

Report No: JYTSZ-R12-2200110

FCC REPORT

Applicant:	Aratek Biometrics Co., Ltd.
Address of Applicant:	2F, T2-A Building, ShenZhen Software Park South Area, Hi- Tech Park
Equipment Under Test (E	EUT)
Product Name:	Automated Election Device
Model No.:	VC331, BD1300
Trade mark:	Aratek
FCC ID:	2AGUJ-VC331
Applicable standards:	FCC CFR Title 47 Part 15 Subpart C Section 15.247
Date of sample receipt:	12 Jan., 2022
Date of Test:	13 Jan., to 13 Feb., 2022
Date of report issued:	22 Feb., 2022
Test Result:	PASS *

* In the configuration tested, the EUT complied with the standards specified above.

Authorized Signature:

Bruce Zhang Laboratory Manager

This report details the results of the testing carried out on one sample. The results contained in this test report do not relate to other samples of the same product and does not permit the use of the JYT product certification mark. The manufacturer should ensure that all products in series production are in conformity with the product sample detailed in this report.

This report may only be reproduced and distributed in full. If the product in this report is used in any configuration other than that detailed in the report, the manufacturer must ensure the new system complies with all relevant standards.

This document cannot be reproduced except in full, without prior written approval of the Company. Any unauthorized alteration, forgery or falsification of the content or appearance of this document is unlawful and offenders may be prosecuted to the fullest extent of the law. Unless otherwise stated the results shown in this test report refer only to the sample(s) tested and such sample(s) are retained for 90 days only.

Version 2

Version No.	Date	Description
00	14 Feb., 2022	Original
01	22 Feb., 2022	add model

Tested by:

Mike.DU Test Engineer

Date: 22 Feb., 2022

Winner Thang

Reviewed by:

Project Engineer

22 Feb., 2022 Date:

3 Contents

			Page
1	COV	/ER PAGE	1
2	VER	SION	2
2	CON	ITENTS	2
			-
-	_		
5	GEN		5
	5.1		-
	-		
	•••		-
	5.6		-
	5.7		
	5.9	TEST INSTRUMENTS LIST	7
6	TES	T RESULTS AND MEASUREMENT DATA	9
	6.1	ANTENNA REQUIREMENT:	9
	6.2	CONDUCTED EMISSION	10
			-
	6.6.2	2 Radiated Emission Method	17
	6.7		-
			-
	0=		
7	2 VERSION		
8	EUT	CONSTRUCTIONAL DETAILS	44

4 Test Summary

15.203 & 15.247 (b)	See Section 6.1	Pass			
15 207		1 400			
15.207	See Section 6.2	Pass			
15.247 (b)(3)	Appendix A - BLE	Pass			
15.247 (a)(2)	Appendix A - BLE	Pass			
15.247 (e)	Appendix A - BLE	Pass			
	Appendix A - BLE	Pass			
15.247 (d)	See Section 6.6.2	Pass			
	Appendix A - BLE	Pass			
15.205 & 15.209	See Section 6.7.2	Pass			
<i>Remark:</i> 1. Pass: The EUT complies with the essential requirements in the standard.					
	15.247 (a)(2) 15.247 (e) 15.247 (d) 15.205 & 15.209	15.247 (b)(3) Appendix A - BLE 15.247 (a)(2) Appendix A - BLE 15.247 (e) Appendix A - BLE 15.247 (d) See Section 6.6.2 15.205 & 15.209 Appendix A - BLE			

the customer).

Test	Method:

ANSI C63.10-2013 KDB 558074 D01 15.247 Meas Guidance v05r02

5 General Information

5.1 Client Information

Applicant:	Aratek Biometrics Co., Ltd.
Address:	2F, T2-A Building, ShenZhen Software Park South Area, Hi-Tech Park
Manufacturer:	Aratek Biometrics Co., Ltd.
Address:	2F, T2-A Building, ShenZhen Software Park South Area, Hi-Tech Park
Factory:	Aratek Biometrics Co., Ltd.
Address:	Block 4, 1st Industrial Park of Nan Gang, 1029# Song Bai Road of Bai Mang, Nan Shan District, Shenzhen 518055, China.

5.2 General Description of E.U.T.

Product Name:	Automated Election Device
Model No.:	VC331, BD1300
Operation Frequency:	2402-2480 MHz
Channel numbers:	40
Channel separation:	2 MHz
Modulation technology:	GFSK
Data speed :	1Mbps & 2Mbps
Antenna Type:	Internal Antenna
Antenna gain:	1.3 dBi
Power supply:	Rechargeable Li-ion Battery DC11.1V, 13Ah
AC adapter:	Model: AK120WG-2400500W2 Input: AC100-240V, 50/60Hz, 2.0A
	Output: DC 24.0V, 5.0A
Remark:	Model No.: VC331, BD1300 were identical inside, the electrical circuit design, layout, components used and internal wiring, with only difference being model name.
Test Sample Condition:	The test samples were provided in good working order with no visible defects.

Operation Frequency each of channel								
Channel	Frequency	Channel	Frequency	Channel	Frequency	Channel	Frequency	
0	2402MHz	10	2422MHz	20	2442MHz	30	2462MHz	
1	2404MHz	11	2424MHz	21	2444MHz	31	2464MHz	
2	2406MHz	12	2426MHz	22	2446MHz	32	2466MHz	
3	2408MHz	13	2428MHz	23	2448MHz	33	2468MHz	
4	2410MHz	14	2430MHz	24	2450MHz	34	2470MHz	
5	2412MHz	15	2432MHz	25	2452MHz	35	2472MHz	
6	2414MHz	16	2434MHz	26	2454MHz	36	2474MHz	
7	2416MHz	17	2436MHz	27	2456MHz	37	2476MHz	
8	2418MHz	18	2438MHz	28	2458MHz	38	2478MHz	
9	2420MHz	19	2440MHz	29	2460MHz	39	2480MHz	

Note:

In section 15.31(*m*), regards to the operating frequency range over 10 MHz, the Lowest frequency, the middle frequency, and the highest frequency of channel were selected to perform the test. Channel No. 0, 20 & 39 were selected as Lowest, Middle and Highest channel.

5.3 Test environment and mode

Operating Environment:

Operating Environment.	
Temperature:	24.0 °C
Humidity:	54 % RH
Atmospheric Pressure:	1010 mbar
Test mode:	
Transmitting mode	Keep the EUT in continuous transmitting with modulation

Radiated Emission: The sample was placed 0.8m (below 1GHz)/1.5m (above 1GHz) above the ground plane of 3m chamber. Measurements in both horizontal and vertical polarities were performed. During the test, each emission was maximized by: having the EUT continuously working, investigated all operating modes, rotated about all 3 axis (X, Y & Z) and considered typical configuration to obtain worst position, manipulating interconnecting cables, rotating the turntable, varying antenna height from 1m to 4m in both horizontal and vertical polarizations. The emissions worst-case are shown in Test Results of the following pages. Duty cycle setting during the transmission is 100% with maximum power setting for all modulations.

5.4 Description of Support Units

The EUT has been tested as an independent unit.

5.5 Measurement Uncertainty

Parameter	Expanded Uncertainty (Confidence of 95%)
Conducted Emission (9kHz ~ 150KHz) for V-AMN	3.11 dB
Conducted Emission (150kHz ~ 30MHz) for V-AMN	2.62 dB
Radiated Emission (9kHz ~ 30MHz electric field) for 3m SAC	3.13 dB
Radiated Emission (9kHz ~ 30MHz magnetic field) for 3m SAC	3.13 dB
Radiated Emission (30MHz ~ 1GHz) for 3m SAC	4.45 dB
Radiated Emission (1GHz ~ 18GHz) for 3m SAC	5.34 dB
Radiated Emission (18GHz ~ 40GHz) for 3m SAC	5.34 dB
Radiated Emission (30MHz ~ 1GHz) for 10m SAC	4.32 dB

5.6 Additions to, deviations, or exclusions from the method

No

5.7 Laboratory Facility

The test facility is recognized, certified, or accredited by the following organizations:

• FCC - Designation No.: CN1211

JianYan Testing Group Shenzhen Co., Ltd. has been accredited as a testing laboratory by FCC(Federal Communications Commission). The test firm Registration No. is 727551.

• ISED – CAB identifier.: CN0021

The 3m Semi-anechoic chamber and 10m Semi-anechoic chamber of JianYan Testing Group Shenzhen Co., Ltd. has been Registered by Certification and Engineering Bureau of Industry Canada for radio equipment testing with Registration No.: 10106A-1.

• CNAS - Registration No.: CNAS L15527

JianYan Testing Group Shenzhen Co., Ltd. is accredited to ISO/IEC 17025:2017 General Requirements for the Competence of Testing and Calibration laboratories for the competence of testing. The Registration No. is CNAS L15527.

