

FCC RADIO TEST REPORT

FCC ID	: 2AGOZ-H38W
Equipment	: Portal Go
Brand Name	: FACEBOOK
Model Name	: TN49KC
Applicant	: Facebook Technologies, LLC 1 Hacker Way, Menlo Park, CA 94025, USA
Standard	: FCC Part 15 Subpart C §15.247

The product was received on May 04, 2021 and testing was started from May 05, 2021 and completed on May 19, 2021. We, Sporton International Inc. EMC & Wireless Communications Laboratory, would like to declare that the tested sample has been evaluated in accordance with the test procedures and has been in compliance with the applicable technical standards.

The test results in this report apply exclusively to the tested model / sample. Without written approval of Sporton International Inc. EMC & Wireless Communications Laboratory, the test report shall not be reproduced except in full.

Louis Wu

Reviewed by: Louis Wu Sporton International Inc. EMC & Wireless Communications Laboratory No. 52, Huaya 1st Rd., Guishan Dist., Taoyuan City 333, Taiwan (R.O.C.)

Table of Contents

His	tory o	f this test report	.3
Sur	nmary	of Test Result	.4
1	Gene	ral Description	.5
	1.1	Product Feature of Equipment Under Test	.5
	1.2	Modification of EUT	.5
	1.3	Testing Location	.6
	1.4	Applicable Standards	.6
2	Test	Configuration of Equipment Under Test	.7
	2.1	Carrier Frequency Channel	.7
	2.2	Test Mode	.8
	2.3	Connection Diagram of Test System	.9
	2.4	Support Unit used in test configuration and system	.9
	2.5	EUT Operation Test Setup	10
	2.6	Measurement Results Explanation Example	10
3	Test	Result	11
	3.1	Number of Channel Measurement	
	3.2	Hopping Channel Separation Measurement	
	3.3	Dwell Time Measurement	17
	3.4	20dB and 99% Bandwidth Measurement	
	3.5	Output Power Measurement	26
	3.6	Conducted Band Edges Measurement	
	3.7	Conducted Spurious Emission Measurement	
	3.8	Radiated Band Edges and Spurious Emission Measurement	
	3.9	AC Conducted Emission Measurement	
		Antenna Requirements	
4		f Measuring Equipment	
5		rtainty of Evaluation	49
		A. Conducted Test Results	
		B. AC Conducted Emission Test Result	
		C. Radiated Spurious Emission	
App	pendix	D. Radiated Spurious Emission Plots	

Appendix E. Duty Cycle Plots

Appendix F. Setup Photographs

History of this test report

Report No.	Version	Description	Issued Date
FR131119-01A	01	Initial issue of report	Jun. 08, 2021

Summary of Test Result

Report Clause	Ref Std. Clause	Test Items	Result (PASS/FAIL)	Remark
3.1	15.247(a)(1)	Number of Channels	Pass	-
3.2	15.247(a)(1)	Hopping Channel Separation	Pass	-
3.3	15.247(a)(1)	Dwell Time of Each Channel	Pass	-
3.4	15.247(a)(1)	20dB Bandwidth	Pass	-
3.4	2.1049	99% Occupied Bandwidth	Reporting only	-
3.5	15.247(b)(1)	Peak Output Power	Pass	-
3.6	15.247(d)	Conducted Band Edges	Pass	-
3.7	15.247(d)	Conducted Spurious Emission	Pass	-
3.8	15.247(d)	Radiated Band Edges and Radiated Spurious Emission	Pass	Under limit 8.63 dB at 37.760 MHz
3.9	15.207	AC Conducted Emission	Pass	Under limit 13.80 dB at 0.501 MHz
3.10	15.203 & 15.247(b)	Antenna Requirement	Pass	-

Declaration of Conformity:

The test results with all measurement uncertainty excluded are presented in accordance with the regulation limits or requirements declared by manufacturers.

Comments and Explanations:

The declared of product specification for EUT presented in the report are provided by the manufacturer, and the manufacturer takes all the responsibilities for the accuracy of product specification.

Reviewed by: Danny Lee Report Producer: Lucy Wu

1 General Description

1.1 Product Feature of Equipment Under Test

Bluetooth, Wi-Fi 2.4GHz 802.11b/g/n, and Wi-Fi 5GHz 802.11a/n/ac.

Product Specification subjective to this standard			
Antenna Type	WLAN Main>: Monopole Antenna Aux.>: PIFA Antenna Bluetooth: PIFA Antenna		
Antenna information			
2400 MHz ~ 2483.5 MHz	Peak Gain (dBi) 3.53		

Remark: The above EUT's information was declared by manufacturer. Please refer to Comments and Explanations in report summary.

1.2 Modification of EUT

No modifications are made to the EUT during all test items.

1.3 Testing Location

Test Site	Sporton International Inc. EMC & Wireless Communications Laboratory
Test Site Location	No.52, Huaya 1st Rd., Guishan Dist., Taoyuan City 333, Taiwan (R.O.C.) TEL: +886-3-327-3456 FAX: +886-3-328-4978
Test Site No.	Sporton Site No. TH02-HY, CO05-HY

Note: The test site complies with ANSI C63.4 2014 requirement.

Test Site	Sporton International Inc. Wensan Laboratory		
Test Site Location	No.58, Aly. 75, Ln. 564, Wenhua 3rd, Rd., Guishan Dist., Taoyuan City 333010, Taiwan (R.O.C.) TEL: +886-3-327-0868 FAX: +886-3-327-0855		
Test Site No.	Sporton Site No.		
Test Sile NO.	03CH11-HY (TAF Code: 3786)		
Demerk	The Radiated Spurious Emission test item subcontracted to Sporton		
Remark	International Inc. Wensan Laboratory		

Note: The test site complies with ANSI C63.4 2014 requirement.

FCC designation No.: TW1190 and TW3786

1.4 Applicable Standards

According to the specifications of the manufacturer, the EUT must comply with the requirements of the following standards:

- FCC Part 15 Subpart C §15.247
- FCC KDB Publication No. 558074 D01 DTS Meas. Guidance v05r02
- FCC KDB 414788 D01 Radiated Test Site v01r01
- ANSI C63.10-2013

Remark:

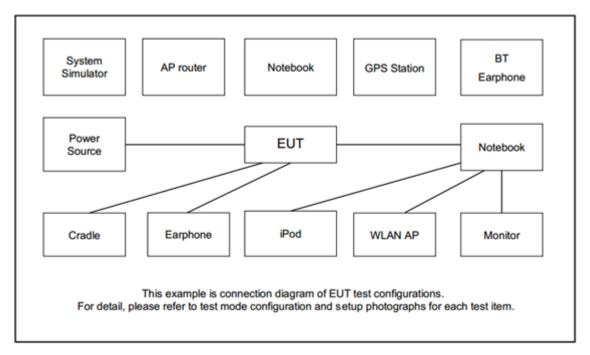
- 1. All test items were verified and recorded according to the standards and without any deviation during the test.
- 2. The TAF code is not including all the FCC KDB listed without accreditation.
- 3. This EUT has also been tested and complied with the requirements of FCC Part 15, Subpart B, recorded in a separate test report.

2 Test Configuration of Equipment Under Test

2.1 Carrier Frequency Channel

Frequency Band	Channel	Freq. (MHz)	Channel	Freq. (MHz)	Channel	Freq. (MHz)
	0	2402	27	2429	54	2456
	1	2403	28	2430	55	2457
	2	2404	29	2431	56	2458
	3	2405	30	2432	57	2459
	4	2406	31	2433	58	2460
	5	2407	32	2434	59	2461
	6	2408	33	2435	60	2462
	7	2409	34	2436	61	2463
	8	2410	35	2437	62	2464
	9	2411	36	2438	63	2465
	10	2412	37	2439	64	2466
	11	2413	38	2440	65	2467
	12	2414	39	2441	66	2468
2400-2483.5 MHz	13	2415	40	2442	67	2469
	14	2416	41	2443	68	2470
	15	2417	42	2444	69	2471
	16	2418	43	2445	70	2472
	17	2419	44	2446	71	2473
	18	2420	45	2447	72	2474
	19	2421	46	2448	73	2475
	20	2422	47	2449	74	2476
	21	2423	48	2450	75	2477
	22	2424	49	2451	76	2478
	23	2425	50	2452	77	2479
	24	2426	51	2453	78	2480
	25	2427	52	2454	-	-
	26	2428	53	2455	-	-

2.2 Test Mode


- a. The EUT has been associated with peripherals and configuration operated in a manner tended to maximize its emission characteristics in a typical application. Frequency range investigated: conduction emission (150 kHz to 30 MHz), radiation emission (9 kHz to the 10th harmonic of the highest fundamental frequency or to 40 GHz, whichever is lower). For radiated measurement, pre-scanned in three orthogonal panels, X, Y, Z. The worst cases (Y plane) were recorded in this report, and the worst mode of radiated spurious emissions is Bluetooth 1Mbps mode, and recorded in this report.
- b. AC power line Conducted Emission was tested under maximum output power.

	Summary table of Test Cases							
Test Item		Data Rate / Modulation						
	Bluetooth BR 1Mbps GFSK	Bluetooth EDR 2Mbps <i>π</i> /4-DQPSK	Bluetooth EDR 3Mbps 8-DPSK					
Conducted	Mode 1: CH00_2402 MHz	Mode 4: CH00_2402 MHz	Mode 7: CH00_2402 MHz					
Test Cases	Mode 2: CH39_2441 MHz	Mode 5: CH39_2441 MHz	Mode 8: CH39_2441 MHz					
	Mode 3: CH78_2480 MHz	Mode 6: CH78_2480 MHz	Mode 9: CH78_2480 MHz					
	Bluetooth BR 1Mbps GFSK							
Radiated	Mode 1: CH00_2402 MHz							
Test Cases	Mode 2: CH39_2441 MHz							
		Mode 3: CH78_2480 MHz						
AC Conducted	Mode 1 :WLAN (2.4GHz)	Link + Bluetooth Link + H-Pa	attern + Docking (Charging					
Emission	from AC Adapter)							
highest conduc	adiated Test Cases, the worst mode data rate 1Mbps was reported only since the st RF output power in the preliminary tests. The conducted spurious emissions and cted band edge measurement for other data rates were not worse than 1Mbps, and er significantly frequencies found in conducted spurious emission.							

The following summary table is showing all test modes to demonstrate in compliance with the standard.

2.3 Connection Diagram of Test System

2.4 Support Unit used in test configuration and system

ltem	Equipment	Brand Name	Model Name	FCC ID	Data Cable	Power Cord
1.	Bluetooth Earphone	Sony Ericsson	MW600	PY7DDA-2029	N/A	N/A
2.	WLAN AP	ASUS	RT-AC66U	MSQ-RTAC66U	N/A	Unshielded, 1.8 m
3.	Notebook	DELL	Latitude 3400	FCC DoC	N/A	AC I/P: Unshielded, 1.2 m DC O/P: Shielded, 1.8 m

TEL : 886-3-327-3456	Page Number	: 9 of 49
FAX : 886-3-328-4978	Issued Date	: Jun. 08, 2021
Report Template No.: BU5-FR15CBT Version 2.4	Report Version	: 01

2.5 EUT Operation Test Setup

The RF test items, utility "QRCT Ver.4.0.00113" was installed in Notebook which was programmed in order to make the EUT get into the engineering modes to provide channel selection, power level, data rate and the application type and for continuous transmitting signals.

2.6 Measurement Results Explanation Example

For all conducted test items:

The offset level is set in the spectrum analyzer to compensate the RF cable loss and attenuator factor between EUT conducted output port and spectrum analyzer. With the offset compensation, the spectrum analyzer reading level is exactly the EUT RF output level.

Example:

The spectrum analyzer offset is derived from RF cable loss and attenuator factor.

Offset = RF cable loss + attenuator factor.

Following shows an offset computation example with cable loss 4.2 dB and 10 dB attenuator.

Offset(dB) = RF cable loss(dB) + attenuator factor(dB).

= 4.2 + 10 = 14.2 (dB)

3 Test Result

3.1 Number of Channel Measurement

3.1.1 Limits of Number of Hopping Frequency

Frequency hopping systems in the 2400-2483.5 MHz band shall use at least 15 channels.

