

Global United Technology Services Co., Ltd.

Report No.: GTS202010000194F03

TEST REPORT

Applicant: Autel Robotics Co., Ltd.

9th Floor, Bldg.B1, Zhiyuan, 1001 Xueyuan Rd., Xili, Nanshan, **Address of Applicant:**

Shenzhen, China

Manufacturer/Factory: Autel Robotics Co.,Ltd.

Address of 9th Floor, Bldg.B1, Zhiyuan, 1001 Xueyuan Rd., Xili, Nanshan,

Manufacturer/Factory: Shenzhen, China

Equipment Under Test (EUT)

Product Name: Dragon Fish

Model No.: DF-1 Trade Mark: **AUTEL**

FCC ID: 2AGNTDF2409A

Applicable standards: FCC CFR Title 47 Part 15 Subpart E Section 15.407

Sep. 10, 2020 Date of sample receipt:

Date of Test: Sep. 10 – Oct. 15, 2020

Date of report issued: Oct. 16, 2020

PASS * Test Result:

Authorized Signature:

Robinson Luo Laboratory Manager

This results shown in this test report refer only to the sample(s) tested, this test report cannot be reproduced, except in full, without prior written permission of the company. The report would be invalid without specific stamp of test institute and the signatures of compiler and approver.

^{*} In the configuration tested, the EUT complied with the standards specified above.

Version 2

Version No.	Date	Description
00	Oct. 16, 2020	Original

Prepared By:	Joseph Cu	Date:	Oct. 16, 2020	
	Project Engineer			_
Check By:	ghing on a lux Reviewer	Date:	Oct. 16, 2020	

Xixiang Road, Baoan District, Shenzhen, Guangdong, China 518102

3 Contents

		Page
1	1 COVER PAGE	1
2	2 VERSION	2
3	3 CONTENTS	•
3	3 CONTENTS	
4		
	4.1 MEASUREMENT UNCERTAINTY	4
5	5 GENERAL INFORMATION	5
		5
		8
6	6 TEST INSTRUMENTS LIST	g
7	7 TEST RESULTS AND MEASUREMENT DATA	11
		11
	7.6 Spurious Emission	20
	7.7 FREQUENCY STABILITY	
8	8 TEST SETUP PHOTO	28
9	9 EUT CONSTRUCTIONAL DETAILS	28

4 Test Summary

Test Item	Section in CFR 47	Result
Antenna requirement	15.203	Pass
AC Power Line Conducted Emission	15.207	N/A
Conducted Peak Output Power	15.407(a)(3)	Pass
Channel Bandwidth	15.407(e)	Pass
Power Spectral Density	15.407(a)(3)	Pass
Band Edge	15.407(b)(4)	Pass
Spurious Emission	15.205/15.209/15.407(b)(4)	Pass
Frequency Stability	15.407(g)	Pass

Remarks:

- 1. Pass: The EUT complies with the essential requirements in the standard.
- 2. Test according to ANSI C63.10:2013.

4.1 Measurement Uncertainty

Test Item	Frequency Range	Measurement Uncertainty	Notes		
Radiated Emission	30MHz-200MHz	3.8039dB	(1)		
Radiated Emission	200MHz-1GHz	3.9679dB	(1)		
Radiated Emission	1GHz-18GHz	4.29dB	(1)		
Radiated Emission	18GHz-40GHz	3.30dB	(1)		
AC Power Line Conducted Emission 0.15MHz ~ 30MHz 3.44dB (1)					
Note (1): The measurement unce	ertainty is for coverage factor of k	=2 and a level of confidence of	95%.		

5 General Information

5.1 General Description of EUT

Product Name:	Dragon Fish
Model No.:	DF-1
Serial No.:	N/A
Hardware Version:	V202010
Software Version:	V202010
Test sample(s) ID:	GTS202010000194-1
Sample(s) Status:	Engineer sample
Operation Frequency:	5729.68MHz ~ 5770.68MHz
Channel numbers:	42
Channel bandwidth:	2MHz
Channel separation:	1MHz
Modulation technology:	GFSK
Antenna Type:	Integral Antenna
Antenna gain:	-0.2dBi
Power supply:	2*DC 23.1V rechargeable battery