• A2LA - Registration No.: 4346.01

This laboratory is accredited in accordance with the recognized International Standard ISO/IEC 17025:2017 General requirements for the competence of testing and calibration laboratories. The test scope can be found as below link: <u>https://portal.a2la.org/scopepdf/4346-01.pdf</u>

5.8 Laboratory Location

JianYan Testing Group Shenzhen Co., Ltd.

Address: No.101, Building 8, Innovation Wisdom Port, No.155 Hongtian Road, Huangpu Community, Xinqiao Street, Bao'an District, Shenzhen, Guangdong, People's Republic of China. Tel: +86-755-23118282, Fax: +86-755-23116366

Email: info-JYTee@lets.com, Website: http://jyt.lets.com

5.9 Test Instruments list

Radiated Emission(Above 1GHz):								
Test Equipment	Manufacturer	Model No.	Serial No.	Cal.Date (mm-dd-yy)	Cal.Due date (mm-dd-yy)			
3m SAC	ETS	RFD-100	Q1984	04-14-2021	04-13-2024			
BiConiLog Antenna	SCHWARZBECK	VULB9163	9163-1246	03-07-2021	03-06-2022			
Biconical Antenna	SCHWARZBECK	VUBA 9117	9117#359	06-17-2021	06-17-2022			
Horn Antenna	SCHWARZBECK	BBHA9120D	912D-916	03-07-2021	03-06-2022			
Broad-Band Horn Antenna	SCHWARZBECK	BBHA9170	1067	04-02-2021	04-01-2022			
Broad-Band Horn Antenna	SCHWARZBECK	BBHA9170	1068	04-02-2021	04-01-2022			
EMI Test Receiver	Rohde & Schwarz	ESRP7	101070	03-03-2021	03-02-2022			
Spectrum analyzer	Rohde & Schwarz	FSP30	101454	03-03-2021	03-02-2022			
Spectrum analyzer	Keysight	N9010B	MY60240202	10-27-2021	10-26-2022			
Low Pre-amplifier	SCHWARZBECK	BBV9743B	00305	03-07-2021	03-06-2022			
High Pre-amplifier	SKET	LNPA_0118G-50	MF280208233	03-07-2021	03-06-2022			
Cable	Qualwave	JYT3M-1G-NN-8M	JYT3M-1	03-07-2021	03-06-2022			
Cable	Qualwave	JYT3M-18G-NN-8M	JYT3M-2	03-07-2021	03-06-2022			
Cable	Qualwave	JYT3M-1G-BB-5M	JYT3M-3	03-07-2021	03-06-2022			
Cable	Bost	JYT3M-40G-SS-8M	JYT3M-4	04-02-2021	04-01-2022			
EMI Test Software	Tonscend	TS+	Version:3.0.0.1					

Radiated Emission(Below 1GHz):							
Test Equipment	Manufacturer	Model No.	Serial No.	Cal.Date (mm-dd-yy)	Cal.Due date (mm-dd-yy)		
10m SAC	ETS	RFSD-100-F/A	Q2005	04-28-2021	04-27-2024		
BiConiLog Antenna	SCHWARZBECK	VULB 9168	1249	04-02-2021	04-01-2022		
BiConiLog Antenna	SCHWARZBECK	VULB 9168	1250	04-02-2021	04-01-2022		
EMI Test Receiver	R&S	ESR 3	102800	04-08-2021	04-07-2022		
EMI Test Receiver	R&S	ESR 3	102802	04-08-2021	04-07-2022		
Low Pre-amplifier	Bost	LNA 0920N	2016	04-06-2021	04-05-2022		
Low Pre-amplifier	Bost	LNA 0920N	2019	04-06-2021	04-05-2022		
Cable	Bost	JYT10M-1G-NN-10M	JYT10M-1	04-02-2021	04-01-2022		
Cable	Bost	JYT10M-1G-NN-10M	JYT10M-2	04-02-2021	04-01-2022		
Test Software	R&S	EMC32	Version: 10.50.40				

Conducted Emission:					
Test Equipment	Manufacturer	Model No.	Serial No.	Cal. Date (mm-dd-yy)	Cal. Due date (mm-dd-yy)
EMI Test Receiver	Rohde & Schwarz	ESCI 3	101189	03-03-2021	03-02-2022
LISN	Schwarzbeck	NSLK 8127	QCJ001-13	03-18-2021	03-17-2022
LISN	Rohde & Schwarz	ESH3-Z5	843862/010	06-18-2020	06-17-2022
RF Switch	TOP PRECISION	RSU0301	N/A	03-03-2021	03-02-2022
Cable	Bost	JYTCE-1G-NN-2M	JYTCE-1	03-03-2021	03-02-2022
Cable	Bost	JYTCE-1G-BN-3M	JYTCE-2	03-03-2021	03-02-2022
EMI Test Software	AUDIX	E3	V	ersion: 6.110919	b

Conducted method:					
Test Equipment	Manufacturer	Model No.	Serial No.	Cal. Date (mm-dd-yy)	Cal. Due date (mm-dd-yy)
Spectrum Analyzer	Keysight	N9010B	MY60240202	10-27-2021	10-26-2022
Vector Signal Generator	Keysight	N5182B	MY59101009	10-27-2021	10-26-2022
Analog Signal Generator	Keysight	N5173B	MY59100765	10-27-2021	10-26-2022
Power Detector Box	MWRF-test	MW100-PSB	MW201020JYT	11-19-2021	11-18-2022
Simulated Station	Rohde & Schwarz	CMW270	102335	10-27-2021	10-26-2022
RF Control Box	MWRF-test	MW100-RFCB	MW200927JYT	N/A	N/A
PDU	MWRF-test	XY-G10	N/A	N/A	N/A
DC Power Supply	Keysight	E3642A	MY60296194	11-27-2020	11-26-2023
Temperature Humidity Chamber	Deli	8840	N/A	03-08-2021	03-07-2022
Test Software	MWRF-tes	MTS 8310	N N	Version: 2.0.0.0	

6 Test results and Measurement Data

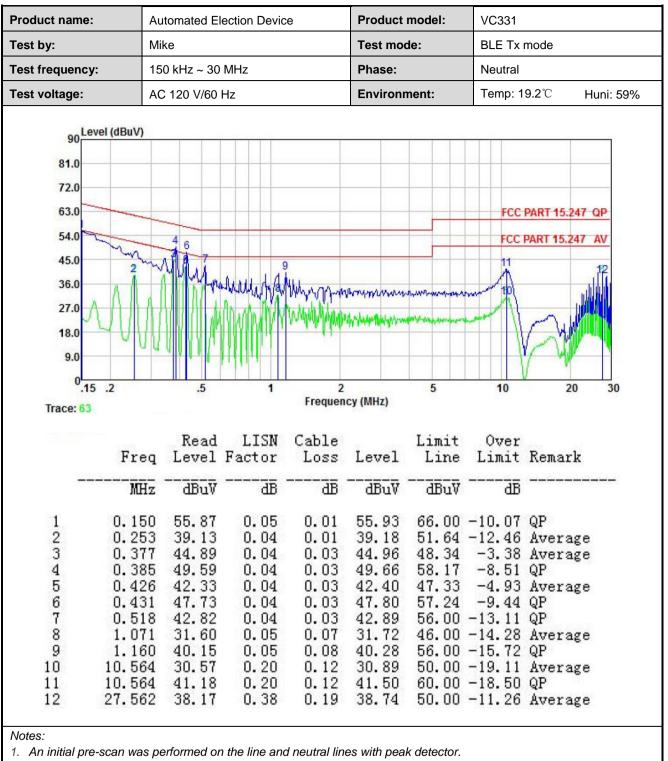
6.1 Antenna requirement:

Standard requirement:	FCC Part 15 C Section 15.203 /247(b)
responsible party shall be us antenna that uses a unique so that a broken antenna ca electrical connector is prohib 15.247(b) (4) requirement: (4) The conducted output po antennas with directional ga section, if transmitting anten power from the intentional ra	be designed to ensure that no antenna other than that furnished by the sed with the device. The use of a permanently attached antenna or of an coupling to the intentional radiator, the manufacturer may design the unit n be replaced by the user, but the use of a standard antenna jack or bited. wer limit specified in paragraph (b) of this section is based on the use of ins that do not exceed 6 dBi. Except as shown in paragraph (c) of this nas of directional gain greater than 6 dBi are used, the conducted output adiator shall be reduced below the stated values in paragraphs (b)(1), ion, as appropriate, by the amount in dB that the directional gain of the
E.U.T Antenna:	
The BLE antenna is an Intern antenna is 1.3dBi.	al antenna which cannot replace by end-user, the best-case gain of the

