

FCC PART	15 SUBPART C TEST F	REPORT			
	FCC PART 15.247				
Report Reference No	GTS20190917003-2-1-3 2AGN7-UHD2000				
Compiled by		1			
(position+printed name+signature):	File administrators Jimmy Wang	Jon Mey			
Supervised by		FURAL TEST SEA			
(position+printed name+signature):	Test Engineer Aaron Tan	GTS			
Approved by					
(position+printed name+signature):	Manager Jason Hu	Jasentit			
Date of issue	Sep. 24, 2019				
Representative Laboratory Name .:	Shenzhen Global Test Service	Co., Ltd.			
Address	No.7-101 and 8A-104, Building 7 Garden, No.98, Pingxin North Roa Pinghu Street, Longgang District,				
Applicant's name	Shenzhen Zidoo Technology Co	o., Ltd.			
Address	Room 12 D, Block A, CENTRAL GREAT SEARCHINGS, Xixiang Avenue, BaoAn District, Shenzhen, China				
Test specification:					
Standard	FCC Part 15.247				
TRF Originator	Shenzhen Global Test Service Co	o.,Ltd.			
Master TRF	Dated 2014-12				
Shenzhen Global Test Service Co.,Lt	td. All rights reserved.				
This publication may be reproduced in Shenzhen Global Test Service Co.,Ltd. Shenzhen Global Test Service Co.,Ltd. resulting from the reader's interpretatio	is acknowledged as copyright own takes no responsibility for and will	ner and source of the material. I not assume liability for damages			
Test item description	4K Hi-Fi MEDIA PLAYER				
Trade Mark	ZIDOO				
Manufacturer	Shenzhen Zidoo Technology Co.,	Ltd.			
Model/Type reference	UHD 2000				
Listed Models	N/A				
Modulation Type	GFSK, Π/4DQPSK, 8DPSK				
Operation Frequency	From 2402MHz to 2480MHz				
Rating	110-120V/220-240V~, 50Hz/60H	z,MAX 0.75A			
Result:	PASS				

Test Report No. :	GT	۲S20190917003-2-1-3	Sep. 24, 2019 Date of issue
Equipment under Test	:	4K Hi-Fi MEDIA PLAYER	
Model /Type	:	UHD 2000	
Listed Models	:	N/A	
Applicant	:	Shenzhen Zidoo Technolog	ıy Co., Ltd.
Address	:	Room 12 D, Block A, CENT Xixiang Avenue, BaoAn Distr	RAL GREAT SEARCHINGS, ict, Shenzhen, China
Manufacturer	:	Shenzhen Zidoo Technolog	ıy Co., Ltd.
Address	:	Room 12 D, Block A, CENT Xixiang Avenue, BaoAn Distr	RAL GREAT SEARCHINGS, ict, Shenzhen, China

TEST REPORT

Test Result:	PASS
--------------	------

The test report merely corresponds to the test sample.

It is not permitted to copy extracts of these test result without the written permission of the test laboratory.

Contents

<u>1</u>	TEST STANDARDS	
<u>2</u>	SUMMARY	5
2.1	General Remarks	5
2.2	Product Description	5
2.3	Equipment Under Test Short des grintion of the Equipment under Test (EUT)	5
2.4 2.5	Short description of the Equipment under Test (EUT) EUT operation mode	5 6
2.5	Block Diagram of Test Setup	6
2.7	Related Submittal(s) / Grant (s)	6
2.8	Modifications	6
<u>3</u>	TEST ENVIRONMENT	
3.1	Address of the test laboratory	7
3.2	Test Facility	7
3.3	Environmental conditions	7
3.4	Summary of measurement results	8
3.5	Statement of the measurement uncertainty	8
3.6	Equipments Used during the Test	9
<u>4</u>	TEST CONDITIONS AND RESULTS	
4.1	AC Power Conducted Emission	10
4.2	Radiated Emission	13
4.3	Maximum Peak Output Power	20
4.4	20dB Bandwidth	21
4.5	Frequency Separation	25
4.6	Number of hopping frequency	27
4.7	Time of Occupancy (Dwell Time)	29
4.8	Out-of-band Emissions	33
4.9	Pseudorandom Frequency Hopping Sequence	41
4.10	Antenna Requirement	42
<u>5</u>	TEST SETUP PHOTOS OF THE EUT	
6	PHOTOS OF THE EUT	44

1 <u>TEST STANDARDS</u>

The tests were performed according to following standards:

<u>FCC Rules Part 15.247</u>: Frequency Hopping, Direct Spread Spectrum and Hybrid Systems that are in operation within the bands of 902-928 MHz, 2400-2483.5 MHz, and 5725-5850 MHz. <u>ANSI C63.10-2013</u>: American National Standard for Testing Unlicensed Wireless Devices

2 <u>SUMMARY</u>

2.1 General Remarks

Date of receipt of test sample	:	Sep. 10, 2019
		•
Testing commenced on	:	Sep. 11, 2019
Testing concluded on	:	Sep. 23, 2019

2.2 Product Description

Product Name:	4K Hi-Fi MEDIA PLAYER
Model/Type reference:	UHD 2000
Power supply:	110-120V/220-240V~, 50Hz/60Hz
Bluetooth :	
Supported Type:	Bluetooth BR/EDR
Modulation:	GFSK, π/4DQPSK, 8DPSK
Operation frequency:	2402MHz~2480MHz
Channel number:	79
Channel separation:	1MHz
Antenna type:	External antenna
Antenna gain:	2.0dBi

2.3 Equipment Under Test

Power supply system utilised

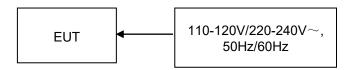
Power supply voltage	•	0	230V / 50 Hz	0	120V / 60Hz
		0	12 V DC	0	24 V DC
			Other (specified in blank bel	ow	

<u>110-120V/220-240V~, 50Hz/60Hz</u>

2.4 Short description of the Equipment under Test (EUT)

This is a 4K Hi-Fi MEDIA PLAYER.

For more details, refer to the user's manual of the EUT.


2.5 EUT operation mode

The Applicant provides communication tools software to control the EUT for staying in continuous transmitting (Duty Cycle more than 98%) and receiving mode for testing .There are 79 channels provided to the EUT and Channel 00/39/78 were selected to test.

Operation Frequency:

Channel	Frequency (MHz)
00	2402
01	2403
:	:
38	2440
39	2441
40	2442
:	:
77	2479
78	2480

2.6 Block Diagram of Test Setup

2.7 Related Submittal(s) / Grant (s)

This submittal(s) (test report) is intended for the device filing to comply with Section 15.247 of the FCC Part 15, Subpart C Rules.

2.8 Modifications

No modifications were implemented to meet testing criteria.

3 TEST ENVIRONMENT

3.1 Address of the test laboratory

Shenzhen Global Test Service Co.,Ltd.

No.7-101 and 8A-104, Building 7 and 8, DCC Cultural and Creative Garden, No.98, Pingxin North Road, Shangmugu Community, Pinghu Street, Longgang District, Shenzhen, Guangdong

The 3m-Semi anechoic test site fulfils CISPR 16-1-4 according to ANSI C63.4:2014 and CISPR 16-1-4:2010 SVSWR requirement for radiated emission above 1GHz.

3.2 Test Facility

The test facility is recognized, certified, or accredited by the following organizations:

FCC-Registration No.: 165725

Shenzhen Global Test Service Co.,Ltd EMC Laboratory has been registered and fully described in a report filed with the (FCC) Federal Communications Commission. The acceptance letter from the FCC is maintained in our files.

A2LA-Lab Cert. No.: 4758.01

Shenzhen Global Test Service Co.,Ltd. EMC Laboratory has been accredited by A2LA for technical competence in the field of electrical testing, and proved to be in compliance with ISO/IEC 17025: 2005 General Requirements for the Competence of Testing and Calibration Laboratories and any additional program requirements in the identified field of testing.

