

Report No: JYTSZB-R12-2102121

FCC REPORT

Applicant:	Autel Robotics Co., Ltd.
Address of Applicant:	9th Floor, Bldg. B1, Zhiyuan, 1001 Xueyuan Rd., Xili, Nanshan, Shenzhen 518055, China
Equipment Under Test (E	EUT)
Product Name:	DragonFish Base Station
Model No.:	DFMS-2
Trade mark:	
FCC ID:	2AGNTDFMS2TBG
Applicable standards:	FCC CFR Title 47 Part 15 Subpart E Section 15.407
Date of sample receipt:	13 Oct., 2021
Date of Test:	14 Oct., to 04 Nov., 2021
Date of report issued:	04 Nov., 2021
Test Result:	PASS*

* In the configuration tested, the EUT complied with the standards specified above.

Authorized Signature:

Bruce Zhang Laboratory Manager

This report details the results of the testing carried out on one sample. The results contained in this test report do not relate to other samples of the same product and does not permit the use of the JYT product certification mark. The manufacturer should ensure that all products in series production are in conformity with the product sample detailed in this report.

This report may only be reproduced and distributed in full. If the product in this report is used in any configuration other than that detailed in the report, the manufacturer must ensure the new system complies with all relevant standards.

This document cannot be reproduced except in full, without prior written approval of the Company. Any unauthorized alteration, forgery or falsification of the content or appearance of this document is unlawful and offenders may be prosecuted to the fullest extent of the law. Unless otherwise stated the results shown in this test report refer only to the sample(s) tested and such sample(s) are retained for 90 days only.

Version 2

Version No.	Date	Description
00	04 Nov., 2021	Original

Tested by: Mike.OU Test Engineer

Date: 04 Nov., 2021

Reviewed by: Winner Thang Project Engineer

Date: 04 Nov., 2021

Project No.: JYTSZE2110039

3 Contents

		Page
1	COVER PAGE	1
2	VERSION	2
3	CONTENTS	3
4	TEST SUMMARY	_
- 5		
	5.1 CLIENT INFORMATION	5
	5.2 GENERAL DESCRIPTION OF E.U.T.	5
	5.3 TEST ENVIRONMENT AND MODE	
	5.4 DESCRIPTION OF SUPPORT UNITS	
	5.5 MEASUREMENT UNCERTAINTY	
	5.6 Additions to, deviations, or exclusions from the method	
	5.7 RELATED SUBMITTAL(S) / GRANT (S)	
	5.8 LABORATORY FACILITY	-
	5.10 TEST INSTRUMENTS LIST	
_		
6	TEST RESULTS AND MEASUREMENT DATA	
	6.1 ANTENNA REQUIREMENT	
	6.2 CONDUCTED EMISSION	
	6.3 CONDUCTED OUTPUT POWER	
	6.4 OCCUPY BANDWIDTH	
	6.5 POWER SPECTRAL DENSITY	
	6.6 BAND EDGE	
	6.7 SPURIOUS EMISSION	
	6.7.2 Unwanted Emissions out of the Restricted Bands	
	6.8 FREQUENCY STABILITY	
7	TEST SETUP PHOTO	
1		
8	EUT CONSTRUCTIONAL DETAILS	

Test Summary 4

Test Item	Section in CFR 47	Test Data	Test Result
Antenna requirement	15.203 & 15.407 (a)	See Section 6.1	Pass
AC Power Line Conducted Emission	15.207	See Section 6.2	Pass
Duty Cycle	ANSI C63.10-2013	Appendix A – 5G Wi-Fi	Pass
Conducted Peak Output Power	15.407 (a) (3)	Appendix A – 5G Wi-Fi	Pass
26dB Occupied Bandwidth	15.407 (a) (12)	Appendix A – 5G Wi-Fi	Pass
6dB Emission Bandwidth	15.407(e)	Appendix A – 5G Wi-Fi	Pass
Power Spectral Density	15.407 (a) (3)	Appendix A – 5G Wi-Fi	Pass
Band Edge	15.407(b)	See Section 6.6	Pass
Spurious Emission	15.407 (b) & 15.205 & 15.209	See Section 6.7	Pass
Frequency Stability	15.407(g)	Appendix A – 5G Wi-Fi	Pass
Remark:			•

Pass: The EUT complies with the essential requirements in the standard. 1.

2. N/A: Not Applicable.

З. The cable insertion loss used by "RF Output Power" and other conduction measurement items is 0.5dB (provided by the customer).

Test Method:

ANSI C63.10-2013 KDB 789033 D02 General UNII Test Procedures New Rules v02r01

5 General Information

5.1 Client Information

Applicant:	Autel Robotics Co., Ltd.
Address:	9th Floor, Bldg. B1, Zhiyuan, 1001 Xueyuan Rd., Xili, Nanshan, Shenzhen 518055, China
Manufacturer/ Factory:	Autel Robotics Co., Ltd.
Address:	9th Floor, Bldg. B1, Zhiyuan, 1001 Xueyuan Rd., Xili, Nanshan, Shenzhen 518055, China

5.2 General Description of E.U.T.

Product Name:	DragonFi	sh Base Station			
Model No.:	DFMS-2	DFMS-2			
Operation Frequency:	Band 4: 5	725MHz-5825MHz			
Channel numbers:	Band 4:	Band 4: 802.11a/802.11n20: 5 802.11n40: 2			
Channel separation:	20MHz:	802.11a/802.11n-HT20			
	40MHz:	802.11n-HT40			
Modulation technology (IEEE 802.11a):	BPSK, Q	PSK, 16-QAM, 64-QAM			
Modulation technology (IEEE 802.11n):	BPSK, Q	PSK, 16-QAM, 64-QAM			
Data speed (IEEE 802.11a):	6Mbps, 9	Mbps,12Mbps,18Mbps, 24Mbps, 36Mbps, 48Mbps, 54Mbps			
Data speed	MCS0: 6.	5Mbps, MCS1:13Mbps,MCS2:19.5Mbps, MCS3:26Mbps,			
(IEEE 802.11n20):	MCS4:39	Mbps, MCS5:52Mbps, MCS6:58.5Mbps, MCS7:65Mbps			
Data speed	MCS0:15Mbps, MCS1:30Mbps, MCS2:45Mbps, MCS3:60Mbps,				
(IEEE 802.11n40):	MCS4:90	MCS4:90Mbps, MCS5:120Mbps, MCS6:135Mbps, MCS7:150Mbps			
Antenna Type:	Internal A	Internal Antenna			
Antenna gain:		3 dBi(declare by Applicant)			
		4 dBi(declare by Applicant)			
Power supply:		ormance Li-po Battery DC11.55V, 4950mAh			
AC adapter:		aN-001 us			
		100-240V, 50/60Hz, 1.5A			
		put Power: 65.0W Max			
		C2:5V=3.0A, 9V=3.0A, 12V=3.0A,			
	15V=3.0A, 20V=3.25A,12V=3.0A 65.0W Max USB-A:3.4-5.5V=5.0A, 5V=3.0A				
		12V=3.0A			
	20V=3.0A 60.0W Max				
Test Sample Condition:	The test samples were provided in good working order with no visible defects.				

