

FCC TEST REPORT

Test report On Behalf of Shenzhen Zidoo Technology Co.,Ltd For SMART TV BOX Model No.: X1 II

FCC ID: 2AGN7-X1

Prepared for :	Shenzhen Zidoo Technology Co.,Ltd					
	Central Avenue building A m, Unit 12D Xixiang Ave,BaoAn District,Shenzhen.					
Prepared By :	WST Certification & Testing (HK) Limited 12/F., San Toi Building,137-139 Connaught Road Central,HongKong					
Date of Test: Date of Report:	Mar. 23, 2016 ~Apr. 05, 2016 Apr. 05, 2016					

Report Number: WST160323118-E

TEST RESULT CERTIFICATION

Applicant's name	Shenzhen Zidoo Technology Co.,Ltd
Address	Central Avenue building A m, Unit 12D Xixiang Ave, BaoAn District, Shenzhen
Manufacture's Name	Shenzhen Zidoo Technology Co.,Ltd
Address	Central Avenue building A m, Unit 12D Xixiang Ave, BaoAn District, Shenzhen
Product description	
Trade Mark:	ZIDOO
Product name	SMART TV BOX
Model and/or type reference	Х1 II
Standards	FCC Rules and Regulations Part 15 Subpart C Section 15.247 ANSI C63.10: 2013

This publication may be reproduced in whole or in part for non-commercial purposes as long as the WST Certification & Testing (HK) Limited is acknowledged as copyright owner and source of the material. WST Certification & Testing (HK) Limited takes no responsibility for and will not assume liability for damages resulting from the reader's interpretation of the reproduced material due to its placement and context.

Date of Test

Date (s) of performance of tests...... Mar. 23, 2016 ~Apr. 05, 2016 Date of Issue..... Apr. 05, 2016 Test Result..... Pass

Testing Engineer

Eric Xie)

Technical Manager

2

Dota Qin

(Dora Qin)

Authorized Signatory:

ont 1

(Kait Chen)

₩stlab

Table of Contents	Page
1. TEST SUMMARY	5
1.1 TEST FACILITY	6
1.2 MEASUREMENT UNCERTAINTY	6
2 . GENERAL INFORMATION	7
2.1 General description of EUT	7
2.2 Carrier frequency of channels	8
2.3 Operation of EUT during testing	8
2.4 Description of test setup	9
2.5 Measurement instruments list	10
3 . 6DB BANDWIDTH MEASUREMENT	12
3.1 Block diagram of test setup	12
3.2 Limit	12
3.3 Block diagram of test setup	12
3.4 Test result	12
4 . MAXIMUM PEAK OUTPUT POWER	20
4.1 Block diagram of test setup	20
4.2 Limits	20
4.3 Test procedure	20
4.4 Test result	20
5 . POWER SPECTRAL DENSITY TEST	26
5.1 Block diagram of test setup	26
5.2 Limits	26
5.3 Test procedure	26
5.4 Test result	26
6 . BAND EDGE COMPLIANCE TEST	34
6.1 Block diagram of test setup	34
6.2 Limits	34
6.3 Test procedure	34
6.4 Test result	34
7 . RADIATED SPURIOUS EMISSION TEST	43
7.1 Block diagram of test setup	43
7.2 Limits	44

Page 4 of 56

Table of Contents	Page
7.3 Restricted bands of operation	44
7.4 Test procedure	45
25GHz per FCC PART 15.33(a)	45
7.5 Test result	45
8. CONDUCTED SPURIOUS EMISSION COMPLIAN	CE TEST 49
8.1 Block diagram of test setup	49
8.2 Limits	49
8.3 Test procedure	49
8.4 Test Result	49
9 . AC POWER LINE CONDUCTED EMISSION	52
9.1 Block diagram of test setup	52
9.2 Limits	52
9.3 Test procedure	52
9.4 Test Result	52
10 . ANTENNA REQUIREMENT	54
11 . POTOGRAPH OF TEST	55
11.1 Radiated Emission	55
11.2 Conducted Emission	56

₩stlab

1. TEST SUMMARY

FCC Rules	Description of Test	Result
Section 15.247(a)(2)		
And Part 2.1049	6dB Bandwidth Test	Compliant
Section 15.247(e)	Power Spectral Density Test	Compliant
Section 15.247(b)		
And Part 2.1046	Maximum Peak Output Power Test	Compliant
Section 15.247(d)		
And Part 2.1051,		
Part 2.1057	Band Edge Compliance Tes	Compliant
Section 15.247(d)		
Section 15.209)		
Part 2.1051, Part		
2.1053, Part 2.1057	Radiated Spurious Emission Test	Compliant
Section 15.247(d)		
Part 2.1051, Part		
2.1053, Part 2.1057	Conducted Spurious Emission Test	Compliant
Section 15.207	AC Power Line Conducted Emission Test	Compliant
Section 15.203	Antenna Requirement	Compliant

1.1 TEST FACILITY

Test Firm	:	Shenzhen WST Testing Technology Co., Ltd.
		Certificated by FCC, Registration No.: 939433
Address	:	1F,No.9 Building,TGK Science & Technology Park,Yangtian Rd.,
		NO.72 Bao'an Dist., Shenzhen, Guangdong, China. 518101
Tel	:	(86)755-33916437
Fax	:	(86)755-27822175

1.2 MEASUREMENT UNCERTAINTY

Measurement Uncertainty		
Conducted Emission Expanded Uncertainty	=	2.23dB, k=2
Radiated emission expanded uncertainty(9kHz-30MHz)	=	3.08dB, k=2
Radiated emission expanded uncertainty(30MHz-1000MHz)	=	4.42dB, k=2
Radiated emission expanded uncertainty(Above 1GHz)	=	4.06dB, k=2

₩stlab

2. GENERAL INFORMATION

2.1 General description of EUT

Equipment	SMART TV BOX			
Model Name	X1 II			
Serial No	N/A			
FCC ID	2AGN7-X1			
Model Difference	N/A			
Modulation Type	WIFI:DBPSK,DQPSK,CCK,BPSK,			
Antenna Type	Internal Antenna			
WLA Operation frequency	802.11b: 2412-2462MHz 802.11g: 2412-2462MHz 802.11n HT20: 2412-2462MHz 802.11n HT40: 2422-2452MHz			
Number of Channels	802.11b/g/n (HT20):11 802.11n (HT40): 7			
Data Rate	802.11b: 11, 5.5, 2, 1 Mbps 802.11g: 54, 48, 36, 24, 18, 12, 9, 6 Mbps 802.11n: up to 150Mbps			
Modulation Type	CCK, OFDM			
Power Source	DC 5V from Adapter			
Power Rating	1			
Adapter Model	KA23-0502000DES Input: AC 100-240V, 0.35A, Output: DC5V, 2A			

