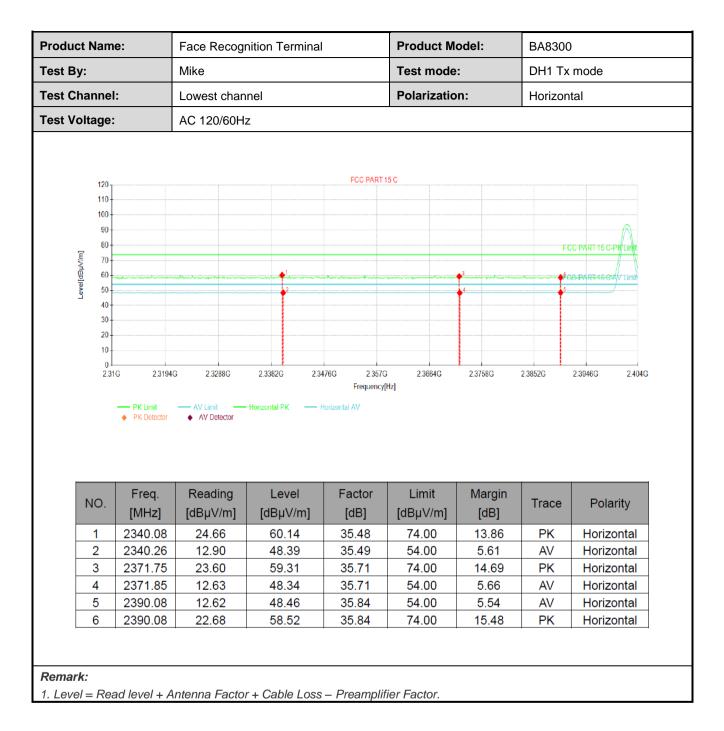
Test items		Lin	it		
	Frequency		Limit (dl	BμV)	
	(MHz)	Quas	i-Peak	Average	
AC Power Line Conducted	0.15 – 0.5	66 to	56 Note 1	56 to 46 Note 1	
Emission	0.5 – 5		56	46	
	<u>5 – 30</u>		30	50	
	Note 1: The limit level in dBµ\ Note 2: The more stringent lim		-	n of frequency.	
Conducted Output Power	For frequency hopping sys employing at least 75 non- frequency hopping system	overlapping h	opping chanr	nels: 1 watt. For all oth	ner
20dB Occupied Bandwidth	Within authorization band				
Carrier Frequencies Separation	a) 0.025MHz or the 20dBb) 0.025MHz or two-thirds		-	,	
Hopping Channel Number	At least 15 channels.		X	,	
Dwell Time	Not be greater than 0.4 se	conds.			
Band-edge Emission Conduction Spurious Emission	spectrum or digitally modu frequency power that is pro dB below that in the 100 kH highest level of the desired radiated measurement, pro the peak conducted power power limits based on the permitted under paragraph this paragraph shall be 30 limits specified in §15.209(which fall in the restricted b with the radiated emission	bduced by the Hz bandwidth I power, base by ided the tran limits. If the t use of RMS a (b)(3) of this dB instead of (a) is not requi- bands, as defi	intentional ra within the ba d on either ar nsmitter demo ransmitter converaging ove section, the a 20 dB. Atten ired. In addition ned in §15.20	adiator shall be at lease nd that contains the n RF conducted or a constrates compliance mplies with the condu r a time interval, as attenuation required un uation below the gene on, radiated emissions D5(a), must also comp	with cted nder eral
	Frequency	Limit (d		Detector	
	(MHz) 30 – 88	@ 3m 40.0	@ 10m 30.0	Quasi pask	
Emissions in Restricted	30 – 88 88 – 216	40.0	30.0	Quasi-peak Quasi-peak	-
Frequency Bands	216 - 960	46.0	36.0	Quasi-peak	+
	960 - 1000	54.0	44.0	Quasi-peak	1
Emissions in Non-restricted	Note: The more stringent limit				
Frequency Bands	Frequency		Limit (dBµV/n	n) @ 3m	
		Ave	age	Peake	
	Above 1 GHz	54	.0	74.0	
	Note: The measurement band	width shall be 1 M	Hz or greater.		