Operation Frequency each of channel					
		E	Band 4		
802.11a/80	2.11n-HT20	802	2.11n-HT40	802.11a	ac-HT80(N/A)
Channel	Frequency	Channel	Channel Frequency		Frequency
149	5745MHz	151	5755MHz	/	/
153	5765MHz	159	5795MHz		
157	5785MHz				
161	5805MHz				
165	5825MHz				

Note:

In section 15.31(m), regards to the operating frequency range over 10 MHz, the Lowest frequency, the middle frequency, and the highest frequency of channel were selected to perform the test, and the selected channel see below:

	Band 4					
802.11a	/802.11n-HT20	802.11n-HT40		802.11ac-HT80(N/A)		
Channel	Frequency	Channel	Channel Frequency		Frequency	
Lowest	5745MHz	Lowest	5755MHz	/	/	
Middle	5785MHz	Highest	5795MHz			
Highest	5825MHz					

5.3 Test environment and mode

Operating Environment:				
Temperature:	24.0 °C	24.0 °C		
Humidity:	54 % RH			
Atmospheric Pressure:	1010 mbar			
Test mode:				
Continuously transmitting mode	Keep the EUT in 1009	% duty cycle transmitting with modulation.		
	We have verified the construction and function in typical operation. All the test modes were carried out with the EUT in transmitting operation, which was shown in this test report and defined as follows:			
Per-scan all kind of data rate, ar	nd found the follow lis	t were the worst case.		
Mode		Data rate		
802.11a 6 Mbps				
802.11n20 6.5 Mbps				
802.11n40 13.5 Mbps				

5.4 Description of Support Units

Manufacturer	Manufacturer Description		Serial Number	FCC ID/DoC
The EUT has been tested as an independent unit.				

5.5 Measurement Uncertainty

Parameter	Expanded Uncertainty (Confidence of 95%)
Conducted Emission (9kHz ~ 150KHz) for V-AMN	3.11 dB
Conducted Emission (150kHz ~ 30MHz) for V-AMN	2.62 dB
Conducted Emission (150kHz ~ 30MHz) for AAN	3.54 dB
Radiated Emission (9kHz ~ 30MHz electric field) for 3m SAC	3.13 dB
Radiated Emission (9kHz ~ 30MHz magnetic field) for 3m SAC	3.13 dB
Radiated Emission (30MHz ~ 1GHz) for 3m SAC	4.45 dB
Radiated Emission (1GHz ~ 18GHz) for 3m SAC	5.34 dB
Radiated Emission (18GHz ~ 40GHz) for 3m SAC	5.34 dB

5.6 Additions to, deviations, or exclusions from the method

No

5.7 Related Submittal(s) / Grant (s)

This is an original grant, no related submittals and grants.

5.8 Laboratory Facility

The test facility is recognized, certified, or accredited by the following organizations:

• FCC - Designation No.: CN1211

JianYan Testing Group Shenzhen Co., Ltd. has been accredited as a testing laboratory by FCC(Federal Communications Commission). The test firm Registration No. is 727551.

• ISED – CAB identifier.: CN0021

The 3m Semi-anechoic chamber of JianYan Testing Group Shenzhen Co., Ltd. has been Registered by Certification and Engineering Bureau of Industry Canada for radio equipment testing with Registration No.: 10106A-1.

• A2LA - Registration No.: 4346.01

This laboratory is accredited in accordance with the recognized International Standard ISO/IEC 17025:2017 General requirements for the competence of testing and calibration laboratories. The test scope can be found as below link: <u>https://portal.a2la.org/scopepdf/4346-01.pdf</u>

5.9 Laboratory Location

JianYan Testing Group Shenzhen Co., Ltd.

Address: No.10¹, Building 8, Innovation Wisdom Port, No.155 Hongtian Road, Huangpu Community, Xinqiao Street, Bao'an District, Shenzhen, Guangdong, People's Republic of China. Tel: +86-755-23118282, Fax: +86-755-23116366 Email: info-JYTee@lets.com, Website: http://www.ccis-cb.com

5.10 Test Instruments list

Radiated Emission:						
Test Equipment	Manufacturer	Model No.	Serial No.	Cal.Date (mm-dd-yy)	Cal.Due date (mm-dd-yy)	
3m SAC	ETS	RFD-100	Q1984	04-14-2021	04-13-2024	
BiConiLog Antenna	SCHWARZBECK	VULB9163	9163-1246	03-07-2021	03-06-2022	
Biconical Antenna	SCHWARZBECK	VUBA 9117	9117#359	06-17-2021	06-17-2022	
Horn Antenna	SCHWARZBECK	BBHA9120D	912D-916	03-07-2021	03-06-2022	
Broad-Band Horn Antenna	SCHWARZBECK	BBHA9170	1067	04-02-2021	04-01-2022	
Broad-Band Horn Antenna	SCHWARZBECK	BBHA9170	1068	04-02-2021	04-01-2022	
EMI Test Receiver	Rohde & Schwarz	ESRP7	101070	03-03-2021	03-02-2022	
Spectrum analyzer	Rohde & Schwarz	FSP30	101454	03-03-2021	03-02-2022	
Spectrum analyzer	Keysight	N9010B	MY60240202	11-27-2020	11-26-2021	
Low Pre-amplifier	SCHWARZBECK	BBV9743B	00305	03-07-2021	03-06-2022	
High Pre-amplifier	SKET	LNPA_0118G-50	MF280208233	03-07-2021	03-06-2022	
Cable	Qualwave	JYT3M-1G-NN-8M	JYT3M-1	03-07-2021	03-06-2022	
Cable	Qualwave	JYT3M-18G-NN-8M	JYT3M-2	03-07-2021	03-06-2022	
Cable	Qualwave	JYT3M-1G-BB-5M	JYT3M-3	03-07-2021	03-06-2022	
Cable	Bost	JYT3M-40G-SS-8M	JYT3M-4	04-02-2021	04-01-2022	
EMI Test Software	Tonscend	TS+		Version:3.0.0.1		

