

CETECOM ICT Services consulting - testing - certification >>>

TEST REPORT

Deutsche Akkreditierungsstelle D-PL-12076-01-00

Test report no.: 1-9521/15-01-02-A

Testing laboratory

CETECOM ICT Services GmbH Untertuerkheimer Strasse 6 – 10 66117 Saarbruecken / Germany Phone: + 49 681 5 98 - 0 Fax: + 49 681 5 98 - 9075 Internet: <u>http://www.cetecom.com</u> e-mail: <u>ict@cetecom.com</u>

Accredited Testing Laboratory: The testing laboratory (area of testing) is accredited according to DIN EN ISO/IEC 17025 (2005) by the Deutsche Akkreditierungsstelle GmbH (DAkkS) The accreditation is valid for the scope of testing procedures as stated in the accreditation certificate with the registration number: D-PL-12076-01-00

Applicant

Gemalto	Gemalto M2M GmbH							
Siemensd	lamm 50							
13629 Be	rlin / GERMANY							
Phone:	+49 30311028241							
Fax:	+49 30311028305							
Contact:	Thorsten Liebig							
e-mail:	Thorsten.liebig@gemalto.com							
Phone:	Office:+49 30311028241							
	Mobile: +491607074027							

Manufacturer

Gemalto M2M GmbH

St.-Martin-Str. 60 81541 München / GERMANY

Test standard/s

47 CFR Part 22Title 47 of the Code of Federal Regulations; Chapter I; Part 22 - Public mobile
servicesRSS - 132 Issue 3Spectrum Management and Telecommunications Radio Standards Specification -
Cellular Telephone Systems Operating in the Bands 824-849 MHz and 869-894
MHz

For further applied test standards please refer to section 3 of this test report.

Test Item

	i est item	
Kind of test item:	LTE SMT module (multi-carrier, data-only)	
Model name:	PLS8-X	
FCC ID:	QIPPLS8-X	
IC:	7830A-PLS8X	CINTERION Hose K
Frequency:	LTE Band 5 FDD 824 MHz to 849 MHz	530/x6-53040-A300-T
Technology tested:	LTE FDD	not for sale
Antenna:	External antenna	004401-08 74 20024 EN
Power supply:	3.8 V DC by external power supply	
Temperature range:	-30°C to +60°C	

This test report is electronically signed and valid without handwriting signature. For verification of the electronic signatures, the public keys can be requested at the testing laboratory.

Test report authorised:

Andreas Luckenbill Lab Manager Radio Communications & EMC

Test performed:

p.o.

Tobias Wittenmeier Testing Manager Radio Communications & EMC

1 Table of contents

1	Table of	of contents	2
2	Genera	I information	3
		Notes and disclaimer Application details	
3	Test st	andard/s	3
	3.1 I	Measurement guidance	3
4	Test er	nvironment	4
5	Test ite	em	4
	5.1	Additional information	4
6	Test la	boratories sub-contracted	4
7	Descri	otion of the test setup, test equipment and ancillaries used for tests	5
	7.1	Radiated measurements chamber C	6
	7.2	Conducted measurements	7
8	Measu	rement uncertainty	8
9	Seque	nce of testing	9
	9.2	Sequence of testing 9 kHz to 30 MHz Sequence of testing 30 MHz to 1 GHz Sequence of testing 1 GHz to 12.75 GHz	10
10		mmary of measurement results	
10	3u 10.1	LTE band V	
11		measurements	
	11.1 11.1.1	Results LTE band V RF output power	
	11.1.1	Frequency stability	
	11.1.3	Spurious emissions radiated	
	11.1.4	Spurious emissions conducted	
	11.1.5	Block edge compliance	
	11.1.6	Occupied bandwidth	
12	Ob	servations	
Anı	nex A	Document history	67
		-	
Anı	nex B	Further information	

2 General information

2.1 Notes and disclaimer

The test results of this test report relate exclusively to the test item specified in this test report. CETECOM ICT Services GmbH does not assume responsibility for any conclusions and generalizations drawn from the test results with regard to other specimens or samples of the type of the equipment represented by the test item.

The test report may only be reproduced or published in full. Reproduction or publication of extracts from the report requires the prior written approval of CETECOM ICT Services GmbH.

The testing service provided by CETECOM ICT Services GmbH has been rendered under the current "General Terms and Conditions for CETECOM ICT Services GmbH".

CETECOM ICT Services GmbH will not be liable for any loss or damage resulting from false, inaccurate, inappropriate or incomplete product information provided by the customer.

Under no circumstances does the CETECOM ICT Services GmbH test report include any endorsement or warranty regarding the functionality, quality or performance of any other product or service provided.

Under no circumstances does the CETECOM ICT Services GmbH test report include or imply any product or service warranties from CETECOM ICT Services GmbH, including, without limitation, any implied warranties of merchantability, fitness for purpose, or non-infringement, all of which are expressly disclaimed by CETECOM ICT Services GmbH.

All rights and remedies regarding vendor's products and services for which CETECOM ICT Services GmbH has prepared this test report shall be provided by the party offering such products or services and not by CETECOM ICT Services GmbH.

In no case this test report can be considered as a Letter of Approval.

This test report is electronically signed and valid without handwritten signature. For verification of the electronic signatures, the public keys can be requested at the testing laboratory.

This test report replaces the test report with the number 1-9521/15-01-02 and dated 2015-06-23

2.2 Application details

Date of receipt of order:	2015-03-12
Date of receipt of test item:	2015-03-16
Start of test:	2015-03-17
End of test:	2015-07-31
Person(s) present during the test:	-/-

3 Test standard/s

Test standard	Date	Test standard description
47 CFR Part 22	-/-	Title 47 of the Code of Federal Regulations; Chapter I; Part 22 - Public mobile services
RSS - 132 Issue 3	01.01.2013	Spectrum Management and Telecommunications Radio Standards Specification - Cellular Telephone Systems Operating in the Bands 824-849 MHz and 869-894 MHz

3.1 Measurement guidance

Guidance	Version	Description
ANSI C63.4-2014	-/-	American national standard for methods of measurement of radio-noise emissions from low-voltage electrical and electronic equipment in the range of 9 kHz to 40 GHz

4 Test environment

Temperature:	T _{nom} T _{max} T _{min}	 +22 °C during room temperature tests +60 °C during high temperature tests -30 °C during low temperature tests 			
Relative humidity content:		55 %			
Barometric pressure:		not relevant for this kind of testing			
Power supply:	V _{nom} V _{max} V _{min}	 3.8 V DC by external power supply 4.2 V 3.3 V 			

5 Test item

Kind of test item	:	LTE SMT module (multi-carrier, data-only)
Type identification	•	PLS8-X
FCC ID	:	QIPPLS8-X
IC	:	7830A-PLS8X
PMN	:	Cinterion PLS8-X
HVIN	:	PLS8-X
FVIN		-/-
HMN	:	-/-
S/N serial number	:	No information available
HW hardware status	:	Rev. 2.3
SW software status	:	Rev. 02.502
Frequency band	:	LTE Band 5 FDD 824 MHz to 849 MHz
Type of radio transmission	:	OFDM
Use of frequency spectrum	:	
Type of modulation	:	QPSK, 16 – QAM
Antenna	:	External antenna
Power supply	:	3.8 V DC by external power supply
Temperature range	:	-30°C to +60°C

5.1 Additional information

The content of the following annexes is defined in the QA. It may be that not all of the listed annexes are necessary for this report, thus some values in between may be missing.

