

Page 1 of 49 Report No.: EED32L00174001

TEST REPORT

Product CSM92F30 Module

Trade mark Chipsea

Model/Type reference CSM92F30 Module

N/A **Serial Number**

Report Number EED32L00174001 **FCC ID** : 2AGM5CSM92F30

Date of Issue Aug. 15, 2019

Test Standards 47 CFR Part 15Subpart C

Test result PASS

Prepared for:

Chipsea technologies (Shenzhen) Crop. 9F, Block A, Garden City Digital Building, No. 1079 Nanhai Road, Nanshan District, Shenzhen

Prepared by:

Centre Testing International Group Co., Ltd. Hongwei Industrial Zone, Bao'an 70 District, Shenzhen, Guangdong, China

> TEL: +86-755-3368 3668 FAX: +86-755-3368 3385

Tested By:

Compiled by:

Report Seal

Reviewed by:

More Xm

Jay Zheng

Ware Xin

Kevin Yang

ReIn (an

Aug. 15, 2019 Date:

Check No.: 3096349871

2 Version

Date	Description
2019-08-15	Original

Report No.: EED32L00174001 Page 3 of 49

3 Test Summary

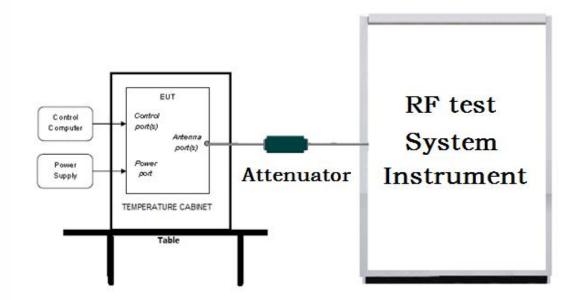
o rest outilitially	J-07	Z*	_
Test Item	Test Requirement	Test method	Result
Antenna Requirement	47 CFR Part 15Subpart C Section 15.203/15.247 (c)	ANSI C63.10-2013	PASS
AC Power Line Conducted Emission	47 CFR Part 15Subpart C Section 15.207	ANSI C63.10-2013	PASS
Conducted Peak Output Power	47 CFR Part 15Subpart C Section 15.247 (b)(3)	ANSI C63.10-2013	PASS
6dB Occupied Bandwidth	47 CFR Part 15Subpart C Section 15.247 (a)(2)	ANSI C63.10-2013	PASS
Power Spectral Density	47 CFR Part 15Subpart C Section 15.247 (e)	ANSI C63.10-2013	PASS
Band-edge for RF Conducted Emissions	47 CFR Part 15Subpart C Section 15.247(d)	ANSI C63.10-2013	PASS
RF Conducted Spurious Emissions	47 CFR Part 15Subpart C Section 15.247(d)	ANSI C63.10-2013	PASS
Radiated Spurious Emissions	47 CFR Part 15Subpart C Section 15.205/15.209	ANSI C63.10-2013	PASS
Restricted bands around fundamental frequency (Radiated Emission)	47 CFR Part 15Subpart C Section 15.205/15.209	ANSI C63.10-2013	PASS

Test according to ANSI C63.4-2014 & ANSI C63.10-2013. The tested sample(s) and the sample information are provided by the client.

Report No.: EED32L00174001 Page 4 of 49

4 Content

1 CC	OVER PAGE					1
2 VE	RSION			•••••		2
3 TE	ST SUMMARY		•••••	•••••	•••••	3
4 CC	ONTENT				•••••	4
5 TE	ST REQUIREMENT				•••••	
5.:	1 TEST SETUP	t setupsions test setupissions test setup				6
6 GE	NERAL INFORMATION.			•••••	•••••	7
6 6 6 6 6 6	1 CLIENT INFORMATION	OF EUT	STANDARD TOMER DE LEVELS, K=2)			
7 EQ	UIPMENT LIST				•••••	10
8 RA	DIO TECHNICAL REQU					
	Appendix A): 6dB Occup Appendix B): Conducted Appendix C): Band-edge Appendix D): RF Conduct Appendix E): Power Spe Appendix F): Antenna Re Appendix G): AC Power Appendix H): Restricted Appendix I) Radiated Sp	Peak Output Power. for RF Conducted Exted Spurious Emission ctral Densityequirement	missions ons ssion	adiated)		
РНО	TOGRAPHS OF TEST S	ETUP	•••••	•••••	•••••	46
РНО	TOGRAPHS OF EUT CO	NSTRUCTIONAL DI	ETAILS		•••••	48



Report No.: EED32L00174001 Page 5 of 49

5 Test Requirement

5.1 Test setup

5.1.1 For Conducted test setup

5.1.2 For Radiated Emissions test setup

Radiated Emissions setup:

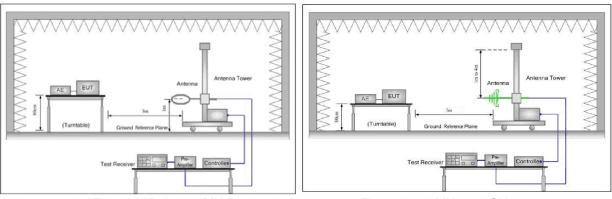


Figure 1. Below 30MHz

Figure 2. 30MHz to 1GHz

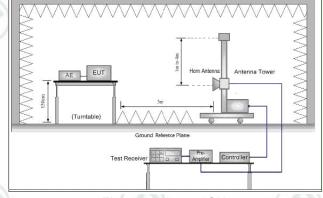
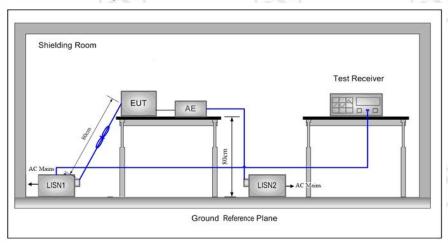
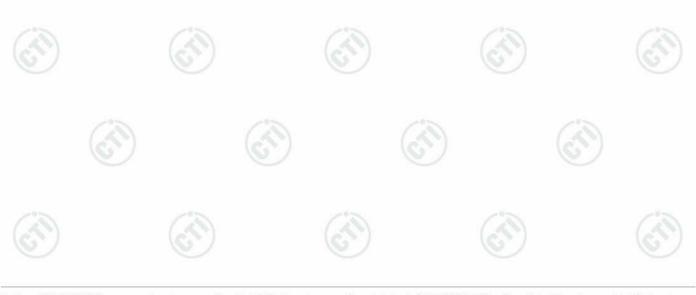



Figure 3. Above 1GHz

5.1.3 For Conducted Emissions test setup Conducted Emissions setup


5.2 Test Environment

Operating Environment:			(0)
Temperature:	23.0 °C		
Humidity:	58 % RH	160	
Atmospheric Pressure:	1010mbar		

5.3 Test Condition

Test channel:

Test Mode	Tx/Rx	RF Channel			
Test Mode	TX/KX	Low(L)		High(H)	
0501	0.400.441 0.400.441	Channel 1	Channel 20	Channel 40	
GFSK	2402MHz ~2480 MHz	2402MHz	2440MHz	2480MHz	
Transmitting mode:	Keep the EUT in transmitting mode with all kind of modulation and all kind of darate.				

Report No. : EED32L00174001 Page 7 of 49

6 General Information

6.1 Client Information

The state of the s	
Applicant:	Chipsea technologies (Shenzhen) Crop.
Address of Applicant:	9F, Block A, Garden City Digital Building, No. 1079 Nanhai Road, Nanshan District, Shenzhen
Manufacturer:	Chipsea technologies (Shenzhen) Crop.
Address of Manufacturer:	9F, Block A, Garden City Digital Building, No. 1079 Nanhai Road, Nanshan District, Shenzhen
Factory:	Chipsea technologies (Shenzhen) Crop.
Address of Factory:	9F, Block A, Garden City Digital Building, No. 1079 Nanhai Road, Nanshan District, Shenzhen

6.2 General Description of EUT

Product Name:	CSM92F30	Module		
Model No.(EUT):	CSM92F30	Module	/'5	73
Trade mark:	Chipsea	(5,7)	627	(6,5)
EUT Supports Radios application:	BT 5.0 only	mode, 2402MHz to 2480MHz		
Power Supply:	Battery:	DC 3.3V		25
Sample Received Date:	Jul. 02, 2019	9	1	
Sample tested Date:	Jul. 02, 2019	9 to Aug. 14, 2019		

6.3 Product Specification subjective to this standard

Operation Frequency:	2402MHz~2480MHz	((P)	(2)
Bluetooth Version:	BT 5.0	6	57)	(0,
Modulation Type:	GFSK			
Number of Channel:	40			
Test Power Grade:	N/A		(30	
Test Software of EUT:	FixFreqTester V1.0	(67)	(67)	
Antenna Type and Gain:	Type: PCB antenna Gain:0.5 dBi			
Test Voltage:	DC 3.3V	_	2	/05

Report No. : EED32L00174001 Page 8 of 49

Channel	Frequency	Channel	Frequency	Channel	Frequency	Channel	Frequency
1	2402MHz	11	2422MHz	21	2442MHz	31	2462MHz
2	2404MHz	12	2424MHz	22	2444MHz	32	2464MHz
3	2406MHz	13	2426MHz	23	2446MHz	33	2466MHz
4	2408MHz	14	2428MHz	24	2448MHz	34	2468MHz
5	2410MHz	15	2430MHz	25	2450MHz	35	2470MHz
6	2412MHz	16	2432MHz	26	2452MHz	36	2472MHz
7	2414MHz	17	2434MHz	27	2454MHz	37	2474MHz
8	2416MHz	18	2436MHz	28	2456MHz	38	2476MHz
9	2418MHz	19	2438MHz	29	2458MHz	39	2478MHz
10	2420MHz	20	2440MHz	30	2460MHz	40	2480MHz

6.4 Description of Support Units

	ssociated pment name	Manufacture	Model	S/N	Supplied By	Certificatio n	Device Type	Brand	Data Cable
AE1	CSM92F30M ainBoardV1.0	Chipsea technologies (Shenzhen)Cor p	lainBoardvi	V102019 03450	Chipsea technologies (Shenzhen)Cor p	NA	Test fixture	Chipsea	USB2.0 UART 1.5m

6.5 Test Location

All tests were performed at:

Centre Testing International Group Co., Ltd

Building C, Hongwei Industrial Park Block 70, Bao'an District, Shenzhen, China

Telephone: +86 (0) 755 33683668 Fax:+86 (0) 755 33683385

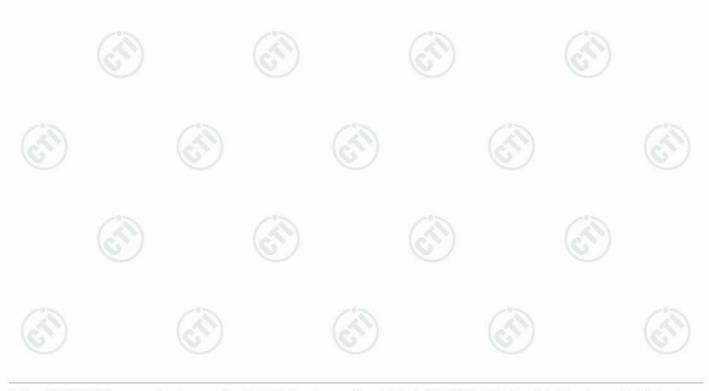
No tests were sub-contracted. FCC Designation No.: CN1164

Report No. : EED32L00174001 Page 9 of 49

6.6 Deviation from Standards

None.