Conducted Emission:									
Test Equipment	Manufacturer	Model No.	Serial No.	Cal. Date	Cal. Due date				
	Manufacturer		Serial NO.	(mm-dd-yy)	(mm-dd-yy)				
EMI Test Receiver	Rohde & Schwarz	ESCI 3	101189	03-03-2021	03-02-2022				
LISN	Rohde & Schwarz	ENV432	101602	04-06-2021	04-05-2022				
LISN	Rohde & Schwarz	ESH3-Z5	843862/010	06-18-2020	06-17-2022				
ISN	Schwarzbeck	CAT3 8158	#96	03-03-2021	03-02-2022				
ISN	Schwarzbeck	CAT5 8158	#166	03-03-2021	03-02-2022				
ISN	Schwarzbeck	NTFM 8158	#126	03-03-2021	03-02-2022				
RF Switch	TOP PRECISION	RSU0301	N/A	03-03-2021	03-02-2022				
Cable	Bost	JYTCE-1G-NN-2M	JYTCE-1	03-03-2021	03-02-2022				
Cable	Bost	JYTCE-1G-BN-3M	JYTCE-2	03-03-2021	03-02-2022				
EMI Test Software	AUDIX	E3	V	ersion: 6.110919	b				

Conducted method:								
Test Equipment	Manufacturer	acturer Model No. Serial No.		Cal. Date (mm-dd-yy)	Cal. Due date (mm-dd-yy)			
Spectrum Analyzer	Keysight	N9010B	MY60240202	11-27-2020	11-26-2021			
Vector Signal Generator	Keysight	N5182B	MY59101009	11-27-2020	11-26-2021			
Analog Signal Generator	Keysight	N5173B	MY59100765	11-27-2020	11-26-2021			
Power Detector Box	MWRF-test	MW100-PSB	MW201020JYT	11-27-2020	11-26-2021			
Simulated Station	Rohde & Schwarz	CMW270	102335	11-27-2020	11-26-2021			
RF Control Box	MWRF-test	MW100-RFCB	MW200927JYT	N/A	N/A			
PDU	MWRF-test	XY-G10	N/A	N/A	N/A			
DC Power Supply	Keysight	E3642A	MY60296194	11-27-2020	11-26-2021			
Temperature Humidity Chamber	ZhongZhi	CZ-C-150D	ZH16491	11-01-2020	10-31-2021			
Test Software	MWRF-tes	MTS 8310	, in the second s	Version: 2.0.0.0				

6 Test results and Measurement Data

6.1 Antenna requirement

Standard requirement:	requirement: FCC Part15 E Section 15.203 /407(a)							
responsible party shall be us antenna that uses a unique so that a broken antenna ca electrical connector is prohib This requirement does not a of §15.211, § 15.213, § 15.2 intentional radiators that mus some field disturbance sens must be measured at the ins	sed with the device. The use of a coupling to the intentional radiator n be replaced by the user, but the bited. pply to carrier current devices or t 217, § 15.219, or § 15.221. Further st be professionally installed, such ors, or to other intentional radiator	tenna other than that furnished by the permanently attached antenna or of an r, the manufacturer may design the unit e use of a standard antenna jack or to devices operated under the provisions r, this requirement does not apply to n as perimeter protection systems and rs which, in accordance with § 15.31(d), er shall be responsible for ensuring that are not exceeded.						
E.U.T Antenna:								
The Wi-Fi antenna is an Inter antenna as bellow:	nal antenna which cannot replace	by end-user, the best case gain of the						
Band	ANT 1 Gain	ANT 2 Gain						
5.8GHz	3.3 dBi	4.4 dBi						

6.2 Conducted Emission

Test Requirement:	FCC Part15 C Section 15.2	07				
Test Frequency Range:	150kHz to 30MHz					
Class / Severity:	Class B					
Receiver setup:	RBW=9kHz, VBW=30kHz					
Limit:	Frequency range (MHz)	Limit (c Quasi-peak	lBuV)			
	0.15-0.5	66 to 56*	0.15-0.5			
	0.5-5	56	0.5-5			
	5-30	60	5-30			
	* Decreases with the logarit	hm of the frequency.				
Test procedure	 The E.U.T and simulators are connected to the main power through a line impedance stabilization network (L.I.S.N.). It provides a 50ohm/50uH coupling impedance for the measuring equipment. The peripheral devices are also connected to the main power through a LISN that provides a 50ohm/50uH coupling impedance with 50ohm termination. (Please refer to the block diagram of the test setup and photographs). Both sides of A.C. line are checked for maximum conducted interference. In order to find the maximum emission, the relative positions of equipment and all of the interface cables must be changed according to ANSI C63.10(latest version) on conducted measurement. 					
Test setup:	Referen 40cm 40cm 40cm Equipment E.U Test table/Insulation plan Remarkc E.U.T: Equipment Under Test LISN: Line Impedence Stabilization. Test table height=0.8m	e I EMI Receiver	— AC power			
Test Instruments:	Refer to section 5.10 for det	ails				
Test mode:	Refer to section 5.3 for deta	ils.				
Test results:	Passed					

Measurement Data:

20

10

2

Product name:	name: DragonFish Base Station			DFMS-2
Test by:	Mike 150 kHz ~ 30 MHz		Test mode:	5G Wi-Fi Tx mode
Test frequency:			Phase:	Line
Test voltage:	AC 120 V/60 Hz		Environment:	Temp: 22.5°C Huni: 55%
90 80 70 60 50 40				FCC PART 15.407 QP FCC PART 15.407 AV
20 2 3 9 64	12			

	Freq		LISN Factor	Aux Factor	Cable Loss		Limit Line		Remark
	MHz	dBu∛	<u>dB</u>	<u>dB</u>	B	dBu∛	dBu∛	<u>dB</u>	
1	0.154	35.37	10.22	-0.06	0.01	45.54	65.78	-20.24	QP
1 2 3 4 5 6 7 8 9	0.162	24.56	10.22		0.01	34.71	55.34	-20.63	Average
3	0.194	24.48	10.23		0.03	34.59			Average
4	0.226	29.25			0.02	39.32		-23.29	
5	0.226	22.39	10.24	-0.19	0.02	32.46			Average
6	0.253	21.11	10.25		0.01	31.15			Average
2	0.502	29.76	10.29		0.03	39.73		-16.27	
8	0.582	33.71	10.29	-0.37	0.02	43.65		-12.35	
9 10	0.614	30.75	10.30		0.02	40.69			Average
10	0.641	33.78	10.30		0.02	43.71			Average
11	0.651	39.96	10.30	-0.39	0.03	49.90		-6.10	
12	1.088	23.92	10.32	0.37	0.07	34.68	56.00	-21.32	QP