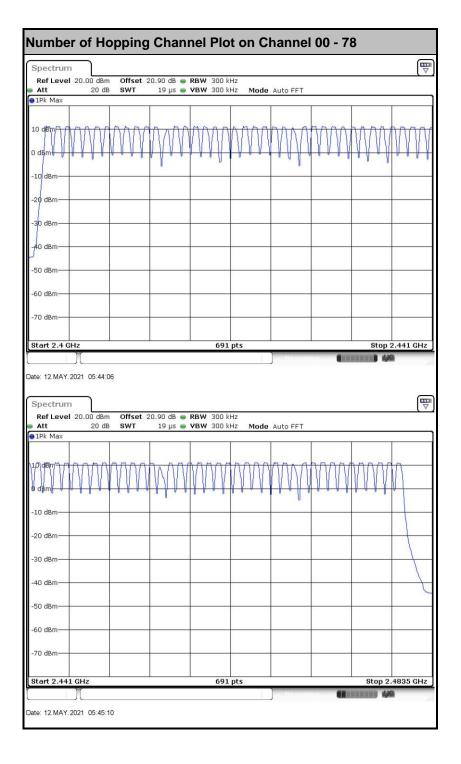
3.1.2 Measuring Instruments

See list of measuring equipment of this test report.

3.1.3 Test Procedure

- 1. The testing follows ANSI C63.10-2013 clause 7.8.3.
- 2. The RF output of EUT was connected to the spectrum analyzer by RF cable and attenuator. The path loss was compensated to the results for each measurement.
- 3. Set the maximum power setting and enable the EUT to transmit continuously.
- 4. Enable the EUT hopping function.
- Use the following spectrum analyzer settings: Span = the frequency band of operation;
 RBW = 300 kHz; VBW ≥ RBW; Sweep = auto; Detector function = peak; Trace = max hold.
- 6. The number of hopping frequency used is defined as the number of total channel.
- 7. Record the measurement data derived from spectrum analyzer.

3.1.4 Test Setup


Spectrum Analyzer

EUT

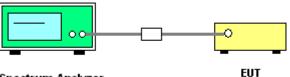
3.1.5 Test Result of Number of Hopping Frequency

Please refer to Appendix A.

3.2 Hopping Channel Separation Measurement

3.2.1 Limit of Hopping Channel Separation

Frequency hopping systems operating in the 2400-2483.5 MHz band may have hopping channel carrier frequencies that are separated by 25 kHz or two-thirds of the 20 dB bandwidth of the hopping channel, whichever is greater.

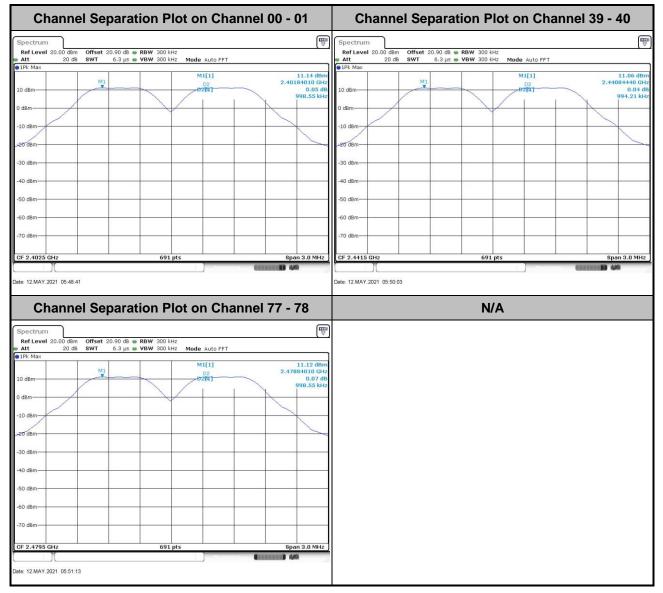

3.2.2 Measuring Instruments

See list of measuring equipment of this test report.

3.2.3 Test Procedures

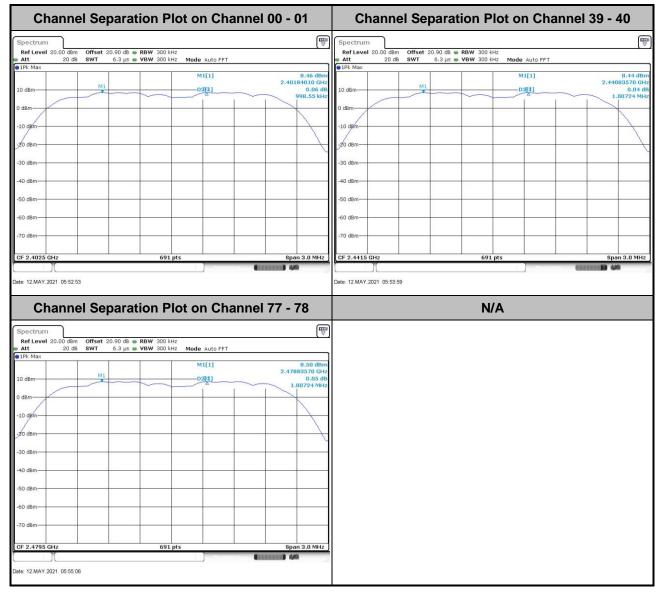
- 1. The testing follows ANSI C63.10-2013 clause 7.8.2.
- 2. The RF output of EUT was connected to the spectrum analyzer by RF cable and attenuator. The path loss was compensated to the results for each measurement.
- 3. Set the maximum power setting and enable the EUT to transmit continuously.
- 4. Enable the EUT hopping function.
- Use the following spectrum analyzer settings:
 Span = wide enough to capture the peaks of two adjacent channels;
 RBW = 300 kHz; VBW ≥ RBW; Sweep = auto; Detector function = peak; Trace = max hold.
- 6. Measure and record the results in the test report.

3.2.4 Test Setup

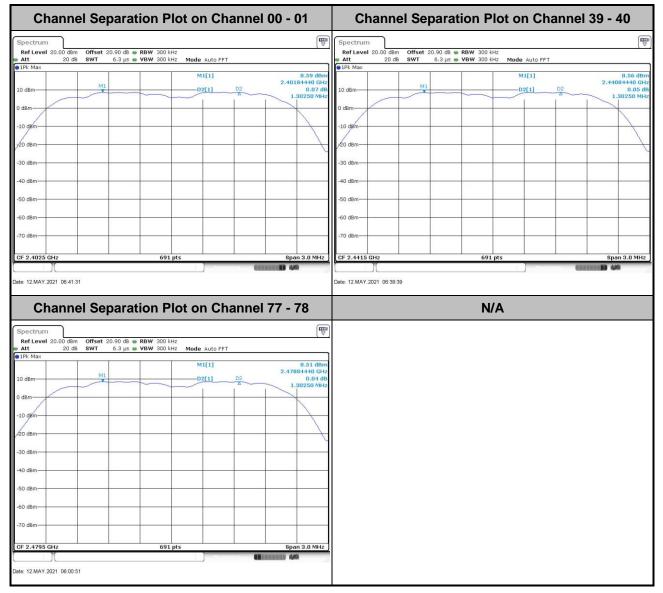

Spectrum Analyzer

3.2.5 Test Result of Hopping Channel Separation

Please refer to Appendix A.



<1Mbps>



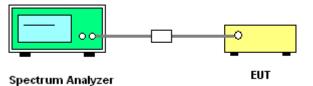
<2Mbps>

<3Mbps>

3.3 Dwell Time Measurement

3.3.1 Limit of Dwell Time

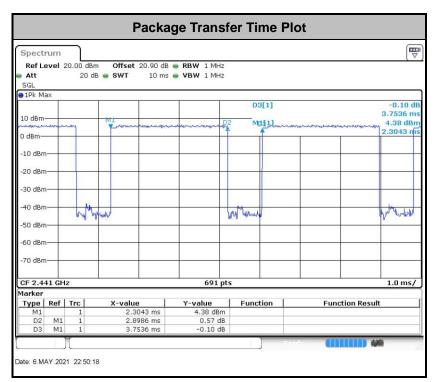
The average time of occupancy on any channel shall not be greater than 0.4 seconds within a period of 0.4 seconds multiplied by the number of hopping channels employed.


3.3.2 Measuring Instruments

See list of measuring equipment of this test report.

3.3.3 Test Procedures

- 1. The testing follows ANSI C63.10-2013 clause 7.8.4.
- The RF output of EUT was connected to the spectrum analyzer by RF cable and attenuator. The path loss was compensated to the results for each measurement.
- 3. Set the maximum power setting and enable the EUT to transmit continuously.
- 4. Enable the EUT hopping function.
- 5. Use the following spectrum analyzer settings: Span = zero span, centered on a hopping channel; RBW = 1 MHz; VBW ≥ RBW; Sweep = as necessary to capture the entire dwell time per hopping channel; Detector function = peak; Trace = max hold.
- 6. Measure and record the results in the test report.


3.3.4 Test Setup

3.3.5 Test Result of Dwell Time

Please refer to Appendix A.

Remark:

1. In normal mode, hopping rate is 1600 hops/s with 6 slots in 79 hopping channels. With channel hopping rate (1600 / 6 / 79) in Occupancy Time Limit (0.4×79) (s),Hops Over Occupancy Time comes to $(1600 / 6 / 79) \times (0.4 \times 79) = 106.67$ hops.

2. In AFH mode, hopping rate is 800 hops/s with 6 slots in 20 hopping channels. With channel hopping rate (800 / 6 / 20) in Occupancy Time Limit (0.4×20) (s), Hops Over Occupancy Time comes to $(800 / 6 / 20) \times (0.4 \times 20) = 53.33$ hops.

3. Dwell Time(s) = Hops Over Occupancy Time (hops) x Package Transfer Time

TEL : 886-3-327-3456	Page Number	: 18 of 49
FAX : 886-3-328-4978	Issued Date	: Jun. 08, 2021
Report Template No.: BU5-FR15CBT Version 2.4	Report Version	: 01

3.4 20dB and 99% Bandwidth Measurement

3.4.1 Limit of 20dB and 99% Bandwidth

Reporting only

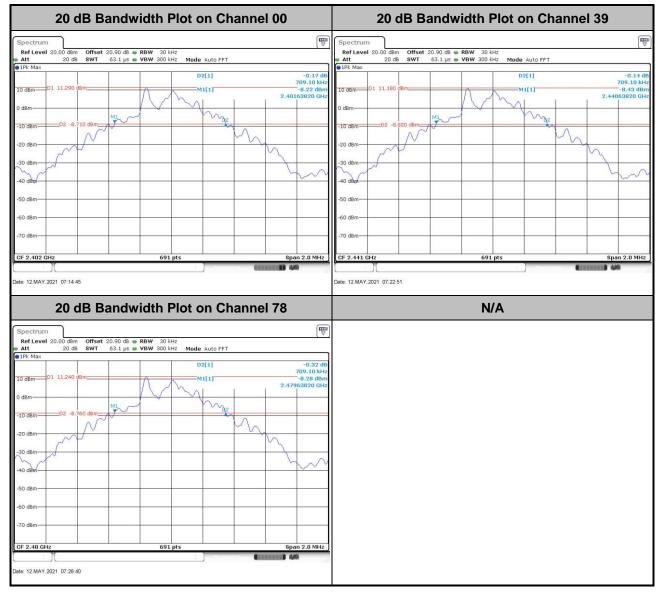
3.4.2 Measuring Instruments

See list of measuring equipment of this test report.

