

Report No: CCISE200604905

FCC REPORT

Applicant:	Shenzhen Aratek Biometrics Technology Co., Ltd.		
Address of Applicant:	2F, T2-A Building, ShenZhen Software Park, South Area, Hi- Tech Park, Shenzhen, Guangdong, China		
Equipment Under Test (E	EUT)		
Product Name:	BA8200-T, BA8200		
Model No.:	BA8200-T, BA8200		
FCC ID:	2AGUJBA8200		
Applicable standards:	FCC CFR Title 47 Part 15 Subpart B		
Date of sample receipt:	15 Jun., 2020		
Date of Test:	16 Jun., to 08 Sep., 2020		
Date of report issued:	09 Sep., 2020		
Test Result:	PASS *		

* In the configuration tested, the EUT complied with the standards specified above.

Authorized Signature:

Laboratory Manager

This report details the results of the testing carried out on one sample. The results contained in this test report do not relate to other samples of the same product and does not permit the use of the CCIS product certification mark. The manufacturer should ensure that all products in series production are in conformity with the product sample detailed in this report.

This report may only be reproduced and distributed in full. If the product in this report is used in any configuration other than that detailed in the report, the manufacturer must ensure the new system complies with all relevant standards.

This document cannot be reproduced except in full, without prior written approval of the Company. Any unauthorized alteration, forgery or falsification of the content or appearance of this document is unlawful and offenders may be prosecuted to the fullest extent of the law. Unless otherwise stated the results shown in this test report refer only to the sample(s) tested and such sample(s) are retained for 90 days only.

Version 2

Version No.	Date	Description
00	09 Sep., 2020	Original

Tested by:

Yoyo Wy Test Engineer Winner Mang Project Engineer

Date: 09 Sep., 2020

Reviewed by:

Date: 09 Sep., 2020

<u>CCIS</u>

3 Contents

			Page
1	С	OVER PAGE	1
2	V	ERSION	2
3	С	CONTENTS	3
4	-	EST SUMMARY	_
4 5		ENERAL INFORMATION	
	5.1	CLIENT INFORMATION	5
	5.2	GENERAL DESCRIPTION OF E.U.T.	5
	5.3	Test Mode	5
	5.4	Measurement Uncertainty	5
	5.5	DESCRIPTION OF SUPPORT UNITS	
	5.6	Related Submittal(s) / Grant (s)	
	5.7	DESCRIPTION OF CABLE USED	
	5.8	ADDITIONS TO, DEVIATIONS, OR EXCLUSIONS FROM THE METHOD	
	5.9 5.10	LABORATORY FACILITY	
	5.10		
6		EST RESULTS AND MEASUREMENT DATA	
	6.1	CONDUCTED EMISSION	8
	6.2	RADIATED EMISSION	11
7	Т	EST SETUP PHOTO	17
8	E	UT CONSTRUCTIONAL DETAILS	

4 Test Summary

Test Item	Section in CFR 47	Result		
Conducted Emission	Part 15.107	Pass		
Radiated Emission	Part 15.109	Pass		
Remark: 1. Pass: The EUT complies with the essential requirements in the standard. 2. N/A: The EUT not applicable of the test item.				
Test Method: ANSI C63.4:2014				

5 General Information

5.1 Client Information

Applicant:	Shenzhen Aratek Biometrics Technology Co., Ltd.
Address:	2F, T2-A Building, ShenZhen Software Park, South Area, Hi-Tech Park, Shenzhen, Guangdong, China
Manufacturer/ Factory :	Aratek Biometrics Technology Co., Ltd.
Address:	2F, T2-A Building, ShenZhen Software Park, South Area, Hi-Tech Park, Shenzhen, Guangdong, China