Test setup- and EUT-photos are included in test report:

1-9521/15-01-01_AnnexA 1-9521/15-01-01_AnnexC

6 Test laboratories sub-contracted

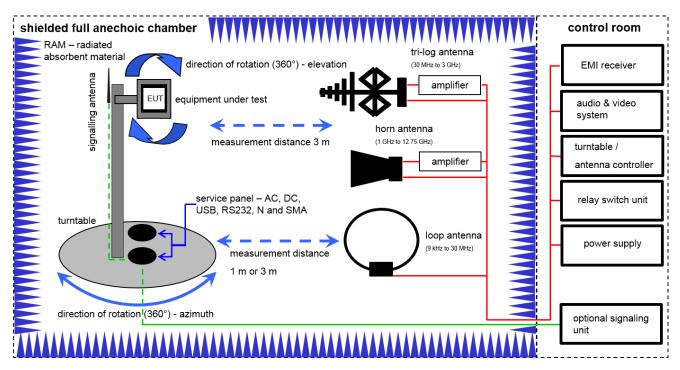
None

7 Description of the test setup, test equipment and ancillaries used for tests

Typically, the calibrations of the test apparatus are commissioned to and performed by an accredited calibration laboratory. The calibration intervals are determined in accordance with the DIN EN ISO/IEC 17025. In addition to the external calibrations, the laboratory executes comparison measurements with other calibrated test systems or effective verifications. Weekly chamber inspections and range calibrations are performed. Where possible, rf-generating and signalling equipment as well as measuring receivers and analyzers are connected to an external high-precision 10 MHz reference (GPS-based or rubidium frequency standard).

In order to simplify the identification of the equipment used at some special tests, some items of test equipment and ancillaries can be provided with an identifier or number in the equipment list below (Lab/Item).

Agenda: Kind of Calibration


- k calibration / calibrated
- ne not required (k, ev, izw, zw not required)
- ev periodic self verification
- Ve long-term stability recognized
- vlkl! Attention: extended calibration interval
- NK! Attention: not calibrated

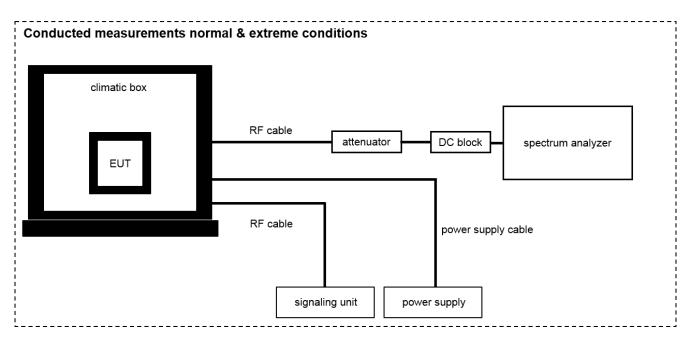
- EK limited calibration
- zw cyclical maintenance (external cyclical maintenance)
- izw internal cyclical maintenance
- g blocked for accredited testing
- *) next calibration ordered / currently in progress

7.1 Radiated measurements chamber C

OP = AV + D - G + CA

(OP-output power; AV-analyzer value; D-distance; G-antenna gain+amplifier gain; CA-loss signal path)

Example calculation:


OP [dBm] = -11.0 [dBm] + 47 [dB] - 8 [dB] + 5 [dB] = 33 [dBm] (2 W)

Equipment table:

No.	Lab / Item	Equipment	Туре	Manufact.	Serial No.	INV. No Cetecom	Kind of Calibration	Last Calibration	Next Calibration
1	А	DC power supply, 60Vdc, 50A, 1200 W	6032A	HP	2818A03450	300001040	Ve	20.01.2015	20.01.2018
2	A	Double-Ridged Waveguide Horn Antenna 1-18.0GHz	3115	EMCO	8812-3088	300001032	viKi!	08.05.2013	08.05.2015
3	A	Anechoic chamber	FAC 3/5m	MWB / TDK	87400/02	300000996	ev		
4	А	Switch / Control Unit	3488A	HP	*	300000199	ne		
5	А	Active Loop Antenna 10 kHz to 30 MHz	6502	Kontron Psychotech	8905-2342	300000256	k	13.06.2013	13.06.2015
6	А	Amplifier	js42-00502650-28- 5a	Parzich GMBH	928979	300003143	ne		
7	A	Highpass Filter	WHKX7.0/18G-8SS	Wainwright	18	300003789	ne		
8	A	TRILOG Broadband Test-Antenna 30 MHz - 3 GHz	VULB9163	Schwarzbeck	371	300003854	viKi!	29.10.2014	29.10.2017
9	А	MXE EMI Receiver 20 Hz to 26,5 GHz	N9038A	Agilent Technologies	MY51210197	300004405	k	06.03.2015	06.03.2016
10	А	4U RF Switch Platform	L4491A	Agilent Technologies	MY50000037	300004509	ne		
11	A	Wideband Radio Communication Tester	CMW500	R&S	102375	300004187	viKI!	28.01.2015	28.01.2017

7.2 Conducted measurements

OP = AV + CA

(OP-output power; AV-analyzer value; CA-loss signal path)

<u>Example calculation:</u> OP [dBm] = 6.0 [dBm] + (11.7) [dB] = 17.7 [dBm] (58.88 mW)

Equipment table:

No.	Lab / Item	Equipment	Туре	Manufact.	Serial No.	INV. No Cetecom	Kind of Calibration	Last Calibration	Next Calibration
1	Α, Β	Switch / Control Unit	3488A	HP	2605e08770	300001443	ne		
2	А	Signal Analyzer 40 GHz	FSV40	R&S	101042	300004517	k	22.01.2015	22.01.2016
3	A, B	Power Supply 0- 20V; 0-5A	6632B	HP	US37478366	400000117	vlKl!	20.01.2015	20.01.2017
4	А, В	Wideband Radio Communication Tester	CMW500	R&S	102375	300004187	viKI!	28.01.2015	28.01.2017
5	В	Temperature Test Chamber	VT 4002	Heraeus Voetsch	521/83761	300002326	Ve	26.09.2013	26.09.2015
6	A, B	RF-Cable	ST18/SMAm/SMAm/ 72	Huber & Suhner	Batch no. 699714	400001184	ev		
7	А	DC-Blocker 0.1-40 GHz	8141A	Inmet		400001185	ev		
8	A	Coax Attenuator 10 dB 2W 0-40 GHz	MCL BW-K10- 2W44+	Mini Circuits		400001186	ev		

8 Measurement uncertainty

Measurement uncertainty						
Test case	Uncertainty					
RF output power conducted	± 1 dB					
RF output power radiated	± 3 dB					
Frequency stability	± 20 Hz					
Spurious emissions radiated below 30 MHz	± 3 dB					
Spurious emissions radiated 30 MHz to 1 GHz	± 3 dB					
Spurious emissions radiated 1 GHz to 12.75 GHz	± 3.7 dB					
Spurious emissions radiated above 12.75 GHz	± 4.5 dB					
Spurious emissions conducted	± 3 dB					
Block edge compliance	± 3 dB					
Occupied bandwidth	± RBW					

9 Sequence of testing

9.1 Sequence of testing 9 kHz to 30 MHz

Setup

- The equipment was set up to simulate a typical usage like descripted in the user manual or described by manufacturer.
- If the EUT is a tabletop system, a rotatable table with 1.5 m height is used.
- If the EUT is a floor standing device, it is placed on the ground.
- Auxiliary equipment and cables were positioned to simulate normal operation conditions as described in ANSI C 63.4.
- The AC power port of the EUT (if available) is connected to a power outlet below the turntable.
- The measurement distance is 3 meter (see ANSI C 63.4) see each test details
- The EUT was set into operation.

Premeasurement

- The turntable rotates from 0° to 315° using 45° steps.
- The antenna height is 1.5 meter.
- At each turntable position the analyzer sweeps with peak detection to find the maximum of all emissions

Final measurement

- Identified emissions during the premeasurement the software maximizes by rotating the turntable position (0° to 360°) and by rotating the elevation axces (0° to 360°).
- The final measurement will be done in the position (turntable and elevation) causing the highest emissions with RMS (RMS / see ANSI C 63.4) detector
- The final levels, frequency, measuring time, bandwidth, turntable position, correction factor, margin to the limit and limit will be recorded. Also a plot with the graph of the premeasurement and the limit will be stored.

9.2 Sequence of testing 30 MHz to 1 GHz

Setup

- The equipment was set up to simulate a typical usage like descripted in the user manual or described by manufacturer.
- If the EUT is a tabletop system, a table with 0.8 m height is used, which is placed on the ground plane.
- If the EUT is a floor standing device, it is placed on the ground plane with insulation between both.
- Auxiliary equipment and cables were positioned to simulate normal operation conditions as described in ANSI C 63.4.
- The AC power port of the EUT (if available) is connected to a power outlet below the turntable.
- The measurement distance is 10 or 3 meter (see ANSI C 63.4) see each test details
- The EUT was set into operation.

Premeasurement

- The turntable rotates from 0° to 315° using 45° steps.
- The antenna is polarized vertical and horizontal.
- The antenna height changes from 1 to 3 meter.
- At each turntable position, antenna polarization and height the analyzer sweeps three times in peak to find the maximum of all emissions
- ٠

Final measurement

- The final measurement will be performed with minimum the six highest peaks.
- According to the maximum antenna and turntable positions of premeasurement the software maximize the peaks by changing turntable position (± 45°) and antenna movement between 1 and 4 meter.
- The final measurement will be done with RMS (RMS / see ANSI C 63.4) detector with an EMI receiver
- The final levels, frequency, measuring time, bandwidth, antenna height, antenna polarization, turntable angle, correction factor, margin to the limit and limit will be recorded. Also a plot with the graph of the premeasurement with marked maximum final measurements and the limit will be stored.

9.3 Sequence of testing 1 GHz to 12.75 GHz

Setup

- The equipment was set up to simulate a typical usage like descripted in the user manual or described by manufacturer.
- If the EUT is a tabletop system, a rotatable table with 1.5 m height is used.
- If the EUT is a floor standing device, it is placed on the ground.
- Auxiliary equipment and cables were positioned to simulate normal operation conditions as described in ANSI C 63.4.
- The AC power port of the EUT (if available) is connected to a power outlet below the turntable.
- The measurement distance is 3 meter (see ANSI C 63.4) see each test details
- The EUT was set into operation.

Premeasurement

- The turntable rotates from 0° to 315° using 45° steps.
- The antenna is polarized vertical and horizontal.
- The antenna height is 1.5 meter.
- At each turntable position and antenna polarization the analyzer sweeps with peak detection to find the maximum of all emissions

Final measurement

- The final measurement will be performed with minimum the six highest peaks according the requirements of the ANSI C63.4.
- According to the maximum found antenna polarization and turntable position of the premeasurement the software maximizes the peaks by rotating the turntable position (0° to 360°). This measurement is repeated for different EUT-table positions (0° to 150° in 30°-steps). This procedure is repeated for both antenna polarizations.
- The final measurement will be done in the position (turntable, EUT-table and antenna polarization) causing the highest emissions with Peak and RMS (RMS / see ANSI C 63.4) detector
- The final levels, frequency, measuring time, bandwidth, turntable position, EUT-table position, antenna polarization, correction factor, margin to the limit and limit will be recorded. Also a plot with the graph of the premeasurement with marked maximum final measurements and the limit will be stored.

10 Summary of measurement results

No deviations from the technical specifications were ascertained
 There were deviations from the technical specifications ascertained
 This test report is only a partial test report. The content and verdict of the performed test cases are listed below.