	Operation Frequency each of channel						
Channel	Frequency(MHz)	Channel	Frequency(MHz)	Channel	Frequency(MHz)		
1	5729.68	15	5743.68	29	5757.68		
2	5730.68	16	5744.68	30	5758.68		
3	5731.68	17	5745.68	31	5759.68		
4	5732.68	18	5746.68	32	5760.68		
5	5733.68	19	5747.68	33	5761.68		
6	5734.68	20	5748.68	34	5762.68		
7	5735.68	21	5749.68	35	5763.68		
8	5736.68	22	5750.68	36	5764.68		
9	5737.68	23	5751.68	37	5765.68		
10	5738.68	24	5752.68	38	5766.68		
11	5739.68	25	5753.68	39	5767.68		
12	5740.68	26	5754.68	40	5768.68		
13	5741.68	27	5755.68	41	5769.68		
14	5742.68	28	5756.68	42	5770.68		

Note:

In section 15.31(m), regards to the operating frequency range over 10 MHz, the Lowest frequency, the middle frequency, and the highest frequency of channel were selected to perform the test, and the selected channel see below:

Test channel	Frequency (MHz)
Lowest channel	5729.68
Middle channel	5749.68
Highest channel	5770.68

5.2 Test mode

Transmitting mode	Keep the EUT in continuously transmitting mode
-------------------	--

Remark: During the test, the test voltage was tuned from 85% to 115% of the nominal rated supply voltage, and found that the worst case was under the nominal rated supply condition. So the report just shows that condition's data.

5.3 Description of Support Units

None.			

5.4 Deviation from Standards

5.5 Abnormalities from Standard Conditions

None.

None.

Xixiang Road, Baoan District, Shenzhen, Guangdong, China 518102 Telephone: +86 (0) 755 2779 8480 Fax: +86 (0) 755 2779 8960

5.6 Test Facility

The test facility is recognized, certified, or accredited by the following organizations:

FCC —Registration No.: 381383

Global United Technology Services Co., Ltd., Shenzhen EMC Laboratory has been registered and fully described in a report filed with the (FCC) Federal Communications Commission. The acceptance letter from the FCC is maintained in files. Registration 381383.

• IC —Registration No.: 9079A

The 3m Semi-anechoic chamber of Global United Technology Services Co., Ltd. has been registered by Certification and Engineering Bureau of Industry Canada for radio equipment testing with Registration No.: 9079A

• NVLAP (LAB CODE:600179-0)

Global United Technology Services Co., Ltd., is accredited by the National Voluntary Laboratory Accreditation Program (NVLAP). LAB CODE:600179-0

5.7 Test Location

All tests were performed at:

Global United Technology Services Co., Ltd.