3.4.3 Test Procedures

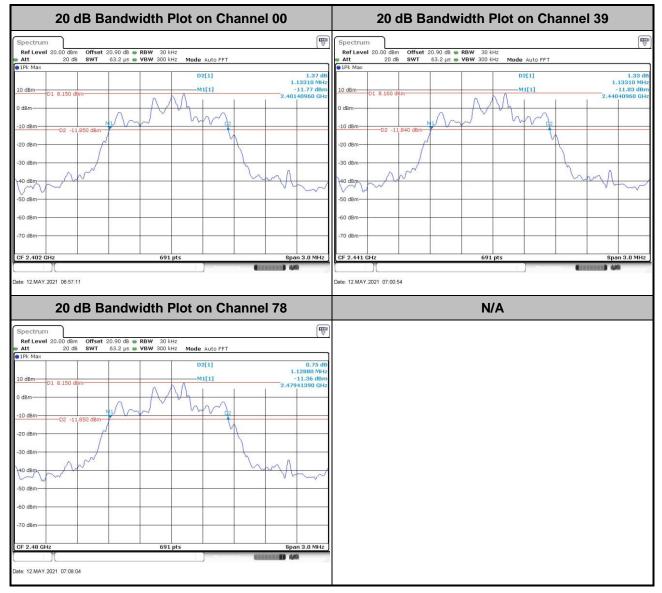
- 1. The testing follows ANSI C63.10-2013 clause 6.9.2 and 6.9.3.
- 2. The RF output of EUT was connected to the spectrum analyzer by RF cable and attenuator. The path loss was compensated to the results for each measurement.
- 3. Set the maximum power setting and enable the EUT to transmit continuously.
- Use the following spectrum analyzer settings for 20 dB Bandwidth measurement.
 Span = approximately 2 to 5 times the 20 dB bandwidth, centered on a hopping channel;
 RBW ≥ 1% of the 20 dB bandwidth; VBW ≥ RBW; Sweep = auto; Detector function = peak;
 Trace = max hold.
- Use the following spectrum analyzer settings for 99 % Bandwidth measurement.
 Span = approximately 1.5 to 5 times the 99% bandwidth, centered on a hopping channel;
 RBW ≥ 1-5% of the 99% bandwidth; VBW ≥ 3 * RBW; Sweep = auto; Detector function = peak;
 Trace = max hold.
- 6. Measure and record the results in the test report.

3.4.4 Test Setup

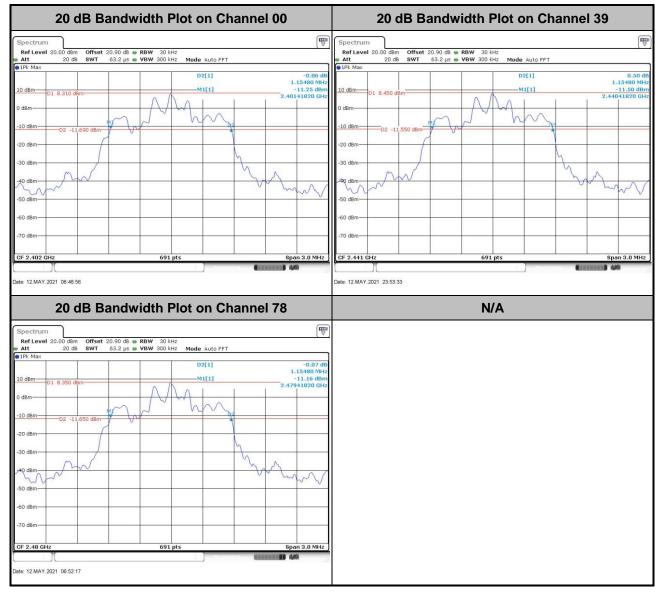

Spectrum Analyzer

3.4.5 Test Result of 20dB Bandwidth

Please refer to Appendix A.

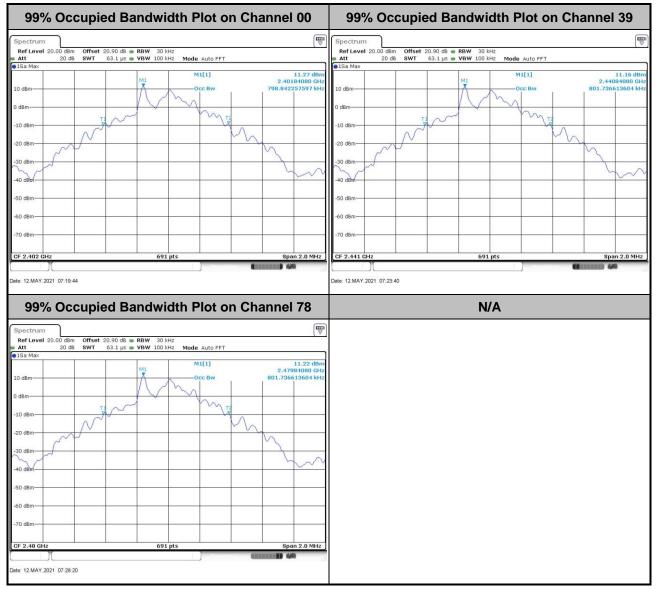


<1Mbps>



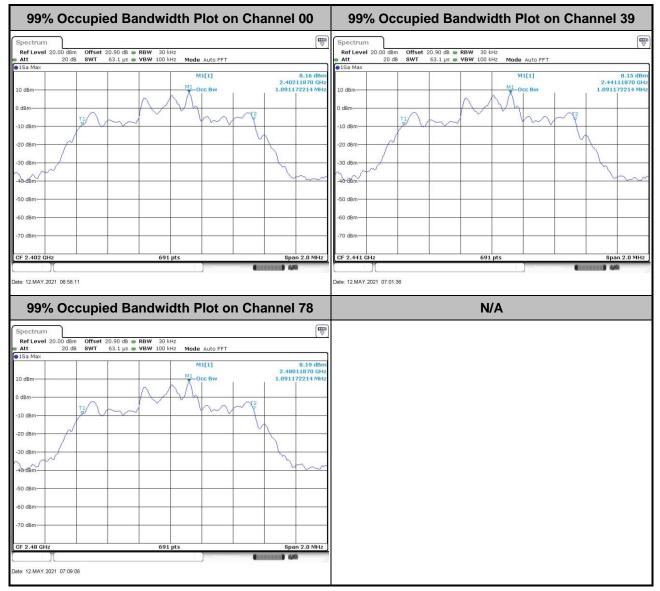
<2Mbps>

<3Mbps>

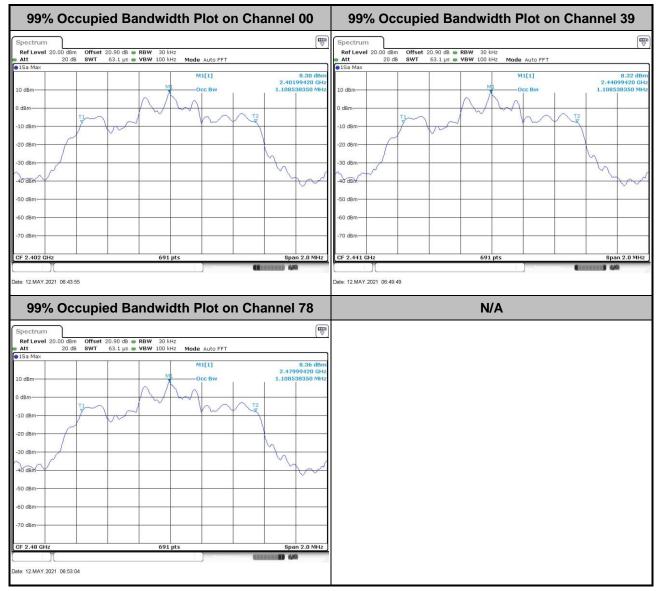


3.4.6 Test Result of 99% Occupied Bandwidth

Please refer to Appendix A.


<1Mbps>

Note: The occupied channel bandwidth is maintained within the band of operation for all of the modulations.


<2Mbps>

Note: The occupied channel bandwidth is maintained within the band of operation for all of the modulations.

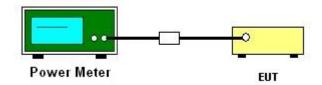
<3Mbps>

Note: The occupied channel bandwidth is maintained within the band of operation for all of the modulations.

3.5 Output Power Measurement

3.5.1 Limit of Output Power

The maximum peak conducted output power of the intentional radiator shall not exceed the following: For frequency hopping systems operating in the 2400-2483.5 MHz band employing at least 75 non-overlapping hopping channels, and all frequency hopping systems in the 5725-5850 MHz band: 1 watt. For all other frequency hopping systems in the 2400-2483.5 MHz band 0.125 watts.


3.5.2 Measuring Instruments

See list of measuring equipment of this test report.

3.5.3 Test Procedures

- 1. The testing follows ANSI C63.10-2013 clause 7.8.5.
- 2. The RF output of EUT was connected to the power meter by RF cable and attenuator. The path loss was compensated to the results for each measurement.
- 3. Set the maximum power setting and enable the EUT to transmit continuously.
- 4. Measure the conducted output power with cable loss and record the results in the test report.
- 5. Measure and record the results in the test report.

3.5.4 Test Setup

3.5.5 Test Result of Peak Output Power

Please refer to Appendix A.

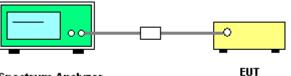
3.5.6 Test Result of Average Output Power (Reporting Only)

Please refer to Appendix A.

3.6 Conducted Band Edges Measurement

3.6.1 Limit of Band Edges

In any 100 kHz bandwidth outside the intentional radiation frequency band, the radio frequency power shall be at least 20 dB below the highest level of the radiated power. In addition, radiated emissions which fall in the restricted bands must also comply with the radiated emission limits.

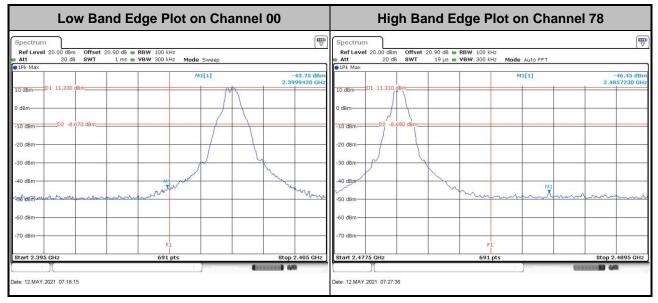

3.6.2 Measuring Instruments

See list of measuring equipment of this test report.

3.6.3 Test Procedures

- 1. The testing follows ANSI C63.10-2013 clause 7.8.6.
- 2. Set the maximum power setting and enable the EUT to transmit continuously.
- 3. Set RBW = 100 kHz, VBW = 300 kHz. Band edge emissions must be at least 20 dB down from the highest emission level within the authorized band as measured with a 100 kHz RBW. The attenuation shall be 30 dB instead of 20 dB when RMS conducted output power procedure is used.
- 4. Enable hopping function of the EUT and then repeat step 2 and 3.
- 5. Measure and record the results in the test report.

3.6.4 Test Setup



Spectrum Analyzer

3.6.5 Test Result of Conducted Band Edges

<1Mbps>

<2Mbps>

Low Band Edge Plot on Channel 00	High Band Edge Plot on Channel 78			
Spectrum Image: Spectrum Ref Level 20.00 d8m Offset 20.90 d8 ● RBW 100 kHz ● Att 20 d8 SWT 19 µs ● VBW 300 kHz Mode Auto FFT	Spectrum Image: Constraint of the second secon			
IPK Max M1[1] -44.60 dBm I0.dBm 01 8.620 dBm 2.3999420 GHz 0 dBm 02 -11.380 dBm -44.60 dBm -10.dBm 02 -11.380 dBm -44.60 dBm -20 dBm -44.60 dBm -44.60 dBm -30 dBm -44.60 dBm -44.60 dBm -70 dBm -70 dBm -71 dBm -44.60 dBm	e 1/k Max 10 dBm 01 8.660 dBm 2.4881540 GHz 0 dBm 02 -11.340 dBm			
Start 2:395 GHz 691 pts Stop 2:405 GHz	Start 2.4775 GHz 691 pts Stop 2.4895 GHz Date: 12.MAY 2021 07:08:33 12.0421 07:08:33 12.0421 07:08:33			

<3Mbps>

Low Band Edge Plot on Channel 00	High Band Edge Plot on Channel 78			
Spectrum Tms Ref Level 20.00 dBm Offset 20.90 dB • RBW 100 HHz Att 20 dB SWT 19 µs • VBW 300 kHz Max M1[1] -45.36 dBm	Spectrum Image: Constraint of the sector of t			
10 dBm 01 8.590 dBm 2.3999860 GHz 0 dBm 0 dBm 0 0 -10 dBm 02 -11.410 dBm 0 0 -20 dBm -30 dBm 0 0	10 dBm 01 8.710 dBm 2.4893630 GHz 0 dBm 02 -11 290 dBm -10 dBm -20 dBm -30 dBm -10 dBm			
-40 dBm	-40 dBm			
Start 2.395 GHz 691 pts Stop 2.405 GHz Date: 12 MAY 2021 06:42:59 06:42:59 06:42:59	Start 2.4775 GHz 691 pts Stop 2.4895 GHz Date: 12 MAY 2021 06:55:13 400			