5.2 General Description of E.U.T.

Product Name:	BA8	BA8200-T, BA8200				
Model No.:	BA8	BA8200-T, BA8200				
AC adapter:	Inpu	Model: 2K36WG-1200300W2 Input: AC100-240V, 50/60Hz, 0.8A Output: DC 12.0V, 3A				
Remark:	desi BA8	The No.: BA8200-T and BA8200 were identical inside, the electrical circuit design, layout, components used and internal wiring, with only difference that BA8200 only has facial recognition and RFID. However, BA8200-T contains facial recognition, fingerprint module, RFID and temperature module				
	Iteme Number Camerae Fingerprinte RFIDe Temperature modulee 1.0 BA8200e 1080P Dual HDR Camera with fill light, ↓ ISO14443 A/B, Nonee Nonee 1.0 BA8200e 105dB wide dynamice Nonee MIFAREe Nonee 2.e BA8200-Te 105dB wide dynamice Presse MIFAREe Infrared Temp Modulee					
	We pre-scanned the BA8200-T and BA8200, and found that the BA8200-T is in worse condition, so the report only reflects the worse mode data					
Test Sample Condition:	The test samples were provided in good working order with no visible defects.					

5.3 Test Mode

Operating mode	Detail description
Scanning mode Keep the EUT in Camera Open and Scanning mode (Wors	
Lan mode	Keep the EUT in Lan link mode
vertical polarities were performed continuously working, investigated typical configuration to obtain we	ve the ground plane of 3m chamber. Measurements in both horizontal and d. During the test, each emission was maximized by: having the EUT I all operating modes, rotated about all 3 axis (X, Y & Z) and considered post position, manipulating interconnecting cables, rotating the turntable, 4m in both horizontal and vertical polarizations. The emissions worst-case ollowing pages

5.4 Measurement Uncertainty

Parameters	Expanded Uncertainty
Conducted Emission (9kHz ~ 30MHz)	±1.60 dB (k=2)
Radiated Emission (9kHz ~ 30MHz)	±3.12 dB (k=2)
Radiated Emission (30MHz ~ 1000MHz)	±4.32 dB (k=2)
Radiated Emission (1GHz ~ 18GHz)	±5.16 dB (k=2)
Radiated Emission (18GHz ~ 40GHz)	±3.20 dB (k=2)

5.5 Description of Support Units

Manufacturer	Description	Model	Serial Number	FCC ID/DoC
LENOVO	LENOVO Laptop		2847A65	DoC

5.6 Related Submittal(s) / Grant (s)

This is an original grant, no related submittals and grants.

5.7 Description of Cable Used

Cable Type	Description	Description Length From		То
N/A	N/A	N/A	N/A	N/A

5.8 Additions to, deviations, or exclusions from the method

No

5.9 Laboratory Facility

The test facility is recognized, certified, or accredited by the following organizations:

• FCC - Designation No.: CN1211

Shenzhen Zhongjian Nanfang Testing Co., Ltd. has been accredited as a testing laboratory by FCC(Federal Communications Commission). The test firm Registration No. is 727551.

• ISED – CAB identifier.: CN0021

The 3m Semi-anechoic chamber of Shenzhen Zhongjian Nanfang Testing Co., Ltd. has been Registered by Certification and Engineering Bureau of Industry Canada for radio equipment testing with Registration No.: 10106A-1.

• A2LA - Registration No.: 4346.01

This laboratory is accredited in accordance with the recognized International Standard ISO/IEC 17025:2005 General requirements for the competence of testing and calibration laboratories. The test scope can be found as below link: <u>https://portal.a2la.org/scopepdf/4346-01.pdf</u>