6.7 Abnormalities from Standard Conditions

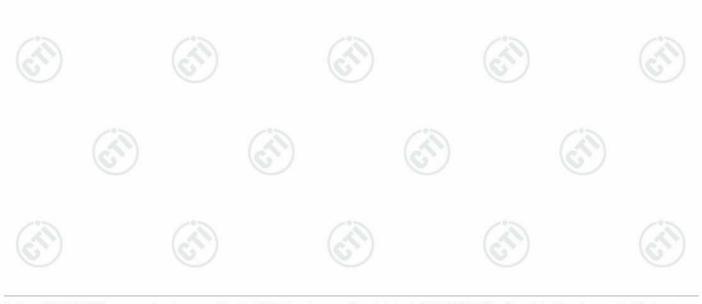

None.

6.8 Other Information Requested by the Customer

None.

6.9 Measurement Uncertainty (95% confidence levels, k=2)

No.	Item	Measurement Uncertainty		
1	Radio Frequency	7.9 x 10 ⁻⁸		
2	DE newer conducted	0.46dB (30MHz-1GHz)		
2	RF power, conducted	0.55dB (1GHz-18GHz)		
3	Dedicted Churique emission test	4.3dB (30MHz-1GHz)		
3	Radiated Spurious emission test	4.5dB (1GHz-12.75GHz)		
	Conduction emission	3.5dB (9kHz to 150kHz)		
4	Conduction emission	3.1dB (150kHz to 30MHz)		
5	Temperature test	0.64°C		
6	Humidity test	3.8%		
7	DC power voltages	0.026%		



Report No. : EED32L00174001 Page 10 of 49

7 Equipment List

		RF test	system			
Equipment	Manufacturer	Model No.	Serial Number	Cal. Date (mm-dd-yyyy)	Cal. Due date (mm-dd-yyyy)	
Signal Generator	Keysight	E8257D	MY53401106	03-01-2019	02-28-2020	
Spectrum Analyzer	Keysight	N9010A	MY54510339	03-01-2019	02-28-2020	
Signal Generator	Keysight	N5182B	MY53051549	03-01-2019	02-28-2020	
High-pass Sinoscite		FL3CX03WG1 8NM12-0398- 002		01-09-2019	01-08-2020	
High-pass MICRO- filter TRONICS		SPA-F-63029-4		01-09-2019	01-08-2020	
DC Power	Keysight	E3642A	MY54426035	03-01-2019	02-28-2020	
PC-1	Lenovo	R4960d		03-01-2019	02-28-2020	
BT&WI-FI Automatic control	Automatic R&S		101374	03-01-2019	02-28-2020	
RF control unit	JS Tonscend	JS0806-2	15860006	03-01-2019	02-28-2020	
RF control unit	JS Tonscend	JS0806-1	15860004	03-01-2019	02-28-2020	
RF control unit	JS Tonscend	JS0806-4	158060007	03-01-2019	02-28-2020	
BT&WI-FI Automatic test software	JS Tonscend	JS1120-2		03-01-2019	02-28-2020	
Temperature/ Humidity Indicator	biaozhi	HM10	1804186	10-12-2018	10-11-2019	

Page 11 of 49

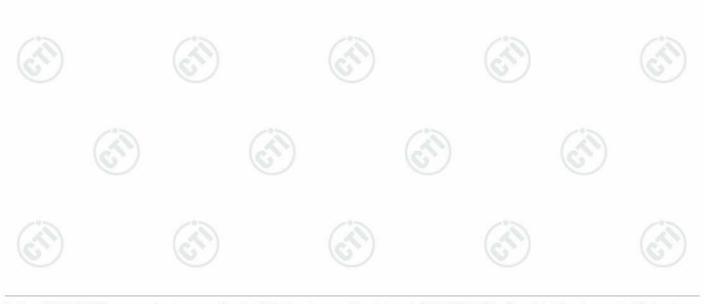
	3 IVI S	Semi/full-anecho		0-1-4-	Cal Division
Equipment	Manufacturer	Model No.	Serial Number	Cal. date (mm-dd-yyyy)	Cal. Due date (mm-dd-yyyy)
3M Chamber & Accessory Equipment	TDK	SAC-3		05-24-2019	05-22-2020
TRILOG Broadband Antenna	Schwarzbeck	VULB9163	9163-401	12-21-2018	12-20-2019
TRILOG Broadband Antenna	Schwarzbeck	VULB9163	9163-618	07-26-2019	07-24-2020
Microwave Preamplifier	Agilent	8449B	3008A024 25	08-21-2018	08-20-2019
Microwave Preamplifier	Tonscend	EMC051845 SE	980380	01-16-2019	01-15-2020
Horn Antenna	Schwarzbeck	BBHA 9120D	9120D- 1869	04-25-2018	04-23-2021
Horn Antenna	ETS- LINDGREN	3117	00057410	06-05-2018	06-03-2021
Double ridge horn antenna	A.H.SYSTEMS	SAS-574	374	06-05-2018	06-04-2021
Pre-amplifier	A.H.SYSTEMS	PAP-1840-60	6041.604 1	07-26-2019	07-24-2020
Loop Antenna	Schwarzbeck	FMZB 1519B	1519B- 076	04-25-2018	04-25-2021
Spectrum Analyzer	R&S	FSP40	100416	04-28-2019	04-26-2020
Receiver	R&S	ESCI	100435	05-20-2019	05-18-2020
Receiver	R&S	ESCI7	100938- 003	11-23-2018	11-22-2019
Multi device Controller	maturo	NCD/070/107 11112		01-09-2019	01-08-2020
Signal Generator	Agilent	E4438C	MY45095 744	03-01-2019	02-28-2020
Signal Generator	Keysight	E8257D	MY53401 106	03-01-2019	02-28-2020
Temperature/ Humidity Indicator	Shanghai qixiang	HM10	1804298	10-12-2018	10-11-2019
Communication test set	Agilent	E5515C	GB47050 534	03-01-2019	02-28-2020
Cable line	Fulai(7M)	SF106	5219/6A	01-09-2019	01-08-2020
Cable line	Fulai(6M)	SF106	5220/6A	01-09-2019	01-08-2020
Cable line	Fulai(3M)	SF106	5216/6A	01-09-2019	01-08-2020
Cable line	Fulai(3M)	SF106	5217/6A	01-09-2019	01-08-2020
Communication test set	R&S	CMW500	104466	01-18-2019	01-17-2020
High-pass filter	Sinoscite	18NM12- 0398-002		01-09-2019	01-08-2020
High-pass filter	MICRO- TRONICS	SPA-F- 63029-4		01-09-2019	01-08-2020
band rejection filter	Sinoscite	FL5CX01CA0 9CL12-0395- 001		01-09-2019	01-08-2020
band rejection filter	Sinoscite	FL5CX01CA0 8CL12-0393- 001		01-09-2019	01-08-2020
band rejection filter	Sinoscite	FL5CX02CA0 4CL12-0396- 002		01-09-2019	01-08-2020
band rejection filter	Sinoscite	FL5CX02CA0 3CL12-0394- 001		01-09-2019	01-08-2020

Page 12 of 49

	~·×	3M full-a	nechoic Cham	nber		
	Equipment	Manufacturer	Model No.	Serial Number	Cal. date (mm-dd-yyyy)	Cal. Due date (mm-dd-yyyy)
RSE /	Automatic test software	JS Tonscend	JS36-RSE	10166	06-18-2019	06-17-2020
	Receiver	Keysight	N9038A	MY5729013 6	03-27-2019	03-25-2020
S	Spectrum Analyzer	Keysight	N9020B	MY5711111 2	03-27-2019	03-25-2020
S	Spectrum Analyzer	Keysight	N9030B	MY5714087 1	03-27-2019	03-25-2020
	Loop Antenna	Schwarzbeck	FMZB 1519B	1519B-075	04-25-2018	04-23-2021
	Loop Antenna	Schwarzbeck	FMZB 1519B	1519B-076	04-25-2018	04-23-2021
TRILC	G Broadband Antenna	Schwarzbeck	VULB 9163	9163-1148	04-25-2018	04-23-2021
	Horn Antenna	Schwarzbeck	BBHA 9170	9170-832	04-25-2018	04-23-2021
	Horn Antenna	Schwarzbeck	BBHA 9170	9170-829	04-25-2018	04-23-2021
Con	nmunication Antenna	Schwarzbeck	CLSA 0110L	1014	02-14-2019	02-13-2020
-	Biconical antenna	Schwarzbeck	VUBA 9117	9117-381	04-25-2018	04-23-2021
/	Horn Antenna	ETS- LINDGREN	3117	00057407	07-10-2018	07-08-2021
	Preamplifier	EMCI	EMC18405 5SE	980596	05-22-2019	05-20-2020
Col	mmunication test set	R&S	CMW500	102898	01-18-2019	01-17-2020
	Preamplifier	EMCI	EMC00133 0	980563	05-08-2019	05-06-2020
	Preamplifier	Agilent	8449B	3008A0242 5	08-21-2018	08-20-2019
Temper	ature/ Humidity Indicator	biaozhi	GM1360	EE1186631	05-01-2019	04-30-2020
•	Signal Generator	KEYSIGHT	E8257D	MY5340110 6	03-01-2019	02-28-2020
Full	y Anechoic Chamber	TDK	FAC-3	(at	01-17-2018	01-15-2021
/	Filter bank	JS Tonscend	JS0806-F	188060094	04-10-2018	04-08-2021
	Cable line	Times	SFT205- NMSM- 2.50M	394812- 0001	01-09-2019	01-08-2020
(Cable line	Times	SFT205- NMSM- 2.50M	394812- 0002	01-09-2019	01-08-2020
	Cable line	Times	SFT205- NMSM- 2.50M	394812- 0003	01-09-2019	01-08-2020
)	Cable line	Times	SFT205- NMSM- 2.50M	393495- 0001	01-09-2019	01-08-2020
	Cable line	Times	EMC104- NMNM- 1000	SN160710	01-09-2019	01-08-2020
	Cable line	Times	SFT205- NMSM- 3.00M	394813-0001	01-09-2019	01-08-2020
	Cable line	Times	SFT205- NMNM- 1.50M	381964-0001	01-09-2019	01-08-2020
	Cable line	Times	SFT205- NMSM- 7.00M	394815-0001	01-09-2019	01-08-2020
)	Cable line	Times	HF160- KMKM- 3.00M	393493-0001	01-09-2019	01-08-2020