No. 123-128, Tower A, Jinyuan Business Building, No.2, Laodong Industrial Zone,

Xixiang Road, Baoan District, Shenzhen, Guangdong, China 518102

Tel: 0755-27798480 Fax: 0755-27798960

6 Test Instruments list

Radi	Radiated Emission:						
Item	Test Equipment	Manufacturer	Model No.	Inventory No.	Cal.Date (mm-dd-yy)	Cal.Due date (mm-dd-yy)	
1	3m Semi- Anechoic Chamber	ZhongYu Electron	9.2(L)*6.2(W)* 6.4(H)	GTS250	July. 02 2020	July. 01 2025	
2	Control Room	ZhongYu Electron	6.2(L)*2.5(W)* 2.4(H)	GTS251	N/A	N/A	
3	EMI Test Receiver	Rohde & Schwarz	ESU26	GTS203	June. 25 2020	June. 24 2021	
4	BiConiLog Antenna	SCHWARZBECK MESS-ELEKTRONIK	VULB9163	GTS214	June. 25 2020	June. 24 2021	
5	Double -ridged waveguide horn	SCHWARZBECK MESS-ELEKTRONIK	BBHA 9120 D	GTS208	June. 25 2020	June. 24 2021	
6	Horn Antenna	ETS-LINDGREN	3160	GTS217	June. 25 2020	June. 24 2021	
7	EMI Test Software	AUDIX	E3	N/A	N/A	N/A	
8	Coaxial Cable	GTS	N/A	GTS213	June. 25 2020	June. 24 2021	
9	Coaxial Cable	GTS	N/A	GTS211	June. 25 2020	June. 24 2021	
10	Coaxial cable	GTS	N/A	GTS210	June. 25 2020	June. 24 2021	
11	Coaxial Cable	GTS	N/A	GTS212	June. 25 2020	June. 24 2021	
12	Amplifier(100kHz-3GHz)	HP	8347A	GTS204	June. 25 2020	June. 24 2021	
13	Amplifier(2GHz-20GHz)	HP	84722A	GTS206	June. 25 2020	June. 24 2021	
14	Amplifier (18-26GHz)	Rohde & Schwarz	AFS33-18002 650-30-8P-44	GTS218	June. 25 2020	June. 24 2021	
15	Band filter	Amindeon	82346	GTS219	June. 25 2020	June. 24 2021	
16	Power Meter	Anritsu	ML2495A	GTS540	June. 25 2020	June. 24 2021	
17	Power Sensor	Anritsu	MA2411B	GTS541	June. 25 2020	June. 24 2021	
18	Wideband Radio Communication Tester	Rohde & Schwarz	CMW500	GTS575	June. 25 2020	June. 24 2021	
19	Splitter	Agilent	11636B	GTS237	June. 25 2020	June. 24 2021	
20	Loop Antenna	ZHINAN	ZN30900A	GTS534	June. 25 2020	June. 24 2021	
21	Breitband hornantenne	SCHWARZBECK	BBHA 9170	GTS579	Oct. 19 2019	Oct. 18 2020	
22	Amplifier	TDK	PA-02-02	GTS574	Oct. 19 2019	Oct. 18 2020	
23	Amplifier	TDK	PA-02-03	GTS576	Oct. 19 2019	Oct. 18 2020	
24	PSA Series Spectrum Analyzer	Rohde & Schwarz	FSP	GTS578	June. 25 2020	June. 24 2021	

Xixiang Road, Baoan District, Shenzhen, Guangdong, China 518102 Telephone: +86 (0) 755 2779 8480 Fax: +86 (0) 755 2779 8960

RF Conducted Test:						
ltem	Test Equipment	Manufacturer	Model No.	Serial No.	Cal.Date (mm-dd-yy)	Cal.Due date (mm-dd-yy)
1	MXA Signal Analyzer	Agilent	N9020A	GTS566	June. 25 2020	June. 24 2021
2	EMI Test Receiver	R&S	ESCI 7	GTS552	June. 25 2020	June. 24 2021
3	Spectrum Analyzer	Agilent	E4440A	GTS533	June. 25 2020	June. 24 2021
4	MXG vector Signal Generator	Agilent	N5182A	GTS567	June. 25 2020	June. 24 2021
5	ESG Analog Signal Generator	Agilent	E4428C	GTS568	June. 25 2020	June. 24 2021
6	USB RF Power Sensor	DARE	RPR3006W	GTS569	June. 25 2020	June. 24 2021
7	RF Switch Box	Shongyi	RFSW3003328	GTS571	June. 25 2020	June. 24 2021
8	Programmable Constant Temp & Humi Test Chamber	WEWON	WHTH-150L-40-880	GTS572	June. 25 2020	June. 24 2021

Gene	General used equipment:								
Item Test Equipment Manufacturer Model No. Inventory Cal.Date Commendation (mm-dd-yy)									
1	Humidity/ Temperature Indicator	KTJ	TA328	GTS243	June. 25 2020	June. 24 2021			
2	Barometer	ChangChun	DYM3	GTS255	June. 25 2020	June. 24 2021			

7 Test results and Measurement Data

7.1 Antenna requirement

Standard requirement: FCC Part15 C Section 15.203

15.203 requirement:

An intentional radiator shall be designed to ensure that no antenna other than that furnished by the responsible party shall be used with the device. The use of a permanently attached antenna or of an antenna that uses a unique coupling to the intentional radiator, the manufacturer may design the unit so that a broken antenna can be replaced by the user, but the use of a standard antenna jack or electrical connector is prohibited.

