

Global United Technology Services Co., Ltd.

Report No.: GTS201803000232F05

FCC REPORT

Applicant: Audio Components International, Inc.

716 Yarmouth Road, Suite 212 Palos Verdes Estates, Address of Applicant:

CA 90274, USA

Manufacturer: Audio Components International, Inc.

716 Yarmouth Road, Suite 212 Palos Verdes Estates, Address of

Manufacturer: CA 90274, USA

Factory: Green Tech(DongGuan)Co.,Ltd.

No.7 NanSi Street, XianMangXi Road, QingXi Town, Address of Factory:

Dongguan City, Guangdong Province, China

Equipment Under Test (EUT)

Product Name: NUVO Wireless 5.8G

Model No.: **NV-SUBTXRX**

Trade Mark: NUVO

FCC ID: 2AGTU-SUBTXRX

FCC CFR Title 47 Part 15 Subpart C Section 15.407 Applicable standards:

Date of sample receipt: August 17, 2018

Date of Test: August 17, 2018- August 27, 2018

August 27, 2018 Date of report issued:

PASS * Test Result:

Authorized Signature:

Robinson Lo **Laboratory Manager**

This results shown in this test report refer only to the sample(s) tested, this test report cannot be reproduced, except in full, without prior written permission of the company. The report would be invalid without specific stamp of test institute and the signatures of compiler and approver.

^{*} In the configuration tested, the EUT complied with the standards specified above.

2 Version

Version No.	Date	Description
00	August 31, 2018	Original

Prepared By:	Jyson (Du	Date:	August 31, 2018
	Project Engineer		
Check By:	Andy un	Date:	August 31, 2018
	Reviewer		

3 Contents

			Page
1	COV	/ER PAGE	1
2	VER	SION	2
_			
3	CON	ITENTS	3
4	TES	T SUMMARY	4
	4.1	MEASUREMENT UNCERTAINTY	4
5	GEN	IERAL INFORMATION	5
	5.1	GENERAL DESCRIPTION OF EUT	5
	5.2	TEST MODE	7
	5.3	DESCRIPTION OF SUPPORT UNITS	7
	5.4	TEST FACILITY	7
	5.5	TEST LOCATION	
	5.6	Additional Instructions	8
6	TES	T INSTRUMENTS LIST	9
7	TES	T RESULTS AND MEASUREMENT DATA	10
	7.1	ANTENNA REQUIREMENT	10
	7.2	CONDUCTED EMISSIONS	
	7.3	CONDUCTED PEAK OUTPUT POWER	
	7.4	CHANNEL BANDWIDTH	
	7.5	POWER SPECTRAL DENSITY	
	7.6	BAND EDGES	
	7.6.1		
	7.7	Spurious Emission	
	7.7.1		
	7.8	FREQUENCY STABILITY	50
8	TES	T SETUP PHOTO	52
9	FUT	CONSTRUCTIONAL DETAILS	54

4 Test Summary

Test Item	Section in CFR 47	Result
Antenna requirement	15.203	Pass
AC Power Line Conducted Emission	15.207	Pass
Conducted Peak Output Power	15.407(a)(3)	Pass
Channel Bandwidth	15.407(e)	Pass
Power Spectral Density	15.407(a)(3)	Pass
Band Edge	15.407(b)(4)	Pass
Spurious Emission	15.205/15.209/15.407(b)(4)	Pass
Frequency Stability	15.407(g)	Pass

Remark: Test according to ANSI C63.10:2013.

Pass: The EUT complies with the essential requirements in the standard.

4.1 Measurement Uncertainty

Test Item	Frequency Range	Measurement Uncertainty	Notes			
Radiated Emission	9kHz ~ 30MHz	± 4.34dB	(1)			
Radiated Emission	30MHz ~ 1000MHz	± 4.24dB	(1)			
Radiated Emission	1GHz ~ 40GHz	± 4.68dB	(1)			
AC Power Line Conducted Emission	0.15MHz ~ 30MHz	± 3.45dB	(1)			
Emission O. 13WINZ ~ 30WINZ ± 3.45dB (1) Note (1): The measurement uncertainty is for coverage factor of k=2 and a level of confidence of 95%.						

5 General Information

5.1 General Description of EUT

on contra zocompaci	
Product Name:	NUVO Wireless 5.8G
Model No.:	NV-SUBTXRX
Remark:	NUVO
Test Model No:	NV-SUBTXRX
Remark:	1
Test sample(s) ID:	GTS201803000232-1
Sample(s) Status	Engineer sample
Hardware version:	HV1.0
Software version:	SV1.0
Operation Frequency:	5180.0MHz~5240.0MHz; 5736.0MHz~5814.0MHz
Channel numbers:	3 Channel for 5.2G, 3 Channel for 5.8G
Modulation technology:	QPSK(DSSS)
Antenna Type:	PCB ANT
Antenna gain:	ANTA: 0dBi
	ANTB: 0dBi
	MIMO Antenna Gain=10log2 +0=3.0dBi.
Power supply:	DC 5V from adapter.
Adapter:	Model:GQ05-050050-CU
	Input: AC100-240~, 50/60Hz, 0.3A Max
	Output: DC5V 500mA