3.6.6 Test Result of Conducted Hopping Mode Band Edges

<1Mbps>

Hopping Mode Low Band Edge Plot	Hopping Mode High Band Edge Plot			
Spectrum Image: Constraint of the second dam				
-70 dBm F1 Start 2.395 GHz 691 pts Stop 2.405 GHz Date: 12 MAY 2021 05:46 22	-70 dBm F1 Start 2.4775 GHz 691 pts Stop 2.4895 GHz Date: 12 MAY 2021 05-48 34			

<2Mbps>

Hopping Mode Low Band Edge Plot	Hopping Mode High Band Edge Plot			
Ref Level 20.00 d8m Offset 20.90 d8 RBW 100 kHz Att 20 d8 SWT 19 µs VBW 300 kHz Mode Auto FFT ● IPR Max MI[1] -47.24 dBm 2.3951660 GHz 2.3951660 GHz 300 kHz	Spectrum mm Ref Level 20.00 d8m Offset 20.90 d8 = RBW 100 kHz Att 20 d8 SWT 19 µs VBW 300 kHz Mode Auto FFT IPk Max M1[1] -47.28 dBm 2.4837/260 GHz			
0 dBm	10 dBm 01 9.550 dBm 02 -11 450 dBm 02 -10 dBm 02 -			
-40 dBm-	-40 dBm			
Start 2.395 GHz 691 pts Stop 2.405 GHz Date: 12 MAY 2021 05:55:33 Maximum data and an	Start 2,4775 GHz 691 pts Stop 2,4895 GHz Date: 12 MAY 2021 05:56:10 Image: 12 MAY 2021 05:56:10 Image: 12 MAY 2021 05:56:10			

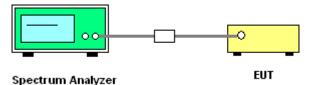
<3Mbps>

Hopping Mode Low Band Edge Plot	Hopping Mode High Band Edge Plot			
Ref Level 20.00 dBm Offset 20.90 dB RBW 100 kHz Att 20 dB SWT 19 µs VBW 300 kHz	Ref Level 20.00 dBm Offset 20.90 dB RBW 100 kHz Att 20 dB SWT 19 µs VBW 300 kHz Mode Auto FFT #JPk Max M1[1] -47.06 dBm 2.4835870 GHz 10 dBm 2.4835870 GHz			
0 dBm -10 dBm -20 dBm -20 dBm -30 dBm -40 dBm -40 dBm -40 dBm	bjdem/m/ M/ M/ -10 dBm D2 -11,420 dBm			
-60 dBm F1 -70 dBm F1 Start 2:395 GHz 691 pts Stop 2:405 GHz Date: 12 MAY 2021 05:57:16	-60 dBm70 dBm - F170 dBm - F170 dBm70 dB			

3.7 Conducted Spurious Emission Measurement

3.7.1 Limit of Spurious Emission Measurement

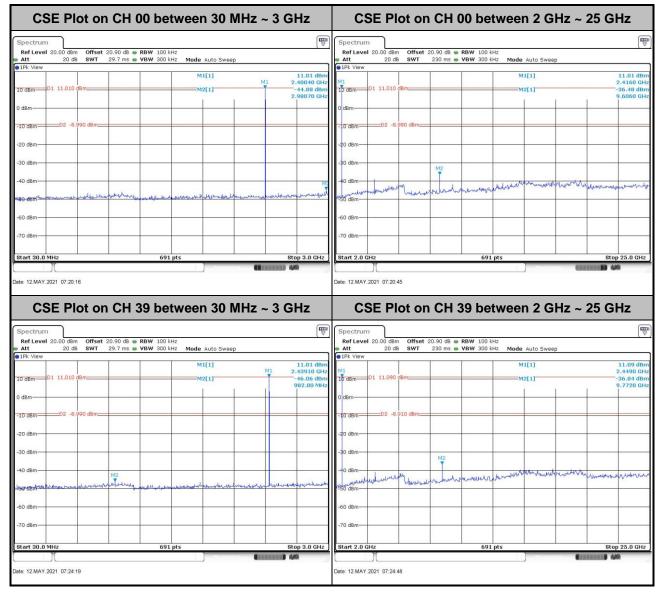
In any 100 kHz bandwidth outside the intentional radiation frequency band, the radio frequency power shall be at least 20 dB below the highest level of the radiated power. In addition, radiated emissions which fall in the restricted bands must also comply with the radiated emission limits.


3.7.2 Measuring Instruments

See list of measuring equipment of this test report.

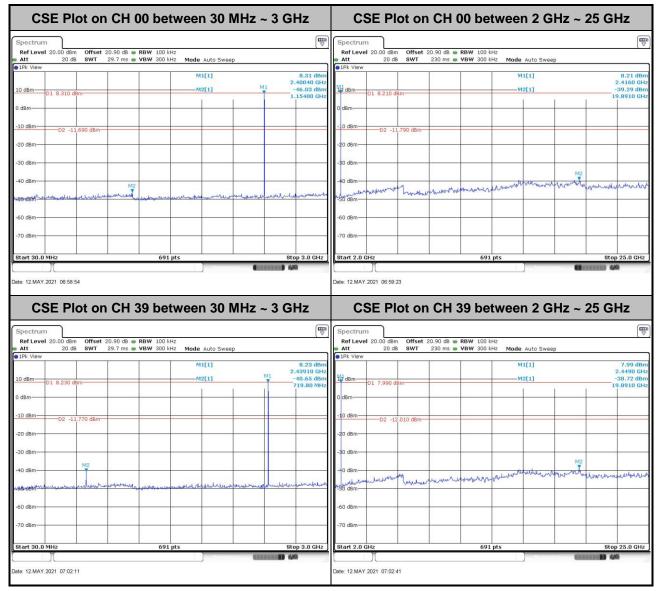
3.7.3 Test Procedure

- 1. The testing follows ANSI C63.10-2013 clause 7.8.8.
- 2. The RF output of EUT was connected to the spectrum analyzer by RF cable and attenuator. The path loss was compensated to the results for each measurement.
- 3. Set the maximum power setting and enable the EUT to transmit continuously.
- Set RBW = 100 kHz, VBW = 300 kHz, scan up through 10th harmonic. All harmonics / spurious must be at least 20 dB down from the highest emission level within the authorized band as measured with a 100 kHz RBW.
- 5. Measure and record the results in the test report.
- 6. The RF fundamental frequency should be excluded against the limit line in the operating frequency band.


3.7.4 Test Setup

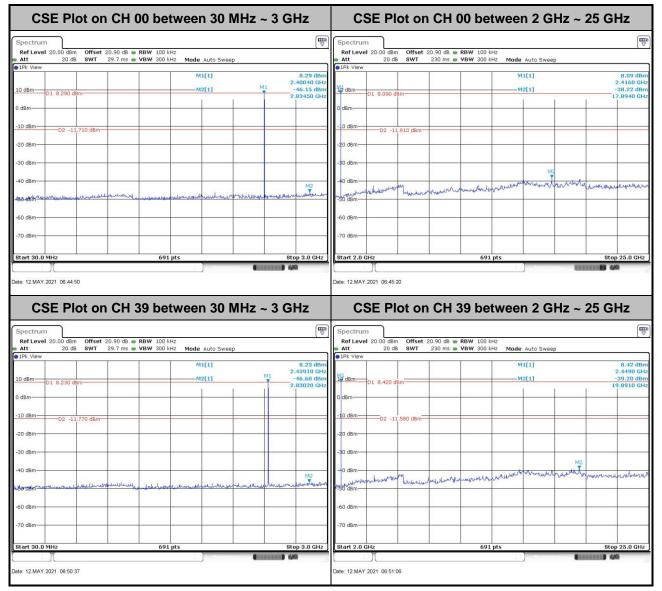
3.7.5 Test Result of Conducted Spurious Emission

<1Mbps>



Spectrum		Spectrum		(
Ref Level 20.00 d8m Offset 20.90 d8 RBW 100 kHz Att 20 d8 SWT 29.7 ms VBW 300 kHz Mode Auto Sweep 1Pk View		Ref Level 20.00 dBm Offset Att 20 dB SWT	20.90 dB • RBW 100 kHz 230 ms • VBW 300 kHz Mode /	
10 dBm 01 11.040 dBm M2[1]	11.04 dBm M1 2.47780 GHz -46.33 dBm 951.90 MHz	M1 10 dBm D1 11.000 dBm	M1 	2.4830 GF
-10 dBmD2 -8.960 dBm		-10 dBm D2 -9.000 dBm		
-40 dBm	and her and the second	-30 dBm-	M2 Unice turnser March M	munchennyman
-60 dBm		-60 dBm		
Start 30.0 MHz 691 pts	Stop 3.0 GHz	Start 2.0 GHz	691 pts	Stop 25.0 GH

<2Mbps>



CSE Plot on CH	78 between 30 MI	Hz ~ 3 GHz	CSE Plot	on CH 78 betwe	en 2 GHz ~	25 GHz
Spectrum			Spectrum			
Ref Level 20.00 dBm Offset 20.90 dB Att 20 dB SWT 29.7 ms 1Pk View		1		ffset 20.90 dB ⊕ RBW 100 kHz WT 230 ms ⊕ VBW 300 kHz M	1ode Auto Sweep	
10 dBm 01 8.480 dBm	M1[1] M2[1]		0 dBm-01 8.160 dBm-		M1[1] —M2[1]	8.16 dBn 2.4830 GH: -39.47 dBn 17.8600 GH:
-10 dBm			-10 dBmD2 -11.840 -20 dBm	dBm		
-30 dBm		M2	-30 dBm- -40 dBm- -30 dBm-	- absent when the second of the second secon	M3	lantalismonth
-60 dBm	g, jugen dan juge Belagan Belan Markov (Serier Markov (Serier Serier (Serier Serier (Serier (Serier Serier (Ser	Preview Course and the course of the course	-50 dBm			
-70 dBm-	691 pts	Stop 3.0 GHz	-70 dBm Start 2.0 GHz	691 pts		Stop 25.0 GHz
Date: 12.MAY.2021 07:10:10	Maximina	(Date: 12.MAY.2021 07:10:39		Monitrine	10000 AA

<3Mbps>

CSE	Plot on C	H 78 betwee	en 30 MHz -	~ 3 GHz	CSE	Plot on	CH 78 be	tween 2 G	GHz ~ 25 G	SHz
Spectrum Ref Level 20.	00 dBm Offset 20.90	dB RBW 100 kHz	e Auto Sweep		Spectrum Ref Level 20.		0.90 dB 🖷 RBW 100 l	KHz KHZ Mode Auto Swe	n n n n n n n n n n n n n n n n n n n	
1Pk View	20 00 011 2011		e Auto Sweep	1	1Pk View	2000 000	250 115 - 101 500 1	The Mode Auto Swe	ieh.	
10 d8m	.280 dBm		M1[1] M2[1]	8.28 dBm 2.48210 GHz -45.67 dBm 2.85600 GHz	10 dBm 01	9.450 dBm		M1[1] M2[1]		8.45 dBn 2.4830 GH -39.64 dBn 15.8970 GH
0 dBm					0 dBm				+ +	
-10 dBm	D2 -11.720 dBm				-10 dBm	D2 -11.550 dBm				
-20 dBm					-20 dBm					
-30 dBm					-30 dBm			N12		
-40 dBm	under generation der bereit	autral and marging and and	handmine	M2	-40 dBm-	www. Landerste	the wind have more than	warmonteration	manantheman	manshallout
-60 dBm					-60 dBm					
-70 dBm					-70 dBm					
Start 30.0 MHz		691 pts		Stop 3.0 GHz	Start 2.0 GHz		691	pts		op 25.0 GHz
Date: 12.MAY.2021	06:53:40		Second and		Date: 12.MAY.2021	06:54:10		Mean		640

3.8 Radiated Band Edges and Spurious Emission Measurement

3.8.1 Limit of Radiated Band Edges and Spurious Emission

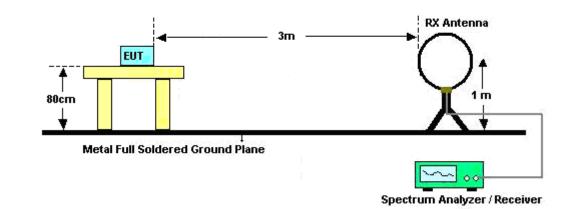
In any 100 kHz bandwidth outside the intentional radiator frequency band, all harmonics / spurious must be at least 20 dB below the highest emission level within the authorized band. In addition, radiated emissions which fall in the restricted bands must also comply with the limits as below.