CNAS-Lab Code: L8169

Shenzhen Global Test Service Co.,Ltd. has been assessed and proved to be in compliance with CNAS-CL01 Accreditation Criteria for Testing and Calibration Laboratories (identical to ISO/IEC 17025: 2005 General Requirements) for the Competence of Testing and Calibration Laboratories. Date of Registration: Dec. 11, 2015. Valid time is until Dec. 10, 2024.

3.3 Environmental conditions

During the measurement the environmental conditions were within the listed ranges:

Temperature:	15-35 ° C
Humidity:	30-60 %
Atmospheric pressure:	950-1050mbar

3.4	Summary	of measurement	results
-----	---------	----------------	---------

Test Specification clause	Test case	Test Mode	Test Channel			Pass	Fail	NA	NP	Remark
§15.247(a)(1)	Carrier Frequency separation	GFSK Π/4DQPSK 8DPSK	⊠ Lowest ⊠ Middle ⊠ Highest	GFSK П/4DQPSK 8DPSK	🛛 Middle					complies
§15.247(a)(1)	Number of Hopping channels	GFSK Π/4DQPSK 8DPSK	🛛 Full	GFSK 8DPSK	🛛 Full	\boxtimes				complies
§15.247(a)(1)	Time of Occupancy (dwell time)	GFSK Π/4DQPSK 8DPSK	⊠ Lowest ⊠ Middle ⊠ Highest	GFSK Π/4DQPSK 8DPSK	🛛 Middle	\boxtimes				complies
§15.247(a)(1)	Spectrum bandwidth of a FHSS system 20dB bandwidth	GFSK Π/4DQPSK 8DPSK	⊠ Lowest ⊠ Middle ⊠ Highest	GFSK Π/4DQPSK 8DPSK	⊠ Lowest ⊠ Middle ⊠ Highest					complies
§15.247(b)(1)	Maximum output power	GFSK Π/4DQPSK 8DPSK	⊠ Lowest ⊠ Middle ⊠ Highest	GFSK П/4DQPSK 8DPSK	⊠ Lowest ⊠ Middle ⊠ Highest					complies
§15.247(d)	Band edge compliance conducted	GFSK Π/4DQPSK 8DPSK	⊠ Lowest ⊠ Highest	GFSK Π/4DQPSK 8DPSK	⊠ Lowest ⊠ Highest					complies
§15.205	Band edge compliance radiated	GFSK Π/4DQPSK 8DPSK	⊠ Lowest ⊠ Highest	GFSK	⊠ Lowest ⊠ Highest	\boxtimes				complies
§15.247(d)	TX spurious emissions conducted	GFSK Π/4DQPSK 8DPSK	⊠ Lowest ⊠ Middle ⊠ Highest	GFSK П/4DQPSK 8DPSK	⊠ Lowest ⊠ Middle ⊠ Highest	\boxtimes				complies
§15.247(d)	TX spurious emissions radiated	GFSK Π/4DQPSK 8DPSK	⊠ Lowest ⊠ Middle ⊠ Highest	GFSK	⊠ Lowest ⊠ Middle ⊠ Highest	\boxtimes				complies
§15.209(a)	TX spurious Emissions radiated Below 1GHz	GFSK Π/4DQPSK 8DPSK	⊠ Lowest ⊠ Middle ⊠ Highest	GFSK	🛛 Middle	\boxtimes				complies
§15.107(a) §15.207	Conducted Emissions 9KHz-30 MHz	GFSK Π/4DQPSK 8DPSK	⊠ Lowest ⊠ Middle ⊠ Highest	GFSK	🛛 Middle					complies

Remark:

1. The measurement uncertainty is not included in the test result.

2. NA = Not Applicable; NP = Not Performed

3. We tested all test mode and recorded worst case in report

3.5 Statement of the measurement uncertainty

The data and results referenced in this document are true and accurate. The reader is cautioned that there may be errors within the calibration limits of the equipment and facilities. The measurement uncertainty was calculated for all measurements listed in this test report acc. to CISPR 16 - 4 "Specification for radio disturbance and immunity measuring apparatus and methods – Part 4: Uncertainty in EMC Measurements" and is documented in the Shenzhen Global Test Service Co.,Ltd quality system acc. to DIN EN ISO/IEC 17025. Furthermore, component and process variability of devices similar to that tested may result in additional deviation. The manufacturer has the sole responsibility of continued compliance of the device.

Hereafter the best measurement capability for Shenzhen GTS laboratory is reported:

Test	Range	Measurement Uncertainty	Notes
Radiated Emission	30~1000MHz	4.10 dB	(1)
Radiated Emission	1~18GHz	4.32 dB	(1)
Radiated Emission	18-40GHz	5.54 dB	(1)
Conducted Disturbance	0.15~30MHz	3.12 dB	(1)

(1) This uncertainty represents an expanded uncertainty expressed at approximately the 95% confidence level using a coverage factor of k=2.

3.6 Equipments Used during the Test

Test Equipment	Manufacturer	Model No.	Serial No.	Calibration Date	Calibration Due Date
LISN	R&S	ENV216	3560.6550.08	2019/09/19	2020/09/18
LISN	R&S	ESH2-Z5	893606/008	2019/09/19	2020/09/18
Bilog Antenna	Schwarzbeck	VULB9163	976	2019/09/19	2020/09/18
EMI Test Receiver	R&S	ESCI7	101102	2019/09/19	2020/09/18
Spectrum Analyzer	Agilent	N9020A	MY48010425	2019/09/19	2020/09/18
Spectrum Analyzer	R&S	FSP40	100019	2019/06/04	2020/06/03
Controller	EM Electronics	Controller EM 1000	N/A	N/A	N/A
Horn Antenna	Schwarzbeck	BBHA 9120D	01622	2019/09/19	2020/09/18
Active Loop Antenna	SCHWARZBEC K	FMZB1519	1519-037	2019/09/19	2020/09/18
Broadband Horn Antenna	SCHWARZBEC K	BBHA 9170	971	2019/09/19	2020/09/18
Amplifier	Schwarzbeck	BBV 9743	#202	2019/09/19	2020/09/18
Amplifier	EMCI	EMC051845B	980355	2019/09/19	2020/09/18
Temperature/Humidi ty Meter	Gangxing	CTH-608	02	2019/09/19	2020/09/18
High-Pass Filter	K&L	9SH10- 2700/X12750- O/O	KL142031	2019/09/19	2020/09/18
High-Pass Filter	K&L	41H10- 1375/U12750- O/O	KL142032	2019/09/19	2020/09/18
RF Cable(below 1GHz)	HUBER+SUHNE R	RG214	RE01	2019/09/19	2020/09/18
RF Cable(above 1GHz)	HUBER+SUHNE R	RG214	RE02	2019/09/19	2020/09/18
Data acquisition card	Agilent	U2531A	TW53323507	2019/09/19	2020/09/18
Power Sensor	Agilent	U2021XA	MY5365004	2019/09/19	2020/09/18
EMI Test Software	R&S	ES-K1	V1.7.1	2019/09/19	2020/09/18
EMI Test Software	JS Tonscend	JS32-RE	2.0.1.5	2019/09/19	2020/09/18

Note: The Cal.Interval was one year.

4 TEST CONDITIONS AND RESULTS

4.1 AC Power Conducted Emission

TEST CONFIGURATION

TEST PROCEDURE

1 The equipment was set up as per the test configuration to simulate typical actual usage per the user's manual. The EUT is a tabletop system, a wooden table with a height of 0.8 meters is used and is placed on the ground plane as per ANSI C63.10-2013.

2 Support equipment, if needed, was placed as per ANSI C63.10-2013

3 All I/O cables were positioned to simulate typical actual usage as per ANSI C63.10-2013

4 The EUT received DC 12V power from adapter, the adapter received AC120V/60Hz and AC 240V/60Hz power through a Line Impedance Stabilization Network (LISN) which supplied power source and was grounded to the ground plane.