2.2 Carrier frequency of channels

Channel List for 802.11b/g/n(20 MHz)							
Channel Frequency (MHz) Channel Frequency (MHz) Channel Frequency (MHz) Channel Frequency (MHz)							Frequency (MHz)
01	2412	04	2427	07	2442	10	2457
02	2417	05	2432	08	2447	11	2462
03 2422 06 2437 09 2452							

Channel List for 802.11n(40MHz)							
Channel Frequency (MHz) Channel Frequency (MHz) Channel Frequency (MHz)						Channel	Frequency (MHz)
03	2422	06	2437	09	2452		
04	2427	07	2442				
05	2432	08	2447				

2.3 Operation of EUT during testing Operating Mode

The mode is used: 802.11b Transmitting mode

Low Channel: 2412MHz Middle Channel: 2437MHz High Channel: 2462MHz

802.11g Transmitting mode

Low Channel: 2412MHz Middle Channel: 2437MHz High Channel: 2462MHz

802.11n (HT20) Transmitting mode

Low Channel: 2412MHz Middle Channel: 2437MHz High Channel: 2462MHz

802.11n (HT40) Transmitting mode

Low Channel: 2422MHz Middle Channel: 2437MHz High Channel: 2452MHz

2.4 Description of test setup

₩stlab

2.5 Measurement instruments list

Item	Equipment	Manufacturer	Model No.	Serial No.	Last Cal.	Cal. Interval
1.	EMI Receiver	Rohde & Schwarz	ESCI	100627	May 19, 2015	1 Year
2.	LISN	SchwarzBeck	NSLK 8126	8126377	May 19, 2015	1 Year
3.	RF Switching Unit	Compliance Direction	RSU-M2	38303	May 19, 2015	1 Year
4.	EMI Test Software ES-K1	Rohde & Schwarz	N/A	N/A	N/A	N/A
5.	EMI Test Receiver	Rohde & Schwarz	ESCI	100627	May 19, 2015	1 Year
6.	Trilog Broadband Antenna	Schwarzbeck	VULB9163	VULB 9163-289	May 17, 2015	1 Year
7.	Pre-amplifier	Compliance Direction	PAP-0203	22008	May 19, 2015	1 Year
8.	EMI Test Software EZ-EMC	SHURPLE	N/A	N/A	N/A	N/A
9.	EMI Receiver	Rohde & Schwarz	ESCI	100627	May 19, 2015	1 Year
10.	LISN	SchwarzBeck	NSLK 8126	8126377	May 19, 2015	1 Year
11.	RF Switching Unit	Compliance Direction	RSU-M2	38303	May 19, 2015	1 Year
12.	EMI Test Software ES-K1	Rohde & Schwarz	N/A	N/A	N/A	N/A
13.	EMI Receiver	Rohde & Schwarz	ESCI	100627	May 19, 2015	1 Year
14.	EMI Receiver	Rohde & Schwarz	ESCI	100627	May 19, 2015	1 Year
15.	LISN	SchwarzBeck	NSLK 8126	8126377	May 19, 2015	1 Year
16.	RF Switching Unit	Compliance Direction	RSU-M2	38303	May 19, 2015	1 Year
17.	EMI Test Software ES-K1	Rohde & Schwarz	N/A	N/A	N/A	N/A
18.	Programmable AC Power source	SOPH POWER	PAG-1050	630250	May 26, 2015	1 Year
19.	Harmonic and Flicker Analyzer	LAPLACE	AC2000A	272629	May 26, 2015	1 Year
20.	Harmonic and Flicker Test Software AC 2000A	LAPLACE	N/A	N/A	N/A	N/A
21.	ESD Simulators	KIKUSUI	KES4021	LJ003477	May 25, 2015	1 Year
22.	EFT Generator	EMPEK	EFT-4040B	0430928N	May 19, 2015	1 Year
23.	Shielding Room	ChangZhou ZhongYu	JB88	SEL0166	May 19, 2015	1 Year
24.	Signal Generator 9KHz~2.2GHz	R&S	SML02	SEL0143	May 19, 2015	1 Year
25.	Signal Generator 9KHz~1.1GHz	R&S	SML01	SEL0135	May 19, 2015	1 Year
26.	Power Meter	R&S	NRVS	SEL0144	May 19, 2015	1 Year
27.	RF Level Meter		URV35	SEL0137	May 19, 2015	1 Year
28.	Audio Analyzer	R&S	UPL	SEL0136	May 19, 2015	1 Year
29.	RF-Amplifier 150KHz~150MH z	BONN Elektronik	BSA1515-25	SEL0157	May 19, 2015	1 Year

₩stlab

Page 11 of 56

Report No.: WST160323118-E

30.	Stripline Test Cell	Erika Fiedler	VDE0872	SEL0167	N/A	N/A
31.	TV Test Transmitter	R&S	SFM	SEL0159	May 17, 2015	1 Year
32.	TV Generator PAL	R&S	SGPF	SEL0138	May 19, 2015	1 Year
33.	TV Generator Ntsc	R&S	SGMF	SEL0140	May 19, 2015	1 Year
34.	TV Generator Secam	R&S	SGSF	SEL0139	May 19, 2015	1 Year
35.	TV Test Transmitter 0.3MHz~3300MHz	R&S	SFQ	SEL0142	May 19, 2015	1 Year
36.	MPEG2 Measurement Generator	R&S	DVG	SEL0141	May 19, 2015	1 Year
37.	Spectrum Analyzer	R&S	FSP	SEL0177	May 19, 2015	1 Year
38.	Matching	R&S	RAM	SEL0146	N/A	N/A
39.	Matching	R&S	RAM	SEL0148	N/A	N/A
40.	Absorbing Clamp	R&S	MDS21	SEL0158	May 17, 2015	1 Year
41.	Coupling Set	Erika Fiedler	Rco, Rci, MC, AC, LC	SEL0149	N/A	N/A
42.	Filters	Erika Fiedler	Sr, LBS	SEL0150	N/A	N/A
43.	Matching Network	Erika Fiedler	MN, X1 II	SEL0151	N/A	N/A
44.	Fully Anechoic Room	ChangZhou ZhongYu	854	SEL0169	Jun. 10, 2015	1 Year
45.	Signal Generator	R&S	SML03	SEL0068	May 17, 2015	1 Year
46.	RF-Amplifier 30M~1GHz	Amplifier Reasearch	250W1000A	SEL0066	Oct. 24, 2015	1 Year
47.	RF-Amplifier 0.8~3.0GHz	Amplifier Reasearch	60S1G3	SEL0065	Oct. 24, 2015	1 Year
48.	Power Meter	R&S	NRVD	SEL0069	May 17, 2015	1 Year
49.	Power Sensor	R&S	URV5-Z2	SEL0071	May 17, 2015	1 Year
50.	Power Sensor	R&S	URV5-Z2	SEL0072	May 17, 2015	1 Year
51.	Software EMC32	R&S	EMC32-S	SEL0082	N/A	N/A
52.	Log-periodic Antenna	Amplifier Reasearch	AX1 II 080	SEL0073	N/A	N/A
53.	Antenna Tripod	Amplifier Reasearch	TP1000A	SEL0074	N/A	N/A
54.	High Gain Horn Antenna(0.8-5G Hz)	Amplifier Reasearch	AT4002A	SEL0075	N/A	N/A