Page 13 of 49

	(Conducted dist	urbance Tes	st	
Equipment	Manufacturer	Model No.	Serial Number	Cal. date (mm-dd-yyyy)	Cal. Due date (mm-dd-yyyy)
Receiver	R&S	ESCI	100435	05-20-2019	05-18-2020
Temperature/ Humidity Indicator	Defu	TH128	1	06-14-2019	06-12-2020
Communication test set	Agilent	E5515C	GB47050 534	03-01-2019	02-28-2020
Communication test set	R&S	CMW500	102898	01-18-2019	01-17-2020
LISN	R&S	ENV216	100098	05-08-2019	05-06-2020
LISN	schwarzbeck	NNLK8121	8121-529	05-08-2019	05-06-2020
Voltage Probe	R&S	ESH2-Z3 0299.7810.5 6	100042	06-13-2017	06-11-2020
Current Probe	R&S	EZ-17 816.2063.03	100106	05-20-2019	05-18-2020
ISN	TESEQ	ISN T800	30297	01-06-2019	01-15-2020
Barometer	changchun	DYM3	1188	06-20-2019	06-18-2020


Report No.: EED32L00174001 Page 14 of 49

8 Radio Technical Requirements Specification

Reference documents for testing:

No.	Identity	Document Title
1	FCC Part15C	Subpart C-Intentional Radiators
2	ANSI C63.10-2013	American National Standard for Testing Unlicesed Wireless Devices
est Re	esults List:	Bevious

JOL 1100 GILO EIGH				
Test Requirement	Test method	Test item	Verdict	Note
Part15C Section 15.247 (a)(2)	ANSI C63.10	6dB Occupied Bandwidth	PASS	Appendix A)
Part15C Section 15.247 (b)(3)	ANSI C63.10	Conducted Peak Output Power	PASS	Appendix B)
Part15C Section 15.247(d)	ANSI C63.10	Band-edge for RF Conducted Emissions	PASS	Appendix C)
Part15C Section 15.247(d)	ANSI C63.10	RF Conducted Spurious Emissions	PASS	Appendix D)
Part15C Section 15.247 (e)	ANSI C63.10	Power Spectral Density	PASS	Appendix E)
Part15C Section 15.203/15.247 (c)	ANSI C63.10	Antenna Requirement	PASS	Appendix F)
Part15C Section 15.207	ANSI C63.10	AC Power Line Conducted Emission	PASS	Appendix G)
Part15C Section 15.205/15.209	ANSI C63.10	Restricted bands around fundamental frequency (Radiated Emission)	PASS	Appendix H)
Part15C Section 15.205/15.209	ANSI C63.10	Radiated Spurious Emissions	PASS	Appendix I)

Report No. : EED32L00174001 Page 15 of 49

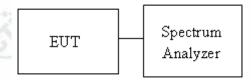
Appendix A): 6dB Occupied Bandwidth

Test Limit

According to §15.247(a)(2) and RSS-247 section 5.2(a)

6 dB Bandwidth :

٥		01 111 11 1500111
Ľ	Limit	Shall be at least 500kHz


Occupied Bandwidth(99%): For reporting purposes only.

Test Procedure

Test method Refer as KDB 558074 D01 v04, section 8.1 and ANSI 63.10:2013 clause 6.9.2 & 6.9.3.

- 1. The EUT RF output connected to the spectrum analyzer by RF cable.
- 2. Setting maximum power transmit of EUT
- 3. SA set RBW = 100kHz, VBW = 300kHz and Detector = Peak, to measurement 6 dB Bandwidth and 99% Bandwidth.
- 4. Measure and record the result of 6 dB Bandwidth and 99% Bandwidth. in the test report.

Test Setup

Test Result

Mode	Channel	6dB Bandwidth [MHz]	99% OBW[MHz]	Verdict
BLE	LCH	0.7222	1.0596	PASS
BLE	MCH	0.7323	1.0658	PASS
BLE	HCH	0.7464	1.0759	PASS

Report No. : EED32L00174001 Page 16 of 49

Test Graphs

Report No. : EED32L00174001 Page 17 of 49

Appendix B): Conducted Peak Output Power

Test Limit

According to §15.247(b) and RSS-247 section 5.4(d)

Peak output power:

For systems using digital modulation in the 2400-2483.5 MHz, and 5725-5850 MHz bands: 1 Watt(30 dBm), base on the use of antennas with directional gain not exceed 6 dBi If transmitting antennas of directional gain greater than 6dBi are used the peak output power the conducted output power from the intentional radiator shall be reduced by the amount in dB that the directional gain of the antenna exceeds 6 dBi. In case of point-to-point operation, the limit has to be reduced by 1dB for every 3 dB that the directional gain of the antenna exceeds 6 dBi.

9		Ü
Limit	☐ Antenna with DG greater than 6 dBi [Limit = 30 – (DG – 6)]	
	Point-to-point operation	

Test Procedure

Test method Refer as KDB 558074 D01 v04, section 9.1.2.

- 1. The EUT RF output connected to the power meter by RF cable.
- 2. Setting maximum power transmit of EUT.
- 3. The path loss was compensated to the results for each measurement.
- **4.** Measure and record the result of Peak output power and Average output power. in the test report.

Test Result

Mode	Channel	Conduct Peak Power[dBm]	Verdict
BLE	LCH	-3.502	PASS
BLE	MCH	-3.222	PASS
BLE	HCH	-3.875	PASS

Report No. : EED32L00174001 Page 18 of 49

Test Graphs

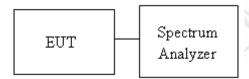
Report No. : EED32L00174001 Page 19 of 49

Appendix C): Band-edge for RF Conducted Emissions

Test Limit

According to §15.247(d) and RSS-247 section 5.5

In any 100 kHz bandwidth outside the authorized frequency band,


Non-restricted bands shall be attenuated at least 20 dB/30 dB relative to the maximum PSD level in 100 kHz by RF conducted or a radiated measurement which fall in the restricted bands, as defined in §15.205(a), must also comply with the radiated emission limits specified in §15.209(a).

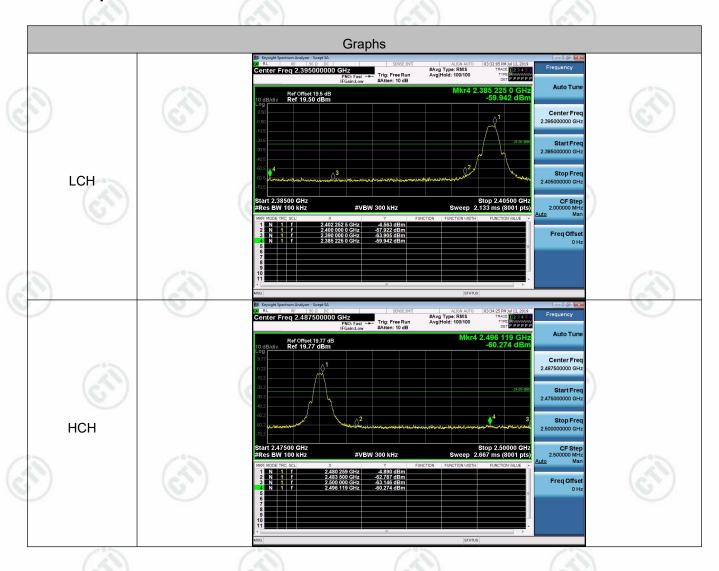
Test Procedure

Test method Refer as KDB 558074 D01 v04, Section 11.

- 1. EUT RF output port connected to the SA by RF cable, and the path loss was compensated to result.
- 2. SA setting, RBW=100kHz, VBW=300kHz, Detector=Peak, Trace mode = max hold, SWT = Auto.
- 3. In any 100 kHz bandwidth outside the authorized frequency band, shall be attenuated at least 20 dB relative to the maximum in-band peak PSD level in 100 kHz when conducted power procedure is used. If the transmitter complies with the conducted power limits based on the use of RMS averaging over a time interval, the attenuation required under this paragraph shall be 30 dB instead of 20 dB.

Test Setup

Result Table


Mode	Channel	Carrier Power[dBm]	Max.Spurious Level [dBm]	Limit [dBm]	Verdict
BLE	LCH	-4.563	-59.942	-24.56	PASS
BLE	НСН	-4.890	-60.274	-24.89	PASS

Report No. : EED32L00174001 Page 20 of 49

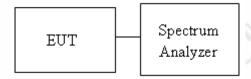
Test Graphs

Report No. : EED32L00174001 Page 21 of 49

Appendix D): RF Conducted Spurious Emissions <u>Test Limit</u>

According to §15.247(d) and RSS-247 section 5.5

In any 100 kHz bandwidth outside the authorized frequency band,


Non-restricted bands shall be attenuated at least 20 dB/30 dB relative to the maximum PSD level in 100 kHz by RF conducted or a radiated measurement which fall in the restricted bands, as defined in §15.205(a), must also comply with the radiated emission limits specified in §15.209(a).

Test Procedure

Test method Refer as KDB 558074 D01 v04, Section 11.