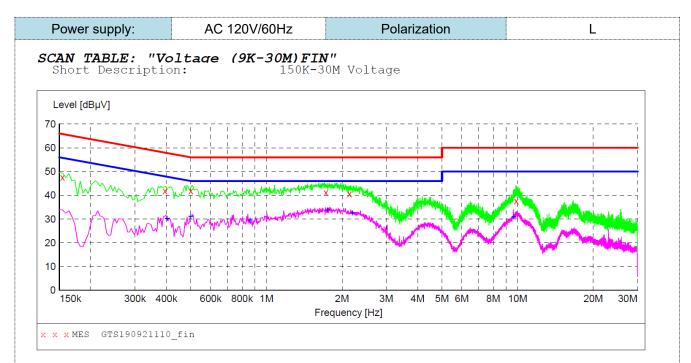
5 All support equipments received AC power from a second LISN, if any.

6 The EUT test program was started. Emissions were measured on each current carrying line of the EUT using a spectrum Analyzer / Receiver connected to the LISN powering the EUT.The LISN has two monitoring points: Line 1 (Hot Side) and Line 2 (Neutral Side). Two scans were taken: one with Line 1 connected to Analyzer / Receiver and Line 2 connected to a 50 ohm load; the second scan had Line 1 connected to a 50 ohm load and Line 2 connected to the Analyzer / Receiver.

7 Analyzer / Receiver scanned from 150 KHz to 30MHz for emissions in each of the test modes.

8 During the above scans, the emissions were maximized by cable manipulation.

AC Power Conducted Emission Limit

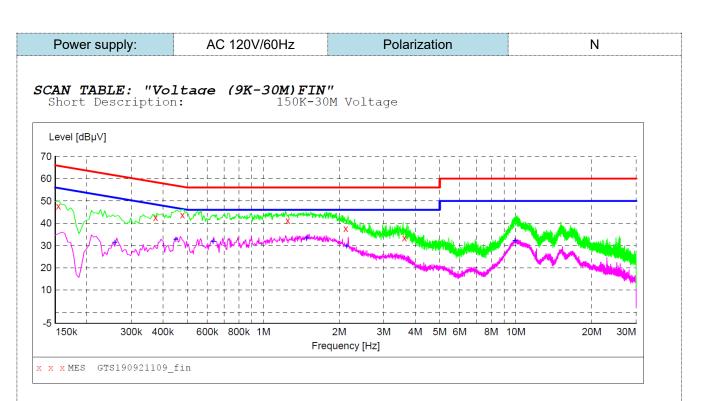

For intentional device, according to § 15.207(a) AC Power Conducted Emission Limits is as following :

	Limit (dBuV)					
Frequency range (MHz)	Quasi-peak	Average				
0.15-0.5	66 to 56*	56 to 46*				
0.5-5	56	46				
5-30	60	50				
* Decreases with the logarithm of the frequence	cy.					

TEST RESULTS

Remark:

- 1. All modes of GFSK, Pi/4 DQPSK, and 8DPSK were test at Low, Middle, and High channel; only the worst result of GFSK Middle Channel was reported as below:
- Both 120 VAC, 50/60 Hz and 240 VAC, 50/60 Hz power supply have been tested, only the worst result of 120 VAC, 60 Hz was reported as below:


MEASUREMENT RESULT: "GTS190921110 fin"

9/21/2019 4:1	5PM						
Frequency	Level	Transd	Limit	Margin	Detector	Line	PE
MHz	dBµV	dB	dBµV	dB			
0.154000	47.60	10.2	66	18.2	OP	L1	GND
0.394000					~		
	41.80	10.2	58	16.2	QP	L1	GND
0.500000	41.90	10.2	56	14.1	QP	L1	GND
1.724000	41.20	10.3	56	14.8	QP	L1	GND
2.138000	40.60	10.4	56	15.4	QP	L1	GND
9.860000	37.60	10.6	60	22.4	QP	L1	GND

MEASUREMENT RESULT: "GTS190921110 fin2"

Frequency MHz	Level dBµV	Transd dB	Limit dBµV	Margin dB	Detector	Line	PE
0.402000	30.30	10.2	48	17.5	AV	L1	GND
0.500000	31.20	10.2	46	14.8	AV	L1	GND
0.860000	29.50	10.2	46	16.5	AV	L1	GND
1.748000	33.90	10.3	46	12.1	AV	L1	GND
2.198000	32.60	10.4	46	13.4	AV	L1	GND
9.656000	31.00	10.6	50	19.0	AV	L1	GND

Report No.: GTS20190917003-2-1-3

MEASUREMENT RESULT: "GTS190921109 fin"

9/21/2019 4:11PM Frequency Level Transd Limit Margin Detector Line PE dBµV dB dBµV MHz dB

 47.60
 10.2

 42.60
 10.2

 43.70
 10.2

 41.10
 10.3

 18.2 QP 15.8 QP 0.154000 66 Ν GND 58 58 0.374000 Ν GND 12.7

 43.70
 10.2
 56

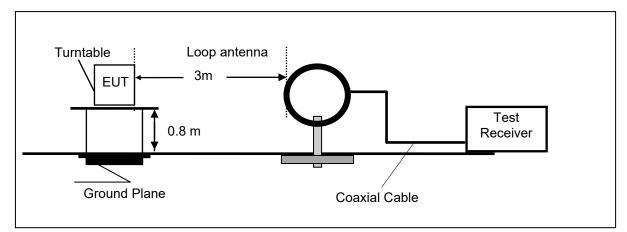
 41.10
 10.3
 56

 37.50
 10.4
 56

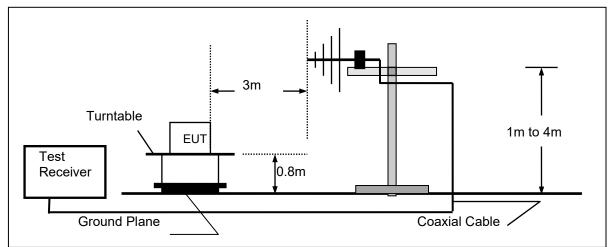
 33.30
 10.4
 56

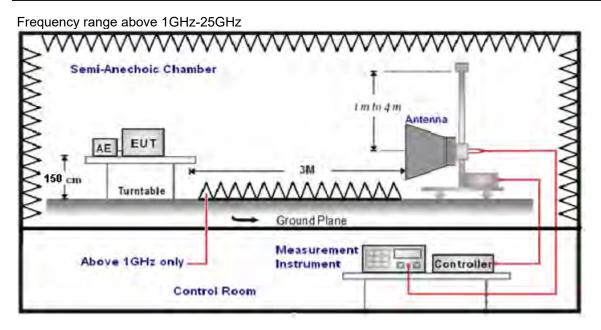
 0.478000 QP Ν GND 1.250000 14.9 QP Ν GND Ν 18.5 QP 2.120000 GND 22.7 QP 3.620000 GND Ν

MEASUREMENT RESULT: "GTS190921109 fin2"


9/21/2019 4:1 Frequency MHz	l1PM Level dBµV	Transd dB	Limit dBµV	Margin dB	Detector	Line	PE
$0.258000 \\ 0.450000 \\ 0.632000$	31.50 32.70 31.90	10.2 10.2 10.2	52 47 46	20.0 14.2 14.1	AV AV AV	N N N	GND GND GND
1.484000	33.30	10.2	46 46	14.1 12.7	AV AV	N N	GND
2.138000	29.80	10.4	46	16.2	AV	N	GND
9.920000	32.30	10.6	50	17.7	AV	Ν	GND

Page 12 of 44


4.2 Radiated Emission


TEST CONFIGURATION

Frequency range 9 KHz – 30MHz

Frequency range 30MHz – 1000MHz

TEST PROCEDURE

- 1. The EUT was placed on a turn table which is 0.8m above ground plane when testing frequency range 9 KHz –1GHz;the EUT was placed on a turn table which is 1.5m above ground plane when testing frequency range 1GHz 25GHz.
- 2. Maximum procedure was performed by raising the receiving antenna from 1m to 4m and rotating the turn table from 0° to 360° to acquire the highest emissions from EUT.
- 3. And also, each emission was to be maximized by changing the polarization of receiving antenna both horizontal and vertical.
- 4. Repeat above procedures until all frequency measurements have been completed.
- 5. Radiated emission test frequency band from 9KHz to 25GHz.
- 6. The distance between test antenna and EUT as following table states:

Test Frequency range	Test Antenna Type	Test Distance
9KHz-30MHz	Active Loop Antenna	3
30MHz-1GHz	Ultra-Broadband Antenna	3
1GHz-18GHz	Double Ridged Horn Antenna	3
18GHz-25GHz	Horn Anternna	1

7. Setting test receiver/spectrum as following table states:

Test Frequency range	Test Receiver/Spectrum Setting	Detector					
9KHz-150KHz RBW=200Hz/VBW=3KHz,Sweep time=Auto		QP					
150KHz-30MHz	· · ·						
30MHz-1GHz	RBW=120KHz/VBW=1000KHz,Sweep time=Auto	QP					
1GHz-40GHz	Peak Value: RBW=1MHz/VBW=3MHz, Sweep time=Auto Average Value: RBW=1MHz/VBW=10Hz, Sweep time=Auto	Peak					

Field Strength Calculation

The field strength is calculated by adding the Antenna Factor and Cable Factor and subtracting the Amplifier Gain and Duty Cycle Correction Factor(if any) from the measured reading. The basic equation with a sample calculation is as follows:

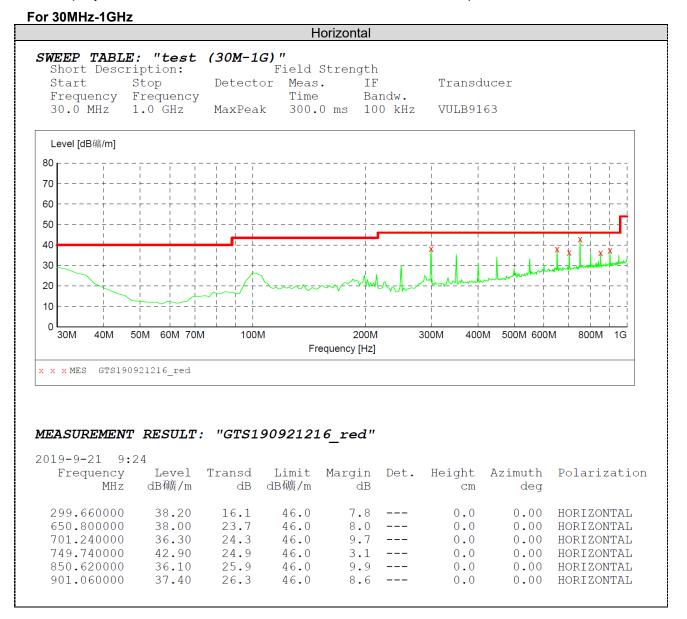
FS = RA + AF + CL - AG

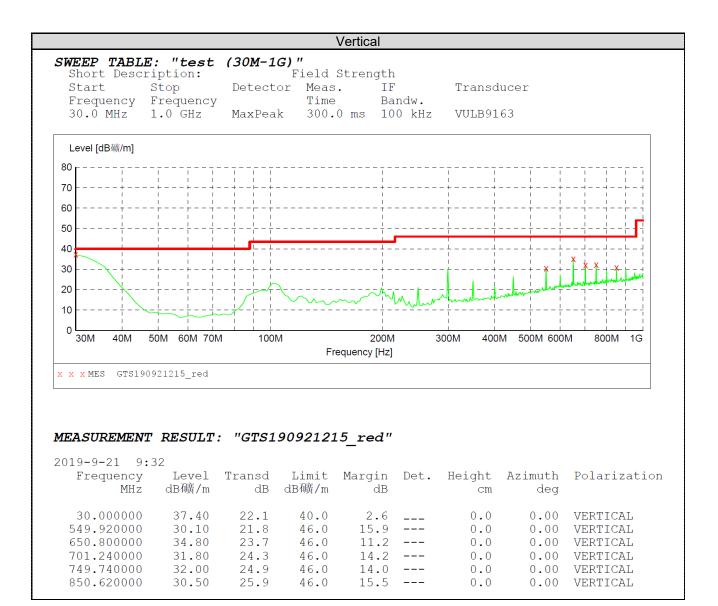
Where FS = Field Strength	CL = Cable Attenuation Factor (Cable Loss)
RA = Reading Amplitude	AG = Amplifier Gain
AF = Antenna Factor	

Transd=AF +CL-AG

RADIATION LIMIT

For intentional device, according to § 15.209(a), the general requirement of field strength of radiated emission from intentional radiators at a distance of 3 meters shall not exceed the following table. According to § 15.247(d), in any 100kHz bandwidth outside the frequency band in which the EUT is operating, the radio frequency power that is produced by the intentional radiator shall be at least 20dB below that in the100kHz bandwidth within the band that contains the highest level of desired power.


The pre-test have done for the EUT in three axes and found the worst emission at position shown in test setup photos.


Frequency (MHz)	Distance (Meters)	Radiated (dBµV/m)	Radiated (µV/m)
0.009-0.49	3	20log(2400/F(KHz))+40log(300/3)	2400/F(KHz)
0.49-1.705	3	20log(24000/F(KHz))+ 40log(30/3)	24000/F(KHz)
1.705-30	3	20log(30)+ 40log(30/3)	30
30-88	3	40.0	100
88-216	3	43.5	150
216-960	3	46.0	200
Above 960	3	54.0	500

TEST RESULTS

Remark:

- 1. We measured Radiated Emission at GFSK, $\pi/4$ DQPSK and 8DPSK mode from 9 KHz to 25GHz and recorded worst case at GFSK DH5 mode.
- 2. For below 1GHz testing recorded worst at GFSK DH5 middle channel.
- 3. Radiated emission test from 9 KHz to 10th harmonic of fundamental was verified, and no emission found except system noise floor in 9 KHz to 30MHz and not recorded in this report.

For 1GHz to 25GHz

Note: GFSK, Pi/4 DQPSK and 8DPSK all have been tested, only worse case GFSK is reported. GFSK (above 1GHz)

GFSK (above TGHZ)												
Freque	Frequency(MHz):			2402		Polarity:		HORIZONTAL				
Frequency (MHz)	Emis Le (dBu	vel	Limit (dBuV/m)	Margin (dB)	Raw Value (dBuV)	Antenna Factor (dB/m)	Cable Factor (dB)	Pre- amplifier (dB)	Correction Factor (dB/m)			
4804.00	59.35	PK	74	14.65	57.45	31.42	6.98	36.5	1.90			
4804.00	51.05	AV	54	2.95	49.15	31.42	6.98	36.5	1.90			
7206.00	48.69	PK	74	25.31	38.09	37.03	8.87	35.3	10.60			
7206.00		AV	54									

Freque	Frequency(MHz):		2402		Polarity:		VERTICAL		
Frequency (MHz)	Le	ssion vel V/m)	Limit (dBuV/m)	Margin (dB)	Raw Value (dBuV)	Antenna Factor (dB/m)	Cable Factor (dB)	Pre- amplifier (dB)	Correction Factor (dB/m)
4804.00	57.58	PK	74	16.42	55.68	31.42	6.98	36.5	1.90
4804.00	48.59	AV	54	5.41	46.69	31.42	6.98	36.5	1.90
7206.00	46.29	PK	74	27.71	35.69	37.03	8.87	35.3	10.60
7206.00		AV	54						

Frequency(MHz):		2441		Polarity:		HORIZONTAL			
Frequency (MHz)	Emis Le (dBu	vel	Limit (dBuV/m)	Margin (dB)	Raw Value (dBuV)	Antenna Factor (dB/m)	Cable Factor (dB)	Pre- amplifier (dB)	Correction Factor (dB/m)
4882.00	60.20	PK	74	13.80	58.14	30.98	7.58	36.5	2.06
4882.00	52.05	AV	54	1.95	49.99	30.98	7.58	36.5	2.06
7323.00	49.36	PK	74	24.64	38.44	37.66	8.56	35.3	10.92
7323.00		AV	54						