Frequency	Field Strength	Measurement Distance
(MHz)	(microvolts/meter)	(meters)
0.009 - 0.490	2400/F(kHz)	300
0.490 – 1.705	24000/F(kHz)	30
1.705 – 30.0	30	30
30 - 88	100	3
88 – 216	150	3
216 - 960	200	3
Above 960	500	3

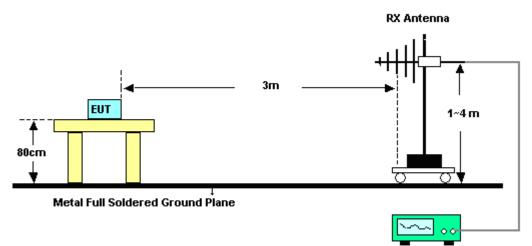
3.8.2 Measuring Instruments

See list of measuring equipment of this test report.

3.8.3 Test Procedures

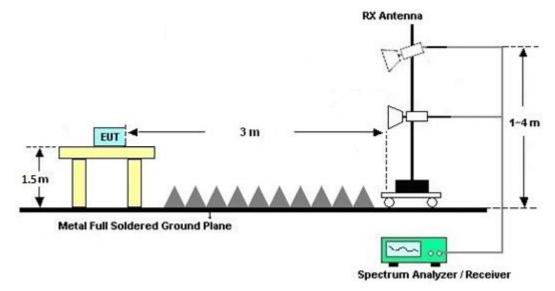

- 1. The EUT was placed on a turntable with 0.8 meter for frequency below 1 GHz and 1.5 meter for frequency above 1 GHz respectively above ground.
- 2. The EUT was set 3 meters from the interference receiving antenna, which was mounted on the top of a variable height antenna tower.
- 3. For each suspected emission, the EUT was arranged to its worst case and then tune the Antenna tower (from 1 m to 4 m) and turntable (from 0 degree to 360 degrees) to find the maximum reading. A pre-amp and a high pass filter are used for the test in order to get better signal level to comply with the guidelines.
- 4. Set the maximum power setting and enable the EUT to transmit continuously.
- 5. Use the following spectrum analyzer settings:
 - (1) Span shall wide enough to fully capture the emission being measured;
 - (2) Set RBW = 100 kHz for f < 1 GHz, RBW = 1 MHz for f>1 GHz ; VBW ≥ RBW; Sweep = auto; Detector function = peak; Trace = max hold for peak
 - (3) For average measurement: use duty cycle correction factor method per 15.35(c). Duty cycle = On time/100 milliseconds On time = N₁*L₁+N₂*L₂+...+N_{n-1}*LN_{n-1}+N_n*L_n Where N₁ is number of type 1 pulses, L₁ is length of type 1 pulses, etc. Average Emission Level = Peak Emission Level + 20*log(Duty cycle)
- 6. Corrected Reading: Antenna Factor + Cable Loss + Read Level Preamp Factor = Level
- 7. For testing below 1 GHz, if the emission level of the EUT in peak mode was 3 dB lower than the limit specified, then peak values of EUT will be reported, otherwise, the emissions will be repeated one by one using the CISPR quasi-peak method and reported.
- 8. For testing above 1 GHz, the emission level of the EUT in peak mode was 20 dB lower than average limit (that means the emission level in average mode also complies with the limit in average mode), then peak values of EUT will be reported, otherwise, the emissions will be measured in average mode again and reported.

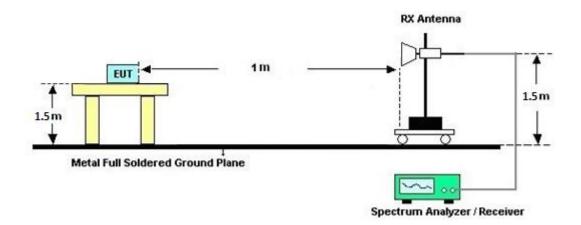
Note: The average levels were calculated from the peak level corrected with duty cycle correction factor (-24.76dB) derived from 20log (dwell time/100ms). This correction is only for signals that hop with the fundamental signal, such as band-edge and harmonic. Other spurious signals that are independent of the hopping signal would not use this correction.



3.8.4 Test Setup

For radiated test below 30MHz


For radiated test from 30MHz to 1GHz


Spectrum Analyzer / Receiver

TEL : 886-3-327-3456	Page Number	: 41 of 49
FAX : 886-3-328-4978	Issued Date	: Jun. 08, 2021
Report Template No.: BU5-FR15CBT Version 2.4	Report Version	: 01

For radiated test from 1GHz to 18GHz

For radiated test above 18GHz

3.8.5 Test Results of Radiated Spurious Emissions (9 kHz ~ 30 MHz)

The low frequency, which started from 9 kHz to 30MHz, was pre-scanned and the result which was 20dB lower than the limit line was not reported.

There is a comparison data of both open-field test site and alternative test site - semi-Anechoic chamber according to 414788 D01 Radiated Test Site v01r01, and the result came out very similar.

3.8.6 Test Result of Radiated Spurious at Band Edges

Please refer to Appendix C and D.

3.8.7 Duty Cycle

Please refer to Appendix E.

3.8.8 Test Result of Radiated Spurious Emission (30MHz ~ 10th Harmonic)

Please refer to Appendix C and D.

3.9 AC Conducted Emission Measurement

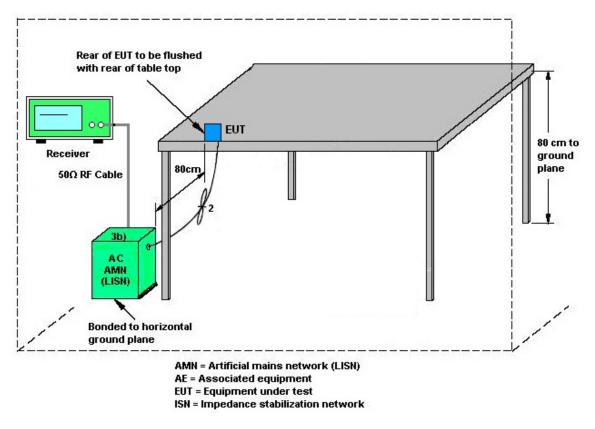
3.9.1 Limit of AC Conducted Emission

For equipment that is designed to be connected to the public utility (AC) power line, the radio frequency voltage that is conducted back onto the AC power line on any frequency or frequencies within the band 150 kHz to 30 MHz shall not exceed the limits in the following table.

Frequency of emission (MHz)	Conducted	limit (dBµV)
Frequency of emission (MHZ)	Quasi-peak	Average
0.15-0.5	66 to 56*	56 to 46*
0.5-5	56	46
5-30	60	50

*Decreases with the logarithm of the frequency.

3.9.2 Measuring Instruments


See list of measuring equipment of this test report.

3.9.3 Test Procedures

- 1. The EUT was placed 0.4 meter from the conducting wall of the shielding room was kept at least 80 centimeters from any other grounded conducting surface.
- 2. Connect EUT to the power mains through a line impedance stabilization network (LISN).
- 3. All the support units are connecting to the other LISN.
- 4. The LISN provides 50 ohm coupling impedance for the measuring instrument.
- 5. The FCC states that a 50 ohm, 50 microhenry LISN shall be used.
- 6. Both sides of AC line were checked for maximum conducted interference.
- 7. The frequency range from 150 kHz to 30 MHz was searched.
- Set the test-receiver system to Peak Detect Function and specified bandwidth (IF Bandwidth = 9kHz) with Maximum Hold Mode. Then measurement is also conducted by Average Detector and Quasi-Peak Detector Function respectively.

3.9.4 Test Setup

3.9.5 Test Result of AC Conducted Emission

Please refer to Appendix B.

3.10 Antenna Requirements

3.10.1 Standard Applicable

If directional gain of transmitting antennas is greater than 6 dBi, the power shall be reduced by the same level in dB comparing to gain minus 6 dBi. The use of a permanently attached antenna or of an antenna that uses a unique coupling to the intentional radiator shall be considered sufficient to comply with the rule.

3.10.2 Antenna Anti-Replacement Construction

An embedded-in antenna design is used.

3.10.3 Antenna Gain

The antenna peak gain of EUT is less than 6 dBi. Therefore, it is not necessary to reduce maximum peak output power limit.

4 List of Measuring Equipment

Instrument	Brand Name	Model No.	Serial No.	Characteristics	Calibration Date	Test Date	Due Date	Remark
Power Meter	Agilent	E4416A	GB412923 44	N/A	Jan. 14, 2021	May 06, 2021~ May 13, 2021	Jan. 13, 2022	Conducted (TH02-HY)
Power Sensor	Agilent	E9327A	US404415 48	50MHz~18GHz	Jan. 14, 2021	May 06, 2021~ May 13, 2021	Jan. 13, 2022	Conducted (TH02-HY)
Signal Analyzer	Rohde & Schwarz	FSV40	101566	10Hz ~ 40GHz	Jul. 22, 2020	May 06, 2021~ May 13, 2021	Jul. 21, 2021	Conducted (TH02-HY)
Switch Box & RF Cable	EM Electronics	EMSW18SE	SW200302	N/A	Mar. 17, 2021	May 06, 2021~ May 13, 2021	Mar. 16, 2022	Conducted (TH02-HY)
Loop Antenna	Rohde & Schwarz	HFH2-Z2	100315	9 kHz~30 MHz	Jan. 04, 2021	May 07, 2021~ May 19, 2021	Jan. 03, 2022	Radiation (03CH11-HY)
Bilog Antenna	TESEQ	CBL 6111D & N-6-06	35414 & AT-N0602	30MHz~1GHz	Oct. 11, 2020	May 07, 2021~ May 19, 2021	Oct. 10, 2021	Radiation (03CH11-HY)
Horn Antenna	SCHWARZBE CK	BBHA 9120 D	9120D-132 6	1GHz ~ 18GHz	Nov. 03, 2020	May 07, 2021~ May 19, 2021	Nov. 02, 2021	Radiation (03CH11-HY)
SHF-EHF Horn Antenna	SCHWARZBE CK	BBHA9170	00994	18GHz~40GHz	Nov. 19, 2020	May 07, 2021~ May 19, 2021	Nov. 18, 2021	Radiation (03CH11-HY)
Amplifier	SONOMA	310N	187312	9kHz~1GHz	Dec. 02, 2020	May 07, 2021~ May 19, 2021	Dec. 01, 2021	Radiation (03CH11-HY)
Preamplifier	EMEC	EM1G18G	060812	1GHz~18GHz	Oct. 27, 2020	May 07, 2021~ May 19, 2021	Oct. 26, 2021	Radiation (03CH11-HY)
Preamplifier	Keysight	83017A	MY532700 80	1GHz~26.5GHz	Nov. 12, 2020	May 07, 2021~ May 19, 2021	Nov. 11, 2021	Radiation (03CH11-HY)
Preamplifier	EMEC	EM18G40G	060801	18GHz~40GHz	Jun. 15, 2020	May 07, 2021~ May 19, 2021	Jun. 14, 2021	Radiation (03CH11-HY)
Spectrum Analyzer	Keysight	N9010A	MY542004 86	10Hz~44GHz	Oct. 23, 2020	May 07, 2021~ May 19, 2021	Oct. 22, 2021	Radiation (03CH11-HY)
Antenna Mast	EMEC	AM-BS-4500- B	N/A	1~4m	N/A	May 07, 2021~ May 19, 2021	N/A	Radiation (03CH11-HY)
Turn Table	EMEC	TT 2000	N/A	0~360 Degree	N/A	May 07, 2021~ May 19, 2021	N/A	Radiation (03CH11-HY)
Software	Audix	E3 6.2009-8-24	RK-00105 3	N/A	N/A	May 07, 2021~ May 19, 2021	N/A	Radiation (03CH11-HY)
RF Cable	HUBER + SUHNER	SUCOFLEX 104	MY9837/4 PE	9kHz-30MHz	Mar. 11, 2021	May 07, 2021~ May 19, 2021	Mar. 10, 2022	Radiation (03CH11-HY)
RF Cable	HUBER + SUHNER	SUCOFLEX 102	MY2859/2	30MHz-40GHz	Mar. 11, 2021	May 07, 2021~ May 19, 2021	Mar. 10, 2022	Radiation (03CH11-HY)
RF Cable	HUBER + SUHNER	SUCOFLEX 104	MY9837/4 PE	30M-18G	Mar. 11, 2021	May 07, 2021~ May 19, 2021	Mar. 10, 2022	Radiation (03CH11-HY)
RF Cable	HUBER + SUHNER	SUCOFLEX 102	MY4274/2	30MHz-40GHz	Mar. 11, 2021	May 07, 2021~ May 19, 2021	Mar. 10, 2022	Radiation (03CH11-HY)
Filter	Wainwright	WLK4-1000-1 530-8000-40S S	SN11	1.53G Low Pass	Sep. 14, 2020	May 07, 2021~ May 19, 2021	Sep. 13, 2021	Radiation (03CH11-HY)
Filter	Wainwright	WHKX12-270 0-3000-18000 -60SS	SN3	3GHz High Pass Filter	Sep. 14, 2020	May 07, 2021~ May 19, 2021	Sep. 13, 2021	Radiation (03CH11-HY)