- 1. EUT RF output port connected to the SA by RF cable, and the path loss was compensated to result.
- 2. SA setting, RBW=100kHz, VBW=300kHz, Detector=Peak, Trace mode = max hold, SWT = Auto.
- 3. In any 100 kHz bandwidth outside the authorized frequency band, shall be attenuated at least 20 dB relative to the maximum in-band peak PSD level in 100 kHz when conducted power procedure is used. If the transmitter complies with the conducted power limits based on the use of RMS averaging over a time interval, the attenuation required under this paragraph shall be 30 dB instead of 20 dB.

Test Setup

Result Table

Mode	Channel	Pref [dBm]	Puw[dBm]	Verdict
BLE	LCH	-4.778	<limit< td=""><td>PASS</td></limit<>	PASS
BLE	мсн	-4.514	<limit< td=""><td>PASS</td></limit<>	PASS
BLE	HCH	-5.171	<limit< td=""><td>PASS</td></limit<>	PASS

Report No. : EED32L00174001 Page 22 of 49

Test Graphs

Page 23 of 49

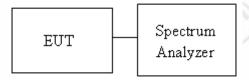
Report No. : EED32L00174001 Page 25 of 49

Appendix E): Power Spectral Density

Test Limit

According to §15.247(e) and RSS-247 section 5.2(b)

For digitally modulated systems, the power spectral density conducted from the intentional radiator to the antenna shall not be greater than 8 dBm in any 3 kHz band during any time interval of continuous transmission.


Limit (✓ Antenna not exceed 6 dBi: 8dBm ☐ Antenna with DG greater than 6 dBi [Limit = 8 - (DG - 6)] ☐ Point-to-point operation:
---------	---

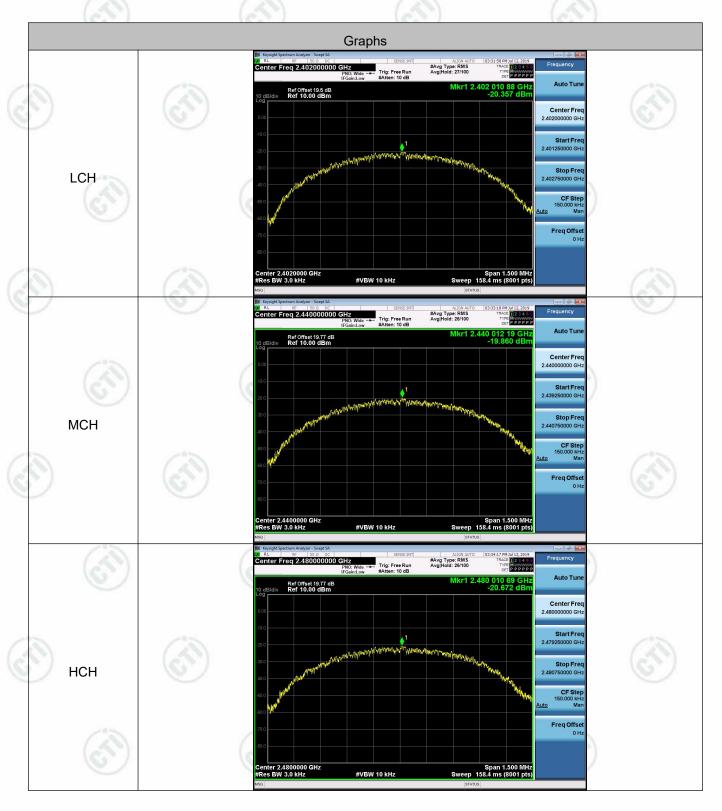
Test Procedure

Test method Refer as KDB 558074 D01 v04, Section 10.2

- 1. The EUT RF output connected to the spectrum analyzer by RF cable.
- 2. Setting maximum power transmit of EUT
- 3. SA set RBW = 3kHz, VBW = 30kHz, Span = 1.5 times DTS Bandwidth (6 dB BW), Detector = Peak, Sweep Time = Auto and Trace = Max hold.
- 4. The path loss and Duty Factor were compensated to the results for each measurement by SA.
- 5. Mark the maximum level.
- 6. Measure and record the result of power spectral density. in the test report.

Test Setup

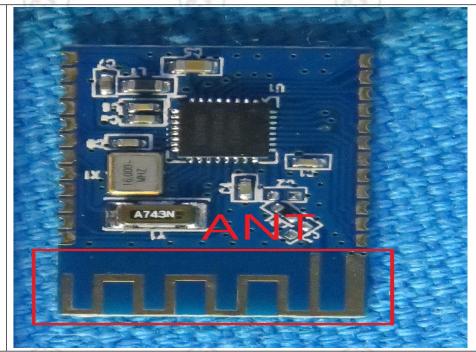
Result Table


Mode	Channel	PSD [dBm]	Verdict
BLE	LCH	-20.357	PASS
BLE	MCH	-19.860	PASS
BLE	HCH	-20.672	PASS

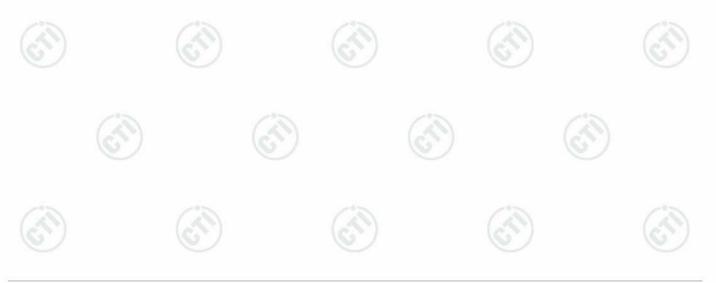
Test Graphs

Report No. : EED32L00174001 Page 27 of 49

Appendix F): Antenna Requirement

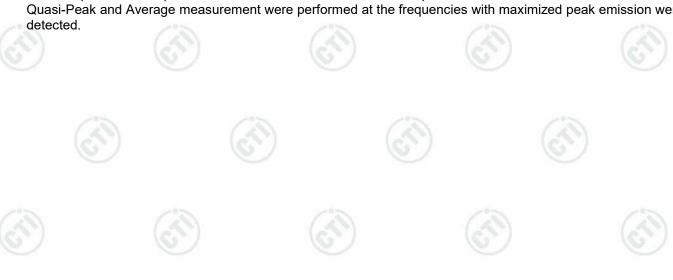

15.203 requirement:

An intentional radiator shall be designed to ensure that no antenna other than that furnished by the responsible party shall be used with the device. The use of a permanently attached antenna or of an antenna that uses a unique coupling to the intentional radiator, the manufacturer may design the unit so that a broken antenna can be replaced by the user, but the use of a standard antenna jack or electrical connector is prohibited.


15.247(b) (4) requirement:

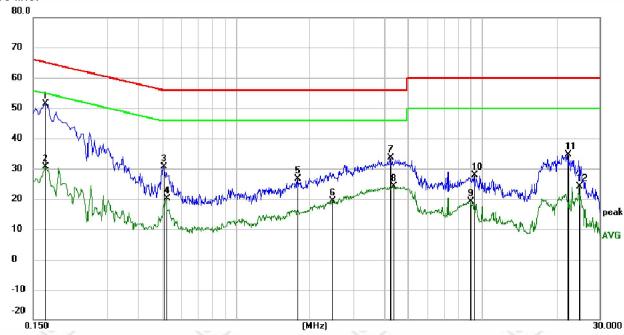
The conducted output power limit specified in paragraph (b) of this section is based on the use of antennas with directional gains that do not exceed 6 dBi. Except as shown in paragraph (c) of this section, if transmitting antennas of directional gain greater than 6 dBi are used, the conducted output power from the intentional radiator shall be reduced below the stated values in paragraphs (b)(1), (b)(2), and (b)(3) of this section, as appropriate, by the amount in dB that the directional gain of the antenna exceeds 6 dBi.

EUT Antenna:


The antenna is integrated on the main PCB and no consideration of replacement. The best case gain of the antenna is 0.5dBi.

Report No.: EED32L00174001 Page 28 of 49

	Test frequency range :150KHz-	30MHz							
	1)The mains terminal disturban	ce voltage test was c	onducted in a shiel	ded room.					
	2) The EUT was connected to	AC power source thro	ough a LISN 1 (Lin	e Impedance					
	Stabilization Network) which								
	power cables of all other ur								
	which was bonded to the gr								
	for the unit being measured multiple power cables to a s								
	exceeded.	g.o 2.o.v providou i	ramig or mo 2.0	TT TO THE					
	3)The tabletop EUT was place								
	reference plane. And for floo horizontal ground reference		ent, the EUT was p	olaced on the					
	4) The test was performed with								
	EUT shall be 0.4 m from the								
	reference plane was bonded								
	1 was placed 0.8 m from the								
	ground reference plane for LISNs mounted on top of the ground reference plane. This distance was between the closest points of the LISN 1 and the EUT								
	LISN 2.	All other units of the EUT and associated equipment was at least 0.8 m from the							
	5) In order to find the maximum	emission the relativ	e positions of equir	oment and a					
	of the interface cables n								
				C63.10 oi					
	conducted measurement.			C63.10 oi					
Limit:	conducted measurement.		(0,	C63.10 oi					
Limit:		Limit (c	IBμV)	C63.10 oi					
Limit:	Frequency range (MHz)	Limit (c Quasi-peak	Average	C63.10 oi					
Limit:	Frequency range (MHz) 0.15-0.5	Quasi-peak 66 to 56*		C63.10 oi					
Limit:	Frequency range (MHz)	Quasi-peak	Average	C63.10 oi					
Limit:	Frequency range (MHz) 0.15-0.5	Quasi-peak 66 to 56*	Average 56 to 46*	C63.10 oi					
Limit:	Frequency range (MHz) 0.15-0.5 0.5-5	Quasi-peak 66 to 56* 56 60	Average 56 to 46* 46 50						
Limit:	Frequency range (MHz) 0.15-0.5 0.5-5 5-30 * The limit decreases linearly with MHz to 0.50 MHz.	Quasi-peak 66 to 56* 56 60 with the logarithm of	Average 56 to 46* 46 50 the frequency in the						
Limit:	Frequency range (MHz) 0.15-0.5 0.5-5 5-30 * The limit decreases linearly was a second control of the contro	Quasi-peak 66 to 56* 56 60 with the logarithm of	Average 56 to 46* 46 50 the frequency in the						
	Frequency range (MHz) 0.15-0.5 0.5-5 5-30 * The limit decreases linearly with MHz to 0.50 MHz.	Quasi-peak 66 to 56* 56 60 with the logarithm of	Average 56 to 46* 46 50 the frequency in the						
Measurement Data An initial pre-scan was	Frequency range (MHz) 0.15-0.5 0.5-5 5-30 * The limit decreases linearly vom MHz to 0.50 MHz. NOTE: The lower limit is applicate performed on the live and neutral limits.	Quasi-peak 66 to 56* 56 60 with the logarithm of eable at the transition nes with peak detected	Average 56 to 46* 46 50 the frequency in the frequency or.	e range 0.1					
Measurement Data An initial pre-scan was	Frequency range (MHz) 0.15-0.5 0.5-5 5-30 * The limit decreases linearly with MHz to 0.50 MHz. NOTE: The lower limit is application.	Quasi-peak 66 to 56* 56 60 with the logarithm of eable at the transition nes with peak detected	Average 56 to 46* 46 50 the frequency in the frequency or.	e range 0.1					
Measurement Data An initial pre-scan was	Frequency range (MHz) 0.15-0.5 0.5-5 5-30 * The limit decreases linearly vom MHz to 0.50 MHz. NOTE: The lower limit is applicate performed on the live and neutral limits.	Quasi-peak 66 to 56* 56 60 with the logarithm of eable at the transition nes with peak detected	Average 56 to 46* 46 50 the frequency in the frequency or.	e range 0.1					