3. 6DB BANDWIDTH MEASUREMENT

3.1 Block diagram of test setup

3.2 Limit

Part 2.1049 and Section 15.247(a)(2): Systems using digital modulation techniques may operate in the 902-928MHz, 2400-2483.5MHz, and 5725-5850MHz bands. The minimum 6 dB bandwidth shall be at least 500 kHz

- 3.3 Block diagram of test setup
 - 3.3.1. The transmitter output was connected to the spectrum analyzer through a low loss cable.
 - 3.3.2. Set RBW of spectrum analyzer to 100kHz and VBW to 300kHz
 - 3.3.3. The 6dB bandwidth is defined as the total spectrum the power of which is higher than peak power minus 6dB.
- 3.4 Test result

802.11b				
Channel	Frequency (MHz)	6DB Bandwidth(MHz)	Limit(MHz)	
Low	2412	9.942	>0.5MHz	
Middle	2437	8.374	>0.5MHz	
High	2462	6.771	>0.5MHz	

802.11g			
Channel	Frequency (MHz)	6DB Bandwidth(MHz)	Limit(MHz)
Low	2412	16.545	>0.5MHz
Middle	2437	12.668	>0.5MHz
High	2462	10.038	>0.5MHz

802.11n (HT20)			
Channel	Frequency (MHz)	6DB Bandwidth(MHz)	Limit(MHz)
Low	2412	17.713	>0.5MHz
Middle	2437	13.460	>0.5MHz
High	2462	8.631	>0.5MHz

802.11n (HT40)				
Channel	Frequency (MHz)	6DB Bandwidth(MHz)	Limit(MHz)	
Low	2422	15.282	>0.5MHz	
Middle	2437	17.842	>0.5MHz	
High	2452	34.494	>0.5MHz	

The spectrum analyzer plots are attached as below.

802.11b Channel Low 2412MHz

802.11b Channel Middle 2437MHz

802.11b Channel High 2462MHz

802.11g Channel Low 2412MHz

Page 15 of 56

802.11g Channel Middle 2437MHz

802.11g Channel High 2462MHz

802.11n(HT20) Channel Low 2412MHz

Page 17 of 56

802.11n(HT20) Channel Middle 2437MHz

802.11n(HT20) Channel High 2462MHz

802.11n(HT40) Channel Low 2422MHz

802.11n(HT40) Channel Middle 2437MHz

802.11n(HT40) Channel High 2452MHz

4. MAXIMUM PEAK OUTPUT POWER

4.1 Block diagram of test setup

4.2 Limits

Part 2.1046 and Section 15.247(b)(3): For systems using digital modulation in the 902-928MHz, 2400-2483.5MHz, and 5725-5850MHz bands: 1 Watt.

4.3 Test procedure

- a. The transmitter output was connected to the spectrum analyzer through a low
- b. Set RBW of spectrum analyzer to 1MHz and VBW to 3MHz
- c. Measurement the maximum peak output power.
- 4.4 Test result

Pass

802.11b				
Channel	Frequency	Peak output power	Limit	
	(MHz)	(dBm)	(dBm)	
Low	2412	8.22	30	
Middle	2437	10.01	30	
High	2462	8.57	30	

802.11g				
Channel	Frequency	Peak output power	Limit	
	(MHz)	(dBm)	(dBm)	
Low	2412	3.85	30	
Middle	2437	5.91	30	
High	2462	5.09	30	

802.11n (HT20)				
Channel	Frequency	Peak output power	Limit	
	(MHz)	(dBm)	(dBm)	
Low	2412	3.28	30	
Middle	2437	4.91	30	
High	2462	4.48	30	

802.11n (HT40)				
Channel	Frequency	Peak output power	Limit	
	(MHz)	(dBm)	(dBm)	
Low	2422	2.94	30	
Middle	2437	3.35	30	
High	2452	2.85	30	

₩stlab

Page 22 of 56

802.11b

🔆 Agilent			Freq/Channel
Ch Freq 2.4 Channel Power	412 GHz Ave	T rig Free rages: 100	Center Freq 2.41200000 GHz
Center 2.412000	1000 GHz		Start Freq 2.40225000 GHz
+Avg			Stop Freq 2.42175000 GHz
			CF Step 1.95000000 MHz <u>Auto</u> Man
Center 2.412 GHz		Span 19.5 MHz	Fr eq Offset 0.00000000 Hz
Channel Power	₩VDN 1 MHZ	Power Spectral Density	Signal Track On <u>Off</u>
8.22 dBm /13	.0000 MHz	-62.92 dBm/Hz	Scale Type Log <u>Lin</u>

· Agilent	Freq/Channel
Ch Freq 2.437 GHz Trig Free Channel Power Averages: 100	Center Fred 2.43700000 GHz
Center 2.437000000 GHz	Start Fred 2.42725000 GHz
+flvg Log 18	Stop Fred 2.44675000 GHz
	CF Step 1.95000000 MHz <u>Auto</u> Mar
Center 2.437 GHz Span 19.5 MHz Span 19.5 MHz	Fr eq Offse t 0.00000000 Hz
Channel Power Power Spectral Density	Signal Track On <u>OF</u>
10.01 dBm /13.0000 MHz -61.13 dBm/Hz	Scale Type Log <u>Lir</u>

🔆 Agilent		Freq/Channel
Ch Freq 2.462 GHz Channel Power	Trig Free Averages: 100	Center Freq 2.46200000 GHz
Center 2.462000000 GHz		Start Freq 2.45225000 GHz
+Rvg		Stop Freq 2.47175000 GHz
dB/		CF Step 1.95000000 MHz <u>Auto</u> Man
Center 2.462 GHz	Span 19.5 MHz	FreqOffset 0.00000000 Hz
Channel Power	Power Spectral Density	Signal Track On <u>Off</u>
8.57 dBm /13.0000 MHz	-62.57 dBm/Hz	Scale Type Log <u>Lin</u>