5.10 Laboratory Location

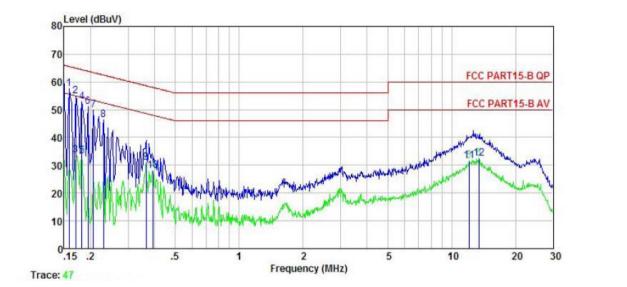
Shenzhen Zhongjian Nanfang Testing Co., Ltd. Address: No.110~116, Building B, Jinyuan Business Building, Xixiang Road, Bao'an District, Shenzhen, Guangdong, China Tel: +86-755-23118282, Fax: +86-755-23116366 Email: info@ccis-cb.com, Website: <u>http://www.ccis-cb.com</u>

5.11 Test Instruments list

Radiated Emission:								
Test Equipment	Manufacturer	Model No.	Serial No.	Cal. Date (mm-dd-yy)	Cal. Due date (mm-dd-yy)			
3m SAC	SAEMC	9m*6m*6m	966	07-22-2017	07-21-2020			
Loop Antenna	SCHWARZBECK	FMZB1519B	00044	03-07-2020	03-06-2021			
BiConiLog Antenna	SCHWARZBECK	VULB9163	497	03-07-2020	03-06-2021			
Horn Antenna	SCHWARZBECK	BBHA9120D	916	03-07-2020	03-06-2021			
Harn Antonna			1905	06-22-2017	06-21-2020			
Horn Antenna	SCHWARZBECK	BBHA9120D	1805	06-21-2020	06-20-2023			
Horn Antenna	SCHWARZBECK	BBHA 9170	BBHA9170582	11-18-2019	11-17-2020			
EMI Test Software	AUDIX	E3	۱. ۱	/ersion: 6.110919	b			
Pre-amplifier	HP	8447D	2944A09358	03-07-2020	03-06-2021			
Pre-amplifier	CD	PAP-1G18	11804	03-07-2020	03-06-2021			
Spectrum analyzer	Rohde & Schwarz	FSP30	101454	03-05-2020	03-04-2021			
Spectrum analyzer	Rohde & Schwarz	FSP40	100363	11-18-2019	11-17-2020			
EMI Test Receiver	Rohde & Schwarz	ESRP7	101070	03-05-2020	03-04-2021			
Cable	ZDECL	Z108-NJ-NJ-81	1608458	03-07-2020	03-06-2021			
Cable	MICRO-COAX	MFR64639	K10742-5	03-07-2020	03-06-2021			
Cable	SUHNER	SUCOFLEX100	58193/4PE	03-07-2020	03-06-2021			

Conducted Emission:					
Test Equipment	Manufacturer	Model No.	Serial No.	Cal. Date (mm-dd-yy)	Cal. Due date (mm-dd-yy)
EMI Test Receiver	Rohde & Schwarz	ESCI	101189	03-05-2020	03-04-2021
Pulse Limiter	SCHWARZBECK	OSRAM 2306	9731	03-05-2020	03-04-2021
LISN	CHASE	MN2050D	1447	03-05-2020	03-04-2021
LISN	Rohde & Schwarz	ESH3-Z5	8438621/010	07-21-2017	07-20-2020
Cable	HP	10503A	N/A	03-05-2020	03-04-2021
EMI Test Software	AUDIX	E3	N N	/ersion: 6.110919	b