6.2 Conducted Emission

Test Requirement:	FCC Part 15 C Section 15.207	7	
Test Frequency Range:	150 kHz to 30 MHz		
Class / Severity:	Class B		
Receiver setup:	RBW=9kHz, VBW=30kHz		
Limit:	Frequency range (MHz)	Limit (dBuV)
	, , , , , , , , , , , , , , , , ,	Quasi-peak	Average
	0.15-0.5	66 to 56*	56 to 46*
	0.5-5	56	46
	5-30	60	50
	* Decreases with the logarithm		
Test procedure:	 The E.U.T and simulators line impedance stabilizati 50ohm/50uH coupling implication The peripheral devices and LISN that provides a 50ol termination. (Please refer photographs). Both sides of A.C. line and interference. In order to fi positions of equipment and according to ANSI C63.10 	on network (L.I.S.N.), wh pedance for the measuring re also connected to the hm/50uH coupling imped to the block diagram of the checked for maximum and the maximum emission and all of the interface cab	nich provides a ng equipment. main power through a lance with 50ohm the test setup and conducted on, the relative les must be changed
Test setup:	Reference	Plane	
	LISN 40cm 40cm Equipment E.U.T Test table/Insulation plane Remarkc E.U.T: Equipment Under Test LISN: Line Impedence Stabilization Net Test table height=0.8m	EMI Receiver	– AC power
Test Instruments:	Refer to section 5.9 for details		
Test mode:	Refer to section 5.3 for details		
Test results:	Passed		

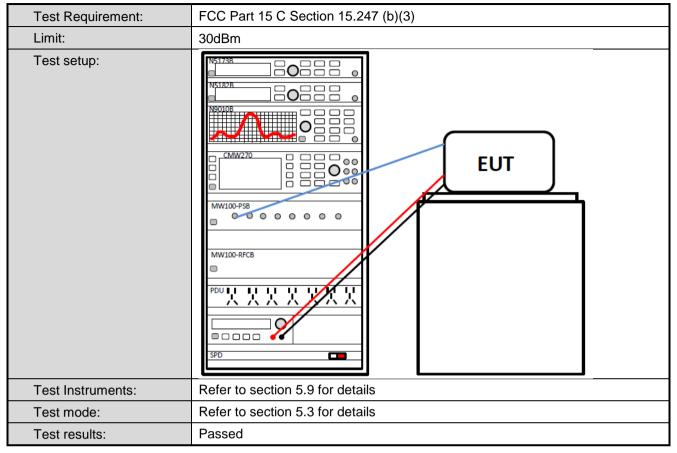
Measurement Data:


Product name:	Auto	omated Ele	ction Device	9	Product r	model:	VC331	
Test by:	Mike	е			Test mod	le:	BLE Tx r	mode
Test frequency:	150	kHz ~ 30 l	MHz		Phase:		Line	
Test voltage:	AC	120 V/60 H	lz		Environm	nent:	Temp: 1	9.2℃ Huni: 59
	145-10							
90 Leve	l (dBuV)	TTT	TIT				111	
81.0								
72.0								
63.0							FCCF	PART 15.247 QP
54.0	the second	5					FCC F	PART 15.247 AV
45.0	hard	As .	8					42
36.0		Mahan	hadder				10	
	ALAL		MARAN MAN	MAY A Monthly	manuman	- the property of	9	
27.0	11/1/1	M	MMM	AM JAL MANANA	rend the mathemat	which have been and the	- I person	me literation
18.0	- V V III							
9.0	~ u v	1111.1						
0								Y
.15	.2	.5	1	2 Frequence	(0.011-)	5	10	20 30
Trace: 65				riequend	y (MHZ)			
		D.J.	LICH	C-11-		T 2	0	
	Freq	Read	LISN Factor		Level	Limit Line	Over Limit	Remark
	rred	rever	ractor	LUSS	rever	LINE	LINIC	Nemark
	MHz	dBu∛	dB	dB	dBuV	dBu∛	dB	
1	0.150	56.07	0.04	0.01	56.12	66.00	-9.88	QP
2	0.253	39.86	0.04		39.91			Average
3	0.258	49.62	0.04		49.67		-11.84	
		45.49	0.04	0.03	45.56			Average
4	0.381				EO OF	EQ 17		00
1 2 3 4 5 6	0.385	50.18	0.04	0.03	50.25	58.17		
	0.385 0.426	50.18 42.76	$0.04 \\ 0.04$	0.03 0.03	42.83	47.33	-4.50	Average
6 7	0.385 0.426 1.065	50.18 42.76 31.70	0.04 0.04 0.05	0.03 0.03 0.07	42.83 31.82	47.33 46.00	-4.50 -14.18	Average Average
	0.385 0.426	50.18 42.76	$0.04 \\ 0.04$	0.03 0.03	42.83	47.33 46.00 56.00	-4.50 -14.18 -14.93	Average Average
6 7 8 9 10	0.385 0.426 1.065 1.077	50.18 42.76 31.70 40.95	0.04 0.04 0.05 0.05 0.21 0.22	0.03 0.03 0.07 0.07 0.13 0.12	42.83 31.82 41.07 27.39 36.58	47.33 46.00 56.00 50.00 60.00	-4.50 -14.18 -14.93 -22.61 -23.42	Average Average QP Average QP
6 7 8 9	0.385 0.426 1.065 1.077 9.966	50.18 42.76 31.70 40.95 27.05	0.04 0.04 0.05 0.05 0.21	0.03 0.03 0.07 0.07 0.13	42.83 31.82 41.07 27.39	47.33 46.00 56.00 50.00 60.00 50.00	-4.50 -14.18 -14.93 -22.61 -23.42	Average Average QP Average QP Average

1. An initial pre-scan was performed on the line and neutral lines with peak detector.

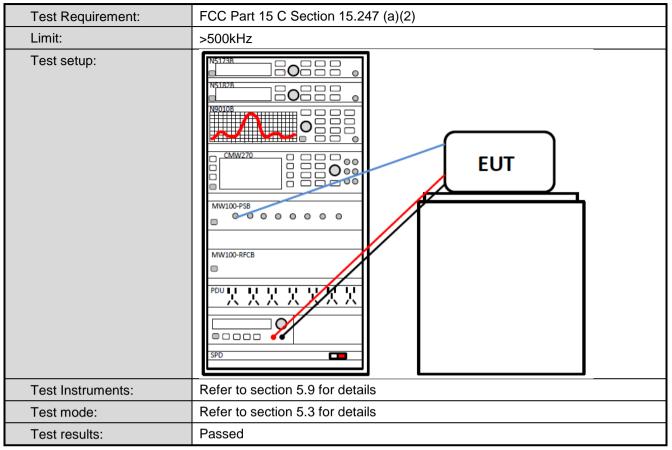
2. Quasi-Peak and Average measurement were performed at the frequencies with maximized peak emission.

3. Final Level =Receiver Read level + LISN Factor + Aux Factor + Cable Loss.

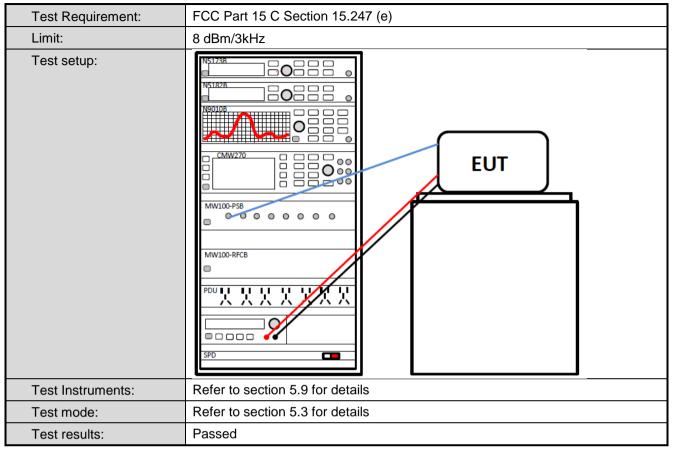


2. Quasi-Peak and Average measurement were performed at the frequencies with maximized peak emission.

3. Final Level = Receiver Read level + LISN Factor + Aux Factor + Cable Loss.



6.3 Conducted Output Power



6.4 Occupy Bandwidth

6.5 Power Spectral Density

6.6 Band Edge

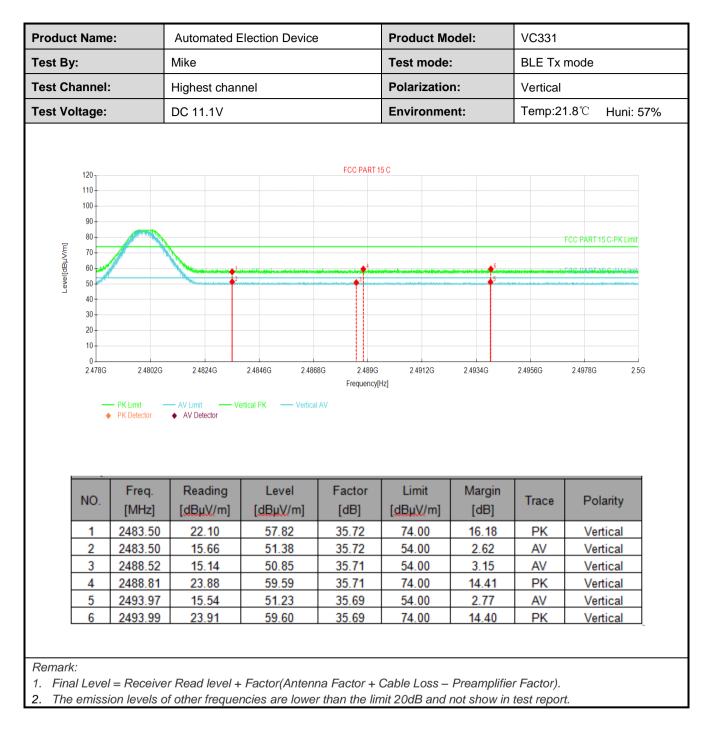
6.6.1 Conducted Emission Method

Test Requirement:	FCC Part 15 C Section 15.247 (d)
Limit:	In any 100 kHz bandwidth outside the frequency band in which the spread spectrum intentional radiator is operating, the radio frequency power that is produced by the intentional radiator shall be at least 20 dB below that in the 100 kHz bandwidth within the band that contains the highest level of the desired power, based on either an RF conducted or a radiated measurement.
Test setup:	
Test Instruments:	Refer to section 5.9 for details
Test mode:	Refer to section 5.3 for details
Test results:	Passed