	Operation Frequency each of channel @ 5.2G & 5.8G Band						
Channel Frequency Channel Frequency Channel Frequency Channel Frequency						Frequency	
01	5180MHz	02	5210MHz	03	5240MHz	04	5736MHz
05	5762MHz	06	5814MHz				

Note:

In section 15.31(m), regards to the operating frequency range over 10 MHz, the Lowest frequency, the middle frequency, and the highest frequency of channel were selected to perform the test, and the selected channel see below:

	Frequen	cy (MHz)
Test channel	5180~5240 Band	5736~5814 Band
Lowest channel	5180	5736
Middle channel	5210	5762
Highest channel	5240	5814

5.2 Test mode

Transmitting mode Keep the EUT in continuously transmitting mode.

Remark: During the test, the test voltage was tuned from 85% to 115% of the nominal rated supply voltage, the duty cycle>98%, and found that the worst case was under the nominal rated supply condition. So the report just shows that condition's data.

We have verified the construction and function in typical operation. All the test modes were carried out with the EUT in transmitting operation, which was shown in this test report and defined as follows:

Per-scan all kind of data rate in lowest channel, and found the follow list which it was worst case.

Mode	Frequency(MHz)
	5180
	5210
TX Mode	5240
1 × Iviode	5736
	5762
	5814

5.3 Description of Support Units

None.

5.4 Test Facility

The test facility is recognized, certified, or accredited by the following organizations:

• FCC —Registration No.: 381383

Global United Technology Services Co., Ltd., Shenzhen EMC Laboratory has been registered and fully described in a report filed with the (FCC) Federal Communications Commission. The acceptance letter from the FCC is maintained in files. Registration 381383, January 08, 2018.

• Industry Canada (IC) —Registration No.: 9079A-2

The 3m Semi-anechoic chamber of Global United Technology Services Co., Ltd. Has been

Registered by Certification and Engineering Bureau of Industry Canada for radio equipment testing with Registration No.: 9079A-2, August 15, 2016.

5.5 Test Location

All tests were performed at:

Global United Technology Services Co., Ltd.

No. 301-309, 3/F., Jinyuan Business Building, No.2, Laodong Industrial Zone,

Xixiang Road, Baoan District, Shenzhen, Guangdong, China

Tel: 0755-27798480 Fax: 0755-27798960

5.6 Additional Instructions

EUT Software Settings:

Mode	The software provide	Special software is used. The software provided by client to enable the EUT under transmission condition continuously at specific channel frequencies individually.						
Test Software Name	DRTU Version 1.7	.7-02972						
Mode	Channel	Frequency (MHz)	Soft Set					
QPSK(DSSS)	CH01	5180						
	CH02	5210						
	CH03	5240	TX level : default					
	CH04	5736	TA level : default					
	CH05							
	CH06	5814						

6 Test Instruments list

Rad	Radiated Emission:						
Item	Test Equipment	Manufacturer	Model No.	Inventory No.	Cal.Date (mm-dd-yy)	Cal.Due date (mm-dd-yy)	
1	3m Semi- Anechoic Chamber	ZhongYu Electron	9.2(L)*6.2(W)* 6.4(H)	GTS250	July. 03 2015	July. 02 2020	
2	Control Room	ZhongYu Electron	6.2(L)*2.5(W)* 2.4(H)	GTS251	N/A	N/A	
3	EMI Test Receiver	Rohde & Schwarz	ESU26	GTS203	June 28 2018	June 27 2019	
4	Spectrum analyzer	Agilent	E4447A	GTS516	June 28 2018	June 27 2019	
5	Spectrum Analyzer	Agilent	E4440A	GTS533	June 28 2018	June 27 2019	
6	BiConiLog Antenna	SCHWARZBECK MESS- ELEKTRONIK	VULB9163	GTS214	June 28 2018	June 27 2019	
7	Double -ridged waveguide horn	SCHWARZBECK MESS- ELEKTRONIK	9120D-829	GTS208	June 28 2018	June 27 2019	
8	Horn Antenna	ETS-LINDGREN	3160	GTS217	June 28 2018	June 27 2019	
9	EMI Test Software	AUDIX	E3	N/A	N/A	N/A	
10	Coaxial Cable	GTS	N/A	GTS213	June 28 2018	June 27 2019	
11	Coaxial Cable	GTS	N/A	GTS211	June 28 2018	June 27 2019	
12	Coaxial cable	GTS	N/A	GTS210	June 28 2018	June 27 2019	
13	Coaxial Cable	GTS	N/A	GTS212	June 28 2018	June 27 2019	
14	Amplifier(100kHz-3GHz)	HP	8347A	GTS204	June 28 2018	June 27 2019	
15	Amplifier(2GHz-20GHz)	HP	8349B	GTS206	June 28 2018	June 27 2019	
16	Amplifier (18-40GHz)	MITEQ	AMF-6F-18004000-29- 8P	GTS534	June 28 2018	June 27 2019	
17	Band filter	Amindeon	82346	GTS219	June 28 2018	June 27 2019	
18	Constant temperature and humidity box	Oregon Scientific	BA-888	GTS248	June 28 2018	June 27 2019	
19	D.C. Power Supply	Instek	PS-3030	GTS232	June 28 2018	June 27 2019	
20	Universal radio communication tester	Rohde & Schwarz	CMU200	GTS235	June 28 2018	June 27 2019	
21	Splitter	Agilent	11636B	GTS237	June 28 2018	June 27 2019	
22	Power Meter	Anritsu	ML2495A	GTS540	June 28 2018	June 27 2019	
23	Power Sensor	Anritsu	MA2411B	GTS541	June 28 2018	June 27 2019	