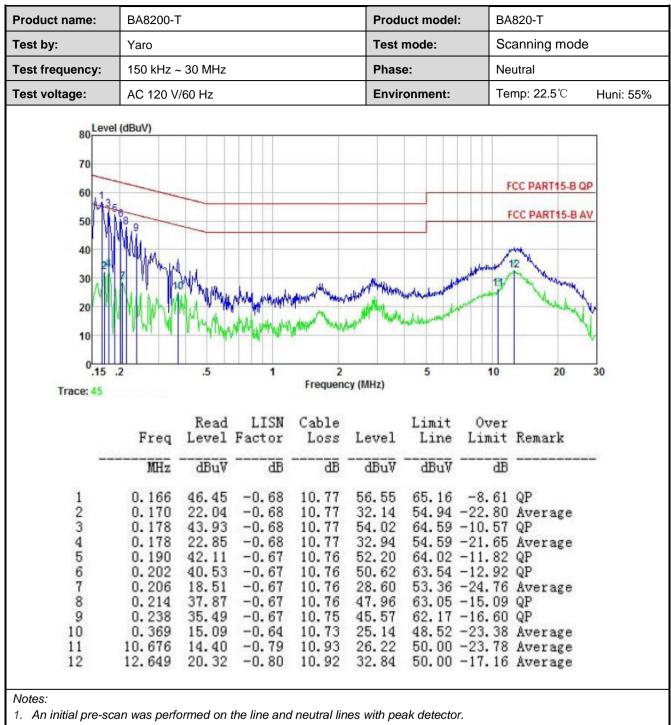
6 Test results and Measurement Data


6.1 Conducted Emission

Test Requirement:	FCC Part 15 B Section 15.107		
•			
Test Frequency Range:	150kHz to 30MHz		
Class / Severity:	Class B		
Receiver setup:	RBW=9kHz, VBW=30kHz		
Limit:	Frequency range (MHz)	Limit	(dBµV)
		Quasi-peak	Average
	0.15-0.5	66 to 56*	56 to 46*
	0.5-5	56	46
	0.5-30	60	50
	* Decreases with the logarithm	of the frequency.	
Test setup:	Reference Plane		
	Test table/Insulation plane Remarkc E. U.T: Equipment Under Test LISN: Line Impedence Stabilization Network Test table height=0.8m	EMI Receiver	
Test procedure	 The E.U.T and simulators are impedance stabilization netw coupling impedance for the n The peripheral devices are a LISN that provides a 50ohm/ termination. (Please refers to photographs). Both sides of A.C. line are interference. In order to fin- positions of equipment and according to ANSI C63.4(la 	ork(L.I.S.N.). The prov neasuring equipment. Iso connected to the m 50uH coupling impeda the block diagram of t checked for maximum d the maximum emissi all of the interface cat	ide a 50ohm/50uH ain power through a nce with 50ohm he test setup and conducted on, the relative bles must be changed
Test Instruments:	Refer to section 5.11 for details		
Test mode:	Refer to section 5.3 for details		
Test results:	Pass		

Measurement data:

Product name:	BA820-T	Product model:	BA820-T
Test by:	Yaro	Test mode:	Scanning mode
Test frequency:	150 kHz ~ 30 MHz	Phase:	Line
Test voltage:	AC 120 V/60 Hz	Environment:	Temp: 22.5℃ Huni: 55%


		Freq	Read Level	LISN Factor	Cable Loss	Level	Limit Line	Over Limit	Remark
	Ļ	MHz	dBuV	dB	ā			<u>d</u> B	
	1	0.158	47.53	-0.57	10.77	57.66	65.56	-7.90	QP
	2	0.170	44.81	-0.58	10.77	54.90		-10.04	
	2 3 4 5 6	0.170	23.47	-0.58	10.77	33.56			Average
	4	0.182	42.86	-0.58	10.77	52.93		-11.49	
	5	0.182	23.30	-0.58	10.77	33.37			Average
	6	0.194	41.08	-0.59	10.76	51.10		-12.74	
	7	0.206	39.76	-0.59	10.76	49.76		-13.60	
	7 8 9 10	0.230	36.47	-0.58	10.75	46.44	62.44	-16.00	QP
	9	0.365	20.41	-0.50	10.73	30.85	48.61	-17.76	Average
	10	0.393	17.42	-0.48	10.72	28.04	47.99	-19.95	Average
	11	12.060	18.77	-0.71	10.92	31.69			Average
	12	13.408	19.02	-0.70	10.91	32.38	50.00	-17.62	Average
									1999 - 1999 - 199 7 - 1997 - 199 - 1997 - 1
Notes:									