: 47 of 49

: Jun. 08, 2021

: 01

Instrument	Brand Name	Model No.	Serial No.	Characteristics	Calibration Date	Test Date	Due Date	Remark
AC Power Source	ChainTek	APC-1000W	N/A	N/A	N/A	May 05, 2021	N/A	Conduction (CO05-HY)
EMI Test Receiver	Rohde & Schwarz	ESR3	102388	9kHz~3.6GHz	Nov. 30, 2020	May 05, 2021	Nov. 29, 2021	Conduction (CO05-HY)
LISN	Rohde & Schwarz	ENV216	100081	9kHz~30MHz	Nov. 16, 2020	May 05, 2021	Nov. 15, 2021	Conduction (CO05-HY)
Software	Rohde & Schwarz	EMC32 V10.30	N/A	N/A	N/A	May 05, 2021	N/A	Conduction (CO05-HY)
Pulse Limiter	Rohde & Schwarz	ESH3-Z2	100851	N/A	Feb. 25, 2021	May 05, 2021	Feb. 24, 2022	Conduction (CO05-HY)
LISN Cable	MVE	RG-400	260260	N/A	Dec. 31, 2020	May 05, 2021	Dec. 30, 2021	Conduction (CO05-HY)

5 Uncertainty of Evaluation

Uncertainty of Conducted Emission Measurement (150 kHz ~ 30 MHz)

Measuring Uncertainty for a Level of Confidence	2.2
of 95% (U = 2Uc(y))	2.3

Uncertainty of Radiated Emission Measurement (30 MHz ~ 1000 MHz)

Measuring Uncertainty for a Level of Confidence	4.4
of 95% (U = 2Uc(y))	7.7

Uncertainty of Radiated Emission Measurement (1000 MHz ~ 18000 MHz)

Measuring Uncertainty for a Level of Confidence	5.2
of 95% (U = 2Uc(y))	5.2

Uncertainty of Radiated Emission Measurement (18000 MHz ~ 40000 MHz)

Measuring Uncertainty for a Level of Confidence	5.1
of 95% (U = 2Uc(y))	5.1

Report Number : FR131119-01A

Appendix A. Test Result of Conducted Test Items

Test Engineer:	Luffy Lin	Temperature:	23.7~24	°C
Test Date:	2021/5/6~2021/05/13	Relative Humidity:	51~54	%

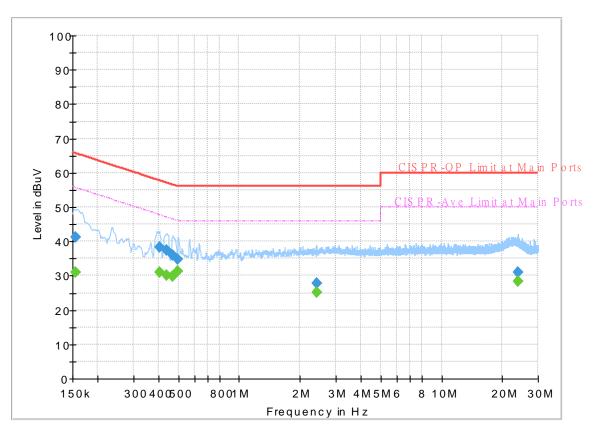
	<u>TEST RESULTS DATA</u> 20dB and 99% Occupied Bandwidth and Hopping Channel Separation								
Mod.	Data Rate	NTX	CH.	Freq. (MHz)	20db BW (MHz)	99% Bandwidth (MHz)	Hopping Channel Separation Measurement (MHz)	Hopping Channel Separation Measurement Limit (MHz)	Pass/Fail
DH	1Mbps	1	0	2402	0.709	0.799	0.999	0.4727	Pass
DH	1Mbps	1	39	2441	0.709	0.802	0.994	0.4727	Pass
DH	1Mbps	1	78	2480	0.709	0.802	0.999	0.4727	Pass
2DH	2Mbps	1	0	2402	1.133	1.091	0.999	0.7553	Pass
2DH	2Mbps	1	39	2441	1.133	1.091	1.007	0.7553	Pass
2DH	2Mbps	1	78	2480	1.129	1.091	1.007	0.7527	Pass
3DH	3Mbps	1	0	2402	1.155	1.109	1.303	0.7700	Pass
3DH	3Mbps	1	39	2441	1.155	1.109	1.303	0.7699	Pass
3DH	3Mbps	1	78	2480	1.155	1.109	1.303	0.7700	Pass

	<u>TEST RESULTS DATA</u> Dwell Time									
Mod.	Hopping Channel Number Rate	Hops Over Occupancy Time(hops)	Package Transfer Time (msec)	Dwell Time (sec)	Limits (sec)	Pass/Fail				
Nomal	79	106.67	2.90	0.31	0.4	Pass				
AFH	20	53.33	2.90	0.15	0.4	Pass				

	<u>TEST RESU</u> Peak Pow								
DH	CH.	NTX	Peak Power (dBm)	Power Limit (dBm)	Test Result				
	0	1	12.14	20.97	Pass				
DH1	39	1	12.15	20.97	Pass				
[[78	1	12.11	20.97	Pass				
	0	1	11.38	20.97	Pass				
2DH1	39	1	11.48	20.97	Pass				
	78	1	11.45	20.97	Pass				
	0	1	11.64	20.97	Pass				
3DH1	39	1	11.57	20.97	Pass				
Γ	78	1	11.56	20.97	Pass				

<u>TEST RESULTS DATA</u> <u>Average Power Table</u> (Reporting Only)										
DH	CH.	NTX	Average Power (dBm)	Duty Factor (dB)						
	0	1	11.88	5.17						
DH1	39	1	11.99	5.17						
	78	1	11.93	5.17						
	0	1	8.86	5.08						
2DH1	39	1	8.90	5.08						
	78	1	8.94	5.08						
	0	1	9.07	5.12						
3DH1	39	1	9.03	5.12						
	78	1	9.06	5.12						

<u>TEST RESULTS DATA</u> Number of Hopping Frequency									
Number of Hopping (Channel)	Adaptive Frequency Hopping (Channel)	Limits (Channel)	Pass/Fail						
79	20	> 15	Pass						

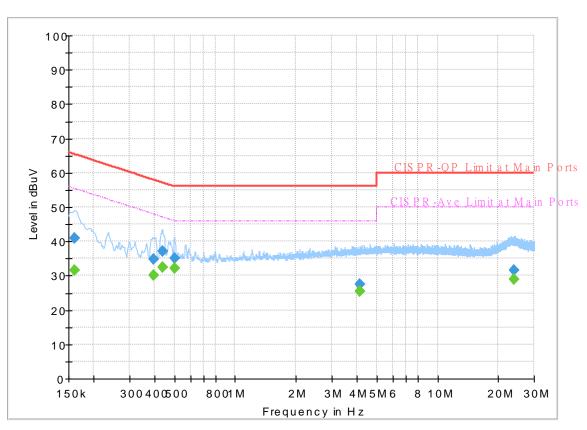


Appendix B. AC Conducted Emission Test Results

Toot Engineer		Temperature :	23~26 ℃
rest Engineer .	Tom Lee and Howard Huang	Relative Humidity :	40~50%

EUT Information

Report NO : Test Mode : Test Voltage : Phase : 131119-01 Mode 1 120Vac/60Hz Line


FullSpectrum

Final_Result

Frequency	QuasiPeak	CAverage	Limit	Margin	Line	Filter	Corr.
(MHz)	(dBuV)	(dBuV)	(dBuV)	(dB)			(dB)
0.154500		31.07	55.75	24.68	L1	OFF	19.5
0.154500	41.13		65.75	24.62	L1	OFF	19.5
0.402000		30.88	47.81	16.93	L1	OFF	19.5
0.402000	38.23	-	57.81	19.58	L1	OFF	19.5
0.440250		30.18	47.06	16.88	L1	OFF	19.6
0.440250	37.31		57.06	19.75	L1	OFF	19.6
0.469500		29.93	46.52	16.59	L1	OFF	19.6
0.469500	35.93		56.52	20.59	L1	OFF	19.6
0.498750		31.16	46.02	14.86	L1	OFF	19.7
0.498750	34.74		56.02	21.28	L1	OFF	19.7
2.406750		25.21	46.00	20.79	L1	OFF	20.0
2.406750	27.65		56.00	28.35	L1	OFF	20.0
23.860500		28.34	50.00	21.66	L1	OFF	20.5
23.860500	31.03		60.00	28.97	L1	OFF	20.5

EUT Information

Report NO : Test Mode : Test Voltage : Phase : 131119-01 Mode 1 120Vac/60Hz Neutral

FullSpectrum

Final_Result

Frequency (MHz)	QuasiPeak (dBuV)	CAverage (dBuV)	Limit (dBuV)	Margin (dB)	Line	Filter	Corr. (dB)
0.161250		31.54	55.40	23.86	Ν	OFF	19.5
0.161250	40.85		65.40	24.55	Ν	OFF	19.5
0.395250		30.00	47.95	17.95	Ν	OFF	19.6
0.395250	34.74		57.95	23.21	Ν	OFF	19.6
0.435750		32.38	47.14	14.76	Ν	OFF	19.6
0.435750	37.09		57.14	20.05	Ν	OFF	19.6
0.501000		32.20	46.00	13.80	Ν	OFF	19.7
0.501000	35.20		56.00	20.80	Ν	OFF	19.7
4.123500		25.57	46.00	20.43	Ν	OFF	19.9
4.123500	27.35		56.00	28.65	Ν	OFF	19.9
23.905500		28.93	50.00	21.07	Ν	OFF	20.7
23.905500	31.63		60.00	28.37	Ν	OFF	20.7

Appendix C. Radiated Spurious Emission

Test Engineer :	Harvey Guo, Bill Chang, Fu Chen and Troye Hsieh	Temperature :	18.3~25.7°C
Test Engineer .		Relative Humidity :	58.2~70.8%

2.4GHz 2400~2483.5MHz

BT (Band Edge @ 3m)

ВТ	Note	Frequency	Level	Over	Limit	Read	Antenna	Path	Preamp	Ant	Table	Peak	Pol.
				Limit	Line	Level	Factor	Loss	Factor	Pos	Pos	Avg.	
		(MHz)	(dBµV/m)	(dB)	(dBµV/m)	(dBµV)	(dB/m)	(dB)	(dB)	(cm)	(deg)	(P/A)	(H/V)
		2355.255	43.58	-30.42	74	42.36	27.59	7.1	33.47	200	76	Ρ	Н
		2355.255	18.82	-35.18	54	-	-	-	-	-	-	А	Н
	*	2402	100.85	-	-	99.66	27.5	7.14	33.45	200	76	Ρ	Н
	*	2402	76.09	-	-	-	-	-	-	-	-	А	Н
вт													Н
CH00													Н
2402MHz		2390	44.57	-29.43	74	43.38	27.52	7.13	33.46	361	15	Р	V
		2390	19.81	-34.19	54	-	-	-	-	-	-	Α	V
	*	2402	108.31	-	-	107.12	27.5	7.14	33.45	361	15	Ρ	V
	*	2402	83.55	-	-	-	-	-	-	-	-	А	V
													V
													V
		2388.82	45.65	-28.35	74	44.46	27.52	7.13	33.46	200	62	Ρ	Н
		2388.82	20.89	-33.11	54	-	-	-	-	-	-	А	Н
	*	2441	102.08	-	-	100.81	27.5	7.2	33.43	200	62	Ρ	н
	*	2441	77.32	-	-	-	-	-	-	-	-	А	Н
57		2496.43	43.86	-30.14	74	42.56	27.41	7.29	33.4	200	62	Ρ	Н
ВТ СН 39		2496.43	19.1	-34.9	54	-	-	-	-	-	-	А	Н
сп зэ 2441MHz		2312.94	44.4	-29.6	74	43.16	27.67	7.06	33.49	350	2	Ρ	V
244 111172		2312.94	19.64	-34.36	54	-	-	-	-	-	-	А	V
	*	2441	108.96	-	-	107.69	27.5	7.2	33.43	350	2	Ρ	V
	*	2441	84.2	-	-	-	-	-	-	-	-	А	V
		2496.22	45.22	-28.78	74	43.92	27.41	7.29	33.4	350	2	Ρ	V
		2496.22	20.46	-33.54	54	-	-	-	-	-	-	А	V

	*	2480	102.24	-	-	100.95	27.44	7.26	33.41	200	62	Р	Н
	*	2480	77.48	-	-	-	-	-	-	-	-	А	Н
		2483.52	50.19	-23.81	74	48.9	27.43	7.27	33.41	200	62	Р	Н
		2483.52	25.43	-28.57	54	-	-	-	-	-	I	А	Н
вт													н
CH 78													Н
2480MHz	*	2480	108.07	-	-	106.48	27.44	7.26	33.41	300	21	Р	V
24001112	*	2480	83.31	-	-	-	-	-	-	-	-	А	V
		2483.52	54.83	-19.17	74	53.54	27.43	7.27	33.41	300	21	Р	V
		2483.52	30.07	-23.93	54	-	-	-	-	-	-	А	V
													V
													V
Remark		o other spurious I results are PA		Peak and	Average lin	nit line.							