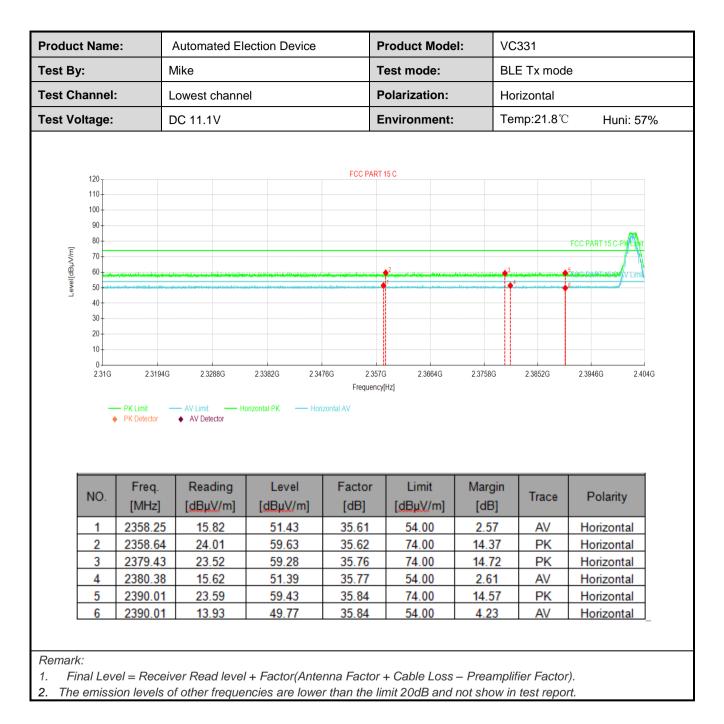
6.6.2 Radiated Emission Method

Test Requirement:	FCC Part 15 C	Section 15	.205 and 1	15.209			
Test Frequency Range:	2310 MHz to 2	2390 MHz ar	nd 2483.5N	MHz to 25	500 N	/IHz	
Test Distance:	3m						
Receiver setup:	Frequency	Detector	R	BW	VI	BW	Remark
l · · · · ·	Above 1GHz	Peak		ЛНz		ЛНz	Peak Value
		RMS		/Hz		ЛНz	Average Value
Limit:	Frequen	су	Limit (dBu		n)	Δν	Remark
	Above 1GHz54.00Average Value74.00Peak Value						
Test Procedure:	 the groun to determ The EUT antenna, tower. The anter the groun Both horiz make the For each case and meters ar to find the The test-r Specified If the emist the limit s of the EU have 10 c 	d at a 3 met ine the posit was set 3 m which was n and height is d to determi zontal and ve measureme suspected e then the and the rota ta maximum r eceiver syst Bandwidth v ssion level o pecified, the T would be n B margin we	er camber ion of the leters away nounted or a varied fro ne the mai ertical pola ent. mission, th reading. em was se with Maxim f the EUT n testing of reported. Could be re-	The tab highest ra y from the n the top or one m ximum va arizations he EUT w tuned to urned fror et to Peal num Hold in peak r could be s Otherwise -tested or	le wa adiati e inte of a v eter t alue c of th was a heigh m 0 d k Det Mode stopp e the one by	as rotate ion. erference variable to four n of the fie e anten rranged hts from legrees ect Fun de. was 10 ed and emissio r one us	-height antenna neters above eld strength. na are set to to its worst 1 meter to 4 to 360 degrees
Test setup:		LEUT urntable) Gr Test Receiv	3m	orn Artenna Arr Pre- Angular Control	Iter	wer	
Test Instruments:	Refer to section	on 5.9 for det	tails				
Test mode:	Refer to section	on 5.3 for det	tails				
Test results:	Passed						

Project No.: JYTSZR2201027


PHY: 1MHz

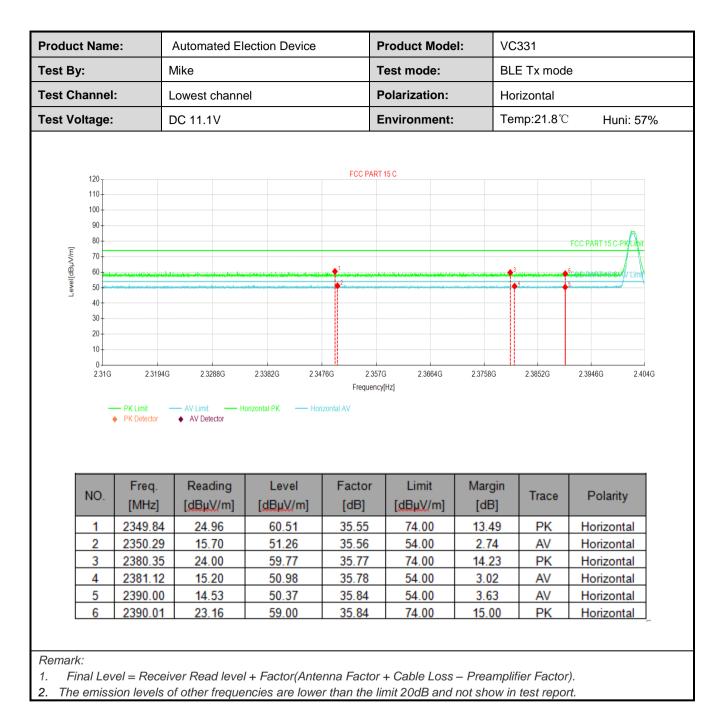
Judot	t Name	e :	Automated E	Election Device		Product Me	odel:	VC331		
st By	':		Mike			Test mode	:	BLE Tx	mode	
st Ch	annel	:	Lowest chan	nel		Polarizatio	n:	Vertical		
st Vo	Itage:		DC 11.1V			Environme	ent:	Temp:2	1.8℃ Hun	i: 57%
Level[dBµV/m]	120 110 100 90 80 70 60 50 40 30				FCC PART 1	5 C			FCC PART 15 C-PK	mit
	20 10 0 2.31G	2.3194G → PK Limit → PK Detector	2.3288G AV Limit Ve AV Detector	2 3382G 2 347 ertical PK — Vertical	Frequency[I		2.3758G	2.3852G	2.3946G	2.404G
	10 0 2.31G	— PK Limit —	— AV Limit — Ve		Frequency[I		23758G Margin [dB]	2.3852G	2.3946G Polarity	2.404G
	10 0 2.31G	PK Limit - PK Detector -	AV Limit Ve AV Detector Ve	ertical PK Vertical	Frequency(Limit	Margin			2.404G
	10 0 231G	PK Limit PK Detector Freq. [MHz]	AV Limit Ve AV Detector Ve Reading [dBµV/m]	Level	Frequency[AV Factor [dB]	Limit	Margin [dB]	Trace	Polarity	2.404G
	10 0 2316 NO.	Freq. [MHz] 2354.50	AV Limit Ve AV Detector Ve Reading [dBµV/m] 23.83	Level [dBµV/m] 59.42	Frequency(AV Factor [dB] 35.59	Limit [dBµV/m] 74.00	Margin [dB] 14.58	Trace	Polarity Vertical	2.404G
	10 0 2316 NO. 1 2	Freq. [MHz] 2354.50 2355.00	AV Limit → Ve AV Detector ← Ve Reading [dBµV/m] 23.83 15.99	Level [dBµV/m] 59.42 51.58	Frequency(AV Factor [dB] 35.59 35.59	Limit [dBµV/m] 74.00 54.00	Margin [dB] 14.58 2.42	Trace PK AV	Polarity Vertical Vertical	2.404G
	10 0 231G NO. 1 2 3	PK Limit PK Detector [MHz] 2354.50 2355.00 2372.87	AV Limit Ve	Level [dBµV/m] 59.42 51.58 51.17	Frequency(AV Factor [dB] 35.59 35.59 35.72	Limit [dBµV/m] 74.00 54.00 54.00	Margin [dB] 14.58 2.42 2.83	Trace PK AV AV	Polarity Vertical Vertical Vertical	2.404G



