

RF EXPOSURE EVALUATION REPORT

FCC ID	: 2AGOZ-K29W
Equipment	: Media Receiver
Brand Name	: FACEBOOK
Model Name	: WT74BL
Applicant	: Facebook Technologies, LLC 1 Hacker Way, Menlo Park, CA 94025, USA
Standard	: 47 CFR Part 2.1091

We, SPORTON INTERNATIONAL INC has been evaluated this product in accordance with 47 CFR Part 2.1091 and it complies with applicable limit.

Sporton Lab is accredited to ISO 17025 by Taiwan Accreditation Foundation (TAF code: 1190) and the FCC designation No. TW1190 under the FCC 2.948(e) by Mutual Recognition Agreement (MRA) in FCC evaluation.

The results in this report apply exclusively to the tested model / sample. Without written approval of SPORTON INTERNATIONAL INC. EMC & Wireless Communications Laboratory, the test report shall not be reproduced except in full

Cona Chang

Approved by: Cona Huang / Deputy Manager

SPORTON INTERNATIONAL INC. EMC & Wireless Communications Laboratory No. 52, Huaya 1st Rd., Guishan Dist., Taoyuan City, Taiwan (R.O.C.)

Table of Contents

1.	DESC	RIPTION OF EQUIPMENT UNDER TEST (EUT)	4
		MUM RF AVERAGE OUTPUT POWER AMONG PRODUCTION UNITS	
3.	RFE	XPOSURE LIMIT INTRODUCTION	5
4.	RADI	O FREQUENCY RADIATION EXPOSURE EVALUATION	6
	4.1.	Standalone Power Density Calculation	6
	4.2.	Collocated Power Density Calculations	6

History of this test report

Version	Description	Issued Date	
Rev. 01	Initial issue of report	May 10, 2021	

SPORTON LAB. RF EXPOSURE EVALUATION REPORT

1. Description of Equipment Under Test (EUT)

Product Feature & Specification					
EUT Type	ledia Receiver				
Brand Name	ACEBOOK				
Model Name	VT74BL				
FCC ID	AGOZ-K29W				
Frequency Range	WLAN 2.4GHz Band: 2400 MHz ~ 2483.5 MHz WLAN 5.2GHz Band: 5150 MHz ~ 5250 MHz WLAN 5.3GHz Band: 5250 MHz ~ 5350 MHz WLAN 5.6GHz Band: 5470 MHz ~ 5725 MHz WLAN 5.8GHz Band: 5725 MHz ~ 5850 MHz Bluetooth: 2400 MHz ~ 2483.5 MHz				
Mode	WLAN: 802.11a/b/g/n/ac HT20/HT40/VHT20/VHT40/VHT80 Bluetooth BR/EDR/LE				
EUT Stage	Identical Prototype				

Remark: The above EUT's information was declared by manufacturer. Please refer to the specifications or user's manual for more detailed description.

Reviewed by: Jason Wang

Report Producer: Paula Chen

2. Maximum RF average output power among production units

Mode	Maximum Average Power (dBm)
2.4GHz WLAN	21.5
5.2GHz WLAN	20.0
5.3GHz WLAN	21.0
5.5GHz WLAN	21.0
5.8GHz WLAN	22.5
Bluetooth BR/EDR	7
Bluetooth LE	5

3. <u>RF Exposure Limit Introduction</u>

According to ANSI/IEEE C95.1-1992, the criteria listed in Table 1 shall be used to evaluate the environmental impact of human exposure to radio frequency (RF) radiation as specified in §1.1310.

Frequency range (MHz)	Electric field strength (V/m)	Magnetic field strength (A/m)	Power density (mW/cm ²)	Averaging time (minutes)
	(A) Limits for O	ccupational/Controlled Expos	sures	No contra de la co
0.3-3.0	614	1.63	1.63 *(100)	
3.0-30	1842/	f 4.89/1	f *(900/f2)) 6
30-300	61.4	0.163	1.0	6
300-1500			f/300	6
1500-100,000			Ē	i 6
	(B) Limits for Gene	ral Population/Uncontrolled I	Exposure	
0.3-1.34	614	1.63	*(100)) 30
1.34-30	824/	f 2.19/1	f *(180/f2)) 30
30-300	27.5	0.073	0.2	30
300-1500			f/1500	30
1500-100,000			1.0	30

The MPE was calculated at 20 cm to show compliance with the power density limit.

The following formula was used to calculate the Power Density:

$$S = \frac{PG}{4\pi R^2}$$

Where:

S = Power Density

P = Output Power at Antenna Terminals

G = Gain of Transmit Antenna (linear gain)

R = Distance from Transmitting Antenna

4. Radio Frequency Radiation Exposure Evaluation

4.1. Standalone Power Density Calculation

Band	Antenna Gain (dBi)	Maximum Power (dBm)	Maximum EIRP (dBm)	Maximum EIRP (W)	Average EIRP (mW)	Power Density at 20cm (mW/cm^2)	Limit (mW/cm^2)	Power Density / Limit
WLAN2.4GHz Band	4.9	21.5	26.4	0.44	436.52	0.087	1.000	0.087
WLAN5GHz Band	6.1	22.5	28.6	0.72	724.44	0.144	1.000	<mark>0.144</mark>
Bluetooth	2.6	7.0	9.6	0.01	9.12	0.002	1.000	<mark>0.002</mark>

4.2. Collocated Power Density Calculations

WLAN	Bluetooth	∑(Power Density / Limit)
Power Density / Limit	Power Density / Limit	of WLAN+ Bluetooth
0.144	0.002	0.146

Note:

1. Σ (Power Density / Limit): This is a summation of [(power density for each transmitter/antenna included in the simultaneous transmission)/ (corresponding MPE limit)], for WLAN + Bluetooth.

2. Considering the WLAN and Bluetooth transmitter of the EIRP performance listed in the table above, the aggregated (power density /limit) is smaller than 1, and MPE of 2 collocated transmitters is compliant

Conclusion:

According to 47 CFR §2.1091, the RF exposure analysis concludes that the RF Exposure is FCC compliant.