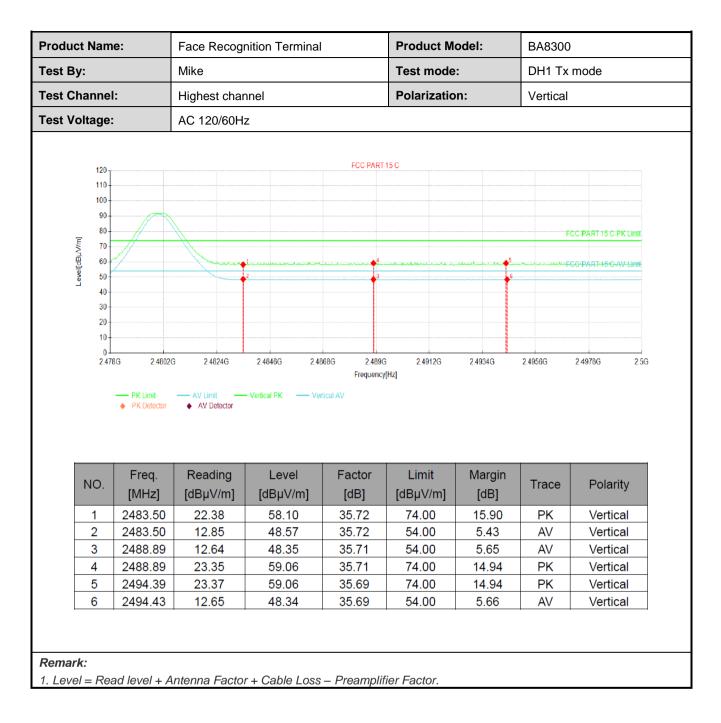
6.2 Antenna Requirement


Standard requirement:	FCC Part 15 C Section 15.203 & 247(b)
responsible party shall be us antenna that uses a unique so that a broken antenna car electrical connector is prohib 15.247(b) (4) requirement: (4) The conducted output po antennas with directional gas section, if transmitting anten power from the intentional ra	be designed to ensure that no antenna other than that furnished by the sed with the device. The use of a permanently attached antenna or of an coupling to the intentional radiator, the manufacturer may design the unit in be replaced by the user, but the use of a standard antenna jack or bited. wer limit specified in paragraph (b) of this section is based on the use of ins that do not exceed 6 dBi. Except as shown in paragraph (c) of this nas of directional gain greater than 6 dBi are used, the conducted output adiator shall be reduced below the stated values in paragraphs (b)(1), ion, as appropriate, by the amount in dB that the directional gain of the
E.U.T Antenna:	
	nternal antenna which permanently attached, and the best case gain of oduct internal photos for details.