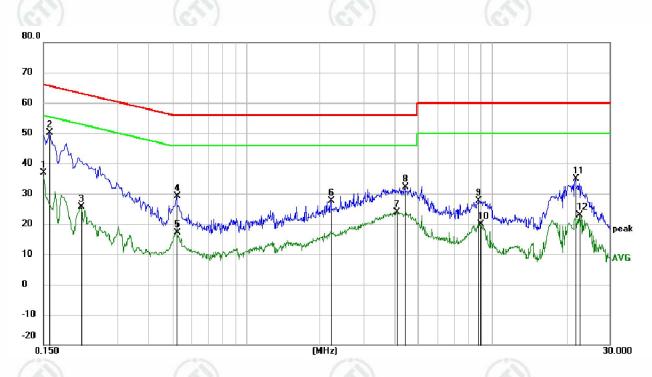
Page 29 of 49

Product : CSM92F30 Module Model/Type reference : CSM92F30 Module

Temperature : 21° **Humidity** : 51%

Live line:

No.	Mk.	Freq.	Reading Level	Correct Factor	Measure- ment	Limit	Margin		
¥5		MHz	dBuV	dB	dBuV	dBuV	dB	Detector	Comment
1	*	0.1680	41.38	9.99	51.37	65.06	-13.69	peak	
2		0.1680	20.53	9.99	30.52	55.06	-24.54	AVG	
3		0.5100	20.71	10.01	30.72	56.00	-25.28	peak	
4		0.5235	10.08	10.03	20.11	46.00	-25.89	AVG	
5		1.7790	16.74	9.85	26.59	56.00	-29.41	peak	
6		2.4720	9.52	9.83	19.35	46.00	-26.65	AVG	
7		4.2270	23.85	9.83	33.68	56.00	-22.32	peak	
8		4.3800	14.32	9.83	24.15	46.00	-21.85	AVG	
9		8.9250	9.32	9.92	19.24	50.00	-30.76	AVG	
10		9.2534	17.83	9.93	27.76	60.00	-32.24	peak	
11		22.2225	24.68	9.94	34.62	60.00	-25.38	peak	
12		24.6705	14.15	9.95	24.10	50.00	-25.90	AVG	



Report No. : EED32L00174001 Page 30 of 49

Neutral line:

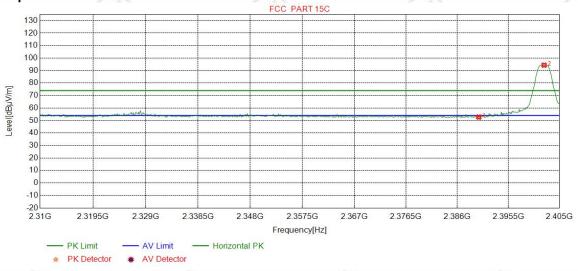
No.	Mk.	Freq.	Reading Level	Correct Factor	Measure- ment	Limit	Margin		
		MHz	dBuV	dB	dBuV	dBuV	dB	Detector	Comment
1		0.1500	26.97	9.97	36.94	56.00	-19.06	AVG	
2	*	0.1590	40.19	9.98	50.17	65.52	-15.35	peak	
3		0.2130	15.59	10.03	25.62	53.09	-27.47	AVG	
4		0.5235	19.01	10.03	29.04	56.00	-26.96	peak	
5		0.5235	7.19	10.03	17.22	46.00	-28.78	AVG	
6		2.2110	17.91	9.83	27.74	56.00	-28.26	peak	
7		4.0830	13.96	9.83	23.79	46.00	-22.21	AVG	
8		4.4250	22.25	9.83	32.08	56.00	-23.92	peak	
9		8.7990	17.76	9.92	27.68	60.00	-32.32	peak	
10		8.9430	9.87	9.92	19.79	50.00	-30.21	AVG	
11		21.8220	24.99	9.94	34.93	60.00	-25.07	peak	
12		22.5825	12.95	9.94	22.89	50.00	-27.11	AVG	

Notes:

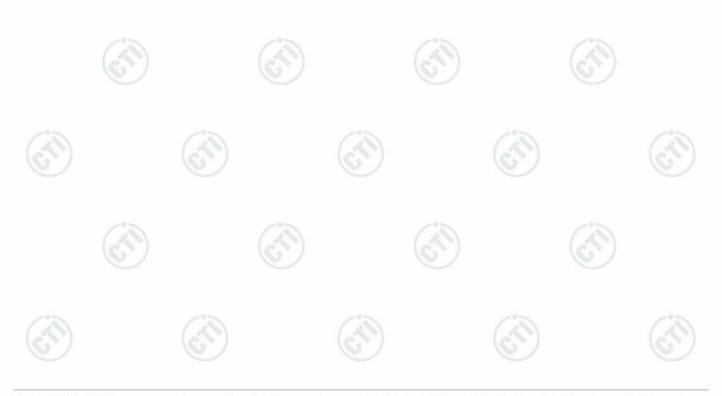
- 1. The following Quasi-Peak and Average measurements were performed on the EUT:
- 2. Final Test Level =Receiver Reading + LISN Factor + Cable Loss.

Appendix H): Restricted bands around fundamental frequency (Radiated)

Receiver Setup:	Frequency	Detector	RBW	VBW	Remark			
	30MHz-1GHz	Quasi-peak	120kHz	300kHz	Quasi-peak	10-		
	4011	Peak	1MHz	3MHz	Peak	10		
	Above 1GHz	Peak	1MHz	10Hz	Average			
Test Procedure:	Below 1GHz test proced	ure as below:						
	a. The EUT was placed of at a 3 meter semi-ane determine the position. b. The EUT was set 3 me was mounted on the toto. c. The antenna height is determine the maximum polarizations of the and. d. For each suspected end the antenna was tuned was turned from 0 degree. The test-receiver system Bandwidth with Maximum f. Place a marker at the frequency to show corbands. Save the specifor lowest and highest.	on the top of a rochoic camber. The of the highest raters away from op of a variable-twaried from one are set to mission, the EUT of to heights from grees to 360 degrees to 360 degreem was set to Petrum Hold Mode. and of the restriction of the restriction of the restriction of the manalyzer plot of the restriction.	otating table the table was adiation. the interferneight ante meter to for eld strength make the romake the romake the romake to find eak Detect cted band of easure any	e 0.8 meter as rotated 3 ence-recei nna tower. our meters h. Both hor neasurement aged to its to 4 meters a the maxin Function a	above the groent. worst case an and the rotata num reading. ne transmit in the restrict in th	which which ound to ertical d then ble		
	g. Different between abo to fully Anechoic Char 18GHz the distance is h. Test the EUT in the li i. The radiation measure	ve is the test site nber change forr 1 meter and tabl owest channel,	n table 0.8 le is 1.5 me the Highes	meter to 1 ter). t channel	.5 meter(Abo	ve		
	Transmitting mode, ar	nd found the X ax	kis position	ing which i	t is worse cas			
Limit:	Frequency	Limit (dBµV	/m @3m)	Rei	mark			
	30MHz-88MHz	40.0	0 /3	Quasi-pe	eak Value			
	88MHz-216MHz	43.5	5 (6)	Quasi-pe	eak Value			
	216MHz-960MHz	46.0)	Quasi-pe	eak Value			
	960MHz-1GHz	54.0)	Quasi-pe	eak Value			
		54.0	54.0 Average Value					
	Above 1GHz	74.0	0	Peak	Value			



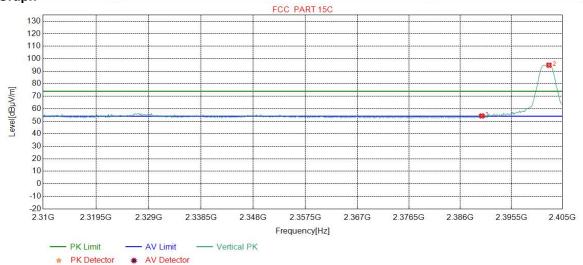
Report No. : EED32L00174001 Page 32 of 49

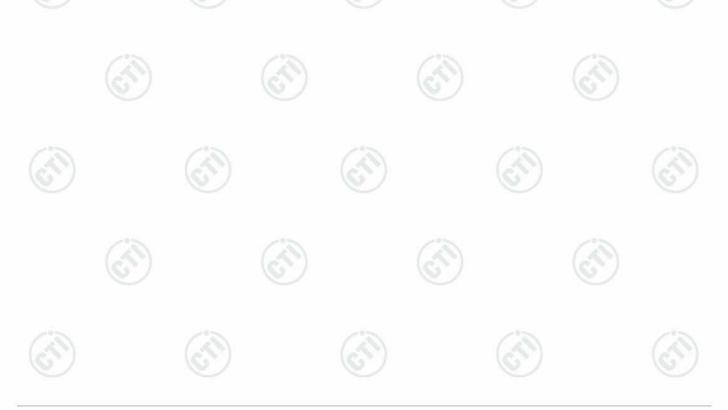

Test plot as follows:

Mode:	GFSK Transmitting	Channel:	2402
Remark:	PK		

Test Graph

NO	Freq. [MHz]	Ant Factor [dB]	Cable loss [dB]	Pream gain [dB]	Reading [dBµV]	Level [dBµV/m]	Limit [dBµV/m]	Margin [dB]	Result	Polarity
1	2390.0000	32.25	13.37	-42.44	49.56	52.74	74.00	21.26	Pass	Horizontal
2	2402.1464	32.26	13.31	-42.43	91.18	94.32	74.00	-20.32	Pass	Horizontal

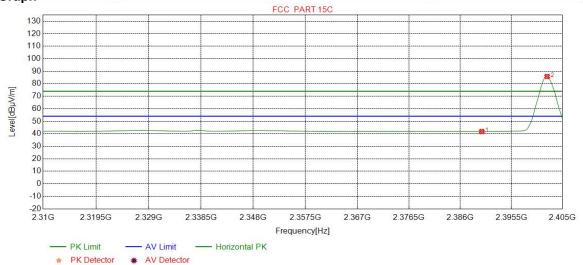


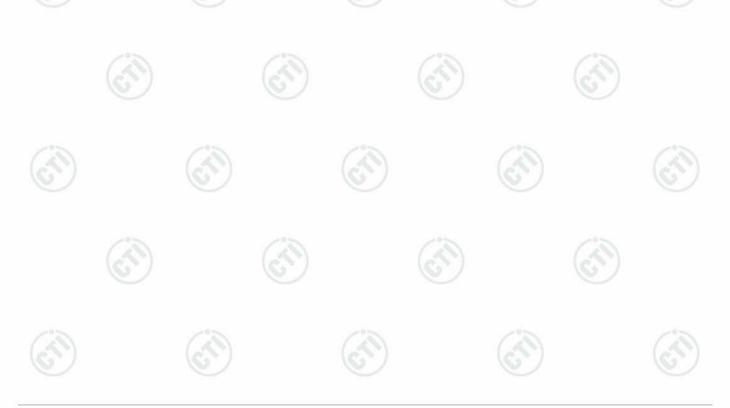

Page 3	3 of	49
--------	------	----

Mode:	GFSK Transmitting	Channel:	2402
Remark:	PK		

Test Graph

NO	Freq. [MHz]	Ant Factor [dB]	Cable loss [dB]	Pream gain [dB]	Reading [dBµV]	Level [dBµV/m]	Limit [dBµV/m]	Margin [dB]	Result	Polarity
1	2390.0000	32.25	13.37	-42.44	51.05	54.23	74.00	19.77	Pass	Vertical
2	2402.5031	32.26	13.31	-42.43	91.69	94.83	74.00	-20.83	Pass	Vertical

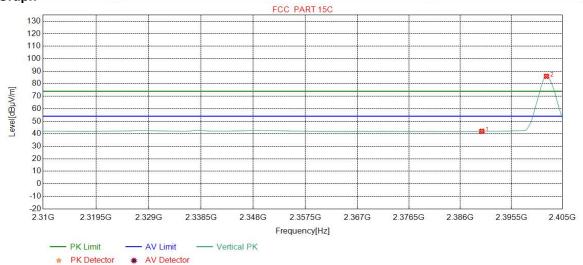


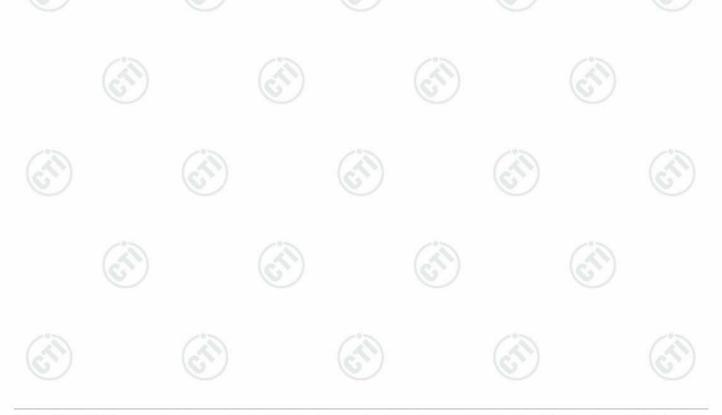

Page 3	4 of 49
--------	---------

Mode:	GFSK Transmitting	Channel:	2402
Remark:	AV		

Test Graph

NO	Freq. [MHz]	Ant Factor [dB]	Cable loss [dB]	Pream gain [dB]	Reading [dBµV]	Level [dBµV/m]	Limit [dBµV/m]	Margin [dB]	Result	Polarity
1	2390.0000	32.25	13.37	-42.44	38.64	41.82	54.00	12.18	Pass	Horizontal
2	2402.1464	32.26	13.31	-42.43	82.63	85.77	54.00	-31.77	Pass	Horizontal

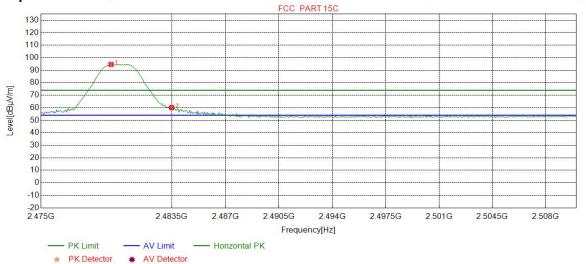


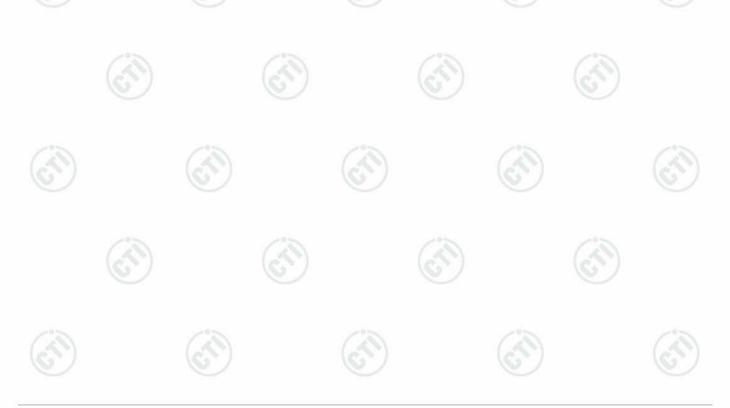

Page	35	of 49	
------	----	-------	--

Mode:	GFSK Transmitting	Channel:	2402
Remark:	AV		

Test Graph

NO	Freq. [MHz]	Ant Factor [dB]	Cable loss [dB]	Pream gain [dB]	Reading [dBµV]	Level [dBµV/m]	Limit [dBµV/m]	Margin [dB]	Result	Polarity
1	2390.0000	32.25	13.37	-42.44	38.84	42.02	54.00	11.98	Pass	Vertical
2	2402.0275	32.26	13.31	-42.43	82.81	85.95	54.00	-31.95	Pass	Vertical

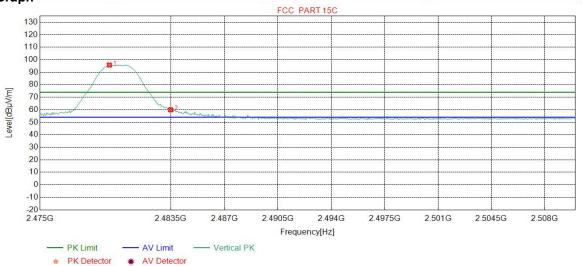


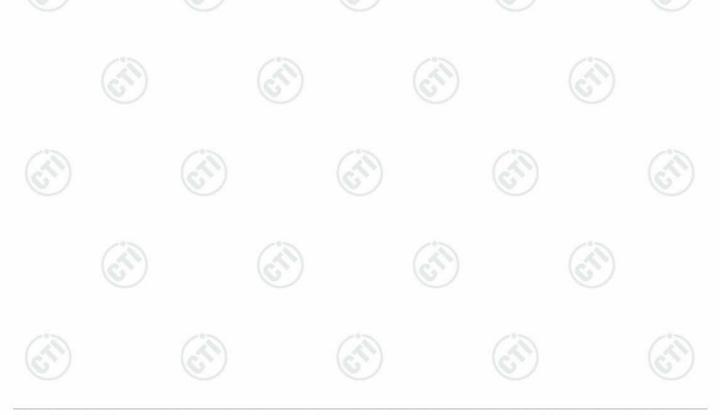

Page	36	of 49	
------	----	-------	--

Mode:	GFSK Transmitting	Channel:	2480
Remark:	PK		

Test Graph

NO	Freq. [MHz]	Ant Factor [dB]	Cable loss [dB]	Pream gain [dB]	Reading [dBµV]	Level [dBµV/m]	Limit [dBµV/m]	Margin [dB]	Result	Polarity
1	2479.5557	32.37	13.39	-42.39	91.21	94.58	74.00	-20.58	Pass	Horizontal
2	2483.5000	32.38	13.38	-42.40	56.80	60.16	74.00	13.84	Pass	Horizontal



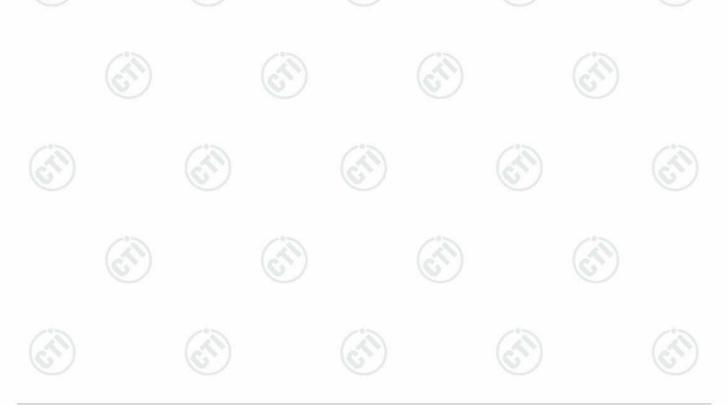

Page	37	of 49	
------	----	-------	--

Mode:	GFSK Transmitting	Channel:	2480
Remark:	PK		

Test Graph

NO	Freq. [MHz]	Ant Factor [dB]	Cable loss [dB]	Pream gain [dB]	Reading [dBµV]	Level [dBµV/m]	Limit [dBµV/m]	Margin [dB]	Result	Polarity
1	2479.5119	32.37	13.39	-42.39	92.33	95.70	74.00	-21.70	Pass	Vertical
2	2483.5000	32.38	13.38	-42.40	56.59	59.95	74.00	14.05	Pass	Vertical