1. An initial pre-scan was performed on the line and neutral lines with peak detector.

2. Quasi-Peak and Average measurement were performed at the frequencies with maximized peak emission.

3. Final Level =Receiver Read level + LISN Factor + Cable Loss.

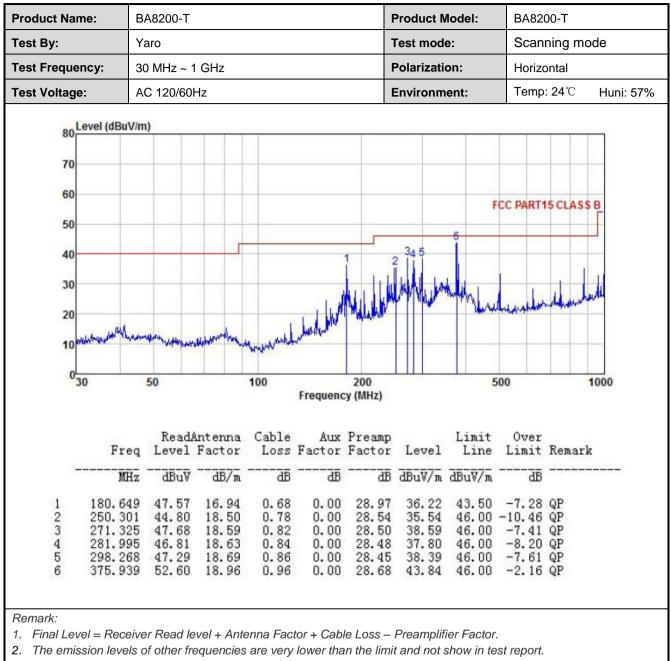
2. Quasi-Peak and Average measurement were performed at the frequencies with maximized peak emission.

3. Final Level =Receiver Read level + LISN Factor + Cable Loss.

6.2 Radiated Emission

Test Requirement:	FCC Part 15 B Se	ection 15.109			
Test Frequency Range:	30MHz to 5th har	monic of the l	highest frequen	су	
Test site:	Measurement Dis	tance: 3m (S	emi-Anechoic (Chamber)	
Receiver setup:	Frequency	Detector	RBW	VBW	Remark
Receiver Setup.	30MHz-1GHz	Quasi-pea		300kHz	Quasi-peak Value
		Peak	1MHz	3MHz	Peak Value
	Above 1GHz	RMS	1MHz	3MHz	Average Value
Limit:	Frequenc	· · · · · · · · · · · · · · · · · · ·	Limit (dBuV/m		Remark
Linnt.	30MHz-88M		40.0		Quasi-peak Value
	88MHz-216		43.5		Quasi-peak Value
	216MHz-960		46.0		Quasi-peak Value
	960MHz-10		54.0		Quasi-peak Value
			54.0		Average Value
	Above 1GI	Hz –	74.0		Peak Value
Test setup:	Below 1GHz EUT 3m Turm 0.8m Table 0.8m Above 1GHz	4m]
		EUT	Horn Antenna 3m 4 Reference Plane 1 Reference Plane	Antenna Tower	
Test Procedure:	ground at a 3 n degrees to dete 2. The EUT was s which was mou 3. The antenna he ground to dete	neter semi-ar ermine the po set 3 meters a unted on the t eight is varied rmine the ma	nechoic camber position of the hig away from the in top of a variable d from one meter ximum value of	The table ghest radiat nterference height ant er to four m the field st	e-receiving antenna, tenna tower. eters above the

	4. For each suspected emission, the EUT was arranged to its worst case and then the antenna was tuned to heights from 1 meter to 4 meters and the rotatable table was turned from 0 degrees to 360 degrees to find the maximum reading.
	5. The test-receiver system was set to Peak Detect Function and Specified Bandwidth with Maximum Hold Mode.
	6. If the emission level of the EUT in peak mode was 10dB lower than the limit specified, then testing could be stopped and the peak values of the EUT would be reported. Otherwise the emissions that did not have 10dB margin would be re-tested one by one using peak, quasi-peak or average method as specified and then reported in a data sheet.
Test Instruments:	Refer to section 5.11 for details
Test mode:	Refer to section 5.3 for details
Test results:	Passed
Remark:	All of the observed value above 6GHz ware the niose floor , which were no recorded