Con	Conducted Emission:							
Item	Test Equipment	Manufacturer	Model No.	Inventory No.	Cal.Date (mm-dd-yy)	Cal.Due date (mm-dd-yy)		
1	Shielding Room	ZhongYu Electron	7.3(L)x3.1(W)x2.9(H)	GTS252	May 16 2014	May 15 2019		
2	EMI Test Receiver	R&S	ESCI 7	GTS552	June 28 2018	June 27 2019		
3	Pulse Limiter	R&S	ESH3-Z2	GTS224	June 28 2018	June 27 2019		
4	Coaxial Switch	ANRITSU CORP	MP59B	GTS225	June 28 2018	June 27 2019		
5	Artificial Mains Network	SCHWARZBECK MESS	NSLK8127	GTS226	June 28 2018	June 27 2019		
6	Coaxial Cable	GTS	N/A	GTS227	June 28 2018	June 27 2019		
7	EMI Test Software	AUDIX	E3	N/A	N/A	N/A		
8	Thermo meter	KTJ	TA328	GTS233	June 28 2018	June 27 2019		

7 Test results and Measurement Data

7.1 Antenna requirement

Standard requirement: FCC Part15 C Section 15.203

15.203 requirement:

An intentional radiator shall be designed to ensure that no antenna other than that furnished by the responsible party shall be used with the device. The use of a permanently attached antenna or of an antenna that uses a unique coupling to the intentional radiator, the manufacturer may design the unit so that a broken antenna can be replaced by the user, but the use of a standard antenna jack or electrical connector is prohibited.

E.U.T Antenna:

The antenna A and antenna B is PCB antenna, the best case gain of the antenna is 0dBi.

7.2 Conducted Emissions

Test Requirement:	FCC Part15 C Section 15.207					
Test Method:	ANSI C63.10:2013					
Test Frequency Range:	150KHz to 30MHz					
Class / Severity:	Class B					
Receiver setup:	RBW=9KHz, VBW=30KHz, Sv	weep time=auto				
Limit:	Frequency range (MHz) Limit (dBuV) Quasi-peak Average					
	0.15-0.5	66 to 56*	56 to 46*			
	0.5-5	56	46			
	5-30	60	50			
Took ook oo	* Decreases with the logarithm	of the frequency.				
Test setup:	Reference Plane		•			
Test procedure:	AUX Equipment E.U.T EMI Receiver Remark E.U.T. Equipment Under Test LISN Line Impedence Stabilization Network Test table height=0.8m					
Test procedure:	 The E.U.T and simulators a line impedance stabilization 50ohm/50uH coupling impe 	n network (L.I.S.N.). Th	nis provides a			
	 500hm/50uH coupling impedance for the measuring equipment. The peripheral devices are also connected to the main power through a LISN that provides a 500hm/50uH coupling impedance with 500hm termination. (Please refer to the block diagram of the test setup and photographs). Both sides of A.C. line are checked for maximum conducted interference. In order to find the maximum emission, the relative positions of equipment and all of the interface cables must be changed according to ANSI C63.10:2013 on conducted measurement. 					
Test Instruments:	Refer to section 6.0 for details					
Test mode:	Refer to section 5.2 for details					
Test results:	Pass					

Measurement data

Line:

No.	Mk.	Freq.	Reading Level	Correct Factor	Measure- ment	Limit	Over		
		MHz	dBuV	dB	dBuV	dBuV	dB	Detector	Comment
1		0.1660	38.38	9.66	48.04	65.15	-17.11	QP	
2		0.1660	19.03	9.66	28.69	55.15	-26.46	AVG	
3	*	0.5380	32.95	9.68	42.63	56.00	-13.37	QP	
4		0.5380	17.85	9.68	27.53	46.00	-18.47	AVG	
5		0.8260	32.44	9.69	42.13	56.00	-13.87	QP	
6		0.8260	17.88	9.69	27.57	46.00	-18.43	AVG	
7		3.1020	26.75	9.72	36.47	56.00	-19.53	QP	
8		3.1020	11.16	9.72	20.88	46.00	-25.12	AVG	
9		7.9940	30.32	9.81	40.13	60.00	-19.87	QP	
10		7.9940	17.24	9.81	27.05	50.00	-22.95	AVG	
11		19.5780	31.94	9.85	41.79	60.00	-18.21	QP	
12		19.5780	18.80	9.85	28.65	50.00	-21.35	AVG	