802.11g

Wstlab

🔆 Agilent	Freq/Channel
Ch Freq 2.412 GHz Trig Free Channel Power Averages: 100	Center Freq 2.41200000 GHz
Center 2.412000000 GHz	Start Freq 2.39925000 GHz
+Avg Log 10	Stop Freq 2.42475000 GHz
	CF Step 2.55000000 MHz <u>Auto</u> Man
Center 2.412 GHz Span 25.5 MHz	Freq Offset 0.00000000 Hz
Channel Power Power Spectral Density	Signal Track On <u>Off</u>
3.85 dBm /17.0000 MHz -68.45 dBm/Hz	Scale Type Log <u>Lin</u>
🔆 Agilent	Freq/Channel
Ch Freq 2.437 GHz Trig Free Channel Power Averages: 100 Center 2.4370000000 GHz	Center Freq 2.43700000 GHz
	Observed Francisco
Ref 10 dBm - Atten 20 dB	Start Freq 2.42425000 GHz
Ref 10 dBm Rtten 20 dB +Avg Log 10 dB/	Start Freq 2.42425000 GHz Stop Freq 2.44975000 GHz CF Step 2 5500000 MHz
Ref 10 dBm Rtten 20 dB +Avg Log 10 dB/ Center 2,437 GHz +Res BM 300 kHz +VBM 1 MHz Sweep 20 ms (1001 pts)	Start Freq 2.42425000 GHz Stop Freq 2.44975000 GHz CF Step 2.55000000 MHz Auto Man Freq Offset 0.0000000 Hz
Ref 10 dBm Rtten 28 dB +Rvg Log 18 dB/ dB/ Center 2.437 GHz +Res BW 300 kHz +VBW 1 MHz Channel Power Span 25.5 MHz +VBW 1 MHz Sweep 20 ms (1001 pts)	Start Freq 2.42425000 GHz Stop Freq 2.44975000 GHz CF Step 2.55000000 MHz Auto Man Freq Offset 0.0000000 Hz Signal Track Off
Ref 10 dBm Rtten 28 dB +Rvg Log 18 dB/ dB/ center 2.437 GHz +Res Bkl 300 kHz +VBkl 1 MHz Sweep 20 ms (1001 pts) Channel Power 5.91 dBm /17.0000 MHz -66.39 dBm/Hz	Start Freq 2.42425000 GHz Stop Freq 2.44975000 GHz CF Step 2.55000000 MHz Man Freq Offset 0.00000000 Hz Signal Track On Scale Type Log Lin
Ref 10 dBm Rtten 20 dB +Avg Log 10 dB/ dB/ center 2.437 GHz +Res BH 300 kHz +Res BH 300 kHz +Res BH 300 kHz +Ses DH 20 ms (1001 pts) Channel Power 5.91 dBm /17.0000 MHz -66.39 dBm/Hz	Start Freq 2.42425000 GHz Stop Freq 2.44975000 GHz CF Step 2.55000000 MHz Auto Man Freq Offset 0.00000000 Hz Signal Track On Off Scale Type Log Lin
Ref 10 dBm Rtten 28 dB +Rvg Log 10 dB/ dB/ center 2.437 GHz +Res BH 300 kHz +VBW 1 MHz Sweep 20 ms (1001 pts) Channel Power 5.91 dBm /17.0000 MHz -66.39 dBm/Hz	Start Freq 2.42425000 GHz Stop Freq 2.44975000 GHz CF Step 2.55000000 MHz Auto Man Freq Offset 0.00000000 Hz Signal Track On Off Scale Type Log Lin

2.46200000 GHz Channel Power Averages: 100 Center 2.462000000 GHz Start Freq 2.44925000 GHz Ref 10 dBm Atten 20 dB ŧAvg Stop Freq 2.47475000 GHz Log 10 dB/ **CF Step** 2.55000000 MHz <u>Auto</u> Man FreqOffset 0.00000000 Hz Center 2.462 GHz ‡Res BW 300 kHz Span 25.5 MHz Sweep 20 ms (1001 pts) ≉VBW 1 MHz Signal Track Power Spectral Density Channel Power 0n <u>0ff</u> 5.09 dBm /17.0000 MHz -67.22 dBm/Hz Scale Type Log Lin

802.11n HT20

F Agrient	nag/Channal
	red/channe
Ch Freq 2.437 GHz Trig Free Channel Power Averages: 100 2	Center Fred 2.43700000 GH:
Center 2.437000000 GHz	Start Fred 2.42350000 GH;
Hore 10 uplin - Fitter 20 up	Stop Fred 2.45050000 GH:
	CF Step 2.70000000 MH: I <u>uto</u> Ma
Center 2.437 GHz Span 27 MHz Supeo 20 ms (1001 ptc)	Fr eq Offse 0.00000000 H:
Channel Power Power Spectral Density	Signal Tracl n <u>Of</u>
4.91 dBm /18.0000 MHz -67.64 dBm/Hz	Scale Type

🔆 Agilent	Freq/Channel
Ch Freq 2.462 GHz Trig Free Channel Power Averages: 100	Center Fred 2.46200000 GHz
Center 2.462000000 GHz	Start Free
Ref 1,0 dBm - Atten 20 dB	2.44850000 GHz
+Avg	Stop Fred
	2.47550000 GHz
	CF Step 2.70000000 MH ₂ <u>Auto</u> Mar
	Freq Offset
Center 2.462 GHz Span 27 MHz	0.00000000 Hz
*Kes BN 300 kHz	Signal Track
Channel Power Power Spectral Density	On <u>Of</u>
4.48 dBm /18.0000 MHz -68.07 dBm/Hz	Scale Type Log <u>Lin</u>

802.11n HT40

Agilent			Freq/Channe
Ch Freq 2.4 nammel Power	52 GHz Al	verages: 100	rig Free Center Free 2.45200000 G
Center 2.452000	000 GHz		Start Fre 2.42500000 G
	**************************************		Stop Fre 2.47900000 G
B/			CF Ste 5.4000000 M <u>Auto</u> M
enter 2.452 GHz		Sp Sp	Freq Offso an 54 MHz 0.00000000 1
Channel Power	#VDN 3 MHZ	Power Spectral	Density On <u>C</u>
201 dBm /26	.0000 MHz	-72.62 dB	Sm/Hz
2.94 UDII 730.			Log L
			Log Log
Agilent			Freq/Channe
Agilent Ch Freq 2.4 annel Power	37 GHz	verages: 100	Freq/Channe rig Free 2.43700000 GH
Agilent Ch Freq 2.4 annel Power enter 2.437000	37 GHz AU 000 GHz	verages: 100	rig Free 2.43700000 GH
Ch Freq 2.4 Ch Freq 2.4 Ch Freq 2.4 Center 2.437000	37 GHz 1000 GHz 11 28 dB	verages: 100	rig Free 2.43700000 GH Start Fre 2.4640000 GH
Agilent Ch Freq 2.4 Center 2.437000 Center 2.437000 et 10 dBm Fitte Page B/	37 GHz 1000 GHz 11 28 dB	verages: 100	Scale Typ Log Freq/Channe rig Free Center Fre 2.43700000 GH Start Fre 2.41000000 GH Stop Fre 2.46400000 GH Ger Stop Fre 5.40000000 MH Auto
Agilent Ch Freq 2.4 annel Power Center 2.437000 et 10 dBm Ritte Rvg B/ enter 2.437 GHz	37 GHz Au 000 GHz n 20 dB	verages: 100	Scale Typ Log Freq/Channe rig Free Center Fre 2.43700000 GH Start Fre 2.41000000 GH Stop Fre 2.46400000 GH CF Ste 5.4 MHz Stop0000 H Greq Offse 0.00000000 H
Agilent Ch Freq 2.4 Tarnel Power Center 2.4370000 ef 10 dBm Rtte Rvg B Augustation enter 2.437 GHz Res Bk 1 MHz Channel Power	37 GHz 000 GHz n 20 dB +VEW 3 NHz	verages: 100	Scale Typ Log rig Free Center Free 2.43700000 GH Start Free 2.41000000 GH Stop Fre 2.46400000 GH CF Ste 5.40000000 H Auto Mathematical Stop Fre 0.0000000 H Signal Trac On O