E.U.T Antenna:

The antennas are integral antenna, the best case gain of the antenna is -0.2dBi, reference to the appendix II for details

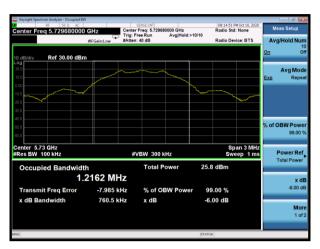
7.2 Conducted Peak Output Power

Test Requirement:	FCC Part15 E Section 15.407(a)(3)						
Test Method:	ANSI C63.10:2013 and KDB 789033 D02 General U-NII Test Procedures New Rules v02r01						
Limit:	30dBm						
Test setup:	Power Meter E.U.T Non-Conducted Table Ground Reference Plane						
Test Instruments:	Refer to section 6.0 for details						
Test mode:	Refer to section 5.2 for details						
Test results:	Pass						

Measurement Data

Test CH	Peak Output Power (dBm)	Limit(dBm)	Result
Lowest	21.97		
Middle	21.64	30.00	Pass
Highest	21.76		

7.3 Channel Bandwidth


Test Requirement:	FCC Part15 E Section 15.407(e)				
Test Method:	ANSI C63.10:2013 and KDB 789033 D02 General U-NII Test Procedures New Rules v02r01				
Limit:	>500KHz				
Test setup:	Spectrum Analyzer E.U.T Non-Conducted Table Ground Reference Plane				
Test Instruments:	Refer to section 6.0 for details				
Test mode:	Refer to section 5.2 for details				
Test results:	Pass				

Measurement Data

Test CH	Channel Bandwidth (KHz)	Limit (KHz)	Result	
Lowest	760.5			
Middle	772.9	>500	Pass	
Highest	781.2			

Test plot as follows:

Lowest channel

Middle channel

Highest channel

7.4 Power Spectral Density

Test Requirement:	FCC Part15 E Section 15.407(a)(3)					
Test Method:	ANSI C63.10:2013 and KDB 789033 D02 General U-NII Test Procedures New Rules v02r01					
Limit:	30dBm/500kHz					
Test setup:	Spectrum Analyzer E.U.T Non-Conducted Table Ground Reference Plane					
Test Instruments:	Refer to section 6.0 for details					
Test mode:	Refer to section 5.2 for details					
Test results:	Pass					

Measurement Data

Test CH	Power Spectral Density (dBm)	Limit (dBm/500kHz)	Result
Lowest	18.958		
Middle	18.597	30.00	Pass
Highest	18.759		

Test plot as follows:

Lowest channel

Middle channel

Highest channel

7.5 Band edge

7.5.1 Radiated Emission Method

Test Requirement:	FCC Part15 C Section 15.209 and 15.205							
Test Method:	ANSI C63.10: 20	013						
Test Frequency Range:	9kHz to 40GHz,	only worse cas	e is reporte	d				
Test site:	Measurement D	istance: 3m						
Receiver setup:	Frequency	Detector	RBW	VBW	Value			
	Above 1GHz	Peak	1MHz	3MHz	Peak			
	Above 1GHZ	RMS	1MHz	3MHz	RMS			
Limit:	All emissions shall be limited to a level of -27 dBm/MHz at 75 MHz or more above or below the band edge increasing linearly to 10 dBm/MHz at 25 MHz above or below the band edge, and from 25 MHz above or below the band edge increasing linearly to a level of 15.6 dBm/MHz at 5 MHz above or below the band edge, and from 5 MHz above or below the band edge increasing linearly to a level of 27 dBm/MHz at the band edge.							
Test setup:	Tum Table <150cm >4	< 3m	Test Antenna	?				
Test Procedure:	determine the 2. The EUT was antenna, whice tower. 3. The antenna ground to det horizontal and measuremen 4. For each sus and then the and the rota to the maximum 5. The test-rece Specified Bat 6. If the emission the limit spect of the EUT w have 10dB m	a 3 meter came position of the set 3 meters as the set 3 meters as the set of	ber. The tall highest race way from the don the top from one neximum value zations of the new to height of the top	ole was rotated diation. The interference of a variable meter to four report of the field size antenna arms arranged this from 1 meters to 360 at Detect Fund Mode. The mode was 10 stopped and the emissione by one us	ed 360 degrees to be-receiving e-height antenna emeters above the strength. Both re set to make the d to its worst case eter to 4 meters degrees to find enction and the peak values ons that did not ing peak, quasi-			

	And found the X axis positioning which it is worse case, only the test worst case mode is recorded in the report.
Test Instruments:	Refer to section 6.0 for details
Test mode:	Refer to section 5.2 for details
Test results:	Pass

Remarks:

- 1. Only the worst case Main Antenna test data..
- 2. Final Level =Receiver Read level + Antenna Factor + Cable Loss Preamplifier Factor
- 3. The emission levels of other frequencies are very lower than the limit and not show in test report.
- 4. The pre-test were performed on lowest, middle and highest frequencies, only the worst case's (lowest and highest frequencies) data was showed.
- 5. According to KDB 789033 D02v02r01 section G) 1) d),for measurements above 1000 MHz @3m distance, the limit of field strength is computed as follows:

E[dBuV/m] = EIRP[dBm] + 95.2;

E[dBuV/m] = -27 + 95.2 = 68.2dBuV/m.