Measurement Data:

Product Name:	: BA						Product I	nouci.	DA02	200-T		
est By:	Ya	ro					Test mod	Scar	Scanning mode			
est Frequenc	y: 30	MHz ~ 1	GHz			1	Polarization:		Verti	Vertical		
est Voltage:	AC	C 120/60⊢	lz				Environm	nent:	Tem	p: 24℃	Huni: 579	
80 Leve	el (dBuV/m)											
70												
1992												
60									FCC PAR	T15 CLA	SSB	
50						_						
			Г					5				
40												
40	12						4		6		1 10	
40 30	12				, i l	3	4	l lat	6		Jahrel	
	12	ШАА	~		pathengh	"Typeshike	Here and the second	lutur	6 hipordianda	anahan	white	
30 20	12	ull have	why	Jon	of the state	3 My Luhih	4	llubanh	6 Inghandunda	a da an de la calenda da an de La calenda da an de la calenda d	ulude	
30 20میر 10	12	uh	un	Vm	for the she	3 Mytholyth	Hudden	llubanh	6 Ingharsteineld	nderadam	Juli	
30 20	12	Ulh./~~^	un h	V	forther to	3 4404444 200	4 New Holand	llubanh	6 hypersetemological 500	anonter	1000	
30 20میر 10	12	Ulh./	m.	100	Frequence		4 Nave Halan	lluhanh		adaadaan d	1000	
30 20میر 10		ReadA	untenna	Cable	Aux	cy (MHz) Preamp	4 New Holene	Limit		unahan	1000	
30 20) 10				Cable	Aux	cy (MHz) Preamp	4 WWWWant Level	Limit	500	Remark		
30 20) 10		ReadA		Cable	Aux	cy (MHz) Preamp Factor	4 Level	Limit Line	500 Over	Remark		
30 20 10 0 30	Freq MHz 39.024	Read# Level dBuV 49.46	Factor 	Cable Loss dB 0.35	Aux Factor dB 0.00	cy (MHz) Preamp Factor dB 29.91	<u>dBuV/m</u> 32.66	Limit Line dBuV/m 40.00	500 Over Limit -7.34	QP		
30 20 10 0 30	Freq MHz 39.024 41.277	Read# Level dBuV 49.46 48.11	Factor 	Cable Loss dB 0.35 0.36	Aux Factor dB 0.00 0.00	reamp Factor dB 29.91 29.89	dBuV/m 32.66 31.41	Limit Line dBuV/m 40.00 40.00	0ver Limit -7.34 -8.59	QP QP		
30 20 10 0 30	Freq MHz 39.024 41.277 184.490 271.325	Read# Level dBuV 49.46 48.11 38.59 41.89	Factor dB/m 12.76 12.83 17.16 18.59	Cable Loss dB 0.35 0.36 0.69 0.82	Aux Factor dB 0.00 0.00 0.00 0.00 0.00	cy (MHz) Preamp Factor dB 29.91 29.89 28.94 28.50	dBuV/m 32.66 31.41 27.50 32.80	Limit Line dBuV/m 40.00 40.00 43.50 46.00	Over Limit -7.34 -8.59 -16.00 -13.20	QP QP QP QP		
30 20 10 0 30 1 2 3 4 5	Freq MHz 39.024 41.277 184.490	Read# Level dBuV 49.46 48.11 38.59 41.89	Factor 	Cable Loss dB 0.35 0.36 0.69	Aux Factor dB 0.00 0.00 0.00 0.00 0.00	cy (MHz) Preamp Factor dB 29.91 29.89 28.94 28.50 28.68	dBuV/m 32.66 31.41 27.50 32.80 39.05	Limit Line dBuV/m 40.00 40.00 43.50 46.00 46.00	Over Limit -7.34 -8.59 -16.00 -13.20	QP QP QP QP QP		