TC identifier	Description	verdict	date	Remark
RF-Testing	CFR Part 22 RSS 132	See table	2015-08-04	-/-

10.1 LTE band V

Test Case	temperature conditions	power source voltages	с	NC	NA	NP	Remark
RF Output Power	Nominal	Nominal					-/-
Frequency Stability	Extreme	Extreme					-/-
Spurious Emissions Radiated	Nominal	Nominal					-/-
Spurious Emissions Conducted	Nominal	Nominal					-/-
Block Edge Compliance	Nominal	Nominal					-/-
Occupied Bandwidth	Nominal	Nominal					-/-

Note: C = Compliant; NC = Not compliant; NA = Not applicable; NP = Not performed

11 **RF** measurements

11.1 Results LTE band V

The EUT was set to transmit the maximum power.

11.1.1 RF output power

Description:

This paragraph contains average power, peak output power, PAPR and ERP measurements for the mobile station.

The plots in this test report represents only an example of the measurements. All plots of this chapter are available on request.

The red line in the measurements indicates the ideal Gaussian distribution for the measured amplitude range.

Measurement:

The mobile was set up for the maximum output power with pseudo random data modulation.

To determine the Peak-To-Average Power Ratio (PAPR) the measurement was performed with the Power Complementary Cumulative Distribution Function (CCDF).

Measurement parameters				
Detector:	Sample			
AQT:	15.6 ms			
Resolution bandwidth:	40 MHz			
Used equipment:	see chapter 7.1 – A and chapter 7.2 – A			
Measurement uncertainty:	see chapter 8			

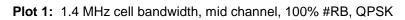
Limits:

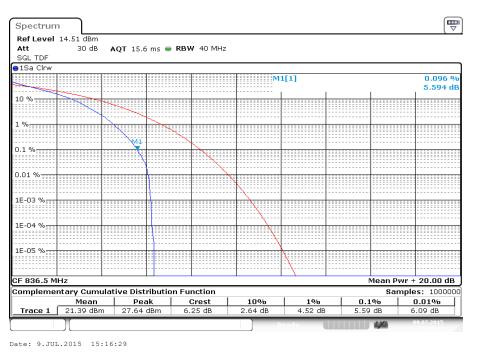
FCC	IC				
CFR Part 22.913 CFR Part 2.1046	RSS 132				
Nominal Peak Output Power					
+38.45 dBm In measuring transmissions in this band using an average power technique, the peak-to-average ratio (PAR) of the transmission may not exceed 13 dB.					

Results:

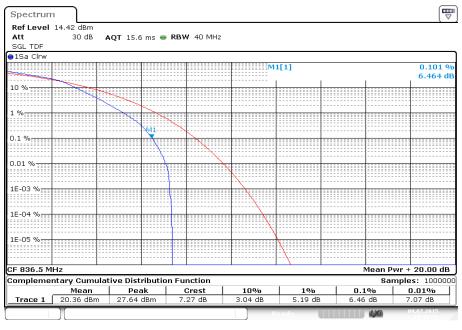
	Output Power (conducted)							
Bandwidth (MHz)	Frequency (MHz)	Resource block allocation	Peak Output Power (dBm) QPSK	Average Output Power (dBm) QPSK	Peak to Average Ratio (dB) CCDF	Peak Output Power (dBm) 16-QAM	Average Output Power (dBm) 16-QAM	Peak to Average Ratio (dB) CCDF
		1 RB low	27.4	22.5	4.8	27.6	21.5	5.8
	824.7	1 RB high	27.2	22.4	4.7	27.5	21.4	5.7
	024.7	50% RB	27.5	22.4	4.6	27.4	21.3	5.7
		100% RB	27.1	21.4	5.3	26.8	20.4	5.9
		1 RB low	28.0	22.4	5.4	27.8	21.1	6.3
1.4	926 F	1 RB high	27.9	22.3	5.4	27.7	20.9	6.3
1.4	836.5	50% RB	28.0	22.3	5.3	28.0	21.4	6.2
		100% RB	27.6	21.4	5.6	27.6	20.4	6.5
		1 RB low	27.7	22.4	5.0	27.6	21.1	6.1
	848.3	1 RB high	27.5	22.0	5.1	27.6	21.0	6.2
	040.3	50% RB	27.7	22.2	5.2	27.6	21.2	6.2
		100% RB	27.7	21.3	5.6	27.3	20.3	6.4
		1 RB low	27.2	22.3	4.8	27.3	21.2	5.8
	825.5	1 RB high	27.2	22.2	4.8	27.3	21.2	5.7
		50% RB	27.0	21.3	5.2	27.0	20.3	6.1
		100% RB	27.0	21.2	5.2	27.2	20.3	6.1
		1 RB low	27.9	22.2	5.4	27.6	20.8	6.2
3		1 RB high	27.8	22.2	5.3	27.6	21.0	6.1
5	030.0	50% RB	27.9	21.3	5.6	27.5	20.3	6.5
		100% RB	27.7	21.3	5.6	27.8	20.2	6.4
		1 RB low	27.7	22.2	5.1	27.6	21.2	6.1
	847.5	1 RB high	27.6	22.0	5.2	27.5	20.9	6.2
	047.5	50% RB	27.4	21.2	5.6	27.3	20.2	6.3
		100% RB	27.4	21.2	5.5	27.3	20.2	6.4
		1 RB low	27.3	22.3	4.7	27.1	21.1	5.8
	826.5	1 RB high	27.4	22.2	4.8	27.3	21.1	5.9
	020.0	50% RB	26.9	21.3	5.2	27.0	20.4	6.1
		100% RB	27.2	21.1	5.3	27.1	20.2	6.1
		1 RB low	28.0	22.2	5.4	27.8	21.2	6.4
5	836.5	1 RB high	27.9	22.3	5.2	27.7	21.1	6.3
5	000.0	50% RB	27.7	21.2	5.7	27.5	20.2	6.3
		100% RB	27.9	21.3	5.6	27.8	20.2	6.4
		1 RB low	27.7	22.2	5.0	27.6	21.1	6.1
	846.5	1 RB high	27.6	22.1	5.1	27.5	21.0	6.3
	040.0	50% RB	27.5	21.2	5.6	27.3	20.2	6.3
		100% RB	27.5	21.1	5.6	27.4	20.3	6.2

		1 RB low	27.0	22.1	4.8	27.2	21.2	5.7
	829	1 RB high	27.6	22.0	5.3	27.7	21.1	6.3
	029	50% RB	27.3	21.2	5.4	27.3	20.2	6.3
		100% RB	27.4	21.0	5.4	27.5	20.0	6.3
		1 RB low	27.5	21.9	5.3	27.3	20.7	6.1
10	836.5	1 RB high	27.8	22.2	5.3	27.6	21.0	6.1
10		50% RB	27.7	21.2	5.6	27.7	20.3	6.4
		100% RB	27.8	21.1	5.6	27.8	20.1	6.4
		1 RB low	27.7	22.1	5.2	27.6	21.2	6.1
	844	1 RB high	27.6	22.1	5.1	27.4	20.9	6.2
	044	50% RB	27.7	21.3	5.5	27.6	20.2	6.4
		100% RB	27.8	21.2	5.6	27.6	20.1	6.3


The radiated output power is measured in the mode with the highest conducted output power.