Xixiang Road, Baoan District, Shenzhen, Guangdong, China Telephone: +86 (0) 755 2779 8480 Fax: +86 (0) 755 2779 8960

Neutral:

No.	Mk.	Freq.	Reading Level	Correct Factor	Measure- ment	Limit	Over		
		MHz	dBuV	dB	dBuV	dBuV	dB	Detector	Comment
1		0.1620	37.84	9.67	47.51	65.36	-17.85	QP	
2		0.1620	17.81	9.67	27.48	55.36	-27.88	AVG	
3		0.2180	32.46	9.65	42.11	62.89	-20.78	QP	
4		0.2180	15.35	9.65	25.00	52.89	-27.89	AVG	
5	*	0.5260	33.54	9.68	43.22	56.00	-12.78	QP	
6		0.5260	21.88	9.68	31.56	46.00	-14.44	AVG	
7		0.9660	32.28	9.69	41.97	56.00	-14.03	QP	
8		0.9660	19.11	9.69	28.80	46.00	-17.20	AVG	
9		6.5740	30.98	9.79	40.77	60.00	-19.23	QP	
10		6.5740	14.58	9.79	24.37	50.00	-25.63	AVG	
11		19.9700	33.42	9.84	43.26	60.00	-16.74	QP	
12		19.9700	19.59	9.84	29.43	50.00	-20.57	AVG	

Notes:

- 1. An initial pre-scan was performed on the line and neutral lines with peak detector.
- 2. Quasi-Peak and Average measurement were performed at the frequencies with maximized peak emission.
- 3. Final Level =Receiver Read level + LISN Factor + Cable Loss
- 4. If the average limit is met when using a quasi-peak detector receiver, the EUT shall be deemed to meet both limits and measurement with the average detector receiver is unnecessary.

7.3 Conducted Peak Output Power

Test Requirement:	FCC Part15 E Section 15.407(a)(3)				
Test Method:	KDB 789033 D02 General U-NII Test Procedures New Rules v02r01				
Limit:	For 5150~5250MHz, the limit= 250 mW(24dBm)				
	For 5725~5825MHz, the limit= 1W(30dBm)				
Test setup:	Power Meter E.U.T Non-Conducted Table Ground Reference Plane				
Test Instruments:	Refer to section 6.0 for details				
Test mode:	Refer to section 5.2 for details				
Test results:	Pass				

Measurement Data

mode a formation batta								
Test CH	1	Peak Output Power (dBm)						
(MHz)	ANT A	ANT B	Total power	Limit (dBm)	Result			
(1711 12)	(dBm)	(dBm)	(dBm)	(ubiii)				
5180	1.98	2.52	4.50	24				
5210	1.86	2.43	4.29	24				
5240	1.94	2.67	4.61	24	-			
5736	-5.61	-6.19	-2.88	30	Pass			
5762	-5.38	-6.56	-2.92	30				
5814	-5.95	-6.42	-3.17	30				

Note: During the test the EUT is in 100% duty cycle transmitting.

Test plot of Duty cycle

7.4 Channel Bandwidth

Test Requirement:	FCC Part15 E Section 15.407(e)			
Test Method:	KDB 789033 D02 General U-NII Test Procedures New Rules v02r01			
Limit:	>500KHz			
Test setup:	Spectrum Analyzer E.U.T Non-Conducted Table Ground Reference Plane			
Test Instruments:	Refer to section 6.0 for details			
Test mode:	Refer to section 5.2 for details			
Test results:	Pass			

Measurement Data

Measurement Data

		Channel Ban				
Frequency (MHz)	26dB Bandwidth (MHz)	99% Bandwidth (MHz)	26dB Bandwidth (MHz)	99% Bandwidth (MHz)	Limit (KHz)	Result
	ANT A	ANT A	ANT B	ANT B		
5180	16.28	15.078	15.08	15.073		
5210	16.28	15.078	15.08	15.068	>500	Pass
5240	16.29	15.088	15.09	15.078		

		Channel Ban				
Frequency (MHz)	6dB Bandwidth (MHz)	99% Bandwidth (MHz)	6dB Bandwidth (MHz)	99% Bandwidth (MHz)	Limit (KHz)	Result
	ANT A	ANT A	ANT B	ANT B		
5736	9.842	13.835	9.841	13.837		
5762	9.841	13.841	9.843	13.833	>500	Pass
5814	9.841	13.833	9.841	13.832		

F	Channel Ban			
Frequency	26dB Bandwidth(MHz) 26dB Bandwidth(I		Limit (KHz)	Result
(MHz)	ANT A	ANT B		
5736	14.25	14.25		
5762	14.62	14.62	>500	Pass
5814	14.28	14.28		