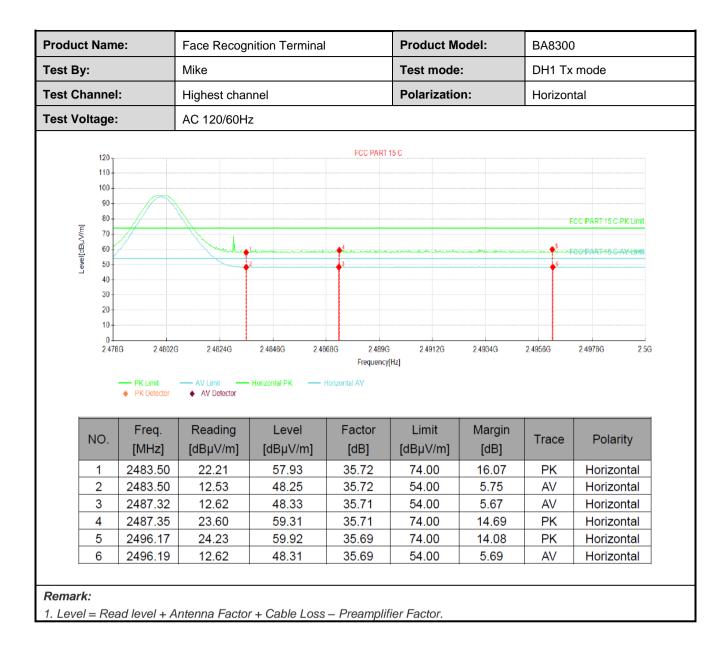
oduct name:		Face Recogn	ition Termina	al	Product r	model:	BA8300		
est by:		Mike			Test mod	le:	BT Tx mode		
est frequenc	y:	150 kHz ~ 30 MHz			Phase: Lir		Line	Line	
est voltage:		AC 120 V/60	Hz						
	evel (dBuV)								
79.0									
68.0	-						FCC	PART 15.247 Q	D
57.0		RT							_
46.0		2					11	PART 15.247 A	V
1922 11.2		Mr. all	All a da		and the light		A	12	
35.0	and MAN	A THE A	MAL MARY	-Chi. Maurhalleur	an have been a series of the s	alternative reasons	10 mar	- A	
24.0	A MAN	1 NUM	N TAWY	Authorithes	C. H. M. Marker Statistics	and the stand and water	and the second se	any short the	-
13.0	AA Awatala.								-
2.0									_
-9.0									
-20-	15 .2	.5	1	2	Second 1	5	10	20	30
Trace: 7				Frequen	cy (MHz)				
		Read	LISN	Cable		Limit	Over		
	Fre	q Level	Factor	Loss	Level	Line	Limit	Remark	
			100000000000000000000000000000000000000						
	MH	z dBuV	dB	dB	dBuV	dBuV	dB		
-	MH: 0.25		dB 0.04	dB 0.01	dBuV 28.78			Average	
- 1 2	0.25	8 28.73 8 42.66	0.04 0.04	0.01 0.03	28.78 42.73	51.51 59.75	-22.73 -17.02	QP	
1 2 3	0.25 0.31 0.33	8 28.73 8 42.66 7 38.94	0.04 0.04 0.04	0.01 0.03 0.02	28.78 42.73 39.00	51.51 59.75 49.27	-22.73 -17.02 -10.27	QP Average	
- 1 2 3 4	0.25 0.31 0.33 0.33	8 28.73 8 42.66 7 38.94 1 45.10	0.04 0.04 0.04 0.04	0.01 0.03 0.02 0.03	28.78 42.73 39.00 45.17	51.51 59.75 49.27 48.25	-22.73 -17.02 -10.27 -3.08	QP Average Average	
- 1 2 3 4 5 6	0.25 0.31 0.33 0.38 0.38	8 28.73 8 42.66 7 38.94 1 45.10 5 50.81	0.04 0.04 0.04 0.04 0.04 0.04	0.01 0.03 0.02 0.03 0.03	28.78 42.73 39.00 45.17 50.88	51.51 59.75 49.27 48.25 58.17	-22.73 -17.02 -10.27 -3.08 -7.29	QP Average Average QP	
6	0.25) 0.31) 0.33 0.38 0.38 0.39)	8 28.73 8 42.66 7 38.94 1 45.10 5 50.81 8 44.31	0.04 0.04 0.04 0.04 0.04 0.04	0.01 0.03 0.02 0.03 0.03 0.03 0.04	28.78 42.73 39.00 45.17 50.88 44.39	51.51 59.75 49.27 48.25 58.17 47.90	-22.73 -17.02 -10.27 -3.08 -7.29 -3.51	QP Average Average QP Average	
6 7	0.25) 0.31) 0.33 0.38 0.38 0.39) 0.39) 0.39)	8 28.73 8 42.66 7 38.94 1 45.10 5 50.81 8 44.31 8 50.56	0.04 0.04 0.04 0.04 0.04 0.04 0.04	0.01 0.03 0.02 0.03 0.03 0.04 0.04	28.78 42.73 39.00 45.17 50.88 44.39 50.64	51.51 59.75 49.27 48.25 58.17 47.90 57.90	-22.73 -17.02 -10.27 -3.08 -7.29 -3.51 -7.26	QP Average Average QP Average QP	
6 7 8	0.25) 0.31) 0.33 0.38 0.38 0.39) 0.39) 0.39) 0.74	8 28.73 8 42.66 7 38.94 1 45.10 5 50.81 8 44.31 8 50.56 7 34.60	0.04 0.04 0.04 0.04 0.04 0.04 0.04 0.04	0.01 0.03 0.02 0.03 0.03 0.04 0.04 0.03	28.78 42.73 39.00 45.17 50.88 44.39 50.64 34.67	51.51 59.75 49.27 48.25 58.17 47.90 57.90 46.00	-22.73 -17.02 -10.27 -3.08 -7.29 -3.51 -7.26 -11.33	QP Average Average QP Average QP Average	
6 7 8 9	0.25 0.31 0.33 0.38 0.38 0.39 0.39 0.39 0.74	8 28.73 8 42.66 7 38.94 1 45.10 5 50.81 8 44.31 8 50.56 7 34.60 7 41.75	0.04 0.04 0.04 0.04 0.04 0.04 0.04 0.04 0.04 0.04	0.01 0.03 0.02 0.03 0.03 0.04 0.04 0.03 0.03	28.78 42.73 39.00 45.17 50.88 44.39 50.64 34.67 41.82	51.51 59.75 49.27 48.25 58.17 47.90 57.90 46.00 56.00	-22.73 -17.02 -10.27 -3.08 -7.29 -3.51 -7.26 -11.33 -14.18	QP Average QP Average QP Average QP	
6 7 8 9 10	0.25/ 0.31/ 0.33 0.38 0.38/ 0.39/ 0.39/ 0.39/ 0.74 0.74 7.64/	8 28.73 8 42.66 7 38.94 1 45.10 5 50.81 8 44.31 8 50.56 7 34.60 7 41.75 6 28.82	0.04 0.04 0.04 0.04 0.04 0.04 0.04 0.04 0.04 0.04 0.16	0.01 0.03 0.02 0.03 0.03 0.04 0.04 0.03 0.03 0.03 0.10	28.78 42.73 39.00 45.17 50.88 44.39 50.64 34.67 41.82 29.08	51.51 59.75 49.27 48.25 58.17 47.90 57.90 46.00 56.00 50.00	-22.73 -17.02 -10.27 -3.08 -7.29 -3.51 -7.26 -11.33 -14.18 -20.92	QP Average QP Average QP Average QP Average Average	
6 7 8 9	0.25 0.31 0.33 0.38 0.38 0.39 0.39 0.39 0.74	8 28.73 8 42.66 7 38.94 1 45.10 5 50.81 8 44.31 8 50.56 7 34.60 7 41.75 6 28.82 3 44.24	0.04 0.04 0.04 0.04 0.04 0.04 0.04 0.04 0.04 0.04	0.01 0.03 0.02 0.03 0.03 0.04 0.04 0.03 0.03	28.78 42.73 39.00 45.17 50.88 44.39 50.64 34.67 41.82	51.51 59.75 49.27 48.25 58.17 47.90 57.90 46.00 56.00 50.00 60.00	-22.73 -17.02 -10.27 -3.08 -7.29 -3.51 -7.26 -11.33 -14.18	QP Average QP Average QP Average QP Average QP Average QP	