2

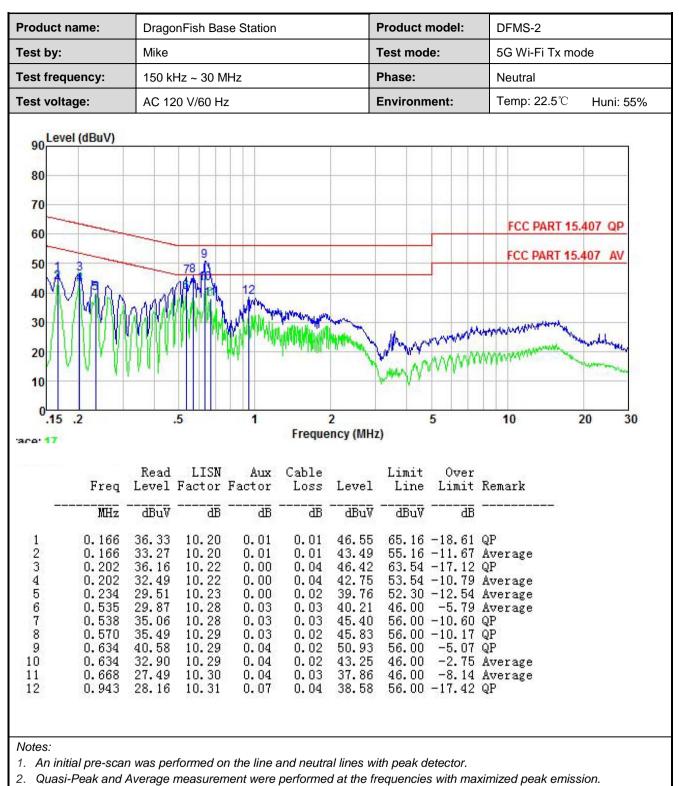
5

1. An initial pre-scan was performed on the line and neutral lines with peak detector.

2. Quasi-Peak and Average measurement were performed at the frequencies with maximized peak emission.

3. Final Level =Receiver Read level + LISN Factor + Aux Factor + Cable Loss.

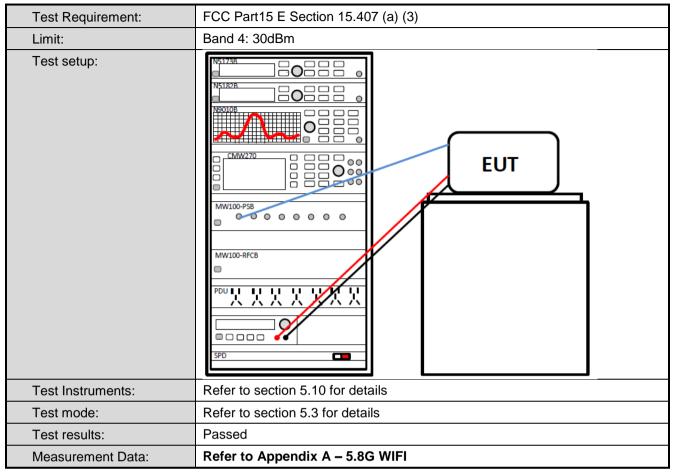
.5


1

20

30

10



3. Final Level = Receiver Read level + LISN Factor + Aux Factor + Cable Loss.

6.3 Conducted Output Power

6.4 Occupy Bandwidth

Test Requirement:	FCC Part15 E Section 15.407 (a) (12) and Section 15.407 (e)
Limit:	Band 4: N/A (26dB Emission Bandwidth and 99% Occupy Bandwidth) Band 4: >500kHz (6dB Bandwidth)
Test setup:	
Test Instruments:	Refer to section 5.10 for details
Test mode:	Refer to section 5.3 for details
Test results:	Passed
Measurement Data:	Refer to Appendix A – 5.8G WIFI

6.5 Power Spectral Density

Test Requirement:	FCC Part15 E Section 15.407 (a)(3)				
Limit:	Band 4: 30 dBm/500kHz				
Test setup:	Spectrum Analyzer E.U.T Non-Conducted Table				
	Ground Reference Plane				
Test Instruments:	Refer to section 5.10 for details				
Test mode:	Refer to section 5.3 for details				
Test results:	Passed				
Measurement Data:	Refer to Appendix A – 5.8G WIFI				

6.6 Band Edge

Test Requirement:	FCC Part 15 E Section 15.407 (b)						
Receiver setup:	Detector	RBW	VBW	Remark			
·	Quasi-peak	120kHz	300kHz	Quasi-peak Value			
	RMS	1MHz	3MHz	Average Value			
Limit:	Band 4 limit: For transmitters operating in the 5.725-5.85 GHz band: All emissions shall be limited to a level of -27 dBm/MHz at 75 MHz or more above of below the band edge increasinglinearly to 10 dBm/MHz at 25 MHz above or below the band edge, and from 25 MHz above or below the band edge increasing linearly to level of 15.6 dBm/MHz at 5 MHz above or below the band edge, and from 5 MHz above or below the band edge increasing linearly to a level of 27 dBm/MHz at the band edge. Remark: Band 4 limit: E[dBµV/m] = EIRP[dBm] + 95.2=68.2 dBuV/m, for EIPR[dBm]=-27dBm. E[dBµV/m] = EIRP[dBm] + 95.2=105.2 dBuV/m, for EIPR[dBm]=10dBm. E[dBµV/m] = EIRP[dBm] + 95.2=110.8 dBuV/m, for EIPR[dBm]=15.6dBm. E[dBµV/m] = EIRP[dBm] + 95.2=122.2 dBuV/m, for EIPR[dBm]=27dBm.						
Test Procedure:	 The EUT was placed a 3 meter camber. Th the highest radiation. The EUT was set 3 m was mounted on the t The antenna height is determine the maximu polarizations of the ar For each suspected e the antenna was tune turned from 0 degrees The test-receiver syst Bandwidth with Maxin If the emission level o 	on the top of a rotat e table was rotated op of a variable-heig varied from one me um value of the field ntenna are set to ma mission, the EUT w d to heights from 1 is to 360 degrees to rem was set to Peak num Hold Mode. of the EUT in peak m g could be stopped a ne emissions that di ng peak, quasi-peal	ing table 0.8 meter 360 degrees to def interference-recei ght antenna tower. eter to four meters strength. Both hor ike the measureme as arranged to its meter to 4 meters a find the maximum Detect Function a node was 10dB low and the peak values d not have 10dB m	s above the ground at termine the position of ving antenna, which above the ground to izontal and vertical ent. worst case and then and the rotatable was reading. nd Specified ver than the limit s of the EUT would be argin would be re-			
Test setup:		AE EUT (Turntable) Ground Reference Test Receiver	Horn Antenna Tower				
Test Instruments:	Refer to section 5.10 for	details					
Test mode:	Refer to section 5.3 for c	details					
Test results:	Passed						

Measurement Data (worst case):

Band 4:

		Band 4 – 802	.11a – ANT1						
	Test channel: Lowest channel								
Detector: Peak Value									
Frequency (MHz)	Read Level (dBuV/m)	Factor (dB)	Level (dBuV/m)	Limit Line (dBuV/m)	Margin [dB]	Polarization			
5650.00	41.16	18.87	60.03	68.20	8.17	Horizontal			
5700.00	41.42	19.05	60.47	105.20	44.73	Horizontal			
5720.00	52.55	19.00	71.55	110.80	39.25	Horizontal			
5725.00	63.40	18.99	82.39	122.20	39.81	Horizontal			
5650.00	41.80	18.87	60.67	68.20	7.53	Vertical			
5700.00	41.65	19.05	60.70	105.20	44.50	Vertical			
5720.00	51.03	19.00	70.03	110.80	40.77	Vertical			
5725.00	64.19	18.99	83.18	122.20	39.02	Vertical			
		Test channel: H	lighest channe	I					
		Detector: F	eak Value						
Frequency (MHz)	Read Level (dBuV/m)	Factor (dB)	Level (dBuV/m)	Limit Line (dBuV/m)	Margin [dB]	Polarization			
5850.00	48.37	19.10	67.47	122.20	54.73	Horizontal			
5855.00	49.62	19.12	68.74	110.80	42.06	Horizontal			
5875.00	39.80	19.23	59.03	105.20	46.17	Horizontal			
5925.00	41.01	19.39	60.40	68.20	7.80	Horizontal			
5850.00	51.16	19.10	70.26	122.20	51.94	Vertical			
5855.00	52.15	19.12	71.27	110.80	39.53	Vertical			
5875.00	39.94	19.23	59.17	105.20	46.03	Vertical			
5925.00	38.90	19.39	58.29	68.20	9.91	Vertical			
Remark:									

1. Final Level = Receiver Read level + Factor.

2. The emission levels of other frequencies are very lower than the limit and not show in test report.

		Test channel: I	2.11a – ANT2 owest channe	2		
			Peak Value			
Frequency (MHz)	Read Level (dBuV/m)	Factor (dB)	Level (dBuV/m)	Limit Line (dBuV/m)	Margin [dB]	Polarization
5650.00	42.78	18.87	61.65	68.20	6.55	Horizontal
5700.00	44.34	19.05	63.39	105.20	41.81	Horizontal
5720.00	51.78	19.00	70.78	110.80	40.02	Horizontal
5725.00	66.01	18.99	85.00	122.20	37.20	Horizontal
5650.00	40.12	18.87	58.99	68.20	9.21	Vertical
5700.00	40.13	19.05	59.18	105.20	46.02	Vertical
5720.00	45.86	19.00	64.86	110.80	45.94	Vertical
5725.00	56.06	18.99	75.05	122.20	47.15	Vertical
		Test channel: H	lighest channel			
		Detector: F	Peak Value			
Frequency (MHz)	Read Level (dBuV/m)	Factor (dB)	Level (dBuV/m)	Limit Line (dBuV/m)	Margin [dB]	Polarization
5850.00	60.94	19.10	80.04	122.20	42.16	Horizontal
5855.00	49.89	19.12	69.01	110.80	41.79	Horizontal
5875.00	40.21	19.23	59.44	105.20	45.76	Horizontal
5925.00	39.64	19.39	59.03	68.20	9.17	Horizontal
5850.00	40.47	19.10	59.57	122.20	62.63	Vertical
5855.00	39.59	19.12	58.71	110.80	52.09	Vertical
5875.00	38.76	19.23	57.99	105.20	47.21	Vertical
0010.00		19.39	58.83	68.20	9.37	Vertical

4. The emission levels of other frequencies are very lower than the limit and not show in test report.

Project No.: JYTSZE2110039

		Band 4 – 802.11 Test channel: I	. ,			
			Peak Value	·		
Frequency (MHz)	Read Level (dBuV/m)	Factor (dB)	Level (dBuV/m)	Limit Line (dBuV/m)	Margin [dB]	Polarization
5650.00	42.57	18.87	61.44	68.20	6.76	Horizontal
5700.00	44.31	19.05	63.36	105.20	41.84	Horizontal
5720.00	53.88	19.00	72.88	110.80	37.92	Horizontal
5725.00	64.44	18.99	83.43	122.20	38.77	Horizontal
5650.00	41.82	18.87	60.69	68.20	7.51	Vertical
5700.00	42.58	19.05	61.63	105.20	43.57	Vertical
5720.00	53.30	19.00	72.30	110.80	38.50	Vertical
5725.00	59.22	18.99	78.21	122.20	43.99	Vertical
		Test channel: H	lighest channel			
		Detector: F	Peak Value			
Frequency (MHz)	Read Level (dBuV/m)	Factor (dB)	Level (dBuV/m)	Limit Line (dBuV/m)	Margin [dB]	Polarization
5850.00	55.17	19.10	74.27	122.20	47.93	Horizontal
5855.00	51.18	19.12	70.30	110.80	40.50	Horizontal
5875.00	40.27	19.23	59.50	105.20	45.70	Horizontal
5925.00	41.81	19.39	61.20	68.20	7.00	Horizontal
5850.00	49.57	19.10	68.67	122.20	53.53	Vertical
5855.00	44.78	19.12	63.90	110.80	46.90	Vertical
5875.00	40.41	19.23	59.64	105.20	45.56	Vertical
0010100	38.81	19.39	58.20	68.20	10.00	Vertical

2. The emission levels of other frequencies are very lower than the limit and not show in test report.

Band 4 – 802.11n(HT40) - MIMO										
	Test channel: Lowest channel									
Detector: Peak Value										
Frequency (MHz)	Read Level (dBuV/m)	Factor (dB)	Level (dBuV/m)	Limit Line (dBuV/m)	Margin [dB]	Polarization				
5650.00	44.10	18.87	62.97	68.20	5.23	Horizontal				
5700.00	56.08	19.05	75.13	105.20	30.07	Horizontal				
5720.00	68.91	19.00	87.91	110.80	22.89	Horizontal				
5725.00	69.96	18.99	88.95	122.20	33.25	Horizontal				
5650.00	40.87	18.87	59.74	68.20	8.46	Vertical				
5700.00	46.77	19.05	65.82	105.20	39.38	Vertical				
5720.00	65.06	19.00	84.06	110.80	26.74	Vertical				
5725.00	62.59	18.99	81.58	122.20	40.62	Vertical				
		Test channel: H	lighest channel							
		Detector: F	Peak Value							
Frequency (MHz)	Read Level (dBuV/m)	Factor (dB)	Level (dBuV/m)	Limit Line (dBuV/m)	Margin [dB]	Polarization				
5850.00	50.77	17.55	68.32	122.20	53.88	Horizontal				
5855.00	47.31	17.55	64.86	110.80	45.94	Horizontal				
5875.00	42.64	17.57	60.21	105.20	44.99	Horizontal				
5925.00	39.29	17.37	56.66	68.20	11.54	Horizontal				
5850.00	45.39	17.55	62.94	122.20	59.26	Vertical				
5855.00	45.78	17.55	63.33	110.80	47.47	Vertical				
5875.00	40.27	17.57	57.84	105.20	47.36	Vertical				
5925.00	40.52	17.37	57.89	68.20	10.31	Vertical				