Test plot as follows:

5150~5250MHz

5180-Antenna A

5210-Antenna A

5240-Antenna A

5180-Antenna B

Xixiang Road, Baoan District, Shenzhen, Guangdong, China

5210-Antenna B

5240-Antenna B

5725~5850MHz -6dB Bandwidth

5736-Antenna A

5762-Antenna A

5814-Antenna A

5736-Antenna B

5762-Antenna B

5814-Antenna B

 $\label{eq:linear_problem} \textbf{Xixiang Road}, \textbf{Baoan District}, \textbf{Shenzhen}, \textbf{Guangdong}, \textbf{China}$

5725~5825MHz 99% Bandwidth

5736-Antenna A

5762-Antenna A

5814-Antenna A

5736-Antenna B

5762-Antenna B

5814-Antenna B

5725~5850MHz

-26dB Bandwidth

5736-Antenna A

5762-Antenna A

5814-Antenna A

5736-Antenna B

5814-Antenna B

7.5 Power Spectral Density

Test Requirement:	FCC Part15 E Section 15.407(a)(3)			
•				
Test Method:	KDB 789033 D02 General U-NII Test Procedures New Rules v02r01			
Limit:	For 5150~5250MHz, the limit= 11 dBm/MHz			
	For 5725~5825MHz, the limit= 30 dBm/500KHz			
Test setup:	Spectrum Analyzer E.U.T Non-Conducted Table Ground Reference Plane			
Test Instruments:	Refer to section 6.0 for details			
Test mode:	Refer to section 5.2 for details			
Test results:	Pass			

Measurement Data

modelione bata						
Frequency	Power Density ANT A	Power Density ANT B	Total power	Directional gain	e.i.r.p Spectral Density	Limit
(MHz)	(dBm/MHz)	(dBm/MHz)	(dBm/MHz)	(dBi)	(dBm/MHz)	(dBm/MHz)
5180	-2.713	-2.305	0.51	3	3.51	
5210	-2.694	-2.304	0.52	3	3.52	11
5240	-4.069	-2.514	-0.21	3	2.79	

Frequency	Power Density ANT A	Power Density ANT B	Total power	Limit
(MHz)	(dBm/500kHz)	(dBm/500kHz)	(dBm/500kHz)	(dBm/500KHz)
5736	-9.053	-6.648	-4.68	
5762	-9.332	-6.649	-4.78	30
5814	-9.628	-5.643	-4.18	

Test plot as follows:

5150~5250MHz

5180-Antenna A

5210-Antenna A

5240-Antenna A

5180-Antenna B

Xixiang Road, Baoan District, Shenzhen, Guangdong, China

5210-Antenna B

5240-Antenna B

5725~5825MHz

5736-Antenna A

5762-Antenna A

5814-Antenna A

5736-Antenna B

5762-Antenna B

5814-Antenna B

7.6 Band edges

7.6.1 Radiated Emission Method

Test Requirement:	FCC Part15 C Section 15.209 and 15.205					
Test Method:	ANSI C63.10: 20		<u> </u>			
Test Frequency Range:	9kHz to 40GHz,		se is reporte	ed		
Test site:	Measurement D					
Receiver setup:	Frequency	Detector	RBW	VBW	Value	
		Peak	1MHz	3MHz	Peak	
	Above 1GHz	RMS	1MHz	3MHz	RMS	
Limit:	All emissions sh					
	more above or bat 25 MHz above below the band	pelow the band e or below the bedge increasing elow the band of	edge increated and edge, g linearly to edge, and fr	asing linearly that and from 25 line a level of 15. from 5 MHz ab	to 10 dBm/MHz MHz above or 6 dBm/MHz at 5 pove or below the	
	edge.	aonig mioariy a	5 a 10 voi 61 i	E7 GB111/101112	at the band	
Test setup:						
Test Procedure:	determine the 2. The EUT was antenna, whice tower. 3. The antenna ground to det horizontal and measurement 4. For each sus and then the and the rotal the maximum 5. The test-rece Specified Bail 6. If the emission the limit spect of the EUT w	a 3 meter came position of the set 3 meters and the set 3 meters and the set of the set	ber. The tall highest race way from the don the top of	ble was rotated diation. The interference of a variable of the field some antenna are was arranged by the from 1 meters to 360 calconders from 1 meters from 1 meter	ed 360 degrees to ee-receiving e-height antenna meters above the strength. Both re set to make the d to its worst case eter to 4 meters degrees to find action and odB lower than the peak values	

Global United Technology Services Co., Ltd.