* Agilent	Freq/Channel
Ch Freq 2.422 GHz Trig Free Channel Power Averages: 100	Center Freq 2.42200000 GHz
Center 2.422000000 GHz	Start Freq 2.39500000 GHz
+ Avg Log 10	Stop Freq 2.44900000 GHz
	CF Step 5.40000000 MHz <u>Auto</u> Man
Center 2.422 GHz Span 54 MHz •Res BW 1 MHz #VBW 3 MHz Sweep 20 ms (1001 pts)	Freq Offset 0.00000000 Hz
Channel Power Power Spectral Density	Signal Track On <u>Off</u>
2.85 dBm /36.0000 MHz -72.72 dBm/Hz	Scale Type Log <u>Lin</u>

5. POWER SPECTRAL DENSITY TEST

5.1 Block diagram of test setup

5.2 Limits

According to 15.247(a)(1)(iii), For digitally modulated systems, the power spectral density conducted from the intentional radiator to the antenna shall not be greater than 8 dBm in any 3 kHz band during any time interval of continuous transmission.

5.3 Test procedure

According to the KDB 558074 D01 V03r02, such specifications require that the same method as used to determine the conducted output power shall also be used to determine the power spectral density. The test method of power spectral density as below:

- a. Set instrument center frequency to DTS channel center frequency.
- b. Set span to at least 1.5 times the OBW.
- c. Set RBW to: 3 kHz \leq RBW \leq 100 kHz.
- d. Set VBW $\geq 3 \times RBW$.
- e. Detector = power averaging (RMS) or sample detector (when RMS not available)
- f. Ensure that the number of measurement points in the sweep $\ge 2 x \text{ span/RBW}$.
- g. Sweep time = auto couple.
- h. Use the peak marker function to determine the maximum amplitude level.
- i. Use the peak marker function to determine the maximum amplitude level.
- j. If measured value exceeds limit, reduce RBW (no less than 3 kHz) and repeat (note that this may require zooming in on the emission of interest and reducing the span in order to meet the minimum measurement point requirement as the RBW is reduced).

5.4	Test	result
-----	------	--------

Pass

802.11b						
Channel	Frequency	Power Spectral Density	Limit			
	(MHz)	(dBm/3KHz)	(dBm/3KHz)			
Low	2412	-5.230	8			
Middle	2437	-4.292	8			
High	2462	-5.444	8			

302.11g						
Channel	Frequency	Power Spectral Density	Limit			
	(MHz)	(dBm/3KHz)	(dBm/3KHz)			
Low	2412	-8.664	8			
Middle	2437	-7.596	8			
High	2462	-8.991	8			

802.11n(HT20)						
Channel	Limit					
	(MHz)	(dBm/3KHz)	(dBm/3KHz)			
Low	2412	-8.340	8			
Middle	2437	-9.620	8			
High	2462	-8.842	8			

802.11n(HT40)						
Channel	Limit					
	(MHz)	(dBm/3KHz)	(dBm/3KHz)			
Low	2422	-19.66	8			
Middle	2437	-20.44	8			
High	2452	-20.18	8			

The spectrum analyzer plots are attached as below.

802.11b Channel Low 2412MHz

802.11b Channel Middle 2437MHz

802.11b Channel High 2462MHz

802.11g Channel Low 2412MHz

802.11g Channel Middle 2437MHz

802.11g Channel High 2462MHz

802.11n(HT20M) Channel Low 2412MHz

802.11n (HT20) Channel Middle 2437MHz

802.11n(HT20) Channel High 2462MHz

802.11n(HT40) Channel Low 2422MHz

802.11n (HT40) Middle High 2437MHz

802.11n (HT40) Channel High 2452MHz

6. BAND EDGE COMPLIANCE TEST

6.1 Block diagram of test setup

6.2 Limits

Part 2.1051, Part 2.105 and Section 15.247(d): In any 100 kHz bandwidth outside the frequency band in which the spread spectrum or digitally modulated intentional radiator is operating, the radio frequency power that is produced by the intentional radiator shall be at least 20 dB below that in the 100 kHz bandwidth within the band that contains the highest level of the desired power, based on either an RF conducted or a radiated measurement, provided the transmitter demonstrates compliance with the peak conducted power limits. If the transmitter complies with the conducted power limits based on the use of RMS averaging over a time interval, as permitted under paragraph (b)(3) of this section, the attenuation required under this paragraph shall be 30 dB instead of 20 dB. Attenuation below the general limits specified in Section 15.209(a) is not required. In addition, radiated emissions which fall in the restricted bands, as defined in Section 15.205(a), must also comply with the radiated emission limits specified in Section 15.209(a).

6.3 Test procedure

Conducted Band Edge:

- a. The transmitter output was connected to the spectrum analyzer via a low loss cable.
- b. Set RBW of spectrum analyzer to 100kHz and VBW to 300kHz.

Radiate Band Edge:

- a. The EUT is placed on a turntable, which is 0.8m above the ground plane and worked at highest radiated power.
- b. The turntable was rotated for 360 degrees to determine the position of maximum emission level.
- c. EUT is set 3m away from the receiving antenna, which is varied from 1m to 4m to find out the highest emission.
- d. Set the spectrum analyzer in the following setting in order to capture the lower and upper band-edges of the emission: RBW=1MHz, VBW=1MHz
- e. The band edges was measured and recorded.
- 6.4 Test result Pass

Radiated Band Edge Result

802.11b Channel Low 2412MHz Vertical (Worst case)

No.	Frequency	Reading	Correct	Result	Limit	Margin	Remark
	(MHz)	(dBuV/m)	dB/m	(dBuV/m)	(dBuV/m)	(dB)	
1	2310.000	33.99	-4.42	29.57	54.00	-24.43	Average Detector
	2310.000	45.54	-4.42	41.12	74.00	-32.88	Peak Detector
2	2390.000	34.92	-3.72	31.20	54.00	-22.80	Average Detector
	2390.000	48.21	-3.72	44.49	74.00	-29.51	Peak Detector
3	2400.000	52.72	-3.64	49.08	Delta - 41 24dBa		Average Detector
4	2410.560	93.98	-3.56	90.42	Deita =4	1.540DC	Average Detector