1. Final Level = Receiver Read level + Factor.

2. The emission levels of other frequencies are very lower than the limit and not show in test report.

6.7 Spurious Emission

6.7.1 Restricted Band

0.7.1 Restricted Darid							
Test Requirement:	FCC Part15 E Sect	ion 15.407(b)					
Test Frequency Range:	4.5 GHz to 5.15 GH	Iz and 5.35GI	Hz to 5.46GHz	2			
Test site:	Measurement Dista	ince: 3m					
Receiver setup:	Frequency Detector RBW VBW Remark						
·	Above 1GHz Peak 1MHz 3MHz Peak Valu						
	RMS 11MHZ 3MHZ Average value						
Limit:	Frequency	Lim	it (dBuV/m @: 74.00	3m)		Remark Peak Value	
	Above 1GHz		54.00			verage Value	
Test Procedure:	 ground at a 3 r determine the 2. The EUT was antenna, which tower. 3. The antenna h ground to dete horizontal and measurement. 4. For each susp and then the a and the rota ta maximum read 5. The test-receive Specified Band 6. If the emission limit specified, EUT would be 	neter camber position of the set 3 meters a n was mounte eight is varied rmine the ma vertical polari ected emission ntenna was tu ble was turne ling. ver system wa dwidth with Ma level of the E then testing of reported. Oth vould be re-te	The table was highest radia away from the d on the top o from one me ximum value o zations of the n, the EUT was uned to height d from 0 degra s set to Peak aximum Hold I UT in peak m could be stopp erwise the em sted one by on	as rotate tion. interfer f a varia- ter to for of the fire antenn as arrar s from ees to 3 Detect Mode. ode wa ed and hissions ne using	e 1.5 c ed 360 rence- able-r our me eld str na are nged t 1 met 360 de Funct as 10d 1 the p s that o g pea	meters above the 0 degrees to -receiving height antenna eters above the rength. Both set to make the to its worst case er to 4 meters egrees to find the tion and IB lower than the eak values of the did not have k, quasi-peak or	
Test setup:	Swwwww	AE EUT (Turntable) Test F	Hom Anter 3m Ground Reference Plane	Antenna Controller	a Tower		
Test Instruments:	Refer to section 5.1	0 for details					
Test mode:	Refer to section 5.3	for details					
Test results:	Passed(Refer to se	ction 6.6)					

Test Requirement:	FCC Part15 C See	ction 15.20	9 and	15.205					
Test Frequency Range:	30MHz to 40GHz								
Test site:	Measurement Dist	Measurement Distance: 3m							
Receiver setup:	Frequency	Detecto	or	RBW	VBW		Remark		
·	30MHz-1GHz Quasi-		ak	100kHz	300)kHz	Quasi-peak Value		
	Above 1GHz	Peak		1MHz		1Hz	Peak Value		
	RMS 1MHz 3MHz Average Value								
Limit:	Frequency		Lim		ßm)		Remark		
	30MHz-88MH			40.0			uasi-peak Value		
	88MHz-216M 216MHz-960N			43.5 46.0			uasi-peak Value uasi-peak Value		
	960MHz-1GH			<u>40.0</u> 54.0			uasi-peak Value		
	30010112-101	12		68.20		Q.	Peak Value		
	Above 1GH	z		54.00			Average Value		
Test Procedure:		s placed on above 1GH	the t Iz) ab	op of a rotatir	ng tabl nd at a	e 0.8m a 3 met			
Test setup:	 tower. 3. The antenna ground to det horizontal and measuremen 4. For each sus and then the the rota table maximum rea 5. The test-rece Bandwidth wi 6. If the emissio limit specified 	ch was mou height is va cermine the d vertical po t. pected emis antenna wa was turned ading. iver system th Maximur n level of th I, then testin e reported. I be re-teste	unted aried maxi olariz ssion as tur d fron n was m Ho ne EL ng cc Othe ed on	I on the top of from one met imum value o rations of the a, the EUT waned to heights n 0 degrees to s set to Peak I Id Mode. JT in peak mo puld be stoppe erwise the em re by one usin	t a vari ter to f f the fi antenr is arrai from 0 360 Detect ode wa ed and issions ng pea	iable-h our me eld stru- na are nged to 1 mete degree Funct as 10dl I the pe s that o k, quas	eight antenna eters above the ength. Both set to make the o its worst case er to 4 meters and es to find the ion and Specified B lower than the eak values of the did not have 10dB si-peak or		
	EUT	Turn Table	4m			Antenna To Search Antenna Test seiver	ower		

6.7.2 Unwanted Emissions out of the Restricted Bands

Project No.: JYTSZE2110039

Report No: JYTSZB-R12-2102121

	Horn Aritema Antenna Tower Horn Aritema Ground Reference Plane Test Receiver
Test Instruments:	Refer to section 5.10 for details
Test mode:	Refer to section 5.3 for details
Test results:	Passed

Measurement Data (worst case):

Below 1GHz

oduct Name	: D	ragonFish Ba	se Station		Produc	t Model:	DFMS-2	2	
		like	Test me	ode:	5G Wi-Fi Tx mode				
		0 MHz ~ 1 GH	lz		Polariza	Polarization:			
est Voltage:	D	C 11.55V			Enviror	nment:	Temp: 24℃ Huni: 5		
•	QP Detector	Vertical PK	100M	FCC PART 1				CC PART 15.407-QP Limit	
Suspe	cted Data								
NO.40	Freq.∉ [MHz]∉	Reading[d BµV/m]∂	Level⊬ [dBµV/m]⊬	Factor⊷ [dB]⊬	Limit⊭ [dBµV/m]⊮	Margin⊬ [dB]⊬	Trace	Polarity₽	
1.2	30 8731	30.97	12 71 <i>₀</i>	-18 26	40 00 <i>e</i>	27 29.0	PK₽	Verticale	

NO.₽	[MHz]∂	<mark>BµV/m]</mark> ∂	[dBµV/m]∉	[dB]∉	[dBµV/m]∉	[dB]∉	Hace	T Olanty⊭
1 ₽	30.8731 ₽	30.97 ₽	12.71 ₽	-18.26 ₽	40.00 €	27.29₽	PK₽	Verticale
2 ₽	65.7966₽	<mark>30.09</mark> ₽	12.11 ₽	-17.98 ₽	40.00 ⊷	27.89₽	PK₽	Vertical
3₽	128.561	34.73 ₽	15.60⊷	-19.13 ₽	43.50↩	27.90₽	PK₽	Vertical
4₽	250.018	<mark>32.49</mark> ₽	17.20₽	-15.29₽	46.00 ₽	28.80 ₽	PK₽	Vertical
5₽	374.287	<mark>32.10</mark> ₽	19.26 ⊷	-12.84	46.00 ₽	26.74 ₽	PK₽	Vertical
6 ₽	937.040	28.40 ₽	24.67 <i>⊷</i>	- 3.73 ₽	<mark>46.00</mark> ₽	21.33₽	PK₽	Vertical.