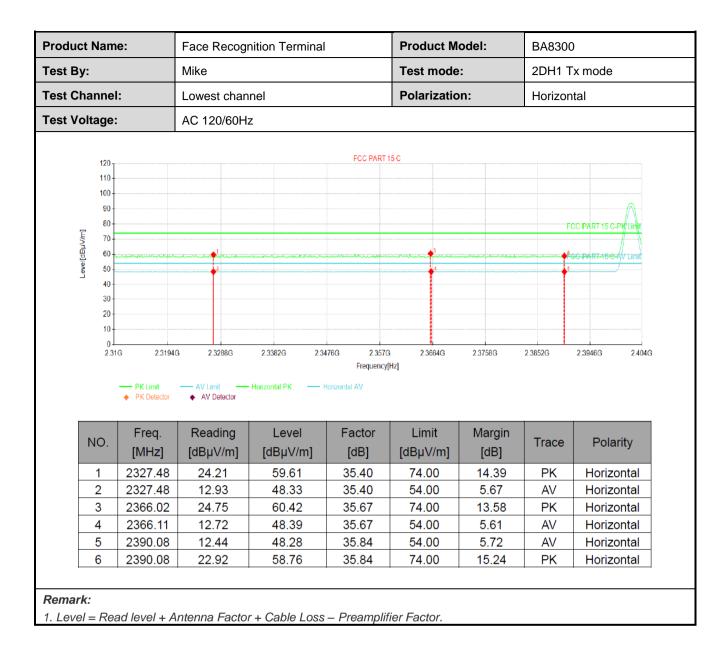
6.3 AC Power Line Conducted Emission

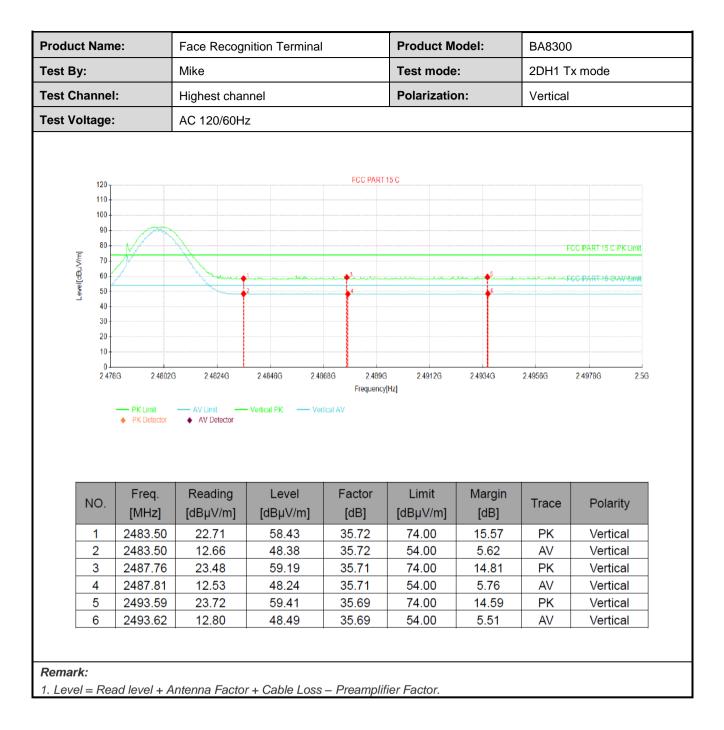




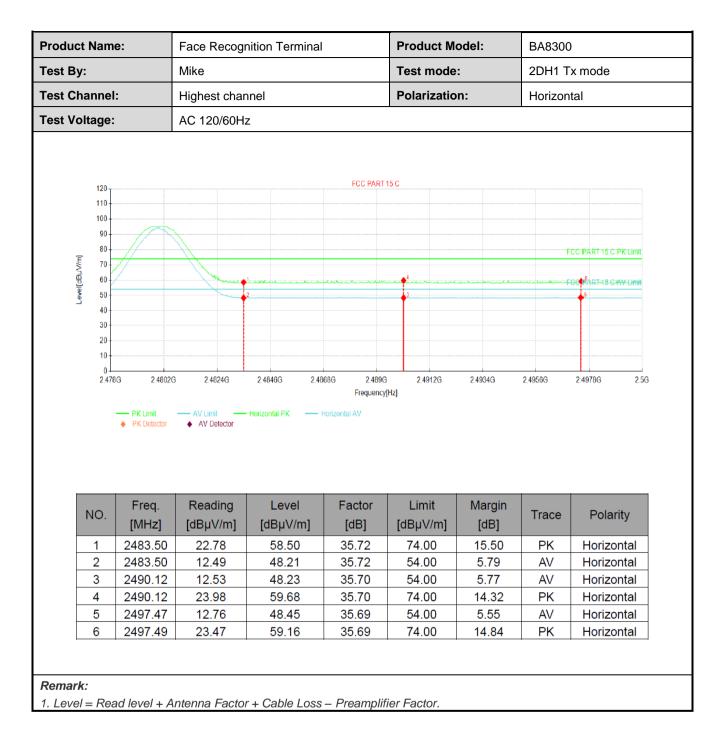
6.4 Emissions in Restricted Frequency Bands