802.11b Channel High 2462MHz Vertical (Worst case)

No.	Frequency	Reading	Correct	Result	Limit	Margin	Remark
	(MHz)	(dBuV/m)	Factor(dB)	(dBuV/m)	(dBuV/m)	(dB)	
1	2463.250	93.19	-3.16	90.03	1	1	Average Detector
	2463.150	104.73	-3.16	101.57	1	1	Peak Detector
2	2483.500	33.54	-3.01	30.53	54.00	-23.47	Average Detector
	2483.500	47.43	-3.01	44.42	74.00	-29.58	Peak Detector
3	2500.000	33.43	-2.88	30.55	54.00	-23.45	Average Detector
	2500.000	44.64	-2.88	41.76	74.00	-32.24	Peak Detector

Page 36 of 56

802.11g Channel Low 2412MHz Vertical (Worst case)

No.	Frequency	Reading	Correct	Result	Limit	Margin	Remark
	(MHz)	(dBuV/m)	dB/m	(dBuV/m)	(dBuV/m)	(dB)	
1	2310.000	34.06	-4.42	29.64	54.00	-24.36	Average Detector
	2310.000	46.01	-4.42	41.59	74.00	-32.41	Peak Detector
2	2390.000	37.50	-3.72	33.78	54.00	-20.22	Average Detector
	2390.000	53.12	-3.72	49.40	74.00	-24.60	Peak Detector
3	2400.000	50.07	-3.64	46.43	Delta =38.31dBc		Average Detector
4	2406.480	88.33	-3.59	84.74			Average Detector

802.11g Channel High 2462MHz Vertical (Worst case)

No.	Frequency	Reading	Correct	Result	Limit	Margin	Remark
	(MHz)	(dBuV/m)	dB/m	(dBuV/m)	(dBuV/m)	(dB)	
1	2463.350	85.83	-3.16	82.67	1	1	Average Detector
	2463.700	98.03	-3.16	94.87	1	1	Peak Detector
2	2483.500	35.33	-3.01	32.32	54.00	-21.68	Average Detector
	2483.500	52.97	-3.01	49.96	74.00	-24.04	Peak Detector
3	2500.000	33.55	-2.88	30.67	54.00	-23.33	Average Detector
	2500.000	46.13	-2.88	43.25	74.00	-30.75	Peak Detector

802.11n(20M) Channel Low 2412MHz Vertical (Worst case)

No.	Frequency	Reading	Correct	Result	Limit	Margin	Remark
	(MHz)	(dBuV/m)	dB/m	(dBuV/m)	(dBuV/m)	(dB)	
1	2310.000	33.81	-4.42	29.39	54.00	-24.61	Average Detector
	2310.000	45.57	-4.42	41.15	74.00	-32.85	Peak Detector
2	2390.000	37.35	-3.72	33.63	54.00	-20.37	Average Detector
	2390.000	52.63	-3.72	48.91	74.00	-25.09	Peak Detector
3	2400.000	50.36	-3.64	46.72	Delta =37.95dBc		Average Detector
4	2404.200	88.27	-3.60	84.67			Average Detector

802.11n(20M) Channel High 2462MHz Vertical (Worst case)

No.	Frequency	Reading	Correct	Result	Limit	Margin	Remark
	(MHz)	(dBuV/m)	dB/m	(dBuV/m)	(dBuV/m)	(dB)	
1	2463.300	85.49	-3.16	82.33	1	1	Average Detector
	2463.300	96.27	-3.16	93.11	1	1	Peak Detector
2	2483.500	35.60	-3.01	32.59	54.00	-21.41	Average Detector
	2483.500	54.00	-3.01	50.99	74.00	-23.01	Peak Detector
3	2500.000	33.62	-2.88	30.74	54.00	-23.26	Average Detector
	2500.000	45.89	-2.88	43.01	74.00	-30.99	Peak Detector

802.11n(HT40) Channel Low 2422MHz Vertical (Worst case)

No.	Frequency	Reading	Correct	Result	Limit	Margin	Remark
	(MHz)	(dBuV/m)	dB/m	(dBuV/m)	(dBuV/m)	(dB)	
1	2310.000	33.80	-4.42	29.38	54.00	-24.62	Average Detector
	2310.000	45.65	-4.42	41.23	74.00	-32.77	Peak Detector
2	2390.000	35.20	-3.72	31.48	54.00	-22.52	Average Detector
	2390.000	47.24	-3.72	43.52	74.00	-30.48	Peak Detector
3	2400.000	41.49	-3.64	37.85	Dalta -42.46dBa		Average Detector
4	2432.445	84.71	-3.40	81.31	Delta =43.460Bc		Average Detector

802.11n(HT40) Channel High 2452MHz Vertical (Worst case)

No.	Frequency	Reading	Correct	Result	Limit	Margin	Remark
	(MHz)	(dBuV/m)	dB/m	(dBuV/m)	(dBuV/m)	(dB)	
1	2435.320	81.62	-3.37	78.25	1	1	Average Detector
	2434.760	92.68	-3.38	89.30	1	1	Peak Detector
2	2483.500	35.87	-3.01	32.86	54.00	-21.14	Average Detector
	2483.500	48.76	-3.01	45.75	74.00	-28.25	Peak Detector
3	2500.000	33.81	-2.88	30.93	54.00	-23.07	Average Detector
	2500.000	44.87	-2.88	41.99	74.00	-32.01	Peak Detector

802.11b Channel Low 2412MHz

Page 40 of 56

802.11n (HT20) Channel Low 2412MHz

802.11n(HT20) Channel High 2462MHz

Span 120 MHs

802.11n (HT40) Channel Low 2422MHz *RBW 100 kHz Marker 2 [T1] *VEW 300 kHz -30.89 dBm SWT 15 ms 2.398320000 GHz * *Att 30 dB Ref 20 dBm 20 Off 1 [T1 et 1 Marker 26 dBm GH 1 PK MAXH phone the and V V man unal grand south and when

12 MHz/

802.11n (HT40) Channel High 2452MHz

Center 2.4 GHs

7. RADIATED SPURIOUS EMISSION TEST

- 7.1 Block diagram of test setup
- (1) Radiated Emission Test-Up Frequency Below 30MHz

(2) Radiated Emission Test-Up Frequency 30MHz~1GHz

(3) Radiated Emission Test-Up Frequency Above 1GHz

7.2 Limits

Part 2.1051, Part 2.1053, Part 2.1057 and Section 15.247(d): In any 100 kHz bandwidth outside the frequency band in which the spread spectrum or digitally modulated intentional radiator is operating, the radio frequency power that is produced by the intentional radiator shall be at least 20 dB below that in the 100 kHz bandwidth within the band that contains the highest level of the desired power, based on either an RF conducted or a radiated measurement, provided the transmitter demonstrates compliance with the peak conducted power limits. If the transmitter complies with the conducted power limits based on the use of RMS averaging over a time interval, as permitted under paragraph (b)(3) of this section, the attenuation required under this paragraph shall be 30 dB instead of 20 dB. Attenuation below the general limits specified in Section 15.209(a) is not required. In addition, radiated emissions which fall in the restricted bands, as defined in Section 15.209(a).