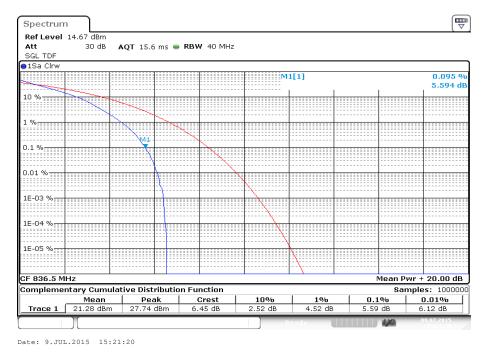

Output Power (radiated)					
Bandwidth (MHz)	Frequency (MHz)	Average Output Power (dBm) QPSK	Average Output Power (dBm) 16-QAM		
	824.7	12.06	12.26		
1.4	836.5	10.65	9.75		
	848.3	13.63	12.73		
	825.5	11.96	11.06		
3	836.5	10.55	9.55		
	847.5	13.53	12.63		
	826.5	11.86	10.86		
5	836.5	10.55	9.45		
	846.5	13.63	12.53		
	829.0	11.76	11.46		
10	836.5	10.20	9.45		
	844.0	13.43	12.43		

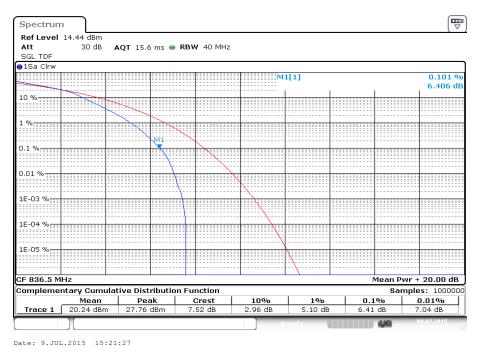
Verdict: compliant

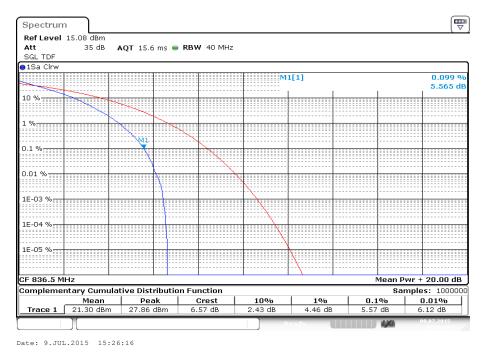


Plots:

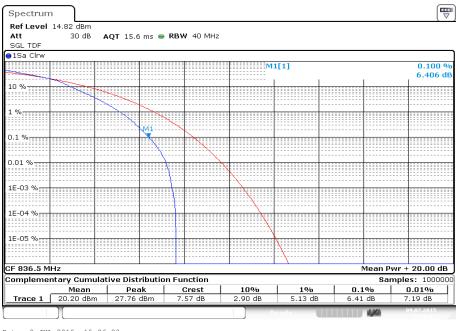


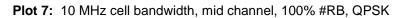

Plot 2: 1.4 MHz cell bandwidth, mid channel, 100% #RB, 16-QAM

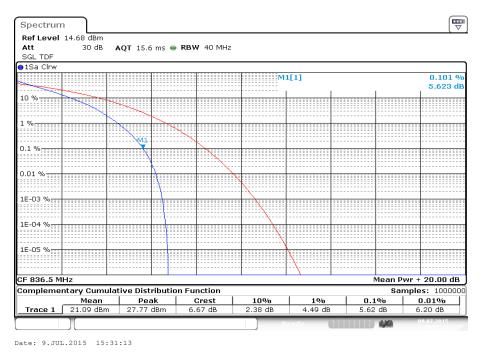

Date: 9.JUL.2015 15:16:35

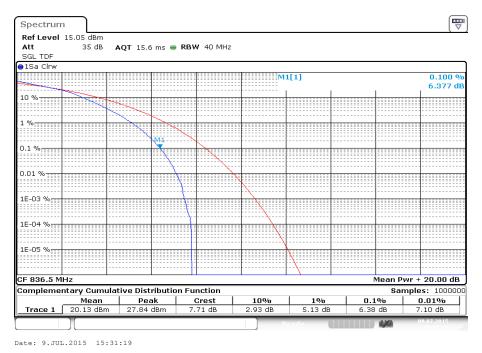


Plot 4: 3 MHz cell bandwidth, mid channel, 100% #RB, 16-QAM






Plot 6: 5 MHz cell bandwidth, mid channel, 100% #RB, 16-QAM


Date: 9.JUL.2015 15:26:23

Plot 8: 10 MHz cell bandwidth, mid channel, 100% #RB, 16-QAM

11.1.2 Frequency stability

Description:

In order to measure the carrier frequency under the condition of AFC lock, it is necessary to make measurements with the mobile station connected to CMW. This is accomplished with the use of a R&S CMW500 DIGITAL RADIOCOMMUNICATION TESTER.

1. Measure the carrier frequency at room temperature.

2. Subject the mobile station to overnight soak at -30 C.

3. With the mobile station, powered with V_{nom}, connected to the CMW500 and a connection on centre channel, measure the carrier frequency. These measurements should be made within two minutes of powering up the mobile station, to prevent significant self warming.

4. Repeat the above measurements at 10°C increments from -30°C to +60°C. Allow at least 1.5 hours at each temperature, unpowered, before making measurements.

5. Remeasure carrier frequency at room temperature with V_{nom} . Vary supply voltage from V_{min} to V_{max} . Pause at V_{nom} for 1.5 hours unpowered, to allow any self heating to stabilize, before continuing.