PHY: 2MHz

oduci	t Name	e:	Automated E	Election Device)	Product Mo	odel:	VC331	
est By	:		Mike			Test mode		BLE Tx	mode
est Ch	annel	:	Lowest chan	nel		Polarizatio	n:	Vertical	
est Vo	Itage:		DC 11.1V			Environme	nt:	Temp:2	1.8℃ Huni: 5
Ē	120 110 100 90 80				FCC PART 1	5 C			FCC PART 15 C-PK
Level[dBµV/m]	70 60	la decidence abole and color			•1		→ ³	an lan bidalina di 🌢	San Charles of Vitime
Level	50	talitan talitan mata antika di sana.		in la de la desta de la companya de	Nadilai, estant, en alguna a significat et	2		an sha she at i a san a sa s	5
	40								
			0.00000		700 00570			0.00500	
	20	2.3194G PK Limit PK Detector	2.3288G AV Limit Ve AV Detector	2.3382G 2.347 ertical PK — Vertical	Frequency[2 3758G	2.3852G	2.3946G 2.404
	20 10 0	— PK Limit —	— AV Limit — Ve		Frequency[2.3758G Margin [dB]	23852G	2 3946G 2 404 Polarity
	20 10 2.31G	PK Limit - PK Detector -	AV Limit Ve AV Detector	ertical PK Vertical	Frequency[Hz]	Margin		
	20 10 0 2.31G	PK Limit PK Detector Freq. [MHz]	AV Limit Ve AV Detector Ve Reading [dBµV/m]	Level	Frequency[AV Factor [dB]	Limit [dBµV/m]	Margin [dB]	Trace	Polarity
	20 10 231G NO.	Freq. [MHz] 2357.41	AV Limit AV Detector Reading [dBµV/m] 24.20	Level [dBµV/m] 59.81	Frequency AV Factor [dB] 35.61	Limit [dBµV/m] 74.00	Margin [dB] 14.19	Trace	Polarity Vertical
	20 10 231G NO. 1 2	PK Limit PK Detector Freq. [MHz] 2357.41 2358.23	AV Limit → Ve AV Detector ← Ve Reading [dBµV/m] 24.20 15.57	Level [dBµV/m] 59.81 51.18	Frequency AV Factor [dB] 35.61 35.61	Limit [dBμV/m] 74.00 54.00	Margin [dB] 14.19 2.82	Trace PK AV	Polarity Vertical Vertical
	20 10 0 231G NO. 1 2 3	PK Limit PK Detector [MHz] 2357.41 2358.23 2374.48	AV Limit Ver AV Detector Ver Reading [dBµV/m] 24.20 15.57 23.79	Level [dBµV/m] 59.81 51.18 59.52	Frequency AV Factor [dB] 35.61 35.61 35.73	Limit [dBµV/m] 74.00 54.00 74.00	Margin [dB] 14.19 2.82 14.48	Trace PK AV PK	Polarity Vertical Vertical Vertical

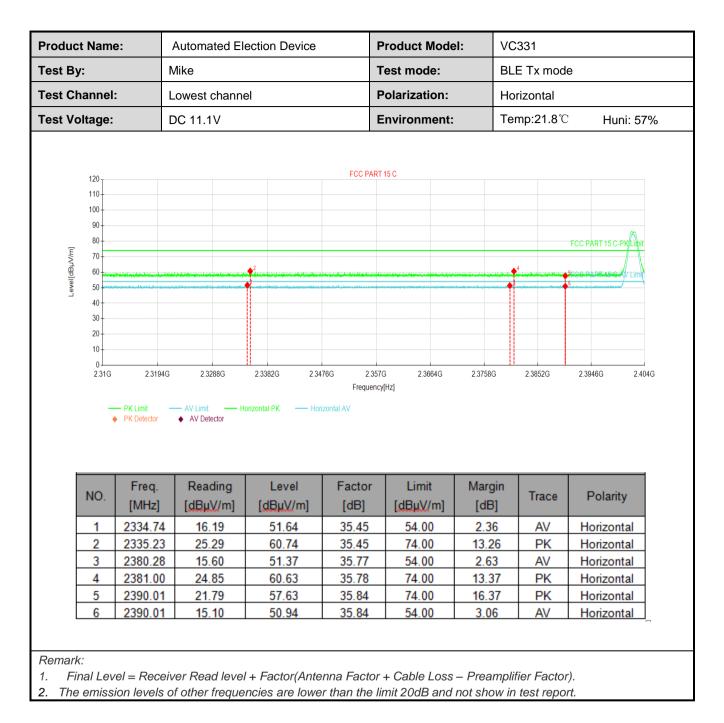
		Automateu	Election Device	•	Product Me	odel:	VC331		
Test By:		Mike			Test mode	:	BLE Tx	mode	
Test Channe	l:	Highest chan	inel		Polarizatio	n:	Vertical		
Test Voltage	:	DC 11.1V			Environme	ent:	Temp:2	1.8℃ Huni:	57%
120 110 100 90 80 70 60 50				FCC PART 1	5 C			FCC PART 15 C-PK Limi	
	 ⇒ 2.4802G → PK Limit → PK Detector 	2.4824G AV Limit Ve AV Detector	2.4846G 2.486 ertical PK — Vertical	Frequency[2.4912G Hz]	2.4934G	2.4956G	2.4978G 2	5G
40 30 20 10	— PK Limit —	— AV Limit — Ve		Frequency[2.4934G Margin [dB]	2.4956G	2.4978G 2. Polarity	.5G
	PK Limit → PK Detector → Freq.	AV Limit Ve AV Detector	ertical PK — Vertical	Frequency AV Factor	Hz]	Margin			56
40 30 20 10 2.4780 NO. 1 2	 PK Limit PK Detector PK Detector Freq. [MHz] 2483.50 2483.50 	AV Limit Ve AV Detector Ve Reading [dBµV/m] 22.16 14.12	Level [dBµV/m] 57.88 49.84	Frequency AV Factor [dB] 35.72 35.72	Limit [dBµV/m] 74.00 54.00	Margin [dB] 16.12 4.16	Trace PK AV	Polarity Vertical Vertical	56
40 30 20 10 2.4780 NO. 1 2 3	 PK Limit PK Detector PK Detector Freq. [MHz] 2483.50 2483.50 2488.26 	AV Limit Ve AV Detector Ve Reading [dBµV/m] 22.16 14.12 23.62	Level [dBµV/m] 57.88 49.84 59.33	Frequency AV Factor [dB] 35.72 35.72 35.71	Limit [dBµV/m] 74.00 54.00 74.00	Margin [dB] 16.12 4.16 14.67	Trace PK AV PK	Polarity Vertical Vertical Vertical	56
40 30 20 10 2.4780 NO. 1 2 3 4	 PK Limit PK Detector PK Detector Freq. [MHz] 2483.50 2483.50 2488.26 2488.41 	AV Limit	Level [dBµV/m] 57.88 49.84 59.33 51.44	Frequency AV Factor [dB] 35.72 35.72 35.71 35.71	Limit [dBµV/m] 74.00 54.00 74.00 54.00	Margin [dB] 16.12 4.16 14.67 2.56	Trace PK AV PK AV	Polarity Vertical Vertical Vertical Vertical	556
40 30 20 10 2.4780 NO. 1 2 3	 PK Limit PK Detector PK Detector Freq. [MHz] 2483.50 2483.50 2488.26 	AV Limit Ve AV Detector Ve Reading [dBµV/m] 22.16 14.12 23.62	Level [dBµV/m] 57.88 49.84 59.33	Frequency AV Factor [dB] 35.72 35.72 35.71	Limit [dBµV/m] 74.00 54.00 74.00	Margin [dB] 16.12 4.16 14.67	Trace PK AV PK	Polarity Vertical Vertical Vertical	56