DT		-				-		Did	_		-		
BT	Note	Frequency	Level	Over	Limit	Read	Antenna	Path	Preamp	Ant	Table	Peak	POI.
			(dDu)//m)	Limit	Line		Factor		Factor	Pos	Pos	Avg.	1110
		(MHz)	(dBµV/m)		(dBµV/m)		(dB/m)	(dB)	(dB)	(cm)	(deg)	(P/A)	
		4804	57.08	-16.92	74	81.07	31	11.18	66.17	100	0	Р	Н
		4804	32.32	-21.68	54	-	-	-	-	-	-	А	Н
вт		17955	57.68	-16.32	74	52.49	46.5	23.86	65.17	100	0	Р	Н
CH 00		17955	32.92	-21.08	54	-	-	-	-	-	-	А	Н
2402MHz		4804	62.5	-11.5	74	86.49	31	11.18	66.17	100	0	Р	V
240210112		4804	37.74	-16.26	54	-	-	-	-	-	-	А	V
		17970	57.57	-16.43	74	52.05	46.8	23.87	65.15	100	0	Р	V
		17955	32.81	-21.19	54	-	-	-	-	-	-	А	V
		4882	49.43	-24.57	74	72.62	31.58	11.34	66.11	100	0	Р	Н
		4882	24.67	-29.33	54	-	-	-	-	-	-	А	Н
		7323	43.01	-30.99	74	58.87	36.4	13.46	65.72	100	0	Ρ	Н
		7323	18.25	-35.75	54	-	-	-	-	-	-	А	Н
DT.		17970	57.24	-16.76	74	51.72	46.8	23.87	65.15	100	0	Р	Н
BT		17970	32.48	-21.52	54	-	-	-	-	-	-	А	Н
CH 39 2441MHz		4882	54.31	-19.69	74	77.5	31.58	11.34	66.11	100	0	Ρ	V
244 110112		4882	29.55	-24.45	54	-	-	-	-	-	-	А	V
		7323	43.53	-30.47	74	59.39	36.4	13.46	65.72	100	0	Р	V
		7323	18.77	-35.23	54	-	-	-	-	-	-	А	V
		17955	57.35	-16.65	74	52.16	46.5	23.86	65.17	100	0	Р	V
		17955	32.59	-21.41	54	-	-	-	-	-	-	А	V

BT (Harmonic @ 3m)

		4960	43.91	-30.09	74	67.4	31.06	11.51	66.06	100	0	Р	Н
		4960	19.15	-34.85	54	-	-	-	-	-	-	А	н
		7440	43.79	-30.21	74	59.28	36.56	13.74	65.79	100	0	Р	Н
		7440	19.03	-34.97	54	-	-	-	-	-	-	А	Н
		12400	52.34	-21.66	74	61.16	38.4	18.69	65.91	100	0	Р	Н
		12400	27.58	-26.42	54	-	-	-	-	-	-	А	н
		17955	57.85	-16.15	74	52.66	46.5	23.86	65.17	100	0	Р	Н
BT		17955	33.09	-20.91	54	-	-	-	-	-	-	А	Н
CH 78 2480MHz		4960	48.16	-25.84	74	71.65	31.06	11.51	66.06	100	0	Р	V
2400111172		4960	23.4	-30.6	54	-	-	-	-	-	-	А	V
		7440	43.23	-30.77	74	58.72	36.56	13.74	65.79	100	0	Р	V
		7440	18.47	-35.53	54	-	-	-	-	-	-	А	V
		12400	52.24	-21.76	74	61.06	38.4	18.69	65.91	100	0	Р	V
		12400	27.48	-26.52	54	-	-	-	-	-	-	А	V
		17970	57.16	-16.84	74	51.64	46.8	23.87	65.15	100	0	Р	V
		17970	32.4	-21.6	54	-	-	-	-	-	-	А	V
Remark	 No other spurious found. All results are PASS against Peak and Average limit line. 												

Emission above 18GHz

					2.4GHz	BT (SHF	⁻)						
BT	Note	Frequency	Level	Over	Limit	Read	Antenna	Path	Preamp	Ant	Table	Peak	Pol.
				Limit	Line	Level	Factor	Loss	Factor	Pos	Pos	Avg.	
		(MHz)	(dBµV/m)	(dB)	(dBµV/m)	(dBµV)	(dB/m)	(dB)	(dB)	(cm)	(deg)	(P/A)	(H/V)
		23908	38.26	-35.74	74	55.86	39.05	-2.89	53.76	150	0	Р	Н
													н
													Н
													Н
													Н
													н
													H
													Н
													Н
													Н
2.4GHz													Н
BT													н
		24279	38.18	-35.82	74	55.59	38.92	-2.85	53.48	150	0	Р	V
SHF													V
													V
													V
													V
													V
													V
													V
													V
													V
													V
													V
Remark		o other spuriou		mit line.									

Emission below 1GHz

BT	Note	Frequency	Level	Over	Limit	Read	Antenna	Path	Preamp	Ant	Table	Peak	Pol.
				Limit	Line	Level	Factor	Loss	Factor	Pos	Pos	Avg.	
		(MHz)	(dBµV/m)		(dBµV/m)	(dBµV)	(dB/m)	(dB)	(dB)	(cm)	(deg)		
		37.76	23.82	-16.18	40	34.94	20.42	0.95	32.49	-	-	Р	Н
		61.04	26.28	-13.72	40	45.9	11.72	1.2	32.54	100	0	Р	Н
		107.6	26.38	-17.12	43.5	40.74	16.56	1.58	32.5	-	-	Р	Н
		796.3	29.18	-16.82	46	28.28	28.29	4.24	31.63	-	-	Ρ	Н
		885.54	30.7	-15.3	46	28.27	29.17	4.52	31.26	-	-	Ρ	Н
		958.29	31.67	-14.33	46	26.71	31.06	4.72	30.82	-	-	Ρ	Н
													н
													Н
													Н
													н
													Н
2.4GHz													Н
BT LF		37.76	31.37	-8.63	40	42.49	20.42	0.95	32.49	100	170	QP	V
		61.04	29.53	-10.47	40	49.15	11.72	1.2	32.54	-	-	Ρ	V
		170.65	30.22	-13.28	43.5	45.28	15.43	2.04	32.53	-	-	Ρ	V
		765.26	28.49	-17.51	46	28.08	28.13	4.15	31.87	-	-	Ρ	V
		860.32	31.08	-14.92	46	28.7	29.31	4.43	31.36	-	-	Ρ	V
		952.47	31.96	-14.04	46	27.32	30.79	4.71	30.86	-	-	Ρ	V
													V
													V
													V
													V
													V
													V

2.4GHz BT (LF)

Note symbol

*	Fundamental Frequency which can be ignored. However, the level of any						
	unwanted emissions shall not exceed the level of the fundamental frequency.						
!	Test result is over limit line.						
P/A	Peak or Average						
H/V	Horizontal or Vertical						

A calculation example for radiated spurious emission is shown as below:

вт	Note	Frequency	Level	Over	Limit	Read	Antenna	Path	Preamp	Ant	Table	Peak	Pol.
				Limit	Line	Level	Factor	Loss	Factor	Pos	Pos	Avg.	
		(MHz)	(dBµV/m)	(dB)	(dBµV/m)	(dBµV)	(dB/m)	(dB)	(dB)	(cm)	(deg)	(P/A)	(H/V)
вт		2390	55.45	-18.55	74	54.51	32.22	4.58	35.86	103	308	Р	н
CH 00													
2402MHz		2390	43.54	-10.46	54	42.6	32.22	4.58	35.86	103	308	А	Н

- 1. Path Loss(dB) = Cable loss(dB) + Filter loss(dB) + Attenuator loss(dB)
- 2. Level($dB\mu V/m$) =

Antenna Factor(dB/m) + Path Loss(dB) + Read Level(dBµV) - Preamp Factor(dB)

3. Over $Limit(dB) = Level(dB\mu V/m) - Limit Line(dB\mu V/m)$

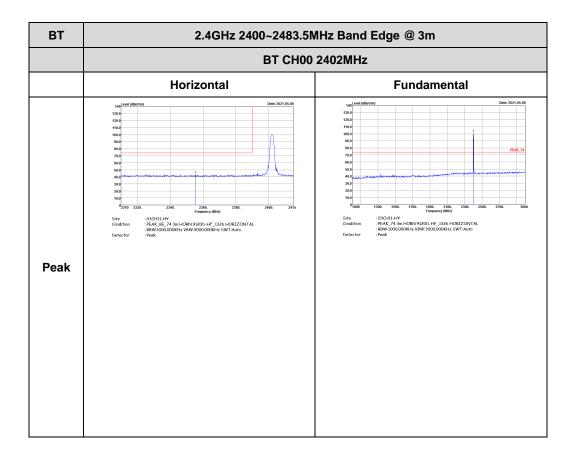
For Peak Limit @ 2390MHz:

- 1. Level(dBµV/m)
- = Antenna Factor(dB/m) + Path Loss(dB) + Read Level(dBµV) Preamp Factor(dB)
- = 32.22(dB/m) + 4.58(dB) + 54.51(dBµV) 35.86 (dB)
- = 55.45 (dBµV/m)
- 2. Over Limit(dB)
- = Level(dBµV/m) Limit Line(dBµV/m)
- $= 55.45(dB\mu V/m) 74(dB\mu V/m)$
- = -18.55(dB)

For Average Limit @ 2390MHz:

- 1. Level(dBµV/m)
- = Antenna Factor(dB/m) + Path Loss(dB) + Read Level(dBµV) Preamp Factor(dB)
- $= 32.22(dB/m) + 4.58(dB) + 42.6(dB\mu V) 35.86 (dB)$
- = 43.54 (dBµV/m)
- 2. Over Limit(dB)
- = Level(dB μ V/m) Limit Line(dB μ V/m)
- $= 43.54(dB\mu V/m) 54(dB\mu V/m)$
- = -10.46(dB)

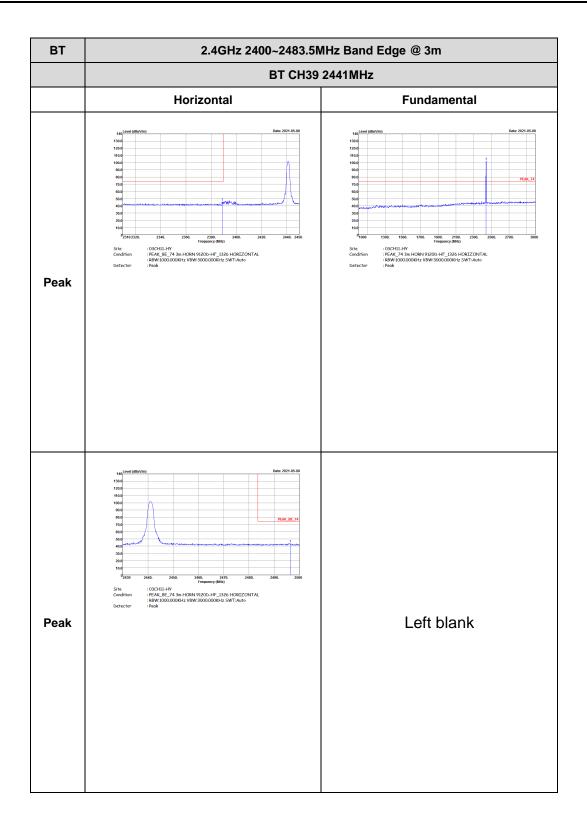
Both peak and average measured complies with the limit line, so test result is "PASS".