Freque	ncy(MHz)	:	24	2441 Polarity		Polarity:		VERTICAL	
Frequency (MHz)	Le	sion vel V/m)	Limit (dBuV/m)	Margin (dB)	Raw Value (dBuV)	Antenna Factor (dB/m)	Cable Factor (dB)	Pre- amplifier (dB)	Correction Factor (dB/m)
4882.00	58.60	PK	74	15.40	56.54	30.98	7.58	36.5	2.06
4882.00	49.33	AV	54	4.67	47.27	30.98	7.58	36.5	2.06
7323.00	47.01	PK	74	26.99	36.09	37.66	8.56	35.3	10.92
7323.00		AV	54	15.40	56.54				

Freque	Frequency(MHz):		2480		Polarity:		HORIZONTAL		\L
Frequency (MHz)		sion vel V/m)	Limit (dBuV/m)	Margin (dB)	Raw Value (dBuV)	Antenna Factor (dB/m)	Cable Factor (dB)	Pre- amplifier (dB)	Correction Factor (dB/m)
4960.00	59.84	PK	74	14.16	56.77	31.47	7.8	36.2	3.07
4960.00	50.33	AV	54	3.67	47.26	31.47	7.8	36.2	3.07
7440.00	49.23	PK	74	24.77	37.49	38.32	8.72	35.3	11.74
7440.00		AV	54						

Freque	ncy(MHz):		2480		Polarity:		VERTICAL		
Frequency (MHz)		ssion vel V/m)	Limit (dBuV/m)	Margin (dB)	Raw Value (dBuV)	Antenna Factor (dB/m)	Cable Factor (dB)	Pre- amplifier (dB)	Correction Factor (dB/m)
4960.00	56.25	PK	74	17.75	53.18	31.47	7.8	36.2	3.07
4960.00	47.59	AV	54	6.41	44.52	31.47	7.8	36.2	3.07
7440.00	46.10	PK	74	27.90	34.36	38.32	8.72	35.3	11.74
7440.00		AV	54						

REMARKS:

1. 2.

Emission level (dBuV/m) =Raw Value (dBuV)+Correction Factor (dB/m) Correction Factor (dB/m) = Antenna Factor (dB/m)+Cable Factor (dB)- Pre-amplifier

Report No.: GTS20190917003-2-1-3

- Margin value = Limit value- Emission level. -- Mean the PK detector measured value is below average limit. The other emission levels were very low against the limit. 3. 4. 5.

Results of Band Edges Test (Radiated)

Note: GFSK, Pi/4 DQPSK and 8DPSK all have been tested, only worse case GFSK is reported. CECK

				GFS	K				
Freque	ncy(MHz)):	24	02	Pola	arity:	Н	IORIZONTA	۱L
Frequency (MHz)	Emis Le (dBu		Limit (dBuV/m)	Margin (dB)	Raw Value (dBuV)	Antenna Factor (dB/m)	Cable Factor (dB)	Pre- amplifier (dB)	Correction Factor (dB/m)
2390.00	50.23	PK	74	23.77	55.64	27.49	3.32	36.22	-5.41
2390.00		AV	54						
Freque	ncy(MHz)):	24	02	Pola	arity:		VERTICAL	
Frequency (MHz)	Emis Le (dBu		Limit (dBuV/m)	Margin (dB)	Raw Value (dBuV)	Antenna Factor (dB/m)	Cable Factor (dB)	Pre- amplifier (dB)	Correction Factor (dB/m)
2390.00	49.20	PK	74	24.80	54.61	27.49	3.32	36.22	-5.41
2390.00		AV	54						
Freque	ncy(MHz)):	24	80	Pola	arity:	н	IORIZONTA	L
Frequency (MHz)		ssion vel V/m)	Limit (dBuV/m)	Margin (dB)	Raw Value (dBuV)	Antenna Factor (dB/m)	Cable Factor (dB)	Pre- amplifier (dB)	Correction Factor (dB/m)
2483.50	48.56	PK	74	25.44	54.07	27.45	3.38	36.34	-5.51
2483.50		AV	54						
Freque	ncy(MHz)):	24	80	Pola	arity:		VERTICAL	
Frequency (MHz)		sion vel V/m)	Limit (dBuV/m)	Margin (dB)	Raw Value (dBuV)	Antenna Factor (dB/m)	Cable Factor (dB)	Pre- amplifier (dB)	Correction Factor (dB/m)
2483.50	46.36	Ρ̈́Κ	74	27.64	51.87	27.45	3.38	36.34	-5.51
2483.50		AV	54						
REMARKS:									

 REMARKS:
 1.
 Emission level (dBuV/m) =Raw Value (dBuV)+Correction Factor (dB/m)

 2.
 Correction Factor (dB/m) = Antenna Factor (dB/m)+Cable Factor (dB)- Pre-amplifier

 3.
 Margin value = Limit value- Emission level.

 4.
 -- Mean the PK detector measured value is below average limit.

4.3 Maximum Peak Output Power

<u>Limit</u>

The Maximum Peak Output Power Measurement is 125mW (20.97).

Test Procedure

Remove the antenna from the EUT and then connect a low loss RF cable from the antenna port to the powersensor.

Test Configuration

EUT	Power Sensor
_	i ower Sensor

Test Results

Туре	Channel	Output power (dBm)	Limit (dBm)	Result
	00	3.752		
GFSK	39	3.655	20.97	Pass
	78	3.789		
	00	2.685		
π/4DQPSK	39	2.712	20.97	Pass
	78	2.698		
	00	2.451		
8DPSK	39	2.658	20.97	Pass
	78	2.897		

Note: 1.The test results including the cable lose.

4.4 20dB Bandwidth

<u>Limit</u>

For frequency hopping systems operating in the 2400MHz-2483.5MHz no limit for 20dB bandwidth.

Test Procedure

The transmitter output was connected to the spectrum analyzer through an attenuator. The bandwidth of the fundamental frequency was measured by spectrum analyzer with 30 KHz RBW and 100 KHz VBW.

The 20dB bandwidth is defined as the total spectrum the power of which is higher than peak power minus 20dB.

Test Configuration

FUT	SPECTRUM
201	ANALYZER

Test Results

Modulation	Channel	20dB bandwidth (MHz)	99% OBW (MHz)	Result
	CH00	1.045	1.006	
GFSK	CH39	1.044	1.004	
	CH78	1.046	1.006	
	CH00	1.293	1.181	
π/4DQPSK	CH39	1.300	1.174	Pass
	CH78	1.310	1.176	
	CH00	1.310	1.188	
8DPSK	CH39	1.297	1.177	
	CH78	1.297	1.179	

4.5 Frequency Separation

<u>LIMIT</u>

According to 15.247(a)(1), frequency hopping systems shall have hopping channel carrier frequencies separated by minimum of 25KHz or the 2/3*20dB bandwidth of the hopping channel, whichever is greater.

TEST PROCEDURE

The transmitter output was connected to the spectrum analyzer through an attenuator. The bandwidth of the fundamental frequency was measured by spectrum analyzer with100 KHz RBW and 300 KHz VBW.