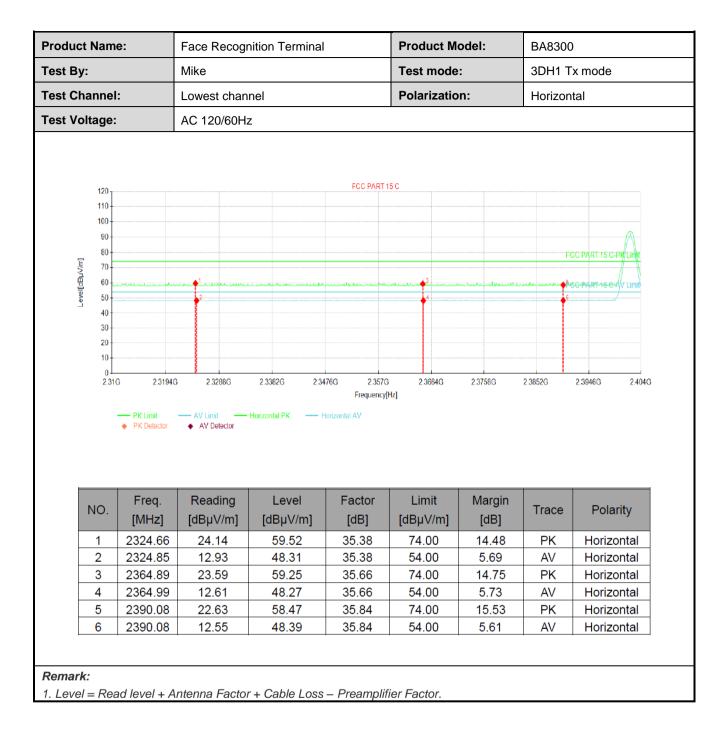


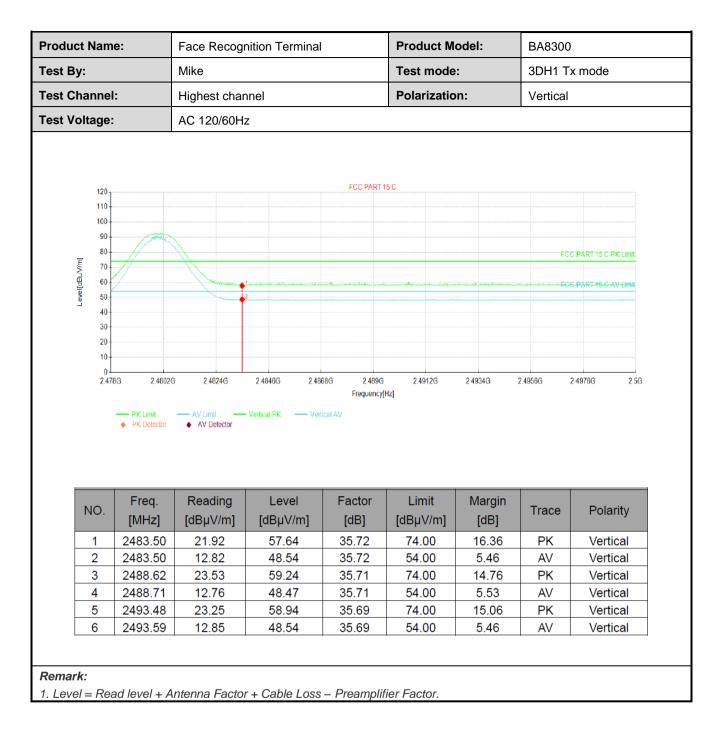



π /4-DQPSK mode

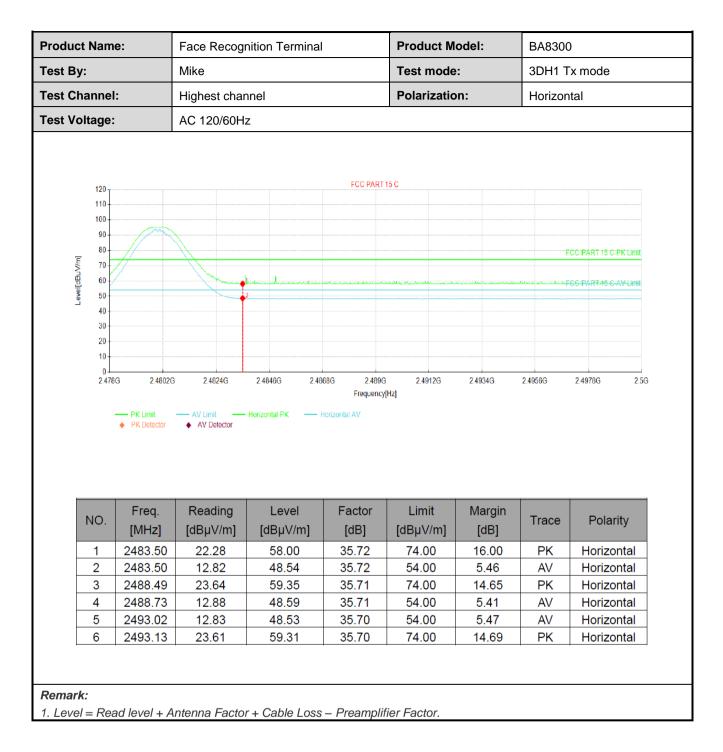
Product Name:			Face Recognition Terminal			Product Model:		BA8300		
Гest By:			Mike			Test mode:		2DH1 Tx mode		
st Cha	annel	l:	Lowest channel			Polarizatio	Polarization:		Vertical	
est Voltage:			AC 120/60H	z						
	-									
	120		FCC PART 15 C							
	110-									
	100-									
	90-								\wedge	
Ē	80							FC	C PART 15 C-PK Limit	
Level[dBµ//m]	70 60 -		•1			•3				
vel[d	50	and a second de la company	2	a Maria Makin ala Majarin da ka		4	And have been a second s		GPART 15 CAV Limit	
Ļ	40									
	30-									
	20-									
	20 10									
	20	G 2.3194G	3 2.3288G	2.3382G 2.34	76G 2.3570	3 2.3664G	2.3758G	2.3852G	2.3946G 2.404G	
	20 10- 0-	G 2.3194G	3 2.3288G	2.3382G 2.34	76G 2.357G Frequency		2.3758G	2.3852G	2 3946G 2 404G	
	20 10- 0-	PK Limit	AV Limit				2.3758G	2 3852G	2 3946G 2 404C	
	20 10- 0-				Frequency		2.3758G	2.3852G	23946G 2.404G	
	20 10 0 2.31	PK Limit PK Detector	AV Limit		Frequency					
1	20 10- 0-	PK Limit	AV Limit	– Vertical PK – Verti	Frequency	[Hz]	2.37586 Margin [dB]	2 3852G	2 3946G 2 404C Polarity	