No. 301-309, 3/F., Jinyuan Business Building, No.2, Laodong Industrial Zone,

Xixiang Road, Baoan District, Shenzhen, Guangdong, China

	peak or average method as specified and then reported in a data sheet.7. The radiation measurements are performed in X, Y, Z axis positioning. And found the X axis positioning which it is worse case, only the test worst case mode is recorded in the report.
Test Procedure(conducted):	 1.The EUT was directly connected to the Spectrum, the power level was set to the maximum level. 2. Set the RBW = 1MHz. 3. Set the VBW ≥ 3MHz 4. Number of points in sweep ≥ 2 × span / RBW. (This ensures that binto-bin spacing is ≤ RBW/2, so that narrowband signals are not lost between frequency bins.) 5. Manually set sweep time ≥ 10 × (number of points in sweep) × (total on/off period of the transmitted signal). 6. Set detector = power averaging (rms). 7. Sweep time = auto couple. 8. Trace mode = max hold. 9. Allow trace to fully stabilize.
Test Instruments:	Refer to section 6.0 for details
Test mode:	Refer to section 5.2 for details
Test results:	Pass

Remark:

- 1. Final Level =Receiver Read level + Antenna Factor + Cable Loss Preamplifier Factor
- 2. The emission levels of other frequencies are very lower than the limit and not show in test report.
- 3. Two antennas are tested, only the worst case's (Main Antenna) data was showed.
- 4. The pre-test were performed on lowest, middle and highest frequencies, only the worst case's (lowest and highest frequencies) data was showed.
- 5. According to KDB 789033 D02v02r01 section G) 1) d),for measurements above 1000 MHz @3m distance, the limit of field strength is computed as follows:

E[dBuV/m] = EIRP[dBm] + 95.2;

For example, if EIRP = -27dBm

E[dBuV/m] = -27 + 95.2 = 68.2dBuV/m.

E[dBuV/m] = 10 + 95.2 = 105.2dBuV/m.

E[dBuV/m] = 15.6 + 95.2 = 111.1dBuV/m.

E[dBuV/m] = 27 + 95.2 = 122.2dBuV/m

Measurement data:

Frequency (MHz)	Read Level (dBuV)	Antenna Factor (dB/m)	Cable Loss (dB)	Preamp Factor (dB)	Level (dBuV/m)	EIRP (dBm)	Limit (dBm)	Result			
	5.2G										
5150	49.85	32.53	9.83	35.86	56.35	-38.85	-27.00	Pass			
5350	48.72	32.70	9.99	36.05	55.36	-39.84	-27.00	Pass			
				5.8G							
5650.00	45.56	32.72	9.99	36.07	52.20	-43.00	-27.00	Pass			
5700.00	46.73	32.74	10.04	36.09	53.42	-41.78	10.00	Pass			
5720.00	46.82	32.80	10.11	36.18	53.55	-41.65	15.60	Pass			
5725.00	49.46	32.53	9.83	35.86	55.96	-39.24	27.00	Pass			
5736.00	49.11	32.70	9.99	36.05	55.75	-39.45	27.00	Pass			
5850.00	46.52	32.70	9.99	36.05	53.16	-42.04	27.00	Pass			
5855.00	45.48	32.72	9.99	36.07	52.12	-43.08	15.60	Pass			
5875.00	46.17	32.74	10.04	36.09	52.86	-42.34	10.00	Pass			
5925.00	47.09	32.80	10.11	36.18	53.82	-41.38	-27.00	Pass			

Remark: According to KDB 789033 D02 section H)d)iii), for measurement above 1000MHz@3m distance, the limit of EIRP is calculated as follows: EIRP[dBm]=E[dBuv/m]-95.2

For conducted test:

5.2G Band edge, Left Side

Band edge, Right Side

5.8G Band edge, Left Side

Band edge, Right Side

NOTE:EIRP BAND EDGE= Reading Level + antenna gain

7.7 Spurious Emission

7.7.1 Radiated Emission Method

FCC Part15 C Section 15.209, Part 15E Section 15.407(b)(4)					
ANSI C63.10:2013					
9kHz to 40GHz					
Measurement Di	stance: 3m	n			
Frequency	Frequency Detector RBW		RBW	VBW	Value
30MHz-1GHz	Quasi-pe	eak	120KHz	300KHz	Quasi-peak Value
Above 1011	Peak	(1MHz	3MHz	Peak Value
Above IGHZ	Peak	(1MHz	3MHz	RMS Value
Frequenc	у	Limi	it (uV/m)	Value	Measurement Distance
0.009MHz-0.49	90MHz	2400	D/F(KHz)	QP	300m
0.490MHz-1.70)5MHz	2400	0/F(KHz)	QP	300m
1.705MHz-30	MHz		30	QP	30m
30MHz-88M	1Hz		100	QP	
88MHz-216N	ЛHz		150	QP	3m
216MHz-960	MHz		200	QP	
960MHz-1G	SHz		500	QP	
		•			
		Limit (dBm/MHz)		Hz)	Remark
	1Z		-27.0		Peak Value
Below 30MHz					
Turntable 3m Test Receiver Coaxial Cable					
	ANSI C63.10:20 9kHz to 40GHz Measurement Dis Frequency 30MHz-1GHz Above 1GHz Frequenc 0.009MHz-0.49 0.490MHz-1.70 1.705MHz-30 30MHz-88M 88MHz-216M 216MHz-960 960MHz-1G Frequenc Above 1GH Below 30MHz	ANSI C63.10:2013 9kHz to 40GHz Measurement Distance: 3r Frequency Obetect 30MHz-1GHz Quasi-p Peak Peak Peak Frequency 0.009MHz-0.490MHz 0.490MHz-1.705MHz 1.705MHz-30MHz 30MHz-88MHz 88MHz-216MHz 216MHz-960MHz 960MHz-1GHz Frequency Above 1GHz Below 30MHz Below 30MHz	ANSI C63.10:2013 9kHz to 40GHz Measurement Distance: 3m Frequency Detector 30MHz-1GHz Quasi-peak Peak Peak Peak Peak Peak Peak Peak 1.705MHz-0.490MHz 2400 1.705MHz-30MHz 30MHz-88MHz 88MHz-216MHz 216MHz-960MHz 960MHz-1GHz Frequency Lire Above 1GHz Below 30MHz Below 30MHz Below 30MHz	ANSI C63.10:2013 9kHz to 40GHz Measurement Distance: 3m Frequency Detector RBW 30MHz-1GHz Quasi-peak 120KHz Above 1GHz Peak 1MHz Frequency Limit (uV/m) 0.009MHz-0.490MHz 2400/F(KHz) 0.490MHz-1.705MHz 24000/F(KHz) 1.705MHz-30MHz 30 30MHz-88MHz 100 88MHz-216MHz 150 216MHz-960MHz 200 960MHz-1GHz 500 Frequency Limit (dBm/M Above 1GHz -27.0 Below 30MHz Below 30MHz	ANSI C63.10:2013

 ${\it Xixiang Road, Baoan District, Shenzhen, Guangdong, China}$

Above 1GHz

Test Procedure:

- 1. The EUT was placed on the top of a rotating table (0.8m for below 1GHz and 1.5 meters for above 1GHz) above the ground at a 3 meter camber. The table was rotated 360 degrees to determine the position of the highest radiation.
- 2. The EUT was set 3 meters away from the interference-receiving antenna, which was mounted on the top of a variable-height antenna tower.
- 3. The antenna height is varied from one meter to four meters above the ground to determine the maximum value of the field strength. Both horizontal and vertical polarizations of the antenna are set to make the measurement.
- 4. For each suspected emission, the EUT was arranged to its worst case and then the antenna was tuned to heights from 1 meter to 4 meters and the rota table was turned from 0 degrees to 360 degrees to find the maximum reading.
- 5. The test-receiver system was set to Peak Detect Function and Specified Bandwidth with Maximum Hold Mode.
- 6. If the emission level of the EUT in peak mode was 10dB lower than the limit specified, then testing could be stopped and the peak values of the EUT would be reported. Otherwise the emissions that did not have 10dB margin would be re-tested one by one using peak, quasi-peak or

	average method as specified and then reported in a data sheet.
	7. The radiation measurements are performed in X, Y, Z axis positioning. And found the X axis positioning which it is worse case, only the test worst case mode is recorded in the report.
Test Instruments:	Refer to section 6.0 for details
Test mode:	Refer to section 5.2 for details
Test results:	Pass

Two antennas are tested, only the worst case's (Main Antenna) data was showed.

Measurement Data

■ 9kHz~30MHz

The low frequency, which started from 9 kHz to 30 MHz, was pre-scanned and the result which was 20 dB lower than the limit line per 15.31(o) was not reported.

■ Below 1GHz

Horizontal:

No.	Mk.	Freq.	Reading Level	Correct Factor	Measure- ment	Limit	Over	
		MHz	dBuV	dB	dBuV/m	dB/m	dB	Detector
1		82.9385	45.26	-20.11	25.15	40.00	-14.85	QP
2	1	53.2004	50.96	-19.45	31.51	43.50	-11.99	QP
3	1	85.1379	48.93	-17.25	31.68	43.50	-11.82	QP
4	* 1	99.9856	48.00	-15.63	32.37	43.50	-11.13	QP
5	2	22.9502	49.97	-15.13	34.84	46.00	-11.16	QP
6	4	40.1963	39.03	-8.55	30.48	46.00	-15.52	QP

Vertical:

No.	Mk.	Freq.	Reading Level	Correct Factor	Measure- ment	Limit	Over	
		MHz	dBuV	dB	dBuV/m	dB/m	dB	Detector
1		40.9881	41.01	-15.45	25.56	40.00	-14.44	QP
2		58.2030	36.78	-15.99	20.79	40.00	-19.21	QP
3	*	97.4560	49.72	-17.06	32.66	43.50	-10.84	QP
4		150.0108	51.14	-19.64	31.50	43.50	-12.00	QP
5	-	222.9502	44.42	-15.13	29.29	46.00	-16.71	QP
6	,	360.4476	39.42	-10.40	29.02	46.00	-16.98	QP