E[dBuV/m] = 10 + 95.2 = 105.2dBuV/m.

E[dBuV/m] = 15.6 + 95.2 = 110.8dBuV/m.

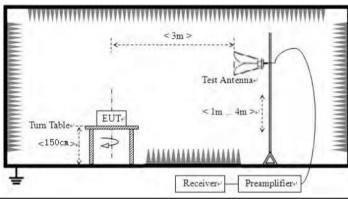
E[dBuV/m] = 27 + 95.2 = 122.2dBuV/m

Measurement data:

Peak value:	Peak value:								
Frequency (MHz)	Read Level (dBuV)	Antenna Factor (dB/m)	Cable Loss (dB)	Preamp Factor (dB)	Level (dBuV/m)	Limit Line (dBuV/m)	Over Limit (dB)	Polarization	
5650.00	35.66	32.36	9.72	23.83	53.91	68.20	-14.29	Horizontal	
5700.00	35.91	32.50	9.79	23.84	54.36	105.20	-50.84	Horizontal	
5720.00	36.18	32.53	9.81	23.85	54.67	110.80	-56.13	Horizontal	
5725.00	38.54	32.53	9.83	23.86	57.04	122.20	-65.16	Horizontal	
5850.00	40.16	32.70	9.99	23.87	58.98	122.20	-63.22	Horizontal	
5855.00	34.44	32.72	9.99	23.88	53.27	110.80	-57.53	Horizontal	
5875.00	36.53	32.74	10.04	23.89	55.42	105.20	-49.78	Horizontal	
5925.00	36.33	32.80	10.11	23.90	55.34	68.20	-12.86	Horizontal	
5650.00	35.87	32.36	9.72	23.83	54.12	68.20	-14.08	Vertical	
5700.00	35.00	32.50	9.79	23.84	53.45	105.20	-51.75	Vertical	
5720.00	35.91	32.53	9.81	23.85	54.40	110.80	-56.40	Vertical	
5725.00	38.44	32.53	9.83	23.86	56.94	122.20	-65.26	Vertical	
5850.00	38.78	32.70	9.99	23.87	57.60	122.20	-64.60	Vertical	
5855.00	34.69	32.72	9.99	23.88	53.52	110.80	-57.28	Vertical	
5875.00	35.71	32.74	10.04	23.89	54.60	105.20	-50.60	Vertical	
5925.00	35.89	32.80	10.11	23.90	54.90	68.20	-13.30	Vertical	



7.6 Spurious Emission


7.6.1 Radiated Emission Method

Test Requirement:	FCC Part15 C Section 15.209, Part 15E Section 15.407(b)(4)						
Test Method:	ANSI C63.10:2013						
Test Frequency Range:	9kHz to 40GHz						
Test site:	Measurement Dist	anco: 3	2m				
		1	1	RBW	\/D\\/	Volue	
Receiver setup:	Frequency 9kHz-150KHz		ector i-peak	200Hz	VBW 1kHz	Value Quasi-peak Value	
	150kHz-30MHz		i-peak	9kHz	30kHz	Quasi-peak Value	
			i-peak	120KHz	300KHz		
			eak	1MHz	3MHz	Peak Value	
	Above 1GHz	Α	V	1MHz	3MHz	Average Value	
Limit:	Frequency		Limit	(uV/m)	Value	Measurement Distance	
	0.009MHz-0.490)MHz	2400/	/F(KHz)	QP	300m	
	0.490MHz-1.705	MHz	24000)/F(KHz)	QP	300m	
	1.705MHz-30N	ИHz	,	30	QP	30m	
	30MHz-88MH	30MHz-88MHz 100					
	88MHz-216M	88MHz-216MHz			QP	2	
	216MHz-960M	1Hz	2	200	QP	3m	
	960MHz-1GH	Ηz	5	500	QP	7	
		'		<u>'</u>		•	
	Frequency		Lim	nit (dBm/MF	Hz)	Remark	
	Above 1GH	Z		-27.0		Peak Value	
Test setup:	For radiated emi	ssions	from 9	kHz to 30	MHz		
		******	*******	**********	********	■	
	Test Antenna Turn Table S0cm > 1 Receiver						
	For radiated emissions from 30MHz to1GHz						