7.3 Restricted bands of operation

FCC Part 15.205 Restricted bands of operation

(a) Except as shown in paragraph (d) of this section, Only spurious emissions are permitted in any of the frequency bands listed below:

MHz	MHz	MHz	GHz						
0.090-0.110	16.42-16.423	399.9-410	4.5-5.15						
¹ 0.495-0.505	16.69475-16.69525	608-614	5.35-5.46						
2.1735-2.1905	16.80425-16.80475	960-1240	7.25-7.75						
4.125-4.128	25.5-25.67	1300-1427	8.025-8.5						
4.17725-4.17775	37.5-38.25	1435-1626.5	9.0-9.2						
4.20725-4.20775	73-74.6	1645.5-1646.5	9.3-9.5						
6.215-6.218	74.8-75.2	1660-1710	10.6-12.7						
6.26775-6.26825	108-121.94	1718.8-1722.2	13.25-13.4						
6.31175-6.31225	123-138	2200-2300	14.47-14.5						
8.291-8.294	149.9-150.05	2310-2390	15.35-16.2						
8.362-8.366	156.52475-156.52525	2483.5-2500	17.7-21.4						
8.37625-8.38675	156.7-156.9	2690-2900	22.01-23.12						
8.41425-8.41475	162.0125-167.17	3260-3267	23.6-24.0						
12.29-12.293	167.72-173.2	3332-3339	31.2-31.8						
12.51975-12.52025	240-285	3345.8-3358	36.43-36.5						
12.57675-12.57725	322-335.4	3600-4400	(²)						
13.36-13.41									
¹ Until February 1, 1999, this restricted band shall be 0.490-0.510									
² Above 38.6									

(b) Except as provided in paragraphs (d) and (e), the field strength of emission appearing within these frequency bands shall not exceed the limits shown in Section 15.209. At frequencies equal to or less than 1000MHz, Compliance with the limits in Section 15.209 shall be demonstrated using measurement instrumentation employing a CISPR quasi-peak detector. Above 1000MHz, compliance with the emission limits in Section15.209 shall be demonstrated based on the average value of the measured emissions. The provisions in Section 15.35 apply to these measurements.

Page 45 of 56

7.4 Test procedure

- 1, The EUT is placed on a turntable, which is 0.8m above ground plane below 1GHz and 1.5m above ground plane above 1GHz.
- 2, The turntable shall be rotated for 360 degrees to determine the position of maximum emission level.
- 3, EUT is set 3m away from the receiving antenna, which is varied from 1m to 4m to find out the highest emissions
- 4. For the radiated emission test above 1GHz: Place the measurement antenna away from each area of the EUT determined to be a source of emissions at the specified measurement distance, while keeping the measurement antenna aimed at the source of emissions at each frequency of significant emissions, with polarization oriented for maximum response. The measurement antenna may have to be higher or lower than the EUT, depending on the radiation pattern of the emission and staying aimed at the emission source for receiving the maximum signal. The final measurement antenna elevation shall be that which maximizes the emissions. The measurement antenna elevation for maximum emissions shall be restricted to a range of heights of from 1 m to 4 m above the ground or reference ground plane.
- 5, Maximum procedure was performed on the six highest emissions to ensure EUT compliance
- 6, And also, each emission was to be maximized by changing the polarization of receiving antenna both horizontal and vertical
- 7, Repeat above procedures until the measurements for all frequencies are complete.
- 8, Based on the Frequency Generator in the device include 16MHz. The test frequency range from 9KHz to 25GHz per FCC PART 15.33(a)

Note:

For battery operated equipment, the equipment tests shall be performed using a new battery.

7.5 Test result Pass

Test mode: 802.11b For Below 30MHz

10					
Freq.(MHz)	Reading (dBuV/m) (QP)	Factor(dB) Corr.	Result (dBuV/m)	Limit (dBuV/m)	Margin(dB)
/	/	/	/	/	/

Test mode: 802.11b $\ (Worst \ case)$ For 30MHz-1000MHz

Н

No.	Frequency	Reading	Correct	Result	Limit	Margin	Degree	Height	Remark
	(MHz)	(dBuV/m)	dB/m	(dBuV/m)	(dBuV/m)	(dB)	(•)	(cm)	
1	54.8348	23.04	-7.93	15.11	40.00	-24.89	162	100	QP
2	494.1984	22.02	-1.26	20.76	46.00	-25.24	200	100	QP
3	952.0937	21.23	5.96	27.19	46.00	-18.81	359	200	QP

V

No.	Frequency	Reading	Correct	Result	Limit	Margin	Degree	Height	Remark
	(MHz)	(dBuV/m)	dB/m	(dBuV/m)	(dBuV/m)	(dB)	(•)	(cm)	
1	48.5016	24.70	-7.45	17.25	40.00	-22.75	240	100	QP
2	556.7744	23.61	0.27	23.88	46.00	-22.12	187	100	QP
3	922.5157	24.30	5.63	29.93	46.00	-16.07	220	100	QP

₩stlab

Test mode: 802.11b (Worst case) For 1GHz-25GHz

Frequency	Reading	Correct	Result	Limit	Margin	Polar	Detector
(MHz)	(dBuV/m)	dB/m	(dBuV/m)	(dBuV/m)	(dB)	H/V	
			Low Channe	el-2412MHz			
4824.000	42.23	12.37	54.60	74.00	-19.40	Н	PK
4824.000	31.60	12.37	43.97	54.00	-10.03	н	AV
7236.000	34.01	15.49	49.50	74.00	-24.50	Н	PK
7236.000	25.20	15.49	40.69	54.00	-13.31	н	AV
4824.000	42.85	12.37	55.22	74.00	-18.78	V	PK
4824.000	31.59	12.37	43.96	54.00	-10.04	V	AV
7236.000	33.99	15.49	49.48	74.00	-24.52	V	PK
7236.000	24.34	15.49	39.83	54.00	-14.17	V	AV
			Middle Chan	nel-2437MHz			
4874.000	42.68	12.46	55.14	74.00	-18.86	н	PK
4874.000	31.62	12.46	44.08	54.00	-9.92	н	AV
7311.000	37.32	15.56	52.88	74.00	-21.12	Н	PK
7311.000	24.39	15.56	39.95	54.00	-14.05	н	AV
4874.000	43.57	12.46	56.03	74.00	-17.97	V	PK
4874.000	31.62	12.46	44.08	54.00	-9.92	V	AV
7311.000	36.39	15.56	51.95	74.00	-22.05	V	PK
7311.000	25.78	15.56	41.34	54.00	-12.66	V	AV
			High Chann	el-2462MHz			
4924.000	46.69	12.55	59.24	74.00	-14.76	Н	PK
4924.000	33.48	12.55	46.03	54.00	-7.97	н	AV
7386.000	37.06	15.64	52.70	74.00	-21.30	н	PK
7386.000	26.20	15.64	41.84	54.00	-12.16	н	AV
4924.000	48.73	12.55	61.28	74.00	-12.72	V	PK
4924.000	34.75	12.55	47.30	54.00	-6.70	V	AV
7386.000	37.23	15.64	52.87	74.00	-21.13	V	PK
7386.000	26.33	15.64	41.97	54.00	-12.03	V	AV