■ Above 1GHz

Test chan	Test channel:5180MHz									
Antenna Pol.	Frequency (MHz)	Reading Level (dBuV/m)	Factor (dBuV/m)	Measure Level (dBuV/m)	Limit (dBuV/m)	Over limit (dB)	Detector			
V	10360	23.96	21.64	44.17	54(Note3)	-9.83	PK			
V	15540	24.43	21.80	44.96	54(Note3)	-9.04	PK			
Н	10360	24.28	21.83	45.37	54(Note3)	-8.63	PK			
Н	15540	23.11	21.67	44.08	54(Note3)	-9.92	PK			

Test char	Test channel:5210MHz									
Antenna Pol.	Frequency (MHz)	Reading Level (dBuV/m)	Factor (dBuV/m)	Measure Level (dBuV/m)	Limit (dBuV/m)	Over limit (dB)	Detector			
V	10420	22.35	21.64	42.71	54(Note3)	-11.29	PK			
V	15630	22.12	21.80	43.47	54(Note3)	-10.53	PK			
Н	10420	22.72	21.83	43.53	54(Note3)	-10.47	PK			
Н	15630	24.81	21.67	44.88	54(Note3)	-9.12	PK			

Test char	Test channel:5240MHz									
Antenna Pol.	Frequency (MHz)	Reading Level (dBuV/m)	Factor (dBuV/m)	Measure Level (dBuV/m)	Limit (dBuV/m)	Over limit (dB)	Detector			
V	10480	23.45	21.64	44.37	54(Note3)	-9.63	PK			
V	15720	23.63	21.80	44.23	54(Note3)	-9.77	PK			
Н	10480	22.47	21.83	43.24	54(Note3)	-10.76	PK			
Н	15720	23.87	21.67	43.85	54(Note3)	-10.15	PK			

7.8 Frequency stability

Test Requirement:	FCC Part15 C Section 15.407(g)				
Test Method:	ANSI C63.10:2013, FCC Part 2.1055				
Limit:	Manufactures of U-NII devices are responsible for ensuring frequency stability such that an emission is maintained within the band of operation under all conditions of normal operation as specified				
Test Procedure:	a. The EUT was placed inside the environmental test chamber and powered by nominal DC voltage. b. Turn the EUT on and couple its output to a spectrum analyzer. c. Turn the EUT off and set the chamber to the highest temperature specified. d. Allow sufficient time (approximately 30 min) for the temperature of the chamber to stabilize, turn the EUT on and measure the operating frequency after 2, 5, and 10 Minutes. e. Repeat step 2 and 3 with the temperature chamber set to the lowest temperature. f. The test chamber was allowed to stabilize at +20 degree C for a minimum of 30 Minute s. The supply voltage was then adjusted on the EUT from 85% to 115% and the frequency record.				
Test setup:	Temperature Chamber				
	Spectrum analyzer EUT Att.				
	Variable Power Supply				
	Note: Measurement setup for testing on Antenna connector				
Test Instruments:	Refer to section 5.10 for details				
Test mode:	Refer to section 5.2 for details				
Test results:	Pass				

Remark: Set the EUT transmits at un-modulation mode to test frequency stability.

Measurement data:

	Frequen	cy stability versus Temp.	
		wer Supply: DC 5V	
T		117	May Davieties
Temp.	Operating Frequency	Test Result	Max.Deviation
(°C)	(MHz)	(MHz)	(ppm)
	5180	5180.0108	2.0849
-30	5210	5210.0165	3.1670
	5240	5240.0174	3.3206
	5180	5180.0122	2.3552
-20	5210	5210.0136	2.6104
	5240	5240.0127	2.4237
	5180	5180.0114	2.2008
-10	5210	5210.0136	2.6104
	5240	5240.0158	3.0153
	5180	5180.0176	3.3977
0	5210	5210.0116	2.2265
	5240	5240.0125	2.3855
	5180	5180.0135	2.6062
10	5210	5210.0129	2.4760
	5240	5240.0147	2.8053
	5180	5180.0115	2.2201
20	5210	5210.0138	2.6488
	5240	5240.0152	2.9008
	5180	5180.0167	3.2239
30	5210	5210.0149	2.8599
	5240	5240.0133	2.5382
	5180	5180.0112	2.1622
40	5210	5210.0188	3.6084
	5240	5240.0161	3.0725
	5180	5180.0143	2.7606
50	5210	5210.0157	3.0134
	5240	5240.0124	2.3664
	Frequenc	y stability versus Voltage	·
	Т	emperature: 25°C	
Power		Test Result	Max.Deviation
Supply	Operating Frequency (MHz)	(MHz)	
(VDC)		<u> </u>	(ppm)
	5180	5180.0117	2.2587
4.5	5210	5210.0145	2.7831
	5240	5240.0133	2.5382
	5180	5180.0110	2.1236
5.0	5210	5210.0104	1.9962
	5240	5240.0142	2.7099
	5180	5180.0131	2.5290
5.5	5210	5210.0157	3.0134
	5240	5240.0192	3.6641

8 Test Setup Photo

Radiated Emission

Conducted Emission

9 EUT Constructional Details

----END-----