TEST CONFIGURATION

TEST RESULTS

Modulation	Channel	Channel Separation (MHz)	Limit(MHz)	Result	
GFSK	CH39	0.067	25KHz or 2/3*20dB	Daaa	
Gron	CH40	0.967 bandwidth	bandwidth	Pass	
π/4DQPSK	CH39	1.214	25KHz or 2/3*20dB	Pass	
II/4DQF3K	CH40	1.214	bandwidth	F ass	
8DPSK	CH39	0.928	25KHz or 2/3*20dB	Dooo	
OUPSK	CH40	0.920	bandwidth	Pass	

Note:

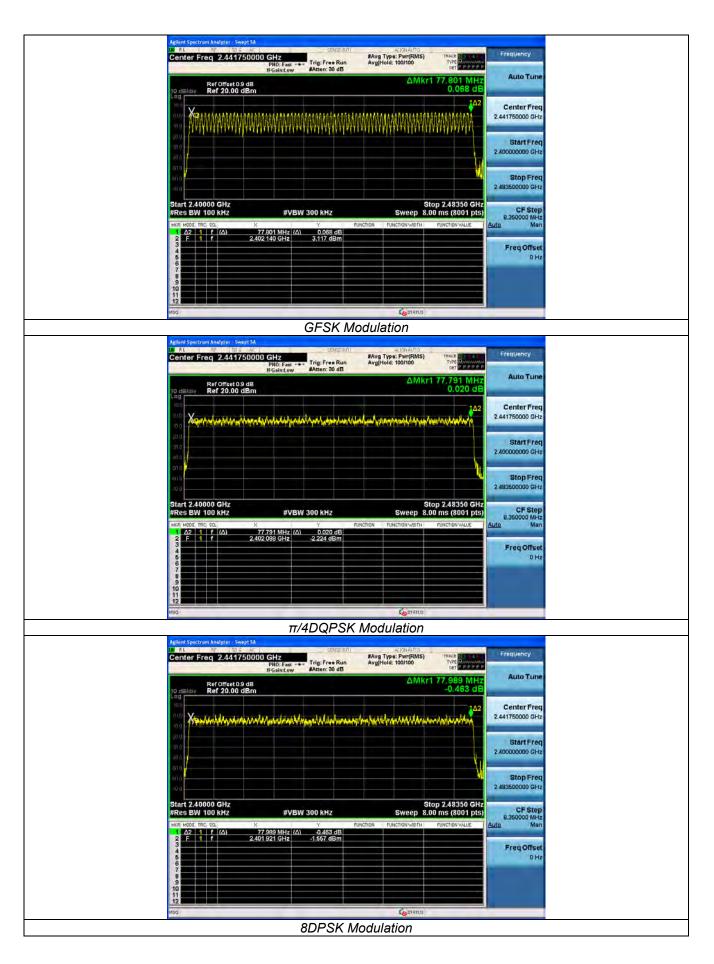
We have tested all mode at high, middle and low channel, and recorded worst case at middle

4.6 Number of hopping frequency

<u>Limit</u>

Frequency hopping systems in the 2400–2483.5 MHz band shall use at least 15 channels.

Test Procedure


The transmitter output was connected to the spectrum analyzer through an attenuator. Set spectrum analyzer start 2400MHz to 2483.5MHz with 100 KHz RBW and 300 KHz VBW.

Test Configuration

Test Results

Modulation	Number of Hopping Channel	Limit	Result
GFSK	79		
π/4DQPSK	79	≥15	Pass
8DPSK	79		

4.7 Time of Occupancy (Dwell Time)

<u>Limit</u>

The average time of occupancy on any channel shall not be greater than 0.4 seconds within a period of 0.4 seconds multiplied by the number of hopping channels employed.

Test Procedure

The transmitter output was connected to the spectrum analyzer through an attenuator. Set center frequency of spectrum analyzer=operating frequency with 1MHz RBW and 1MHz VBW, Span 0Hz.

Test Configuration

EUT	SPECTRUM
LUI	ANALYZER

Test Results

Modulation	Packet	Pulse time (ms)	Dwell time (ms)	Limit (s)	Result
	DH1	0.365	0.117		
GFSK	DH3	1.629	0.261	0.40	Pass
	DH5	2.878	0.307		
	2-DH1	0.375	0.120		
π/4DQPSK	2-DH3	1.630	0.261	0.40	Pass
	2-DH5	2.868	0.306		
	3-DH1	0.375	0.120		
8DPSK	3-DH3	1.629	0.261	0.40	Pass
	3-DH5	2.868	0.306		

Note:

1. We have tested all mode at high, middle and low channel, and recoreded worst case at middle channel.

 Dwell time=Pulse time (ms) × (1600 ÷ 2 ÷ 79) ×31.6 Second for DH1, 2-DH1, 3-DH1 Dwell time=Pulse time (ms) × (1600 ÷ 4 ÷ 79) ×31.6 Second for DH3, 2-DH3, 3-DH3 Dwell time=Pulse time (ms) × (1600 ÷ 6 ÷ 79) ×31.6 Second for DH5, 2-DH5, 3-DH5