Remark:

1. Final Level = Receiver Read level + Factor (Antenna Factor + Cable Loss – Preamplifier Factor).

2. The emission levels of other frequencies are very lower than the limit and not show in test report.

3. The Aux Factor is a notch filter switch box loss, this item is not used.

Product Na	Name: DragonFish Base Station					Product	Product Model:		DFMS-2		
est By:		Ν	Mike				Test mode:		5G Wi-Fi Tx mode		
Test Freque	equency: 30 MHz ~ 1 GHz Polarization: Horizontal				tal						
Fest Voltag	e:	DC 11.55V Environment: Temp: 24°C H				uni: 57%					
					FOO DADT	15 107					
120 - 110 -					FCC PART	15.407					
100-											
90 -											
- 80											
[W//14BD] 00 - 50 -											
10 - 10 - 10 -								FC	CC PART 15.407-QP Li	mit	
<u>ل</u> 40-										_	
									•	.6	
30 -	-										
20 -						4 1.		المالية المحمد المحمد ال		(all)	
20 - 10 -	1 martin and the second	andread	-herricher mission 22	Leven we we show the first start	م، مرتبع مرال مرتب المراقع الم	4 Reprint and the second states of the	5 112 (119) (119) (119)				
20 -	M	and the may the	uhayan harran an thay daya	100M	Annalassa sila ang bayan baharika	on the second stands and the second stands and the second stands and the second stands are second stands and the				1G	
20 - 10 - 0 -	<i>میں ا</i> یک	an P anyah	uhan uhar mana tana ana ana ana ana ana ana ana ana		requenc	y[Hz]	5			1G	
20 - 10 - 0 -	QP Lim	it -	- Horizontal PK		۲requenc	y[Hz]	5			 1G	
20 - 10 - 0 -		it -			۲۰۰۰ ۲requenc	y[H2]	5			1G	
20 - 10 - 0 J 30	← QP Lim ◆ QP Dete	it –	— Horizontal PK		۲requenc Frequenc	pupping and a second	5			1G	
20 - 10 - 0 J 30	QP Lim ◆ QP Det	it - ector	- Horizontal PK	100M			Marain			1G	
20 - 10 - 0 J 30	← QP Lim ◆ QP Det	it - ector Data	- Horizontal PK	100M	Factor	Limite	Margin⊮	Trace	Polarity	4	
20- 10- 30 Sus NO	QP Lim ♦ QP Det • QP Det • Pre [MH	it - ector Data q.≁ Iz]₽	Horizontal PK List⊘ Reading[d BµV/m]⊘	100M	Factor⊮ [dB]₀	Limit⊮ [dBµV/m]₽	[dB]@			4	
20- 10- 30 Sus NO	→ QP Lim → QP Det ====================================	it - ector Data q.≁ Iz]₄ D23₄	Horizontal PK	Level⊷ [dBµV/m]↔ 7.38↔	Factor⊮ [dB]⊮ -17.16⊮	Limit-/ [dBµV/m]-/ 40.00-/	[dB]∉ 32.62≉	PK⊷	Horizontal	4 4 6	
20- 10- 30 Sus NO 1+ 2+	→ QP Lim → QP Det → QP Det → QP Det → QP Det → QP Det → QP Det → QP Det	it		Level- [dBµV/m]- 7.38- 7.19-	Factor⊮ [dB]∞ -17.16₽ -18.05₽	Limit-/ [dBµV/m]-/ 40.00.e- 40.00.e-	[dB]↔ 32.62↔ 32.81↔	PK₽ PK₽	Horizontal Horizontal	، ۹ ۹	
20- 10- 30 Sus NO 1+ 2+ 3+		it - cctor Q Iz] D23 376 195		Level⊷ [dBµV/m]⊷ 7.38↔ 7.19↔ 7.52↔	Factor⊮ [dB]⊮ -17.16₽ -18.05₽ -17.65₽	Limit-/ [dBµV/m]* 40.00¢ 40.00¢ 43.50¢	[dB]↔ 32.62↔ 32.81↔ 35.98↔	PKe PKe PKe	Horizontal Horizontal Horizontal	, , , , , , , , , , , , , , , , , , ,	
20- 10- 30 Sus NO 1+ 2+ 3+ 4+	OP Lim OP Det OP Det	it	- Horizontal PK List Reading[d BuV/m] 24.54 25.24 25.17 36.30 -	Level- [dBµV/m]+ 7.38+ 7.19+ 7.52+ 21.01+	Factor⊮ [dB]⊮ -17.16₽ -18.05₽ -17.65₽ -15.29₽	Limit- [dBµV/m]= 40.00¢ 40.00¢ 43.50¢ 46.00¢	[dB]. 32.62. 32.81. 35.98. 24.99.	PK+ PK+ PK+ PK+	Horizontal Horizontal Horizontal Horizontal		
20- 10- 30 Sus NO 1+ 2+ 3+		it - ector Data Q iz] iz] iz] iz] i z] iz] i z] i z].		Level⊷ [dBµV/m]⊷ 7.38↔ 7.19↔ 7.52↔	Factor⊮ [dB]⊮ -17.16₽ -18.05₽ -17.65₽	Limit-/ [dBµV/m]* 40.00¢ 40.00¢ 43.50¢	[dB]↔ 32.62↔ 32.81↔ 35.98↔	PKe PKe PKe	Horizontal Horizontal Horizontal		

Above 1GHz: Band 4:

		E	3and 4 – 802.11a	– ANT1			
		Те	st channel: Lowe	st channel			
Frequency (MHz)	Read Level (dBuV/m)	Factor (dB)	Level (dBuV/m)	Limit Line (dBuV/m)	Margin [dB]	Polarization	Trace
11490.00	52.85	7.62	60.47	74.00	-13.53	Vertical	Peak
11490.00	52.17	7.62	59.79	74.00	-14.21	Horizontal	Peak
11490.00	44.17	7.62	51.79	54.00	-2.21	Vertical	Average
11490.00	44.31	7.62	51.93	54.00	-2.07	Horizontal	Average
		Те	est channel: Middl	e channel			
Frequency (MHz)	Read Level (dBuV/m)	Factor (dB)	Level (dBuV/m)	Limit Line (dBuV/m)	Margin [dB]	Polarization	Trace
11570.00	53.20	7.44	60.64	74.00	-13.36	Vertical	Peak
11570.00	52.38	7.44	59.82	74.00	-14.18	Horizontal	Peak
11570.00	44.44	7.44	51.88	54.00	-2.12	Vertical	Averag
11570.00	43.98	7.44	51.42	54.00	-2.58	Horizontal	Averag
		Te	st channel: Highe	st channel			
Frequency (MHz)	Read Level (dBuV/m)	Factor (dB)	Level (dBuV/m)	Limit Line (dBuV/m)	Margin [dB]	Polarization	Trace
11650.00	53.34	7.69	61.03	74.00	-12.97	Vertical	Peak
11650.00	51.70	7.69	59.39	74.00	-14.61	Horizontal	Peak
11650.00	44.04	7.69	51.73	54.00	-2.27	Vertical	Averag
11650.00	43.92	7.69	51.61	54.00	-2.39	Horizontal	Averag
		E	3and 4 – 802.11a	– ANT2			
		Te	st channel: Lowe	st channel			
Frequency (MHz)	Read Level (dBuV/m)	Factor (dB)	Level (dBuV/m)	Limit Line (dBuV/m)	Margin [dB]	Polarization	Trace
11490.00	53.18	7.62	60.80	74.00	-13.20	Vertical	Peak
11490.00	52.10	7.62	59.72	74.00	-14.28	Horizontal	Peak
11490.00	44.22	7.62	51.84	54.00	-2.16	Vertical	Averag
11490.00	44.53	7.62	52.15	54.00	-1.85	Horizontal	Averag
		Те	st channel: Middl	e channel			
Frequency (MHz)	Read Level (dBuV/m)	Factor (dB)	Level (dBuV/m)	Limit Line (dBuV/m)	Margin [dB]	Polarization	Trace
11570.00	52.23	7.44	59.67	74.00	-14.33	Vertical	Peak
11570.00	52.84	7.44	60.28	74.00	-13.72	Horizontal	Peak
11570.00	44.77	7.44	52.21	54.00	-1.79	Vertical	Averag
11570.00	44.40	7.44	51.84	54.00	-2.16	Horizontal	Averag
		Te	st channel: Highe	st channel		·	
Frequency (MHz)	Read Level (dBuV/m)	Factor (dB)	Level (dBuV/m)	Limit Line (dBuV/m)	Margin [dB]	Polarization	Trace
11650.00	52.70	7.69	60.39	74.00	-13.61	Vertical	Peak
11650.00	53.22	7.69	60.91	74.00	-13.09	Horizontal	Peak
44050.00	44.79	7.69	52.48	54.00	-1.52	Vertical	Averag
11650.00							0

2. The emission levels of other frequencies are very lower than the limit and not show in test report.

JianYan Testing Group Shenzhen Co., Ltd. No.101, Building 8, Innovation Wisdom Port, No.155 Hongtian Road, Huangpu Community, Xinqiao Street, Bao'an District, Shenzhen, Guangdong, People's Republic of China. Telephone: +86 (0) 755 23118282 Fax: +86 (0) 755 23116366

Project No.: JYTSZE2110039

Report No: JYTSZB-R12-2102121

		Ban	d 4 – 802.11n(HT	20) - MIMO			
		Те	st channel: Lowe	st channel			
Frequency (MHz)	Read Level (dBuV/m)	Factor (dB)	Level (dBuV/m)	Limit Line (dBuV/m)	Margin [dB]	Polarization	Trace
11490.00	52.72	7.62	60.34	74.00	-13.66	Vertical	Peak
11490.00	52.45	7.62	60.07	74.00	-13.93	Horizontal	Peak
11490.00	44.62	7.62	52.24	54.00	-1.76	Vertical	Average
11490.00	44.51	7.62	52.13	54.00	-1.87	Horizontal	Average
		Τe	est channel: Middl	e channel			
Frequency (MHz)	Read Level (dBuV/m)	Factor (dB)	Level (dBuV/m)	Limit Line (dBuV/m)	Margin [dB]	Polarization	Trace
11570.00	52.25	7.44	59.69	74.00	-14.31	Vertical	Peak
11570.00	52.55	7.44	59.99	74.00	-14.01	Horizontal	Peak
11570.00	45.09	7.44	52.53	54.00	-1.47	Vertical	Average
11570.00	44.35	7.44	51.79	54.00	-2.21	Horizontal	Average
		Те	st channel: Highe	st channel			
Frequency (MHz)	Read Level (dBuV/m)	Factor (dB)	Level (dBuV/m)	Limit Line (dBuV/m)	Margin [dB]	Polarization	Trace
11650.00	52.88	7.69	60.57	74.00	-13.43	Vertical	Peak
11650.00	52.06	7.69	59.75	74.00	-14.25	Horizontal	Peak
11650.00	43.73	7.69	51.42	54.00	-2.58	Vertical	Average
11650.00	44.38	7.69	52.07	54.00	-1.93	Horizontal	Average
		Ban	d 4 – 802.11n(HT	40) - MIMO			
		Те	st channel: Lowe	st channel		-	
Frequency (MHz)	Read Level (dBuV/m)	Factor (dB)	Level (dBuV/m)	Limit Line (dBuV/m)	Margin [dB]	Polarization	Trace
11510.00	52.73	7.64	60.37	74.00	-13.63	Vertical	Peak
11510.00	52.64	7.64	60.28	74.00	-13.72	Horizontal	Peak
11510.00	45.04	7.64	52.68	54.00	-1.32	Vertical	Average
11510.00	44.43	7.64	52.07	54.00	-1.93	Horizontal	Average
		Te	st channel: Highe	st channel			
Frequency (MHz)	Read Level (dBuV/m)	Factor (dB)	Level (dBuV/m)	Limit Line (dBuV/m)	Margin [dB]	Polarization	Trace
11590.00	53.19	7.37	60.56	74.00	-13.44	Vertical	Peak
11590.00	52.45	7.37	59.82	74.00	-14.18	Horizontal	Peak
11590.00	44.91	7.37	52.28	54.00	-1.72	Vertical	Average
11590.00	44.74	7.37	52.11	54.00	-1.89	Horizontal	Average
	l = Receiver Read n levels of other fr		ery lower than the	limit and not sho	ow in test report	t.	

6.8 Frequency stability

Test Requirement:	FCC Part15 E Section 15.407 (g)
Limit:	Manufacturers of U-NII devices are responsible for ensuring frequency stability such that an emission is maintained within the band of operation under all conditions of normal operation as specified in the user's manual.
Test setup:	Image: State of the
Test procedure:	 The EUT is installed in an environment test chamber with external power source. Set the chamber to operate at 50 centigrade and external power source to output at nominal voltage of EUT. A sufficient stabilization period at each temperature is used prior to each frequency measurement. When temperature is stabled, measure the frequency stability. The test shall be performed under -30 to 50 centigrade and 85 to 115 percent of the nominal voltage. Change setting of chamber and external power source to complete all conditions.
Test Instruments:	Refer to section 5.10 for details
Test mode:	Refer to section 5.3 for details
Test results:	Refer to Appendix A – 5.8G WIFI