Coded PHY, S=2

	me:	Automated I	Election Device	9	Product Me	odel:	VC331	
Fest By:		Mike			Test mode	:	BLE Tx	mode
Fest Chann	nel:	Lowest chan	nel		Polarizatio	n:	Vertical	
Fest Voltag	le:	DC 11.1V			Environme	nt:	Temp:2	1.8℃ Huni: 579
120 - 110 - 100 -				FCC PART 1	15 C			
90 - 80 - 70 - 60 - 50 -				2				FCC PART 15 C-PKUmit
40 - 30 -								
20 - 10 - 0 - 2 3		2.3288G	2.3382G 2.34	76G 2.357G	2.3664G	2.3758G	2.3852G	2.3946G 2.404G
10- 0- 23	PK Limit PK Detector	AV Limit V AV Detector	2.3382G 2.34 ertical PK — Vertica Level	Frequency[Hz]			
10- 0-	PK Limit PK Detector	— AV Limit — V	ertical PK — Vertica	Frequency[2.3758G Margin [dB]	2.3852G	2.3946G 2.404G
10- 0- 23	PK Limit PK Detector Freq.	AV Limit V AV Detector V	ertical PK Vertica	Frequency IAV Factor	Hz]	Margin		
10- 0- 23 NO 1 2	PK Limit PK Detector Freq. [MHz] 2355.01 2355.39	AV Limit → V AV Detector → V Reading [dBµV/m] 15.60 24.52	ertical PK	Frequency AV Factor [dB] 35.59 35.59	Limit [dBµV/m] 54.00 74.00	Margin [dB] 2.81 13.89	Trace AV PK	Polarity Vertical Vertical
10- 0- 23 NO	PK Limit PK Detector Freq. [MHz] 2355.01 2355.39 2379.92	AV Limit V	Level [dBµV/m] 51.19 60.11 60.33	Frequency AV Factor [dB] 35.59 35.59 35.77	Limit [dBµV/m] 54.00 74.00 74.00	Margin [dB] 2.81 13.89 13.67	Trace AV PK PK	Polarity Vertical Vertical Vertical
10- 0- 23 NO 1 2 3 4	PK Limit PK Detector PK Detector Freq. [MHz] 2355.01 2355.39 2379.92 2380.71	AV Limit V AV Detector V Reading [dBµV/m] 15.60 24.52 24.56 15.61	Ertical PK	Frequency AV Factor [dB] 35.59 35.59 35.77 35.77	Limit [dBµV/m] 54.00 74.00 74.00 54.00	Margin [dB] 2.81 13.89 13.67 2.62	Trace AV PK AV	Polarity Vertical Vertical Vertical Vertical
10- 0- 23 NO 1 2 3	PK Limit PK Detector Freq. [MHz] 2355.01 2355.39 2379.92	AV Limit V	Level [dBµV/m] 51.19 60.11 60.33	Frequency AV Factor [dB] 35.59 35.59 35.77	Limit [dBµV/m] 54.00 74.00 74.00	Margin [dB] 2.81 13.89 13.67	Trace AV PK PK	Polarity Vertical Vertical Vertical

est By:			Election Device	;	Product Mo	odel:	VC331		
		Mike			Test mode:	:	BLE Tx	mode	
est Channel	:	Highest chan	nel		Polarizatio	n:	Vertical		
est Voltage:		DC 11.1V			Environme	nt:	Temp:2	1.8℃ Huni: ধ	57%
120 110 100 90 80 70 60 50				FCC PART 1	5 C			FCC PART 15 C-PK Limit	
40 30 20 10 0 2.478G	2.4802G PK Limit - PK Detector	2.4824G AV Limit Ve AV Detector	2.4846G 2.486 ertical PK — Vertical	Frequency[2.4912G 12]	2.4934G	2.4956G	24978G 2.5	5G
40 30 20 10 0 2.478G	— PK Limit —	— AV Limit — Ve		Frequency[2.4934G	2.4956G Trace	24978G 25	5G
40 30 20 10 0 2.478G NO.	Freq. [MHz] 2483.50	AV Limit Ve AV Detector Ve	Level [dBµV/m] 58.15	Frequency AV Factor [dB] 35.72	Limit [dBµV/m] 74.00	Margin [dB] 15.85	Trace	Polarity Vertical	5G
40 30 20 10 2,4786 2,4786 NO. 1 2	Freq. [MHz] 2483.50 2483.50	AV Limit Ve AV Detector Ve Reading [dBµV/m] 22.43 14.26	Level [dBµV/m] 58.15 49.98	Frequency AV Factor [dB] 35.72 35.72	Limit [dBµV/m] 74.00 54.00	Margin [dB] 15.85 4.02	Trace PK AV	Polarity Vertical Vertical	5G
40 30 20 10 0 2 478G NO. 1 2 3	PK Limit PK Detector Freq. [MHz] 2483.50 2487.08	AV Limit AV Detector Reading [dBµV/m] 22.43 14.26 15.41	Level [dBµV/m] 58.15 49.98 51.12	Frequency AV Factor [dB] 35.72 35.72 35.71	Limit [dBµV/m] 74.00 54.00 54.00	Margin [dB] 15.85 4.02 2.88	Trace PK AV AV	Polarity Vertical Vertical Vertical	5G
40 30 20 10 2,4786 2,4786 NO. 1 2	Freq. [MHz] 2483.50 2483.50	AV Limit Ve AV Detector Ve Reading [dBµV/m] 22.43 14.26	Level [dBµV/m] 58.15 49.98	Frequency AV Factor [dB] 35.72 35.72	Limit [dBµV/m] 74.00 54.00	Margin [dB] 15.85 4.02	Trace PK AV	Polarity Vertical Vertical	5G



Coded PHY, S=8

Product Name:			Automated Election Device			Product Mo	odel:	VC331		
est By:			Mike			Test mode	:	BLE Tx mode		
Fest Ch	annel	:	Lowest channel			Polarization:		Vertical		
Fest Vo	Itage:		DC 11.1V			Environme	ent:	Temp:2	1.8℃ Huni: 57	
	120				FCC PART 1	15 C				
	110									
	100 90									
	80								FCC PART 15 C-PK	
[ɯ//	70									
Level[dBµ//m]	60	a dan hita kana kana kana dan kana kana kana kana	n di tangatan di katika di katika	cent attractional attraction of the second second	****	2			Econoration / Limp	
Leve	50	mentaliseko-esinteko esileko karlısına	an a	tala seta ata kara da ara d	مانى مۇرىيەت بەر بارىيە بەر بەر يەر بەر يەر بەر بەر بەر بەر بەر بەر بەر بەر بەر ب	and a second and the second second second second			Summer and the second second	
	40 30									
	30 -									
	20									
	20 10									
		2.3194G	2.3288G	2.3382G 2.34	76G 2.357G Frequency[2.3758G	2.3852G	2.3946G 2.404G	
Ī	10 0 2.31G	PK Limit - PK Detector -	AV Limit Ve AV Detector	ertical PK — Vertical	Frequency[AV Factor	Hz] Limit	Margin			
	10 0 2.31G	PK Limit PK Detector Freq. [MHz]	AV Limit Va AV Detector Va Reading [dBµV/m]	ertical PK — Vertical Level [dBµV/m]	Frequency[AV Factor [dB]	Limit [dBµV/m]	Margin [dB]	Trace	Polarity	
	10 0 2.31G NO.	Freq. [MHz] 2359.46	AV Limit AV Detector Reading [dBµV/m] 15.97	ertical PK — Vertical Level [dBµV/m] 51.59	Frequency AV Factor [dB] 35.62	Limit [dBµV/m] 54.00	Margin [dB] 2.41	Trace	Polarity Vertical	
	10 0 2.316 NO. 1 2	Freq. [MHz] 2359.46 2359.52	AV Limit Va	Level [dBµV/m] 51.59 60.20	Frequency AV Factor [dB] 35.62 35.62	Limit [dBµV/m] 54.00 74.00	Margin [dB] 2.41 13.80	Trace AV PK	Polarity Vertical Vertical	
	10 0 231G NO. 1 2 3	PK Limit PK Detector [MHz] 2359.46 2359.52 2376.45	AV Limit Va AV Detector Va Reading [dBµV/m] 15.97 24.58 15.71	Level [dBµV/m] 51.59 60.20 51.45	Frequency[AV Factor [dB] 35.62 35.62 35.74	Limit [dBµV/m] 54.00 74.00 54.00	Margin [dB] 2.41 13.80 2.55	Trace AV PK AV	Polarity Vertical Vertical Vertical	
	10 0 231G NO. 1 2 3 4	PK Limit PK Detector Freq. [MHz] 2359.46 2359.52 2376.45 2376.61	AV Limit Va AV Detector Va Reading [dBµV/m] 15.97 24.58 15.71 24.29	Level [dBµV/m] 51.59 60.20 51.45 60.03	Frequency AV Factor [dB] 35.62 35.62 35.74 35.74	Limit [dBµV/m] 54.00 74.00 54.00 74.00	Margin [dB] 2.41 13.80 2.55 13.97	Trace AV PK AV PK	Polarity Vertical Vertical Vertical Vertical	
	10 0 231G NO. 1 2 3	PK Limit PK Detector [MHz] 2359.46 2359.52 2376.45	AV Limit Va AV Detector Va Reading [dBµV/m] 15.97 24.58 15.71	Level [dBµV/m] 51.59 60.20 51.45	Frequency[AV Factor [dB] 35.62 35.62 35.74	Limit [dBµV/m] 54.00 74.00 54.00	Margin [dB] 2.41 13.80 2.55	Trace AV PK AV	Polarity Vertical Vertical Vertical	