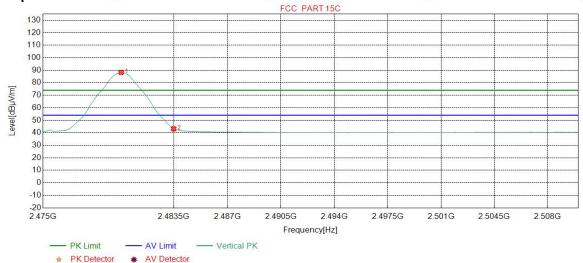



Page	38	of	49
------	----	----	----

Mode:	GFSK Transmitting	Channel:	2480
Remark:	AV		

Test Graph

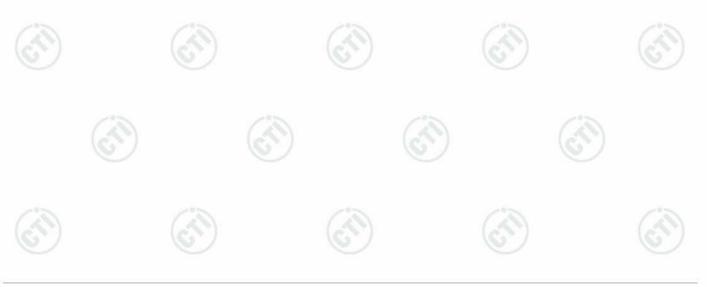
NO	Freq. [MHz]	Ant Factor [dB]	Cable loss [dB]	Pream gain [dB]	Reading [dBµV]	Level [dBµV/m]	Limit [dBµV/m]	Margin [dB]	Result	Polarity
1	2480.0814	32.37	13.39	-42.40	84.39	87.75	54.00	-33.75	Pass	Horizontal
2	2483.5000	32.38	13.38	-42.40	39.88	43.24	54.00	10.76	Pass	Horizontal



Page 3	39 of 4	9
--------	---------	---

Mode:	GFSK Transmitting	Channel:	2480
Remark:	AV		

Test Graph


NO	Freq. [MHz]	Ant Factor [dB]	Cable loss [dB]	Pream gain [dB]	Reading [dBµV]	Level [dBµV/m]	Limit [dBµV/m]	Margin [dB]	Result	Polarity
1	2480.0814	32.37	13.39	-42.40	84.87	88.23	54.00	-34.23	Pass	Vertical
2	2483.5000	32.38	13.38	-42.40	39.79	43.15	54.00	10.85	Pass	Vertical

Note:

1) The field strength is calculated by adding the Antenna Factor, Cable Factor & Preamplifier. The basic equation with a sample calculation is as follows:

Final Test Level =Receiver Reading -Correct Factor

Correct Factor = Preamplifier Factor - Antenna Factor - Cable Factor

Report No. : EED32L00174001 Page 40 of 49

Appendix I) Radiated Spurious Emissions

Receiver Setup:	Frequency	Detector	RBW	VBW	Remark	
	0.009MHz-0.090MHz	Peak	10kHz	30kHz	Peak	
	0.009MHz-0.090MHz	Average	10kHz	30kHz	Average	
	0.090MHz-0.110MHz	Quasi-peak	10kHz	30kHz	Quasi-peak	(3)
)	0.110MHz-0.490MHz	Peak	10kHz	30kHz	Peak	(62)
	0.110MHz-0.490MHz	Average	10kHz	30kHz	Average	
	0.490MHz -30MHz	Quasi-peak	10kHz	30kHz	Quasi-peak	
	30MHz-1GHz	Quasi-peak	120kHz	300kHz	Quasi-peak	
(61)	Above 4011	Peak	1MHz	3MHz	Peak	
	Above 1GHz	Peak	1MHz	10Hz	Average	

Test Procedure:

Below 1GHz test procedure as below:

Test method Refer as KDB 558074 D01 v04, Section 12.1

- a. The EUT was placed on the top of a rotating table 0.8 meters above the ground at a 3 meter semi-anechoic camber. The table was rotated 360 degrees to determine the position of the highest radiation.
- b. The EUT was set 3 meters away from the interference-receiving antenna, whichwas mounted on the top of a variable-height antenna tower.
- c. The antenna height is varied from one meter to four meters above the ground to determine the maximum value of the field strength. Both horizontal and vertical polarizations of the antenna are set to make the measurement.
- d. For each suspected emission, the EUT was arranged to its worst case and then the antenna was tuned to heights from 1 meter to 4 meters (for the test frequency of below 30MHz, the antenna was tuned to heights 1 meter) and the rotatable was turned from 0 degrees to 360 degrees to find the maximum reading.
- e. The test-receiver system was set to Peak Detect Function and Specified Bandwidth with Maximum Hold Mode.
- f. If the emission level of the EUT in peak mode was 10dB lower than the limit specified, then testing could be stopped and the peak values of the EUT would be reported. Otherwise the emissions that did not have 10dB margin would be re-tested one by one using peak, quasi-peak or average method as specified and then reported in a data sheet.

Above 1GHz test procedure as below:

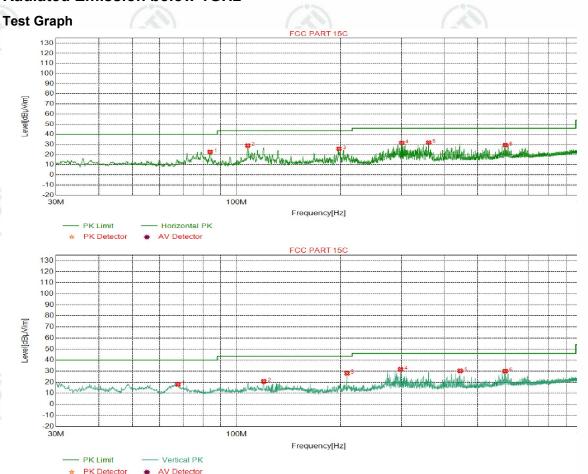
- g. Different between above is the test site, change from Semi- Anechoic Chamber to fully Anechoic Chamber and change form table 0.8 meter to 1.5 meter(Above 18GHz the distance is 1 meter and table is 1.5 meter).
- h. Test the EUT in the lowest channel ,the middle channel ,the Highest channel
- i. The radiation measurements are performed in X, Y, Z axis positioning for Transmitting mode, and found the X axis positioning which it is worse case.

Repeat above procedures until all frequencies measured was complete.

	n	าเ	t.
_,		ш	ι.

Frequency	Field strength (microvolt/meter)	Limit (dBµV/m)	Remark	Measurement distance (m)
0.009MHz-0.490MHz	2400/F(kHz)	-	(49)	300
0.490MHz-1.705MHz	24000/F(kHz)	-	(0)	30
1.705MHz-30MHz	30	-	-	30
30MHz-88MHz	100	40.0	Quasi-peak	3
88MHz-216MHz	150	43.5	Quasi-peak	3
216MHz-960MHz	200	46.0	Quasi-peak	3
960MHz-1GHz	500	54.0	Quasi-peak	3
Above 1GHz	500	54.0	Average	3

Note: 15.35(b), Unless otherwise specified, the limit on peak radio frequency emissions is 20dB above the maximum permitted average emission limit applicable to the equipment under test. This peak limit applies to the total peak emission level radiated by the device.

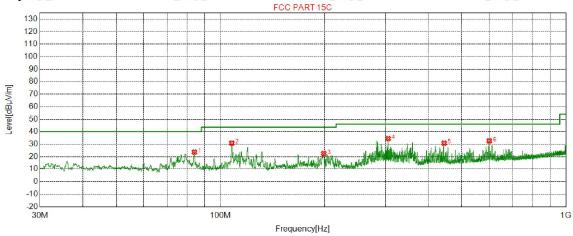

Report No. : EED32L00174001 Page 41 of 49

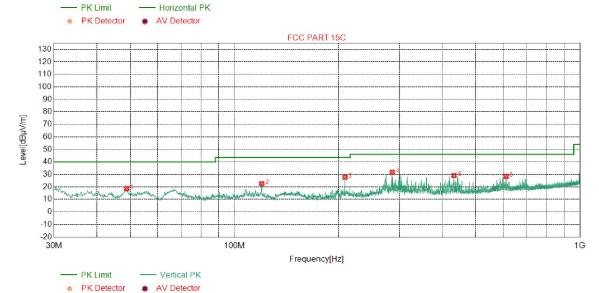
Radiated Spurious Emissions test Data:

Product : CSM92F30 Module Model/Type reference : CSM92F30 Module

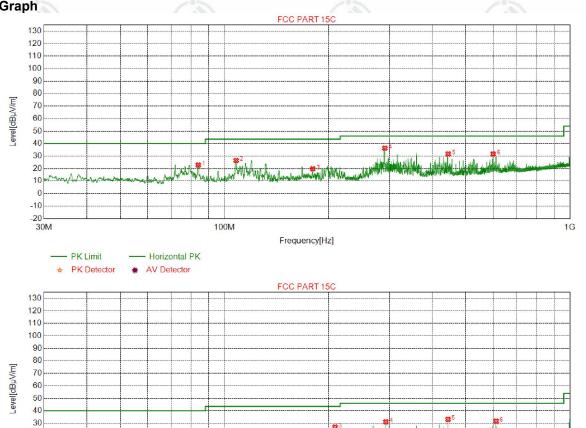
Temperature : 23° Humidity : 54%

Radiated Emission below 1GHz




		19.0		1.5	36 7 7		19.0	16:4.			
	Mode	:	GFSK 1	Fransmitt	ing		Channel:		2402		
**	NO	Freq. [MHz]	Ant Factor [dB]	Cable loss [dB]	Pream gain [dB]	Reading [dBµV]	Level [dBµV/m]	Limit [dBµV/m]	Margin [dB]	Result	Polarity
Š	1	83.8404	7.98	1.06	-32.08	45.68	22.64	40.00	17.36	Pass	Н
	2	107.8018	10.92	1.22	-32.06	48.87	28.95	43.50	14.55	Pass	Н
	3	197.9238	10.70	1.66	-31.95	45.29	25.70	43.50	17.80	Pass	I
	4	300.8511	13.22	2.06	-31.85	48.13	31.56	46.00	14.44	Pass	Τ
	5	359.9300	14.52	2.27	-31.84	47.00	31.95	46.00	14.05	Pass	Н
	6	599.8350	19.00	2.96	-31.99	39.38	29.35	46.00	16.65	Pass	I
	7	67.6398	9.61	0.94	-32.05	39.56	18.06	40.00	21.94	Pass	V
	8	119.9280	9.21	1.30	-32.07	42.31	20.75	43.50	22.75	Pass	V
) e 4	9	208.8859	11.13	1.71	-31.94	47.19	28.09	43.50	15.41	Pass	٧
	10	298.5229	13.17	2.06	-31.86	48.28	31.65	46.00	14.35	Pass	V
	11	444.0374	16.10	2.49	-31.88	43.57	30.28	46.00	15.72	Pass	V
	12	599.5440	18.99	2.96	-31.99	40.06	30.02	46.00	15.98	Pass	V