2. The emission levels of other frequencies are very lower than the limit and not show in test report.

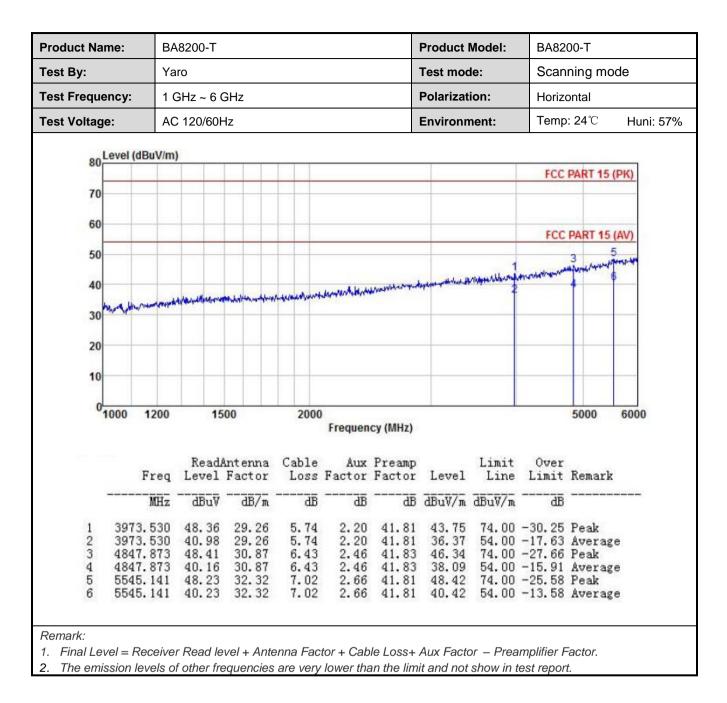
3. The Aux Factor is a notch filter switch box loss, this item is not used.

3. The Aux Factor is a notch filter switch box loss, this item is not used.

Above 1GHz:

Product Name:	BA8200	Product Model:	BA8200
Test By:	Yaro	Test mode:	Scanning mode
Test Frequency:	1 GHz ~ 6 GHz	Polarization:	Vertical
Test Voltage:	AC 120/60Hz	Environment:	Temp: 24℃ Huni: 57%
80 Level (dBu\ 70 60			FCC PART 15 (PK) FCC PART 15 (AV)
50 40 30 ^{Mart} withwartawi	ernelt-millionstrationstrationstation on one the expendition is and with the	way-participation and the second	and and the factor of the second states

×1	000	1200	150	0	2000	Frequenc	y (MHz)			5	6000 6000
		Freq		Antenna Factor			Preamp Factor	Level	Limit Line	Over Limit	Remark
		MHz	dBu∛		ā	āĒ	āĒ	dBuV/m	dBuV/m	dB	
1	365	59.161	48.27	28.90	5.46	2.20	41.62	43.21	74.00	-30.79	Peak
23	365	59.161	40.66	28.90	5.46	2.20	41.62	35.60	54.00	-18.40	Average
3	500	06.774	48.53	31.20	6.56	2.50	41.88	46.91	74.00	-27.09	Peak
	500	06.774	40.41	31.20	6.56	2.50	41.88	38.79	54.00	-15.21	Average
4 5 6	555	55.085	48.18	32.32	7.02	2.66	41.81	48.37	74.00	-25.63	Peak
6	555	55.085	40.37	32.32	7.02	2.66	41.81	40.56	54.00	-13.44	Average


Remark:

10

1. Final Level = Receiver Read level + Antenna Factor + Cable Loss + Aux Factor – Preamplifier Factor.

2. The emission levels of other frequencies are very lower than the limit and not show in test report.