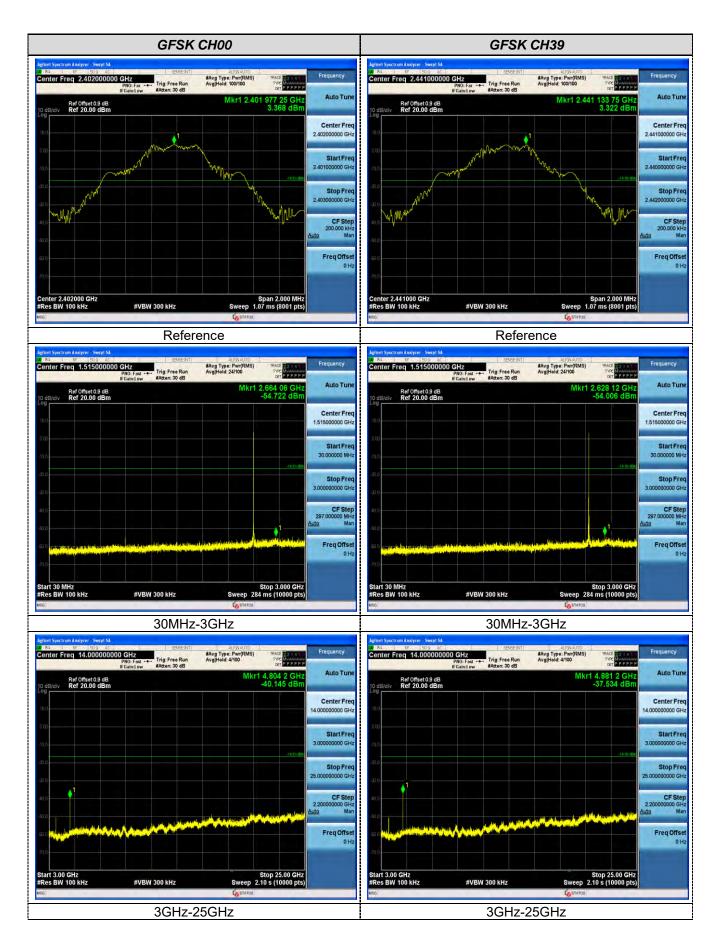
4.8 Out-of-band Emissions

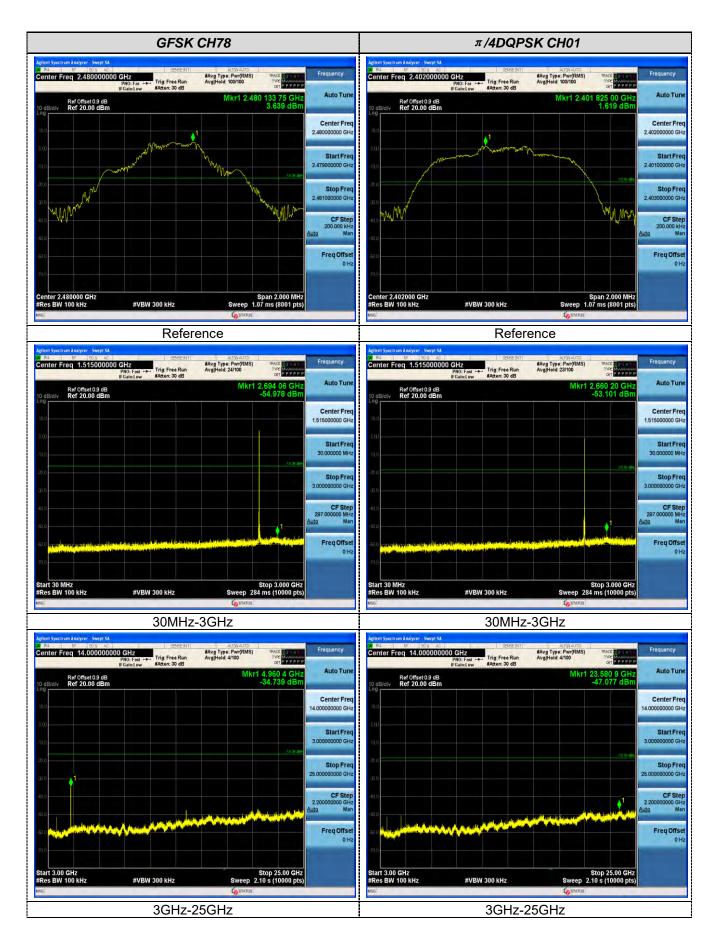
<u>Limit</u>

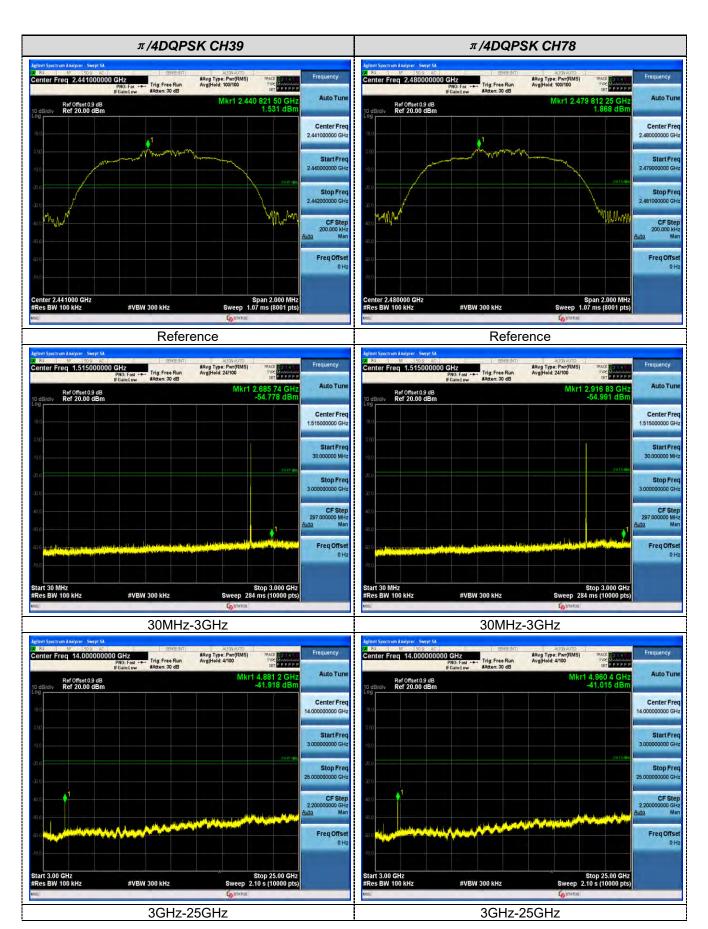
In any 100 kHz bandwidth outside the frequency band in which the spread spectrum or digitally modulated intentional radiator is operating, the radio frequency power that is produced by the intentional radiator shall be at least 20 dB below that in the 100 kHz bandwidth within the band that contains the highest level of the desired power, based on either an RF con-ducted or a radiated measurement, pro-vided the transmitter demonstrates compliance with the peak conducted power limits. If the transmitter com-plies with the conducted power limits based on the use of RMS averaging over a time interval, as permitted under paragraph (b)(3) of this section, the attenuation required under this paragraph shall be 30 dB instead of 20 dB. Attenuation below the general limits specified in §15.209(a) is not required.

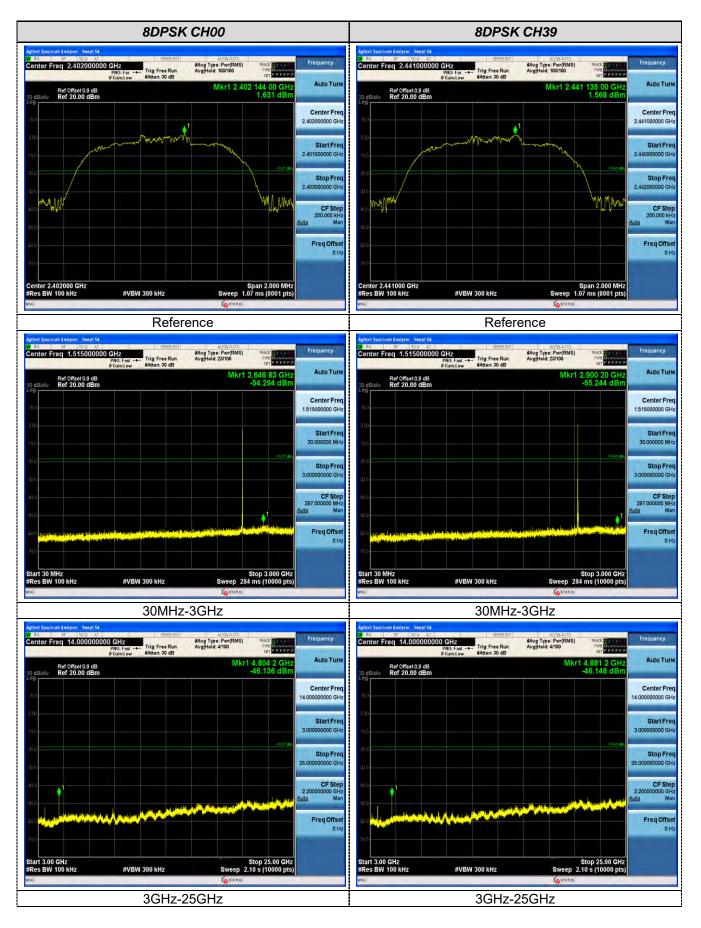
Test Procedure

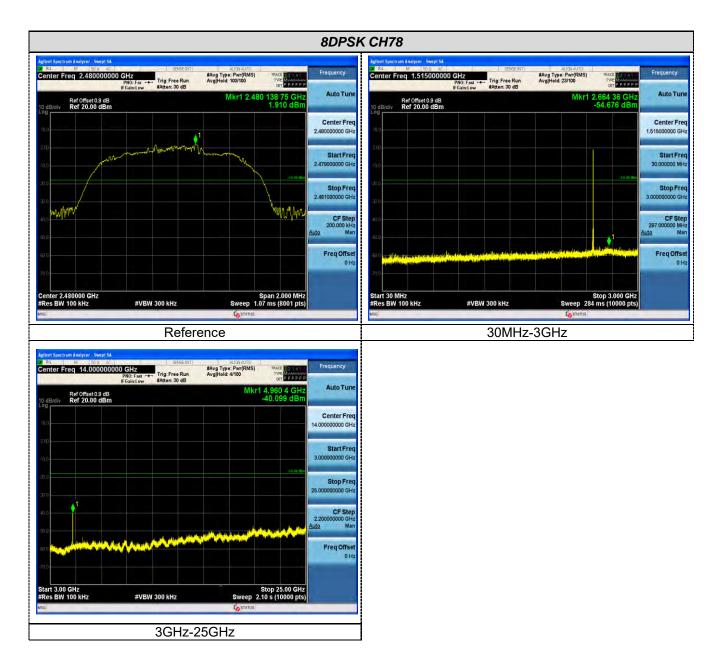
Connect the transmitter output to spectrum analyzer using a low loss RF cable, and set the spectrum analyzer to RBW=100 kHz, VBW= 300 kHz, peak detector , and max hold. Measurements utilizing these setting are made of the in-band reference level, bandedge and out-of-band emissions.