For radiated emissions above 1GHz

Test Procedure:

- 1. The EUT was placed on the top of a rotating table (0.8m for below 1GHz and 1.5 meters for above 1GHz) above the ground at a 3 meter camber. The table was rotated 360 degrees to determine the position of the highest radiation.
- 2. The EUT was set 3 meters away from the interference-receiving antenna, which was mounted on the top of a variable-height antenna tower.
- The antenna height is varied from one meter to four meters above the ground to determine the maximum value of the field strength. Both horizontal and vertical polarizations of the antenna are set to make the measurement.
- 4. For each suspected emission, the EUT was arranged to its worst case and then the antenna was tuned to heights from 1 meter to 4 meters and the rota table was turned from 0 degrees to 360 degrees to find the maximum reading.
- 5. The test-receiver system was set to Peak Detect Function and Specified Bandwidth with Maximum Hold Mode.
- 6. If the emission level of the EUT in peak mode was 10dB lower than the limit specified, then testing could be stopped and the peak values of the EUT would be reported. Otherwise the emissions that did not have 10dB margin would be re-tested one by one using peak, quasipeak or average method as specified and then reported in a data sheet.
- 7. The radiation measurements are performed in X, Y, Z axis positioning.

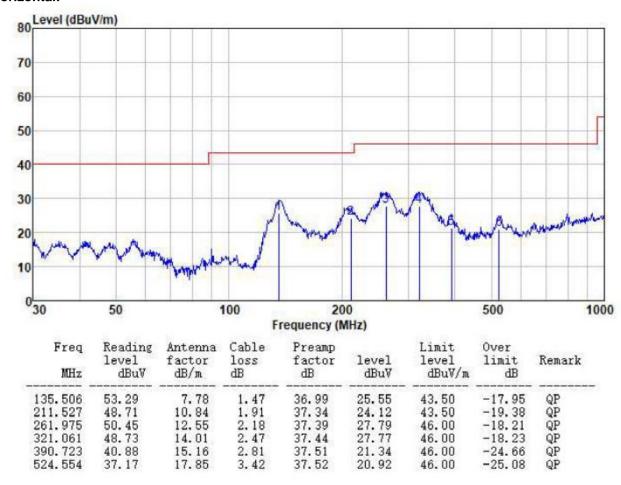
		And found the X axis positioning which it is worse case, only the test worst case mode is recorded in the report.					
Test Instruments:	Refer to se	Refer to section 6.0 for details					
Test mode:	Refer to se	Refer to section 5.2 for details					
Test environment:	Temp.:	Temp.: 25 °C Humid.: 52% Press.: 1012mbar					
Test voltage:	AC 120V,	AC 120V, 60Hz					
Test results:	Pass	·					

Remarks:

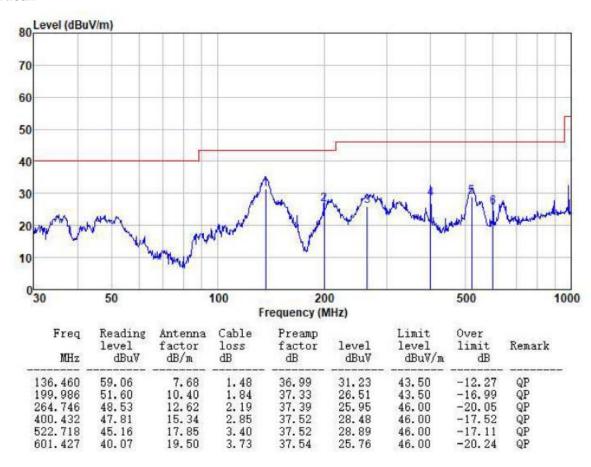
- 1. Only the worst case Main Antenna test data.
- 2. Pre-scan all kind of the place mode (X-axis, Y-axis, Z-axis), and found the Y-axis which it is worse case.

Measurement Data:

9 kHz ~ 30 MHz


The low frequency, which started from 9 kHz to 30 MHz, was pre-scanned and the result which was 20 dB lower than the limit line per 15.31(o) was not reported.