	20 10 0 2.31	PK Limit PK Detector Freq.	AV Limit AV Detector Reading	- Vertical PK Verti	Frequency cal AV Factor	Hz]	Margin			
1	20- 10- 2.31	PK Limit PK Detector Freq. [MHz]	AV Linit AV Detector Reading [dBµV/m]	- Vertical PK Verti Level [dBµV/m]	Frequency cal AV Factor [dB]	Limit [dBµV/m]	Margin [dB]	Trace	Polarity	
	20 10 231 NO.	PK Limit PK Detector Freq. [MHz] 2331.15	AV Linit AV Detector Reading [dBµV/m] 24.13	- Vertical PK	Frequency cal AV Factor [dB] 35.42	Limit [dBµV/m] 74.00	Margin [dB] 14.45	Trace	Polarity Vertical	
	20 10 2.31 NO. 1 2	 PK Limit PK Detector Freq. [MHz] 2331.15 2331.15 	AV Linit AV Detector Reading [dBµV/m] 24.13 13.02	- Vertical PK	Frequency Cal AV Factor [dB] 35.42 35.42	Limit [dBµV/m] 74.00 54.00	Margin [dB] 14.45 5.56	Trace PK AV	Polarity Vertical Vertical	
	20 10 231 NO. 1 2 3	 → PK Limit → PK Detector Freq. [MHz] 2331.15 2331.15 2364.99 	AV Linit AV Detector Reading [dBµV/m] 24.13 13.02 23.57	- Vertical PK	Frequency cal AV Factor [dB] 35.42 35.42 35.66	Limit [dBµV/m] 74.00 54.00 74.00	Margin [dB] 14.45 5.56 14.77	Trace PK AV PK	Polarity Vertical Vertical Vertical	