6. At all temperature levels hold the temperature to +/- 0.5°C during the measurement procedure.

Measurement:

Measurement parameters				
Detector:				
Sweep time:				
Video bandwidth:	Measured with CMW500			
Resolution bandwidth:	Measured with CMW 500			
Span:				
Trace-Mode:				
Used equipment:	see chapter chapter 7.2 – B			
Measurement uncertainty:	see chapter 8			

Limits:

FCC	IC				
CFR Part 22.355 CFR Part 2.1055	RSS 132				
Frequency Stability					
± 0.1 ppm					

Results:

AFC FREQ ERROR versus VOLTAGE

Voltage (V)	Frequency Error (Hz)	Frequency Error (%)	Frequency Error (ppm)
13.8	5	0.0000036	0.0036
12.0	4	0.0000048	0.0048
10.2	4	0.0000048	0.0048

AFC FREQ ERROR versus TEMPERATURE

Temperature (°C)	Frequency Error (Hz)	Frequency Error (%)	Frequency Error (ppm)
-30	4	0.0000048	0.0048
-20	4	0.0000048	0.0048
-10	2	0.0000024	0.0024
± 0	3	0.0000036	0.0036
10	-4	-0.0000048	-0.0048
20	5	0.0000060	0.0060
30	4	0.0000048	0.0048
40	3	0.0000036	0.0036
50	4	0.0000048	0.0048
60	4	0.0000048	0.0048

Verdict: compliant

11.1.3 Spurious emissions radiated

Description:

The following steps outline the procedure used to measure the radiated emissions from the mobile station. The site is constructed in accordance with ANSI C63.4:2014 requirements and is recognized by the FCC to be in compliance for a 3 and a 10 meter site. The spectrum was scanned from 9 kHz to the 10th harmonic of the highest frequency generated within the equipment, which is the transmitted carrier that can be as high as 848.3 MHz. Measurement made up to 12.75 GHz. The resolution bandwidth is set as outlined in Part 22.917. The spectrum was scanned with the mobile station transmitting at the middle carrier frequency of the LTE band V.

Measurement:

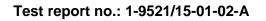
Measurement parameters				
Detector:	Peak / RMS			
Sweep time:	5 ms/MHz			
Resolution bandwidth:	100 kHz			
Video bandwidth:	300 kHz			
Span:	different steps			
Trace-Mode:	Max Hold			
Used equipment:	see chapter 7.1 - A			
Measurement uncertainty:	see chapter 8			

Limits:

FCC	IC				
CFR Part 22.917 CFR Part 2.1053	RSS 132				
Spurious Emissions Radiated					
Attenuation ≥ 43 + 10log(P) (P, Power in Watts)					
-13 dBm					

Results:

Radiated emissions measurements were made only at the center carrier frequency of the LTE band V (836.5 MHz). It was decided that measurements at this carrier frequency would be sufficient to demonstrate compliance with emissions limits because it was seen that all the significant spurs occur well outside the band and no radiation was seen from a carrier in one block of the LTE band V into any of the other blocks. The equipment must still, however, meet emissions requirements with the carrier at all frequencies over which it is capable of operating and it is the manufacturer's responsibility to verify this.


The final open field radiated levels are presented on the next pages.

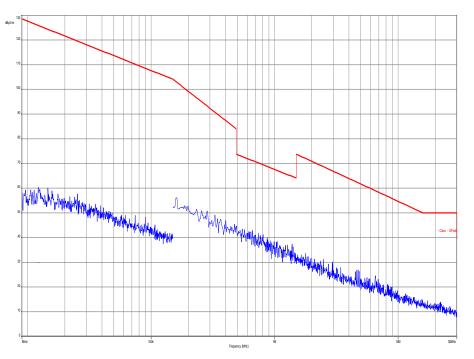
All measurements were done in horizontal and vertical polarization; the plots show the worst case. The plots show only the middle channel. If spurious were detected, the lowest and highest channel were checked too. The found values are stated in the table below.

As can be seen from this data, the emissions from the test item were within the specification limit.

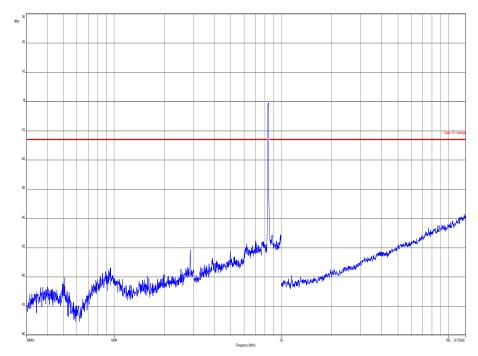
QPSK:

Spurious Emission Level (dBm)								
Harmonic	Middle channel Freq. (MHz)	Level [dBm]						
2	1673.0	-						
3	2509.5	-						
4	3346.0	-						
5	4182.5	-						
6	5019.0	-						
7	5855.5	-						
8	6692.0	-						
9	7528.5	-						
10	8365.0	-						

<u> 16-QAM:</u>

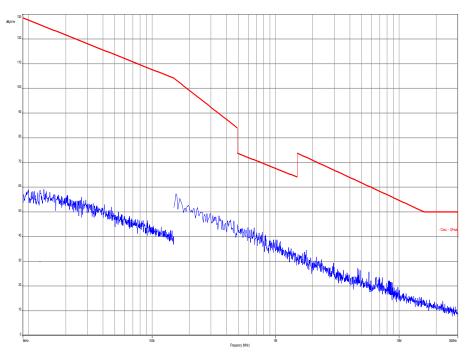

Spurious Emission Level (dBm)									
Harmonic	Middle channel Freq. (MHz)	Level [dBm]							
2	1673.0	-							
3	2509.5	-							
4	3346.0	-							
5	4182.5	-							
6	5019.0	-							
7	5855.5	-							
8	6692.0	-							
9	7528.5	-							
10	8365.0	-							

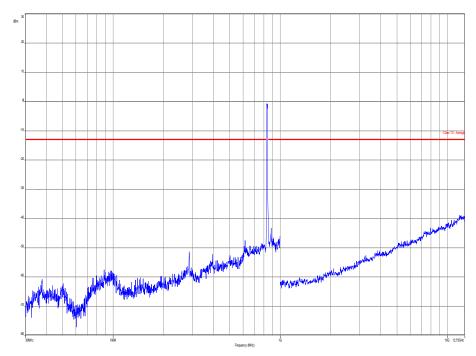
Verdict: compliant



QPSK with 10 MHz channel bandwidth

Plot 1: Channel 20525 (Traffic mode up to 30 MHz)


Plot 2: Channel 20525 (30 MHz - 12.75 GHz)



16-QAM with 10 MHz channel bandwidth

Plot 3: Channel 20525 (Traffic mode up to 30 MHz)

Plot 4: Channel 20525 (30 MHz - 12.75 GHz)

11.1.4 Spurious emissions conducted

Description:

The following steps outline the procedure used to measure the conducted emissions from the mobile station. 1. Determine frequency range for measurements: From CFR 2.1057 the spectrum should be investigated from the lowest radio frequency generated in the equipment up to at least the 10th harmonic of the carrier frequency. For the mobile station equipment tested, this equates to a frequency range of 13 MHz to 9 GHz, data taken from 10 MHz to 26 GHz.