Below 1GHz


Pre-scan all test modes, found worst case at lowest channel, and so only show the test result of lowest channel.

Horizontal:

Vertical:

Xixiang Road, Baoan District, Shenzhen, Guangdong, China 518102 Telephone: +86 (0) 755 2779 8480 Fax: +86 (0) 755 2779 8960

Above 1GHz:

Test channel:		Lowest					
Antenna Pol.	Frequency (MHz)	Reading Level (dBuV/m)	Factor (dBuV/m)	Measure Level (dBuV/m)	Limit (dBuV/m)	Over limit(dB)	Detector
V	11459.36	22.83	21.64	44.47	54.00	-9.53	PK
V	17189.04	20.49	21.80	42.29	54.00	-11.71	PK
Н	11459.36	20.71	21.83	42.54	54.00	-11.46	PK
Н	17189.04	19.46	21.67	41.13	54.00	-12.87	PK

Test channel:		Middle					
Antenna Pol.	Frequency (MHz)	Reading Level (dBuV/m)	Factor (dBuV/m)	Measure Level (dBuV/m)	Limit (dBuV/m)	Over limit(dB)	Detector
V	11499.36	21.25	21.64	42.89	54.00	-11.11	PK
V	17249.04	19.76	21.80	41.56	54.00	-12.44	PK
Н	11499.36	17.78	21.83	39.61	54.00	-14.39	PK
Н	17249.04	18.32	21.67	39.99	54.00	-14.01	PK

Test channel:		Highest					
Antenna Pol.	Frequency (MHz)	Reading Level (dBuV/m)	Factor (dBuV/m)	Measure Level (dBuV/m)	Limit (dBuV/m)	Over limit(dB)	Detector
V	11541.36	21.42	21.64	43.06	54.00	-10.94	PK
V	17312.04	18.85	21.80	40.65	54.00	-13.35	PK
Н	11541.36	19.44	21.83	41.27	54.00	-12.73	PK
Н	17312.04	17.38	21.67	39.05	54.00	-14.95	PK

Notes:

- 1. Measure Level = Reading Level + Factor.
- 2. The test trace is same as the ambient noise (the test frequency range: 18GHz~40GHz), therefore no data appear in the report.
- 3. This limit applies for using average detector, if the test result on peak is lower than average limit, then average measurement needn't be performed.

7.7 Frequency stability

Test Requirement:	FCC Part15 C Section 15.407(g)			
Test Method:	ANSI C63.10:2013, FCC Part 2.1055			
Limit:	Manufactures of U-NII devices are responsible for ensuring frequency stability such that an emission is maintained within the band of operation under all conditions of normal operation as specified			
Test Procedure:	The EUT was setup to ANSI C63.4, 2003; tested to 2.1055 for compliance to FCC Part 15.407(g) requirements.			
Test setup:	Spectrum analyzer Att. Note: Measurement setup for testing on A	Temperature Chamber EUT Variable Power Supply Antenna connector		
Test Instruments:	Refer to section 5.10 for details			
Test mode:	Refer to section 5.2 for details			
Test results:	Pass			

Measurement data:

Voltage VS Frequency stability

Test Frequency: 57	'29.68MHz			
Temperature (°C)	Voltage (V)	Frequency Deviation (Hz)	Frequency Deviation (ppm)	Result
25	DC 23.10	2000.00	0.34906	PASS
25	DC 25.41	2000.00	0.34906	PASS
25	DC 20.79	2000.00	0.34906	PASS

Temperature VS Frequency stability

Test Frequer	ncy: 5729.68MHz			
Voltage (V)	Temperature (°C)	Frequency Deviation (Hz)	Frequency Deviation (ppm)	Result
DC 23.10	-20	2000.00	0.34906	PASS
DC 23.10	-10	2000.00	0.34906	PASS
DC 23.10	0	2000.00	0.34906	PASS
DC 23.10	10	2000.00	0.34906	PASS
DC 23.10	20	2000.00	0.34906	PASS
DC 23.10	30	2000.00	0.34906	PASS
DC 23.10	40	2000.00	0.34906	PASS
DC 23.10	50	2000.00	0.34906	PASS

8 Test Setup Photo

Reference to the appendix I for details.

9 EUT Constructional Details

Reference to the appendix II for details.

----END-----