8DPSK mode

-	roduct Name:		Face Recognition Terminal			Product Model:		BA8300		
	est By:		Mike			Test mode:		3DH1 Tx mode		
est Channel:			Lowest channel			Polarization: Ve		Vertical	ertical	
est Voltage:			AC 120/60Hz	Z						
	120 110 100 90 80 70 60 50 40 30 20				FCC PART 1	5C		F(در المحمد المحمد ومد محمد المحمد المحم المحمد المحمد المحم المحمد المحمد ال محمد المحمد محمد محمد ا	CC PART 15 C-PK LIMI	
	10 0 2.310	G 2.3194G		2.3382G 2.34 Vertical PK — Verti	Frequency[I		2.3758G	2 3852G	2 3946G 2 404C	
NO	10	PK Limit PK Detector Freq.	AV Limit AV Detector Reading	Vertical PK Verti Level	Frequency[cal AV Factor	Hz] Limit	Margin	2 3852G	2 3946G 2 404C	
	10 0 2.310	PK Limit PK Detector Freq. [MHz]	AV Limit AV Detector	Vertical PK — Verti	Frequency[l	Hz]				
	10 0 2.310	PK Limit PK Detector Freq.	AV Limit AV Detector Reading [dBµV/m]	Vertical PK Verti Level [dBµV/m]	Frequency[cal AV Factor [dB]	Limit [dBµV/m]	Margin [dB]	Trace	Polarity	
1	10 0 2310 0. 1 2	 PK Limit PK Detector Freq. [MHz] 2331.05 2331.15 	AV Limit AV Detector Reading [dBµV/m] 24.03 12.89	Vertical PK — Verti Level [dBµV/m] 59.45 48.31	Frequency[Cal AV Factor [dB] 35.42 35.42	Limit [dBµV/m] 74.00 54.00	Margin [dB] 14.55 5.69	Trace PK AV	Polarity Vertical Vertical	
1 2 3	10 0 2310 0. 1 2	PK Limit PK Detector Freq. [MHz] 2331.05 2331.15 2358.22	AV Limit AV Detector Reading [dBµV/m] 24.03 12.89 23.79	Level [dBµV/m] 59.45 48.31 59.40	Frequency[Factor [dB] 35.42 35.42 35.61	Limit [dBµV/m] 74.00 54.00 74.00	Margin [dB] 14.55 5.69 14.60	Trace PK AV PK	Polarity Vertical Vertical Vertical	
1 2 3	0. 0. 0. 0. 0. 0.	 PK Limit PK Detector Freq. [MHz] 2331.05 2331.15 	AV Limit AV Detector Reading [dBµV/m] 24.03 12.89	Vertical PK — Verti Level [dBµV/m] 59.45 48.31	Frequency[Cal AV Factor [dB] 35.42 35.42	Limit [dBµV/m] 74.00 54.00	Margin [dB] 14.55 5.69	Trace PK AV	Polarity Vertical Vertical	



6.5 Emissions in Non-restricted Frequency Bands

Below 1GHz:

	Face Recognition Terminal			Product Model:		BA8300	BA8300	
st By:	Mike			Test mod	de:	BT Tx m	BT Tx mode	
st Frequency:	30 MHz ~ 1 GHz			Polarization:		Vertical a	& Horizontal	
st Voltage:	AC 120/60Hz							
			Full Spec	trum				
45 T						FCC PART	15.247 10 m	
40 -			*****					
≥ ³⁰							* *	
· <u></u> 20			******			**		
	* In				المعلمين المراقيين	in the state of th		
10-	"WANTER AND ADDRESS				and a second	10 ⁰		
MUNIAN	Mart Martin				Kirshi tarata			
				10				
0	50 60	80 100	M	200	300 40	00 500	800 1G	
о ЗОМ	50 60	80 100		200 ncv in Hz	300 4	00 500	800 1G	
30M		80 100	Freque	ncy in Hz				
30M	- Freas PK+		Freque	ncy in Hz T 15.247 10 n	n 🔶	00 500 Final_Res		
30M			Freque	ncy in Hz	n 🔶			
30M	- Freas PK+		Freque	ncy in Hz T 15.247 10 n	n 🔶			
30M	- Freas PK+		Freque	ncy in Hz T 15.247 10 n	n 🔶			
30M	- Freas PK+		Freque	ncy in Hz T 15.247 10 n	n 🔶			
30M * Critical Preview	Freas PK+ Result 1H-PK+		Freque FCC PAR Preview R	ncy in Hz T 15.247 10 n Result 1V-PK +	n 🔶	Final_Res	sult QPK	
30M	- Freas PK+		Freque	ncy in Hz T 15.247 10 n	n 🔶			
30M * Critical Preview Frequency (MHz) 799.986000	Treas PK+ Result 1H-PK+ MaxPeak (dB # V/m) 29.15	Limit (dB ዞ V/m) 36.00	Freque FCC PAR Preview R Margin (dB) 6.85	ncy in Hz T 15.247 10 n Result 1V-PK + Height (cm) 100.0	n 🔶	Final_Res Azimuth (deg) 349.0	Sult QPK Corr. (dB/m) -3.2	
30M * Critical Preview Frequency (MHz) 799.986000 481.632000	Treas PK+ Result 1H-PK+ MaxPeak (dB н V/m) 29.15 19.22	Limit (dB ዞ V/m) 36.00 36.00	Freque FCC PAR Preview F Margin (dB) 6.85 16.78	ncy in Hz T 15.247 10 n Result 1V-PK + Height (cm) 100.0 100.0	n ◆ + Pol H V	Final_Res definition (deg) 349.0 12.0	Corr. (dB/m) -3.2 -9.2	
30M * Critical I Preview Frequency (MHz) 799.986000 481.632000 937.241000	Treas PK+ Result 1H-PK+ (dB н V/m) 29.15 19.22 27.83	Limit (dB ዞ V/m) 36.00 36.00 36.00	Freque FCC PAR Preview F Margin (dB) 6.85 16.78 8.17	ncy in Hz T 15.247 10 n Result 1V-PK + (cm) 100.0 100.0 100.0	Pol H V	Final_Res Azimuth (deg) 349.0 12.0 68.0	Corr. (dB/m) -3.2 -9.2 -0.2	
30M * Critical Preview Frequency (MHz) 799.986000 481.632000	Treas PK+ Result 1H-PK+ (dB н V/m) 29.15 19.22 27.83 19.97	Limit (dB ዞ V/m) 36.00 36.00	Freque FCC PAR Preview F Margin (dB) 6.85 16.78	ncy in Hz T 15.247 10 n Result 1V-PK + Height (cm) 100.0 100.0	Pol H V V	Final_Res definition (deg) 349.0 12.0	Corr. (dB/m) -3.2 -9.2	

Above 1GHz:

			channel: Lowest ch			
	1	D	etector: Peak Valu	le		
Frequency (MHz)	Read Level (dBuV)	Factor(dB)	Level (dBuV/m)	Limit (dBuV/m)	Margin (dB)	Polarization
4804.00	55.55	-9.60	45.95	74.00	28.05	Vertical
4804.00	55.90	-9.60	46.30	74.00	27.70	Horizontal
		Det	tector: Average Va	alue		
Frequency (MHz)	Read Level (dBuV)	Factor(dB)	Level (dBuV/m)	Limit (dBuV/m)	Margin (dB)	Polarizatior
4804.00	46.31	-9.60	36.71	54.00	17.29	Vertical
4804.00	46.40	-9.60	36.80	54.00	17.20	Horizontal
		Test	channel: Middle ch	annel		
	1	D	etector: Peak Valu	le		- 1
Frequency (MHz)	Read Level (dBuV)	Factor(dB)	Level (dBuV/m)	Limit (dBuV/m)	Margin (dB)	Polarizatior
4882.00	55.26	-9.05	46.21	74.00	27.79	Vertical
4882.00	55.52	-9.05	46.47	74.00	27.53	Horizontal
		Det	tector: Average Va	alue		
Frequency (MHz)	Read Level (dBuV)	Factor(dB)	Level (dBuV/m)	Limit (dBuV/m)	Margin (dB)	Polarization
4882.00	46.52	-9.05	37.47	54.00	16.53	Vertical
4882.00	46.01	-9.05	36.96	54.00	17.04	Horizontal
		Test c	hannel: Highest cl	hannel		
		D	etector: Peak Valu	le		
Frequency (MHz)	Read Level (dBuV)	Factor(dB)	Level (dBuV/m)	Limit (dBuV/m)	Margin (dB)	Polarizatior
4960.00	55.18	-8.45	46.73	74.00	27.27	Vertical
1000.00	56.36	-8.45	47.91	74.00	26.09	Horizontal
4960.00		_	tector: Average Va	alue		
		Det	eeten nie enage ne			
	Read Level (dBuV)	Dei Factor(dB)	Level (dBuV/m)	Limit (dBuV/m)	Margin (dB)	Polarization
4960.00 Frequency			Level		•	Polarization

-----End of report-----