2. Determine mobile station transmits frequencies: below outlines the band edge frequencies pertinent to conducted emissions testing.

Measurement:

Measurement parameters								
Detector:	Peak / RMS							
Sweep time:	Auto							
Resolution bandwidth:	Pre-measurement with 1 MHz On spurious detection re-measurement 100 kHz							
Video bandwidth:	Pre-measurement with 1 MHz On spurious detection re-measurement 300 kHz							
Span:	10 MHz – 26 GHz							
Trace-Mode:	Max Hold							
Used equipment:	see chapter 7.2 - A							
Measurement uncertainty:	see chapter 8							

Limits:

FCC	IC						
CFR Part 22.917 CFR Part 2.1051	RSS 132						
Spurious Emissions Conducted							
Attenuation ≥ 43 + 10log(P) (P, Power in Watts)							
-13	dBm						

Results: for 1.4 MHz channel bandwidth

<u>QPSK</u>

	Spurious Emission Level (dBm)										
Harmonic	Lowest channel Freq. (MHz)	Level [dBm]	Harmonic	Middle channel Freq. (MHz)	Level [dBm]	Harmonic	Highest channel Freq. (MHz)	Level [dBm]			
2	1649.4	-	2	1673.0	-	2	1696,6	-			
3	2474.1	-	3	2509.5	-	3	2544,9	-			
4	3298.8	-	4	3346.0	-	4	3393,2	-			
5	4123.5	-	5	4182.5	-	5	4241,5	-			
6	4948.2	-	6	5019.0	-	6	5089,8	-			
7	5772.9	-	7	5855.5	-	7	5938,1	-			
8	6597.6	-	8	6692.0	-	8	6786,4	-			
9	7422.3	-	9	7258.5	-	9	7634,7	-			
10	8247.0	-	10	8365.0	-	10	8483	-			

<u> 16-QAM</u>

	Spurious Emission Level (dBm)										
Harmonic	Lowest channel Freq. (MHz)	Level [dBm]	Harmonic	Middle channel Freq. (MHz)	Level [dBm]	Harmonic	Highest channel Freq. (MHz)	Level [dBm]			
2	1649.4	-	2	1673.0	-	2	1696.6	-			
3	2474.1	-	3	2509.5	-	3	2544.9	-			
4	3298.8	-	4	3346.0	-	4	3393.2	-			
5	4123.5	-	5	4182.5	-	5	4241.5	-			
6	4948.2	-	6	5019.0	-	6	5089.8	-			
7	5772.9	-	7	5855.5	-	7	5938.1	-			
8	6597.6	-	8	6692.0	-	8	6786.4	-			
9	7422.3	-	9	7258.5	-	9	7634.7	-			
10	8247.0	-	10	8365.0	-	10	8483.0	-			

Results: for 3 MHz channel bandwidth

<u>QPSK</u>

	Spurious Emission Level (dBm)										
Harmonic	Lowest channel Freq. (MHz)	Level [dBm]	Harmonic	Middle channel Freq. (MHz)	Level [dBm]	Harmonic	Highest channel Freq. (MHz)	Level [dBm]			
2	1651.0	-	2	1673.0	-	2	1695.0	-			
3	2476.5	-	3	2509.5	-	3	2542.5	-			
4	3302.0	-	4	3346.0	-	4	3390.0	-			
5	4127.5	-	5	4182.5	-	5	4237.5	-			
6	4953.0	-	6	5019.0	-	6	5085.0	-			
7	5778.5	-	7	5855.5	-	7	5932.5	-			
8	6604.0	-	8	6692.0	-	8	6780.0	-			
9	7429.5	-	9	7258.5	-	9	7627.5	-			
10	8255.0	-	10	8365.0	-	10	8475.0	-			

<u> 16-QAM</u>

	Spurious Emission Level (dBm)										
Harmonic	Lowest channel Freq. (MHz)	Level [dBm]	Harmonic	Middle channel Freq. (MHz)	Level [dBm]	Harmonic	Highest channel Freq. (MHz)	Level [dBm]			
2	1651.0	-	2	1673.0	-	2	1695.0	-			
3	2476.5	-	3	2509.5	-	3	2542.5	-			
4	3302.0	-	4	3346.0	-	4	3390.0	-			
5	4127.5	-	5	4182.5	-	5	4237.5	-			
6	4953.0	-	6	5019.0	-	6	5085.0	-			
7	5778.5	-	7	5855.5	-	7	5932.5	-			
8	6604.0	-	8	6692.0	-	8	6780.0	-			
9	7429.5	-	9	7258.5	-	9	7627.5	-			
10	8255.0	-	10	8365.0	-	10	8475.0	-			

Results: for 5 MHz channel bandwidth

<u>QPSK</u>

	Spurious Emission Level (dBm)										
Harmonic	Lowest channel Freq. (MHz)	Level [dBm]	Harmonic	Middle channel Freq. (MHz)	Level [dBm]	Harmonic	Highest channel Freq. (MHz)	Level [dBm]			
2	1653.0	-	2	1673.0	-	2	1693.0	-			
3	2479.5	-	3	2509.5	-	3	2539.5	-			
4	3306.0	-	4	3346.0	-	4	3386.0	-			
5	4132.5	-	5	4182.5	-	5	4232.5	-			
6	4959.0	-	6	5019.0	-	6	5079.0	-			
7	5785.5	-	7	5855.5	-	7	5925.5	-			
8	6612.0	-	8	6692.0	-	8	6772.0	-			
9	7438.5	-	9	7528.5	-	9	7618.5	-			
10	8265.0	-	10	8365.0	-	10	8465.0	-			