Report No. : EED32L00174001 Page 42 of 49



Mode) :	GFSK T	ransmitt	ing		Channel:		2440			
NO	Freq. [MHz]	Ant Factor [dB]	Cable loss [dB]	Pream gain [dB]	Reading [dBµV]	Level [dBµV/m]	Limit [dBµV/m]	Margin [dB]	Result	Polarity	
1	84.0344	8.03	1.06	-32.08	46.60	23.61	40.00	16.39	Pass	Н	
2	107.8018	10.92	1.22	-32.06	50.74	30.82	43.50	12.68	Pass	Н	
3	199.0879	10.81	1.66	-31.93	41.98	22.52	43.50	20.98	Pass	Н	
4	305.8956	13.33	2.08	-31.88	50.90	34.43	46.00	11.57	Pass	Н	
5	443.9404	16.10	2.49	-31.88	44.07	30.78	46.00	15.22	Pass	Н	
6	599.8350	19.00	2.96	-31.99	42.63	32.60	46.00	13.40	Pass	Н	
7	48.7229	13.20	0.79	-32.12	36.77	18.64	40.00	21.36	Pass	V	
8	119.9280	9.21	1.30	-32.07	44.13	22.57	43.50	20.93	Pass	V	
9	208.8859	11.13	1.71	-31.94	46.85	27.75	43.50	15.75	Pass	V	
10	286.1056	12.92	2.01	-31.89	48.59	31.63	46.00	14.37	Pass	V	
11	432.0082	15.91	2.46	-31.83	42.54	29.08	46.00	16.92	Pass	V	
12	611.5732	19.09	2.96	-32.04	38.41	28.42	46.00	17.58	Pass	V	

Test Graph

30									83 3	أبديا	la mila a	dilitir in	
20	Mayorahan	have	and white	Warner B.	who do no	L. David	alled L	ALLE LOS ASSESSED AND ALLE AND	and the state of t	TANK TANK			الاخالي
10		37-30			37.3450	April 1							
0			ļ		İ								
-10									1				
-20 30	OM						10	0M	-				
								Frequency	[Hz]				
	— РК	Limit		Vertic	al PK								
	A DK	Detector	*	AV/ Do	tector								

	Mode	: :	GFSK T	ransmitt	ing		Channel:		2480			
	NO	Freq. [MHz]	Ant Factor [dB]	Cable loss [dB]	Pream gain [dB]	Reading [dBµV]	Level [dBµV/m]	Limit [dBµV/m]	Margin [dB]	Result	Polarity	
	1	83.9374	8.01	1.06	-32.09	45.82	22.80	40.00	17.20	Pass	Н	
	2	108.0928	10.92	1.23	-32.07	46.41	26.49	43.50	17.01	Pass	Н	
S	3	180.0740	9.01	1.58	-31.99	41.21	19.81	43.50	23.69	Pass	Н	
	4	291.1501	13.02	2.03	-31.87	53.11	36.29	46.00	9.71	Pass	H	
	5	444.0374	16.10	2.49	-31.88	44.94	31.65	46.00	14.35	Pass	Н	
Ī	6	599.3499	18.99	2.96	-31.99	41.68	31.64	46.00	14.36	Pass	Н	
Ī	7	48.7229	13.20	0.79	-32.12	36.86	18.73	40.00	21.27	Pass	V	
Ī	8	108.0928	10.92	1.23	-32.07	39.44	19.52	43.50	23.98	Pass	V	
Ī	9	208.8859	11.13	1.71	-31.94	46.17	27.07	43.50	16.43	Pass	V	
	10	293.1873	13.06	2.04	-31.87	47.91	31.14	46.00	14.86	Pass	V	
or G	11	443.5524	16.10	2.49	-31.89	46.44	33.14	46.00	12.86	Pass	V	
8	12	611.4761	19.09	2.96	-32.04	41.67	31.68	46.00	14.32	Pass	V	

Transmitter Emission above 1GHz

Mode	e:	GFSK T	ransmitt	ing			Channel:		2402		
NO	Freq. [MHz]	Ant Factor [dB]	Cable loss [dB]	Pream gain [dB]	Reading [dBµV]	Level [dBµV/m]	Limit [dBµV/m]	Margin [dB]	Result	Polarity	Remark
1	1597.4597	29.04	3.07	-42.89	52.35	41.57	74.00	32.43	Pass	Н	PK
2	3182.0121	33.27	4.62	-42.01	49.58	45.46	74.00	28.54	Pass	Н	PK
3	4804.0000	34.50	4.55	-40.66	50.64	49.03	74.00	24.97	Pass	Н	PK
4	6088.3559	35.82	5.25	-41.11	47.16	47.12	74.00	26.88	Pass	Н	PK
5	7206.0000	36.31	5.81	-41.02	46.25	47.35	74.00	26.65	Pass	Н	PK
6	9608.0000	37.64	6.63	-40.76	44.50	48.01	74.00	25.99	Pass	Н	PK
7	1396.4396	28.30	2.89	-42.68	54.79	43.30	74.00	30.70	Pass	V	PK
8	1905.2905	31.07	3.42	-42.65	54.21	46.05	74.00	27.95	Pass	V	PK
9	3148.8599	33.26	4.57	-42.03	53.63	49.43	74.00	24.57	Pass	V	PK
10	4804.0000	34.50	4.55	-40.66	52.03	50.42	74.00	23.58	Pass	V	PK
11	7206.0000	36.31	5.81	-41.02	46.52	47.62	74.00	26.38	Pass	V	PK
12	9608.0000	37.64	6.63	-40.76	45.14	48.65	74.00	25.35	Pass	V	PK

		050K T '''				61 1		0440			
Mode:		GFSK Transmitting					Channel:		2440		
NO	Freq. [MHz]	Ant Factor [dB]	Cable loss [dB]	Pream gain [dB]	Reading [dBµV]	Level [dBµV/m]	Limit [dBµV/m]	Margin [dB]	Result	Polarity	Remark
1	1593.6594	29.02	3.06	-42.88	52.78	41.98	74.00	32.02	Pass	Н	PK
2	2841.7842	32.95	4.23	-42.21	54.49	49.46	74.00	24.54	Pass	Н	PK
3	4880.0000	34.50	4.80	-40.60	51.64	50.34	74.00	23.66	Pass	Н	PK
4	6152.7102	35.83	5.25	-41.12	47.54	47.50	74.00	26.50	Pass	Н	PK
5	7320.0000	36.42	5.85	-40.92	44.98	46.33	74.00	27.67	Pass	Н	PK
6	9760.0000	37.70	6.73	-40.62	44.55	48.36	74.00	25.64	Pass	Н	PK
7	1395.6396	28.30	2.89	-42.69	50.61	39.11	74.00	34.89	Pass	V	PK
8	1594.4594	29.02	3.07	-42.89	50.83	40.03	74.00	33.97	Pass	V	PK
9	2997.3997	33.20	4.54	-42.12	52.26	47.88	74.00	26.12	Pass	V	PK
10	4880.0000	34.50	4.80	-40.60	52.09	50.79	74.00	23.21	Pass	V	PK
11	7320.0000	36.42	5.85	-40.92	48.56	49.91	74.00	24.09	Pass	V	PK
12	9760.0000	37.70	6.73	-40.62	43.51	47.32	74.00	26.68	Pass	V	PK

Page 45 of 49

Mode:		GFSK Transmitting					Channel:		2480		
NO	Freq. [MHz]	Ant Factor [dB]	Cable loss [dB]	Pream gain [dB]	Reading [dBµV]	Level [dBµV/m]	Limit [dBµV/m]	Margin [dB]	Result	Polarity	Remark
1	1288.2288	28.19	2.73	-42.80	51.83	39.95	74.00	34.05	Pass	Н	PK
2	1775.0775	30.22	3.28	-42.71	51.18	41.97	74.00	32.03	Pass	Н	PK
3	3189.8127	33.28	4.63	-42.01	49.97	45.87	74.00	28.13	Pass	Н	PK
4	4960.0000	34.50	4.82	-40.53	50.73	49.52	74.00	24.48	Pass	Н	PK
5	7440.0000	36.54	5.85	-40.82	46.31	47.88	74.00	26.12	Pass	Н	PK
6	9920.0000	37.77	6.79	-40.48	44.12	48.20	74.00	25.80	Pass	Н	PK
7	1395.0395	28.30	2.89	-42.69	55.34	43.84	74.00	30.16	Pass	V	PK
8	1875.4875	30.88	3.40	-42.67	56.43	48.04	74.00	25.96	Pass	V	PK
9	3432.9289	33.37	4.47	-41.85	50.50	46.49	74.00	27.51	Pass	V	PK
10	4960.0000	34.50	4.82	-40.53	50.40	49.19	74.00	24.81	Pass	V	PK
11	7440.0000	36.54	5.85	-40.82	46.78	48.35	74.00	25.65	Pass	V	PK
12	9920.0000	37.77	6.79	-40.48	43.80	47.88	74.00	26.12	Pass	V	PK

Note:

1) The field strength is calculated by adding the Antenna Factor, Cable Factor & Preamplifier. The basic equation with a sample calculation is as follows:

Final Test Level =Receiver Reading -Correct Factor

Correct Factor = Preamplifier Factor - Antenna Factor - Cable Factor

2) Scan from 9kHz to 25GHz, the disturbance above 13GHz and below 30MHz was very low, and the above harmonics were the highest point could be found when testing, so only the above harmonics had been displayed. The amplitude of spurious emissions from the radiator which are attenuated more than 20dB below the limit need not be reported.