Fest By:	Product Name:		Automated Election Device			odel:	VC331		
Test By:		Mike			Test mode	:	BLE Tx mode		
Fest Channel:		Highest chan	nel		Polarizatio	n:	Vertical		
Fest Voltage:		DC 11.1V			Environme	ent:	Temp:2	1.8℃ Huni:	57%
120 110 100 90 80 70 60 50 40				FCC PART 1	5 C			FCC PART 15 C-PK Lin	
30 20 10 0 2.478G	2.4802G – PK Limit – PK Detector	2.4824G — AV Limit — Ve AV Detector	2.4846G 2.486 ertical PK — Vertical	Frequency[2.4912G Hz]	2.4934G	2.4956G	2.4978G ;	2.5G
20 10 0	– PK Limit –	— AV Limit — Ve		Frequency[2.4934G Margin [dB]	2.4956G Trace	2.4978G	2.5G
20 10 0 2.478G	PK Limit PK Detector	AV Limit	ertical PK — Vertical Level	Frequency AV Factor [dB] 35.72	Limit [dBµV/m] 74.00	Margin [dB] 16.15	Trace		2.5G
20- 10- 2.478G NO. 1 2	PK Limit PK Detector Freq. [MHz] 2483.50 2483.50	AV Limit Ve AV Detector Ve Reading [dBµV/m] 22.13 14.58	Level [dBµV/m] 57.85 50.30	Frequency AV Factor [dB] 35.72 35.72	Limit [dBµV/m] 74.00 54.00	Margin [dB] 16.15 3.70	Trace PK AV	Polarity Vertical Vertical	2.56
20 10 0 2.478G NO. 1 2 3	Freq. [MHz] 2483.50 2488.80	AV Limit Ve AV Detector Ve Reading [dBµV/m] 22.13 14.58 23.95	Level [dBµV/m] 57.85 50.30 59.66	Frequency AV Factor [dB] 35.72 35.72 35.71	Limit [dBµV/m] 74.00 54.00 74.00	Margin [dB] 16.15 3.70 14.34	Trace PK AV PK	Polarity Vertical Vertical Vertical	2.5G
20 10 0 2.478G NO. 1 2 3 4	Freq. [MHz] 2483.50 2488.80 2488.96	AV Limit	Level [dBµV/m] 57.85 50.30 59.66 51.04	Frequency AV Factor [dB] 35.72 35.72 35.71 35.71	Limit [dBµV/m] 74.00 54.00 74.00 54.00	Margin [dB] 16.15 3.70 14.34 2.96	Trace PK AV PK AV	Polarity Vertical Vertical Vertical Vertical	2.56
20 10 0 2.478G NO. 1 2 3	Freq. [MHz] 2483.50 2488.80	AV Limit Ve AV Detector Ve Reading [dBµV/m] 22.13 14.58 23.95	Level [dBµV/m] 57.85 50.30 59.66	Frequency AV Factor [dB] 35.72 35.72 35.71	Limit [dBµV/m] 74.00 54.00 74.00	Margin [dB] 16.15 3.70 14.34	Trace PK AV PK	Polarity Vertical Vertical Vertical	2.5G

6.7 Spurious Emission

6.7.1 Conducted Emission Method

Test Requirement:	FCC Part 15 C Section 15.247 (d)
Limit:	In any 100 kHz bandwidth outside the frequency band in which the spread spectrum intentional radiator is operating, the radio frequency power that is produced by the intentional radiator shall be at least 20 dB below that in the 100 kHz bandwidth within the band that contains the highest level of the desired power, based on either an RF conducted or a radiated measurement.
Test setup:	
Test Instruments:	Refer to section 5.9 for details
Test mode:	Refer to section 5.3 for details
Test results:	Passed

6.7.2 Radiated Emission Method

Test Requirement:	FCC Part 15 C	Section 15.	.205	and 15.209			
Test Frequency Range:	9kHz to 25GHz						
Test Distance:	3m or 10m						
	Frequency Detector RBW VBW Remark						
Receiver setup:	30MHz-1GHz	Quasi-pea		120KHz	300ł		Quasi-peak Value
		Peak		1MHz	3M		Peak Value
	Above 1GHz	RMS		1MHz	3M		Average Value
Limit:	Frequency	/	Limi	it (dBuV/m @ ⁻	10m)		Remark
	30MHz-88M	Hz		30.0		G	luasi-peak Value
	88MHz-216N	1Hz		33.5			uasi-peak Value
	216MHz-960			36.0			uasi-peak Value
	960MHz-1G			44.0		G	luasi-peak Value
	Frequency	/	Lim	nit (dBuV/m @	3m)		Remark
	Above 1GF	lz –		<u>54.0</u> 74.0			Average Value Peak Value
Test Procedure:	 1GHz)/1.5r (below 1G rotated 36 radiation. The EUT w away from on the top of The antenr the ground Both horize make the n For each s case and t meters and to find the r The test-re Specified E If the emiss the limit sp of the EUT have 10 dE 	n(above 16 Hz)or 3 m 0 degrees vas set 10 r the interfe of a variable a height is to determ ontal and v neasurements suspected of hen the an I the rota ta maximum re ecciver system andwidth w sion level o ecified, then would be margin wo	GHz netes to meta eren e-he s var nine everti- ent. emi nten able ead stern with of the en te repoould	n the top of above the er chamber(a o determine ers(below 10 ace-receiving eight antenna aried from or the maximu cal polarizat ssion, the E na was tune was turned ing. n was set f Maximum H e EUT in per esting could b orted. Other	grounc above the p GHz) or antenia tower ne met um valu ions of UT wa d to he from 0 to Pea old Moo ak moo be stop wise th I one b	I at a 1GHz oosition 3 me na, wh er to f ue of the a as arra eights degre k Det de. de was ped ar e emis y one	table 0.8m (below 10 meter chamber). The table was n of the highest eters (above 1GHz) nich was mounted four meters above the field strength. anged to its worst from 1 meter to 4 es to 360 degrees rect Function and a 10 dB lower than nd the peak values ssions that did not using peak, quasi- reported in a data
Test setup:	Below 1GHz	10m <	.		S A RF	Antenna To earch intenna Test ceiver —	wer

Project No.: JYTSZR2201027

	Above 1GHz
	AE EUT Horn Artenna Tower Horn Artenna Tower Ground Reference Plane Test Receiver Free Controller
Test Instruments:	Refer to section 5.9 for details
Test mode:	Refer to section 5.3 for details
Test results:	Passed
Remark:	 Pre-scan all kind of the place mode (X-axis, Y-axis, Z-axis), and found the Y-axis is the worst case. 9 kHz to 30MHz is lower than the limit 20dB, so only shows the data of above 30MHz in this report.

Measurement Data (worst case):

Below 1GHz:

	Automated Election Device			Product M	Model:	VC331	VC331		
ſ	Mike			Test mod	le:	BLE Tx m	BLE Tx mode		
:	30 MHz ~ 1 (GHz		Polarizati	ion:	Vertical &	k Horizor	ntal	
[DC 11.1V			Environm	nent:	Temp: 20).9 ℃	Huni: 59	
			Full Spect	rum					
					Per construction of the co			1	
						FCC PART 1	15.247 1	0 m	
							*	*	
				<u>*</u>	*	and all and a state of the	and the second second		
. 4 11800.00	*			*	*				
hing man	unter and the second	n Alter opply in Alter		*					
		80 100	M	200					
pas di Milang	50 60	80 100M		200 ncy in Hz	300 400		800		
		Limit (dB # V/m)				0 500			
icy) 75000	50 60 MaxPeak (dB н V/m) 10.60	Limit (dB ዞ V/m) 30.00	Frequer Margin (dB) 19.40	ncy in Hz Height (cm) 100.0	300 400	0 500 Azimuth (deg) 91.0	800 Corr (dB/n	r. n) -15.7	
rcy) 75000 09000	50 60 MaxPeak (dB н V/m) 10.60 11.13	Limit (dB ዞ V/m) 30.00 33.50	Frequer (dB) 19.40 22.37	Height (cm) 100.0 100.0	300 400	Azimuth (deg) 91.0 176.0	800 Corr (dB/n	n) -15.7 -15.6	
icy) 75000	50 60 MaxPeak (dB н V/m) 10.60	Limit (dB ዞ V/m) 30.00	Frequer Margin (dB) 19.40	ncy in Hz Height (cm) 100.0	200 400 Pol V V V V	0 500 Azimuth (deg) 91.0	800	r. n) -15.7	
		30 MHz ~ 1 0	30 MHz ~ 1 GHz	DC 11.1V		DC 11.1V Environment: Full Spectrum	DC 11.1V Environment: Temp: 20 Full Spectrum Full Spectrum For PART	DC 11.1V Environment: Temp: 20.9°C Full Spectrum Full Spectrum Full Spectrum	