8. CONDUCTED SPURIOUS EMISSION COMPLIANCE TEST

8.1 Block diagram of test setup

8.2 Limits

Se Section 15.247(d): In any 100 kHz bandwidth outside the frequency band in which the spread spectrum or digitally modulated intentional radiator is operating, the radio frequency power that is produced by the intentional radiator shall be at least 20 dB below that in the 100 kHz bandwidth within the band that contains the highest level of the desired power, based on either an RF conducted or a radiated measurement, provided the transmitter demonstrates compliance with the peak conducted power limits. If the transmitter complies with the conducted power limits based on the use of RMS averaging over a time interval, as permitted under paragraph (b)(3) of this section, the attenuation required under this paragraph shall be 30 dB instead of 20 dB. Attenuation below the general limits specified in Section 15.209(a) is not required. In addition, radiated emissions which fall in the restricted bands, as defined in Section 15.205(a), must also comply with the radiated emission limits specified in Section 15.209(a).

8.3 Test procedure

- a. The transmitter output was connected to the spectrum analyzer via a low loss cable.
- b. Set RBW of spectrum analyzer to 100kHz and VBW to 300kHz.
- c. The Conducted Spurious Emission was measured and recorded.
- 8.4 Test Result

Pass

The spectrum analyzer plots are attached as below.

The worst test mode: 802.11b TX 802.11b Channel Low 2412MHz

Spectrum	<u> </u>								™ ⊽
Ref Level	10.00 dBm	Offset	0.50 dB 👄	RBW 100 kł	łz				
🗧 Att	30 dB	SWT	250 ms 👄	VBM 300 kH	tz Mode	Auto Sweep			
●1Pk Max									
					M	2[1]		-	51.81 dBm
								10	5.3450 GHz
0 dBm M1					M	1[1]			-6.26 dBm 2 9070 QU-
T T						L	1	1	2.8970 GH2
-10 dBm									
-20 dBm									
-20 d8 m									
-50 0011									
-40 dBm									
						100			
-50 dBm						NI2			
	1	was holder	and the second	والجريعان والمروانين	mannon	www.Www	the way	Mumbre	way mush
60.dBm	what when the	W W W Y Y	about only on	0000-00-00-0				0	
Mar Martin									
-70 dBm									
00 d0 m									
-eu usm									
CF 12.515	GHz		-1	691	pts	1	1	Span 2	24.97 GHz
	Y				Mea	asuring		444	,

TX 802.11b Channel Middle 2437MHz

Spectrum										
Ref Level	10.00 dBm	Offset	0.50 dB 👄 F	BW 100 kH	z					
🖷 Att	30 de	SWT	250 ms 👄 🖌	/ BW (300 kH	z Mode	Auto Sweep				
⊖1Pk Max										
o dom					M2[1]			16	-51.10 dBm 16.3820 GHz	
M1								-7.25 dBm 2.4330 GHz		
-10 dBm										
-20 dBm										
-30 dBm										
-40 dBm——										
-50 dBm——						M2	Industry and	M 5		
-60 dBm	in the work	lageror services	Junan Mar	Contraction	inerlandestr-lasher	(Jawa . 11 anti.		hingar wa	www.man	
-70 dBm										
-80 dBm										
CF 12.515 (GHz			691	pts			Span S	24.97 GHz	
	Л				Mea	suring		444	Â	

TX 802.11b Channel High 2462MHz

9. AC POWER LINE CONDUCTED EMISSION

9.1 Block diagram of test setup

9.2 Limits

Conducted Emission Measurement Limits According to Section 15.207(a)

Frequency	Limits (dBµV)				
MHz	Quasi-peak Level	Average Level			
0.15 ~ 0.50	66 ~ 56*	56 ~ 46*			
0.50 ~ 5.00	56	46			
5.00 ~ 30.00	60	50			

* Decreases with the logarithm of the frequency.

9.3 Test procedure

The EUT is put on the plane 0.8m high above the ground by insulating support and is connected to the power mains through a line impedance stabilization network (L.I.S.N.). This provides a 50ohm coupling impedance for the EUT system. Please refer the block diagram of the test setup and photographs. Both sides of AC lines are checked to find out the maximum conducted emission. In order to find the maximum emission levels, the relative positions of equipment and all of the interface cables shall be changed according to ANSI C63.4: 2003 on Conducted Emission Measurement.

The bandwidth of test receiver (R & S ESPI) is set at 9kHz. The frequency range from 150kHz to 30MHz is checked.

9.4 Test Result

PASS

Ν

No.	Frequency	Reading	Correct	Result	Limit	Margin	Detector
	(MHz)	(dBuV)	(dB/m)	(dBuV)	(dBuV)	(dB)	
1	0.5100	40.96	12.51	53.47	56.00	-2.53	peak
2*	0.5100	31.40	12.51	43.91	46.00	-2.09	AVG
3	1.5660	36.73	13.00	49.73	56.00	-6.27	peak
4	1.5660	27.90	13.00	40.90	46.00	-5.10	AVG
5	2.3780	35.55	13.00	48.55	56.00	-7.45	peak
6	2.4540	27.30	13.00	40.30	46.00	-5.70	AVG

No.	Frequency	Reading	Correct	Result	Limit	Margin	Detector
	(MHz)	(dBuV)	(dB/m)	(dBuV)	(dBuV)	(dB)	
1*	0.4940	42.68	12.50	55.18	56.10	-0.92	peak
2	0.4940	30.51	12.50	43.01	46.10	-3.09	AVG
3	0.7940	32.91	12.79	45.70	56.00	-10.30	peak
4	0.7940	21.71	12.79	34.50	46.00	-11.50	AVG
5	1.4340	31.98	13.00	44.98	56.00	-11.02	peak
6	1.4340	18.24	13.00	31.24	46.00	-14.76	AVG

10. ANTENNA REQUIREMENT

According to Section 15.203, an intentional radiator shall be designed to ensure that no antenna other than that furnished by the responsible party shall be used with the device. Antenna is fixed by enclosure, can not be changed except take apart the product.

<u>Antenna</u>

₩stlab

11. POTOGRAPH OF TEST

11.1 Radiated Emission

₩stlab

11.2 Conducted Emission