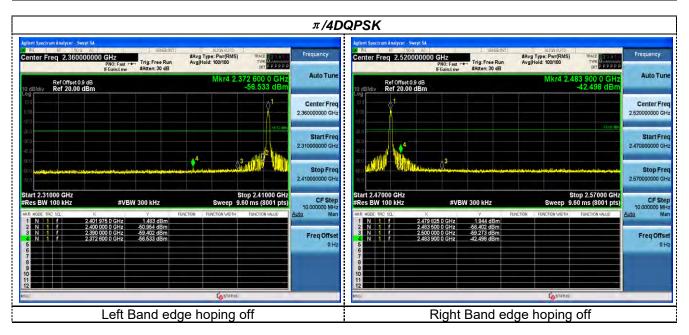

Test Configuration

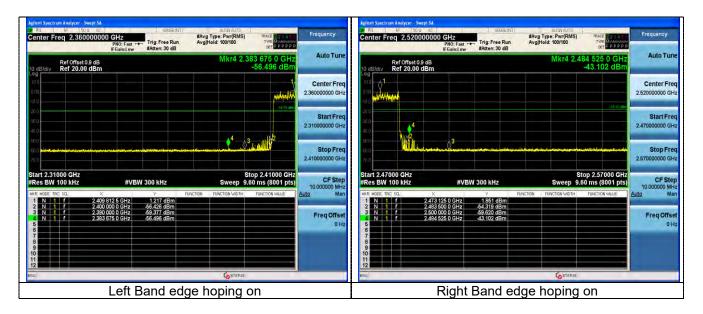


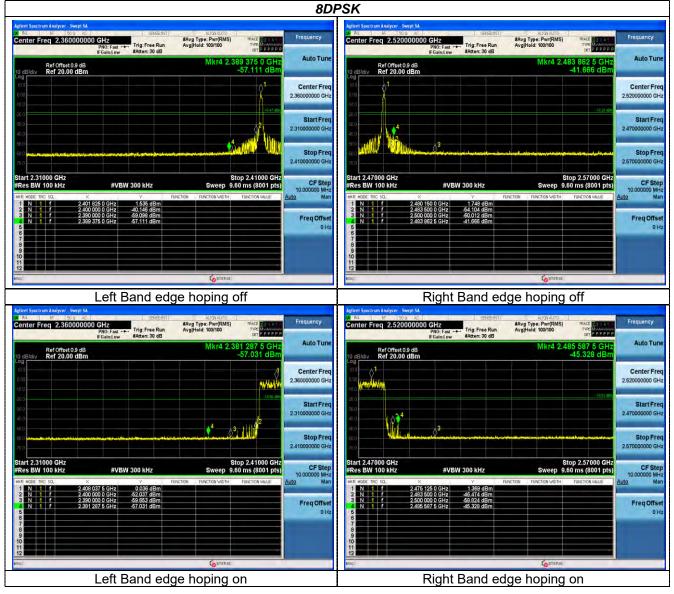

Test Results


Remark: The measurement frequency range is from 30MHz to the 10th harmonic of the fundamental frequency. The lowest, middle and highest channels are tested to verify the spurious emissions and bandage measurement data.


We measured all conditions (DH1, DH3, DH5) and recorded worst case at DH5




Band-edge Measurements for RF Conducted Emissions:

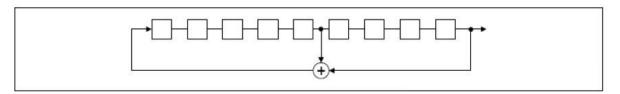

	GFSK
Agilent Spectrum Andyzer - Swept SA 20 RL RE [5:0:0] 42 SENSEINT ALL9(AUTO]	Aginal Spectrum Analyzer - Swept SA
Display Line -16.39 dBm PNO: Fast D Trig: Free Run Avg/Hold:>100/100 TVE	Play Display Line -16.65 dBm Avg Type: Log-Pwr Trig: Free Run Avg Type: Log-Pwr Type: Measurements
IFGain.Luw Bratein. ov als	Totation Ref Offset 0.9 dB Mkr1 2.479 850 GHz 10 dB/dw Ref 20.00 dBm 3.355 dBm
	Title>
	Graticule 000 Cocupied BW
	ACP
Start 2,31000 GHz Stop 2,41000 GHz #Res BW 100 kHz #VBW 300 kHz Sweep 9,60m rst (8001 pts) wei woler the Sul x y Faketow Harton water	Start 2.47000 GHz Stop 2.57000 GHz #Res BW 100 kHz #VBW 300 kHz Sweep 9.60 ms (8001 pts) Power Stat Sweep 9.60 ms (8001 pts) Power Stat MeR MODE TRE SQL X Y Function Function width CCDF
	System N 1 f 2.473 860 0 GHz 3.355 dBm System 3 N 1 f 2.433 800 0 GHz 5.522 0 dBm 5.551 dBm
	8 9 10
Left Band edge hoping off	Right Band edge hoping off
Of RL Fee States and Frequencies States and Avg Type: Frequencies States and Avg Type: Frequencies States and Frequencies Frequencies Center Freq 2.360000000 GHz Frequencies Avg Type: Frequencies <	usncy L RL 15 1209 44 STREAM AND A A
Ref Offset 0.9 dB Mkr4 2.370 025 0 GHz Al 10 dB/div Ref 20.00 dBm -57.033 dBm	uto Tune Ref Offset 0.9 dB Auto Tune 10 dB/div Ref 20.00 dBm -50.472 dBm
	Log 1 Center Freq Center Freq 2.52000000 GHz 2.520000000 GHz Unit Unit 1
	tartFreq 200 Start Freq 2.47000000 GHz 200 CHz
	top Freq 500 CM/U transme (2 con control to the transme from the transme f
	CF Step 0000 MHz Stop 2 57000 CHz #Res BW 100 kHz #VBW 300 kHz Sweep 9.60 ms (8001 pts) 000000 MHz CF Step 00000 MHz Man me Mode The Still x y Ruction Ruction<
1 N 1 f 2409 137 5 GHz 3.392 dBm 2 N 1 f 2400 000 0 GHz 55.419 dBm	Image Image <th< td=""></th<>
Mag (geranus)	Mio Gostatua
Left Band edge hoping on	Right Band edge hoping on

Page 40 of 44

Report No.: GTS20190917003-2-1-3

4.9 Pseudorandom Frequency Hopping Sequence

TEST APPLICABLE


For 47 CFR Part 15C section 15.247 (a) (1) requirement:

Frequency hopping systems shall have hopping channel carrier frequencies separated by a minimum of 25 kHz or the 20 dB bandwidth of the hop-ping channel, whichever is greater. Alternatively, frequency hopping systems operating in the 2400–2483.5 MHz band may have hopping channel carrier frequencies that are separated by 25 kHz or two-thirds of the 20 dB bandwidth of the hopping channel, whichever is greater, provided the systems operate with an output power no greater than 125 mW. The system shall hop to channel frequencies that are selected at the system hopping rate from a pseudo randomly ordered list of hopping frequencies. Each frequency must be used equally on the average by each transmitter. The system receivers shall have input bandwidths that match the hop-ping channel bandwidths of their corresponding transmitters and shall shift frequencies in synchronization with the transmitted signals.

EUT Pseudorandom Frequency Hopping Sequence Requirement

The pseudorandom frequency hopping sequence may be generated in a nice-stage shift register whose 5th and 9th stage outputs are added in a modulo-two addition stage. And the result is fed back to the input of the first stage. The sequence begins with the first one of 9 consecutive ones, for example: the shift register is initialized with nine ones.

- Number of shift register stages:9
- Length of pseudo-random sequence:29-1=511 bits
- Longest sequence of zeros:8(non-inverted signal)

Linear Feedback Shift Register for Generation of the PRBS sequence

An example of pseudorandom frequency hopping sequence as follows:

0	2	4	6	62	64	78	1	73 75	77
				 	П	1			Г
				1		1			
				1					L

Each frequency used equally one the average by each transmitter.

The system receiver have input bandwidths that match the hopping channel bandwidths of their corresponding transmitter and shift frequencies in synchronization with the transmitted signals.

4.10 Antenna Requirement

Standard Applicable

For intentional device, according to FCC 47 CFR Section 15.203, an intentional radiator shall be designed to ensure that no antenna other than that furnished by the responsible party shall be used with the device.

And according to FCC 47 CFR Section 15.247 (c), if transmitting antennas of directional gain greater than 6dBi are used, the power shall be reduced by the amount in dB that the directional gain of the antenna exceeds 6dBi.

Refer to statement below for compliance

The manufacturer may design the unit so that the user can replace a broken antenna, but the use of a standard antenna jack or electrical connector is prohibited. Further, this requirement does not apply to intentional radiators that must be professionally installed.

Antenna Connected Construction

The maximum gain of antenna was 2dBi.

5 Test Setup Photos of the EUT

6 <u>Photos of the EUT</u>

Reference to the test report No. GTS20190917003-2-1-1