Above 1GHz

PHY: 1MHz

			annel: Lowest ch			
		Det	tector: Peak Valu	Ie		
Frequency (MHz)	Read Level (dBuV)	Factor(dB)	Level (dBuV/m)	Limit Line (dBuV/m)	Margin (dB)	Polarization
4804.00	57.64	-9.60	48.04	74.00	25.96	Vertical
4804.00	57.73	-9.60	40.54	74.00	33.46	Horizontal
		Dete	ctor: Average Va	llue		1
Frequency (MHz)	Read Level (dBuV)	Factor(dB)	Level (dBuV/m)	Limit Line (dBuV/m)	Margin (dB)	Polarizatio
4804.00	50.14	-9.60	40.54	54.00	13.46	Vertical
4804.00	50.27	-9.60	40.67	54.00	13.33	Horizonta
		Test ch	annel: Middle ch	annel		
		Det	ector: Peak Valu	le		
Frequency (MHz)	Read Level (dBuV)	Factor(dB)	Level (dBuV/m)	Limit Line (dBuV/m)	Margin (dB)	Polarizatio
4884.00	57.97	-9.04	48.93	74.00	25.07	Vertical
4884.00	57.96	-9.04	48.92	74.00	25.08	Horizonta
		Dete	ctor: Average Va	llue		1
Frequency (MHz)	Read Level (dBuV)	Factor(dB)	Level (dBuV/m)	Limit Line (dBuV/m)	Margin (dB)	Polarizatio
4884.00	50.38	-9.04	41.34	54.00	12.66	Vertical
4884.00	50.41	-9.04	41.37	54.00	12.63	Horizonta
		Test ch	annel: Highest cl	nannel		
			ector: Peak Valu			
Frequency (MHz)	Read Level (dBuV)	Factor(dB)	Level (dBuV/m)	Limit Line (dBuV/m)	Margin (dB)	Polarizatio
4960.00	57.87	-8.45	49.42	74.00	24.58	Vertical
4960.00	58.02	-8.45	49.57	74.00	24.43	Horizonta
		Dete	ctor: Average Va	llue		
Frequency (MHz)	Read Level (dBuV)	Factor(dB)	Level (dBuV/m)	Limit Line (dBuV/m)	Margin (dB)	Polarizatio
4960.00	50.53	-8.45	42.08	54.00	11.92	Vertical
		-8.45	42.17	54.00	11.83	Horizonta

1. Final Level =Receiver Read level + Factor.

PHY: 2MHz

		Test ch	annel: Lowest cł	nannel		
		De	tector: Peak Valu	le		
Frequency (MHz)	Read Level (dBuV)	Factor(dB)	Level (dBuV/m)	Limit Line (dBuV/m)	Margin (dB)	Polarization
4804.00	57.34	-9.60	47.74	74.00	26.26	Vertical
4804.00	57.50	-9.60	47.90	74.00	26.10	Horizontal
		Dete	ctor: Average Va	alue	·	-
Frequency (MHz)	Read Level (dBuV)	Factor(dB)	Level (dBuV/m)	Limit Line (dBuV/m)	Margin (dB)	Polarization
4804.00	49.98	-9.60	40.38	54.00	13.62	Vertical
4804.00	49.90	-9.60	40.30	54.00	13.70	Horizontal
		Test ch	annel: Middle ch	nannel		
		Det	tector: Peak Valu	le	1	-
Frequency (MHz)	Read Level (dBuV)	Factor(dB)	Level (dBuV/m)	Limit Line (dBuV/m)	Margin (dB)	Polarization
4884.00	57.56	-9.04	48.52	74.00	25.48	Vertical
4884.00	57.71	-9.04	48.67	74.00	25.33	Horizontal
		Dete	ctor: Average Va	alue		
Frequency (MHz)	Read Level (dBuV)	Factor(dB)	Level (dBuV/m)	Limit Line (dBuV/m)	Margin (dB)	Polarization
4884.00	50.24	-9.04	41.20	54.00	12.80	Vertical
4884.00	50.16	-9.04	41.12	54.00	12.88	Horizontal
		Toot ob	annal: Highaat a	aanal		
			annel: Highest cl tector: Peak Valu			
Fraguanay	Read Level	De		Limit Line	Margin	
Frequency (MHz)	(dBuV)	Factor(dB)	Level (dBuV/m)	(dBuV/m)	(dB)	Polarization
4960.00	57.82	-8.45	49.37	74.00	24.63	Vertical
4960.00	57.67	-8.45	49.22	74.00	24.78	Horizontal
	T	Dete	ctor: Average Va	alue	1	T
Frequency (MHz)	Read Level (dBuV)	Factor(dB)	Level (dBuV/m)	Limit Line (dBuV/m)	Margin (dB)	Polarization
4960.00	49.89	-8.45	41.44	54.00	12.56	Vertical
4960.00	50.15	-8.45	41.70	54.00	12.30	Horizontal
Remark: 1. Final Level =F	Receiver Read level	+ Factor.				

Coded PHY, S=2

			annel: Lowest ch			
	T	Det	tector: Peak Valu		I	
Frequency (MHz)	Read Level (dBuV)	Factor(dB)	Level (dBuV/m)	Limit Line (dBuV/m)	Margin (dB)	Polarizatio
4804.00	56.76	-9.60	47.16	74.00	26.84	Vertical
4804.00	56.64	-9.60	47.04	74.00	26.96	Horizonta
		Dete	ctor: Average Va	llue		
Frequency (MHz)	Read Level (dBuV)	Factor(dB)	Level (dBuV/m)	Limit Line (dBuV/m)	Margin (dB)	Polarizatio
4804.00	48.84	-9.60	39.24	54.00	14.76	Vertical
4804.00	48.11	-9.60	38.51	54.00	15.49	Horizonta
		Test ch	annel: Middle ch	annel		
		Det	ector: Peak Valu	ie		
Frequency (MHz)	Read Level (dBuV)	Factor(dB)	Level (dBuV/m)	Limit Line (dBuV/m)	Margin (dB)	Polarizatio
4884.00	56.97	-9.04	47.93	74.00	26.07	Vertical
4884.00	56.71	-9.04	47.67	74.00	26.33	Horizonta
		Dete	ctor: Average Va	llue		
Frequency (MHz)	Read Level (dBuV)	Factor(dB)	Level (dBuV/m)	Limit Line (dBuV/m)	Margin (dB)	Polarizatio
4884.00	49.13	-9.04	40.09	54.00	13.91	Vertical
4884.00	48.58	-9.04	39.54	54.00	14.46	Horizonta
			annel: Highest ch ector: Peak Valu			
Frequency (MHz)	Read Level (dBuV)	Factor(dB)	Level (dBuV/m)	Limit Line (dBuV/m)	Margin (dB)	Polarizatio
4960.00	57.02	-8.45	48.57	74.00	25.43	Vertical
4960.00	56.86	-8.45	48.41	74.00	25.59	Horizonta
	•	Dete	ctor: Average Va	llue		1
Frequency (MHz)	Read Level (dBuV)	Factor(dB)	Level (dBuV/m)	Limit Line (dBuV/m)	Margin (dB)	Polarizatio
	48.53	-8.45	40.08	54.00	13.92	Vertical
4960.00					4	

Coded PHY, S=8

			annel: Lowest ch			
		De	tector: Peak Valu			
Frequency (MHz)	Read Level (dBuV)	Factor(dB)	Level (dBuV/m)	Limit Line (dBuV/m)	Margin (dB)	Polarizatio
4804.00	56.29	-9.60	46.69	74.00	27.31	Vertical
4804.00	55.47	-9.60	45.87	74.00	28.13	Horizonta
		Dete	ctor: Average Va	lue		
Frequency (MHz)	Read Level (dBuV)	Factor(dB)	Level (dBuV/m)	Limit Line (dBuV/m)	Margin (dB)	Polarizatio
4804.00	49.10	-9.60	39.50	54.00	14.50	Vertical
4804.00	48.87	-9.60	39.27	54.00	14.73	Horizonta
		Test ch	annel: Middle ch	annel		
		Det	tector: Peak Valu	ie		
Frequency (MHz)	Read Level (dBuV)	Factor(dB)	Level (dBuV/m)	Limit Line (dBuV/m)	Margin (dB)	Polarizatio
4884.00	56.14	-9.04	47.10	74.00	26.90	Vertical
4884.00	55.35	-9.04	46.31	74.00	27.69	Horizonta
		Dete	ctor: Average Va	lue		
Frequency (MHz)	Read Level (dBuV)	Factor(dB)	Level (dBuV/m)	Limit Line (dBuV/m)	Margin (dB)	Polarizatio
4884.00	49.42	-9.04	40.38	54.00	13.62	Vertical
4884.00	48.68	-9.04	39.64	54.00	14.36	Horizonta
			annel: Highest ch tector: Peak Valu			
Frequency (MHz)	Read Level (dBuV)	Factor(dB)	Level (dBuV/m)	Limit Line (dBuV/m)	Margin (dB)	Polarizati
4960.00	56.51	-8.45	48.06	74.00	25.94	Vertical
4960.00	55.29	-8.45	46.84	74.00	27.16	Horizonta
		Dete	ctor: Average Va	lue		
Fraguanay	Read Level (dBuV)	Factor(dB)	Level (dBuV/m)	Limit Line (dBuV/m)	Margin (dB)	Polarizati
Frequency (MHz)		1		54.00	. ,	Vartical
	49.24	-8.45	40.79	54.00	13.21	Vertical