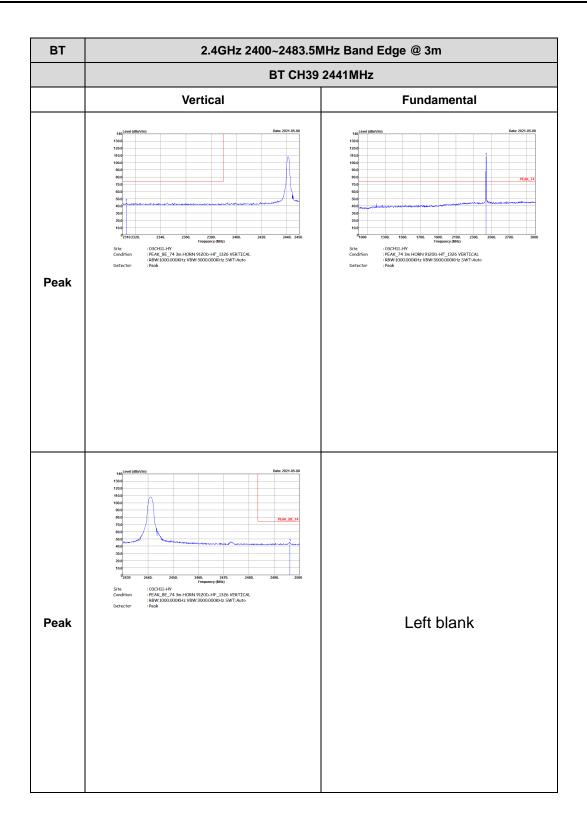


Appendix D. Radiated Spurious Emission Plots

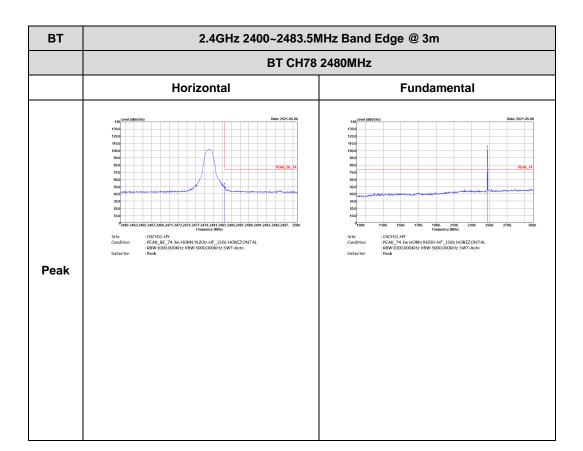
Test Engineer :	Harvey Guo, Bill Chang, Fu Chen and Troye Hsieh	Temperature :	18.3~25.7°C
rest Engineer .		Relative Humidity :	58.2~70.8%

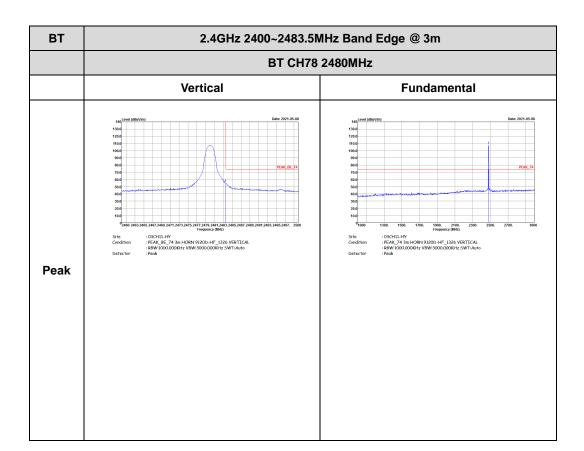
2.4GHz 2400~2483.5MHz

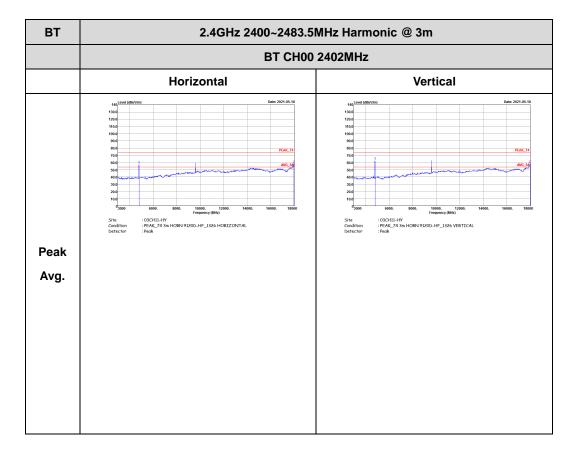

BT (Band Edge @ 3m)

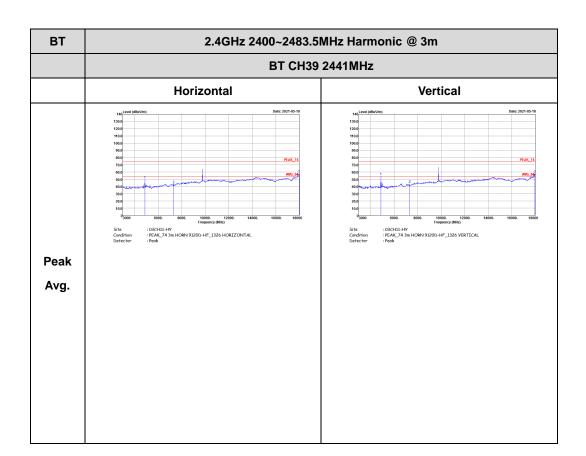


BT							
Peak							

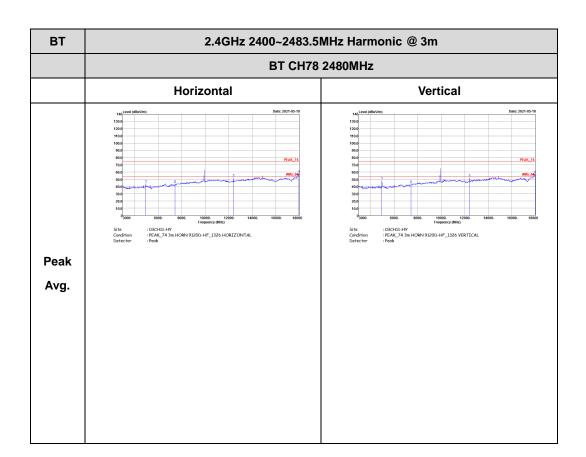


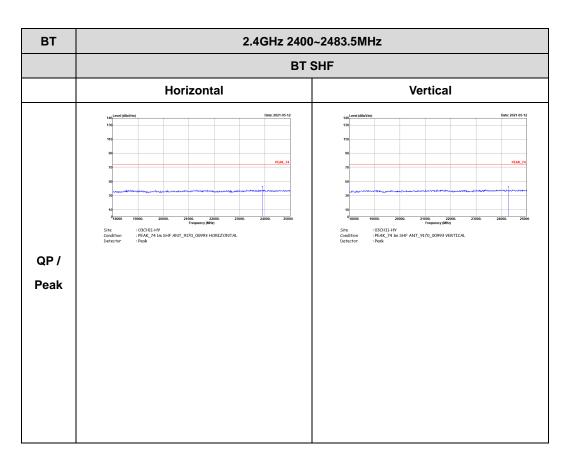




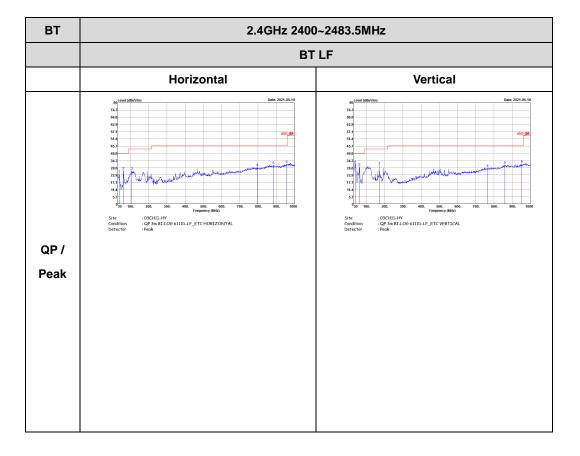


2.4GHz 2400~2483.5MHz


BT (Harmonic @ 3m)



Emission above 18GHz



2.4GHz BT (SHF)

Emission below 1GHz

Appendix E. Duty Cycle Plots

DH5 on time (One Pulse	e) Plot on Channel 39	on time (Count Pulses) Plot on Channel	39
Bit Keysight Spectrum Analyzer - Swept SA SENSE:2017 Bit RL RF IS 0:0 DC Center Freq 2:4800000000 GHz Fron: fast -+- Trig: Free Run FGaint Other: 10 dB EFGaint Other: 10 dB EFGaint Other: 10 dB	ALIGN OFF 64:11:03 PM May 07, 2021 SAVg Type: RMS TRACE 2 2 6 STA TYPE CHARTER CONTRACT CONTR	Marker 1 86.8000 ms PRO: Fast -+ Trig: Free Run Pro: Fast -+ August 00 rpt 041133 PM189 07, 2021 Bit Keylight Spectrum Analyzer - Swept SA SEGE: 2011 August 00 rpt 041133 PM189 07, 2021 Marker 1 86.8000 ms PNO: Fast -+ Trig: Free Run PRO: Fast -+ Trig: Free Run PRO: Fast -+ Trig: Free Run PRO: Fast -+	Frequency
10 dB/div Ref 106.99 dBµV	ΔMkr3 3.750 ms 0.01 dB		Auto Tune
200 27.0 77.0 200 201	Center Fr 2.480000000 C		Center Freq 480000000 GHz
670 570 470	Start Fi 2.48000000 0		Start Freq 480000000 GHz
370 iphinjuu 270 170	Stop Fr 2.48000000 0		Stop Freq 480000000 GHz
	Span 0 Hz CF St Sweep 10.00 ms (1001 pts) 1.000000 M TTON FUNCTION WRITH FUNCTION WRITH	PP 20	CF Step 1.000000 MHz o Man
1 Δ2 1 t (Δ) 2.890 ms (Δ) 0.48 dB 2 F 1 t 1.670 ms 99.32 dBµV 3 Δ4 1 t (Δ) 3.750 ms (Δ) 0.01 dB 4 F 1 t 1.670 ms 99.32 dBµV 5 F 1 t 1.670 ms 99.32 dBµV	Freq Off 0	270	Freq Offset 0 Hz
7 8 9 10 11		Center 2.480000000 GHz Span 0 Hz	
e		Res BW 1.0 MHz #VBW 1.0 MHz Sweep 100.0 ms (1001 pts)	

Note:

- 1. Worst case Duty cycle = on time/100 milliseconds = 2 * 2.89 / 100 = 5.78 %
- 2. Worst case Duty cycle correction factor = 20*log(Duty cycle) = -24.76 dB
- 3. DH5 has the highest duty cycle worst case and is reported.

Duty Cycle Correction Factor Consideration for AFH mode:

Bluetooth normal hopping rate is 1600Hz and reduced to 800Hz in AFH mode; due to the reduced number of hopping frequencies, with the same packet configuration the dwell time in each channel frequency within 100msec period is longer in AFH mode than normal mode.

In AFH mode, the minimum hopping frequencies are 20, to get the longest dwell time DH5 packet is observed; the period to have DH5 packet completing one hopping sequence is

2.89 ms x 20 channels = 57.8 ms

There cannot be 2 complete hopping sequences within 100ms period, considering the random hopping behavior, maximum 2 hops can be possibly observed within the period. [100 ms / 57.8 ms] = 2 hops Thus, the maximum possible ON time:

2.89 ms x 2 = 5.78 ms

Worst case Duty Cycle Correction factor, which is derived from the maximum possible ON time,

 $20 \times \log(5.78 \text{ ms}/100 \text{ ms}) = -24.76 \text{ dB}$