<u> 16-QAM</u>

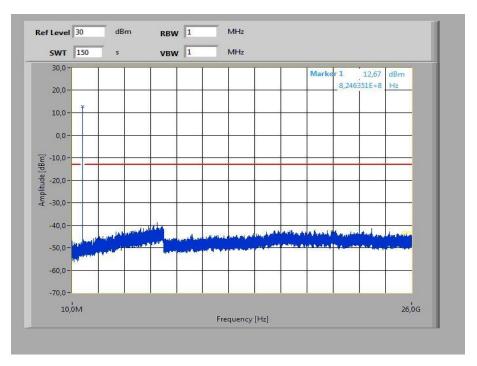
Spurious Emission Level (dBm)										
Harmonic	Lowest channel Freq. (MHz)	Level [dBm]	Harmonic	Middle channel Freq. (MHz)	Level [dBm]	Harmonic	Highest channel Freq. (MHz)	Level [dBm]		
2	1653.0	-	2	1673.0	-	2	1693.0	-		
3	2479.5	-	3	2509.5	-	3	2539.5	-		
4	3306.0	-	4	3346.0	-	4	3386.0	-		
5	4132.5	-	5	4182.5	-	5	4232.5	-		
6	4959.0	-	6	5019.0	-	6	5079.0	-		
7	5785.5	-	7	5855.5	-	7	5925.5	-		
8	6612.0	-	8	6692.0	-	8	6772.0	-		
9	7438.5	-	9	7528.5	-	9	7618.5	-		
10	8265.0	-	10	8365.0	-	10	8465.0	-		

Results: for 10 MHz channel bandwidth

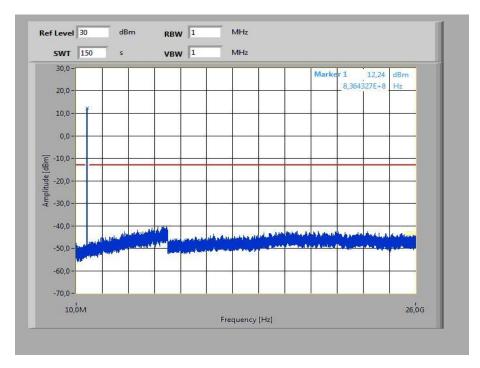

<u>QPSK</u>

	Spurious Emission Level (dBm)										
Harmonic	Lowest channel Freq. (MHz)	Level [dBm]	Harmonic	Middle channel Freq. (MHz)	Level [dBm]	Harmonic	Highest channel Freq. (MHz)	Level [dBm]			
2	1658.0	-	2	1673.0	-	2	1688.0	-			
3	2487.0	-	3	2509.5	-	3	2532.0	-			
4	3316.0	-	4	3346.0	-	4	3376.0	-			
5	4145.0	-	5	4182.5	-	5	4220.0	-			
6	4974.0	-	6	5019.0	-	6	5064.0	-			
7	5803.0	-	7	5855.5	-	7	5908.0	-			
8	6632.0	-	8	6692.0	-	8	6752.0	-			
9	7461.0	-	9	7528.5	-	9	7596.0	-			
10	8290.0	-	10	8365.0	-	10	8440.0	-			

<u>16-QAM</u>

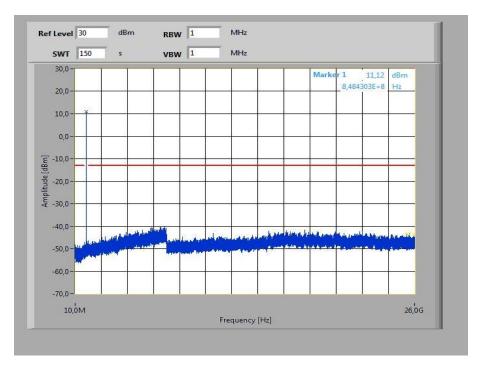

	Spurious Emission Level (dBm)										
Harmonic	Lowest channel Freq. (MHz)	Level [dBm]	Harmonic	Middle channel Freq. (MHz)	Level [dBm]	Harmonic	Highest channel Freq. (MHz)	Level [dBm]			
2	1658.0	-	2	1673.0	-	2	1688.0	-			
3	2487.0	-	3	2509.5	-	3	2532.0	-			
4	3316.0	-	4	3346.0	-	4	3376.0	-			
5	4145.0	-	5	4182.5	-	5	4220.0	-			
6	4974.0	-	6	5019.0	-	6	5064.0	-			
7	5803.0	-	7	5855.5	-	7	5908.0	-			
8	6632.0	-	8	6692.0	-	8	6752.0	-			
9	7461.0	-	9	7528.5	-	9	7596.0	-			
10	8290.0	-	10	8365.0	-	10	8440.0	-			

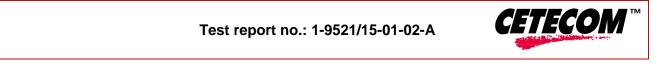
Verdict: compliant

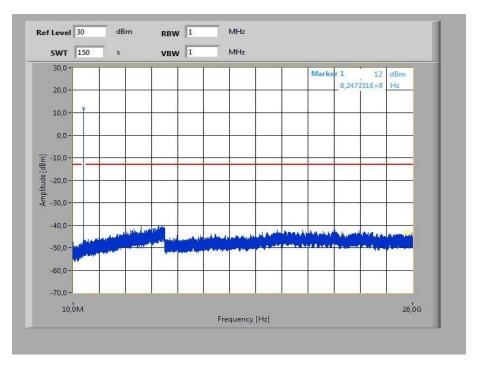


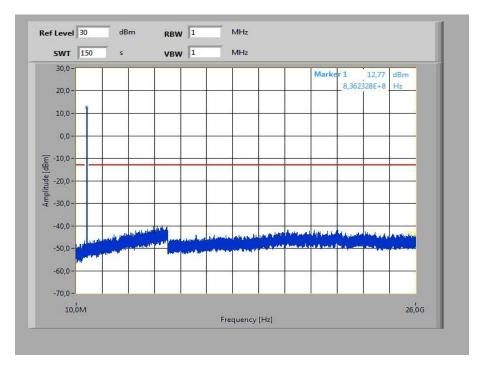
Plots: QPSK with 1.4 MHz channel bandwidth

Plot 1: Lowest Channel (10 MHz - 26 GHz)



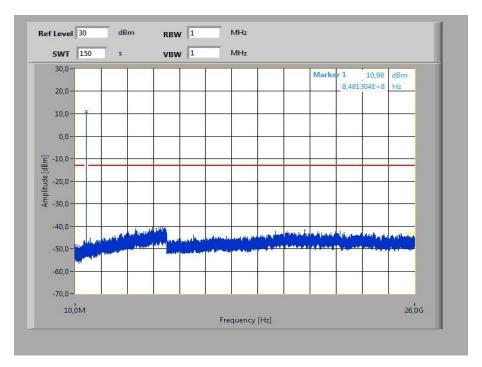

Plot 2: Middle Channel (10 MHz - 26 GHz)

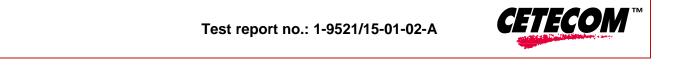

Plot 3: Highest Channel (10 MHz - 26 GHz)

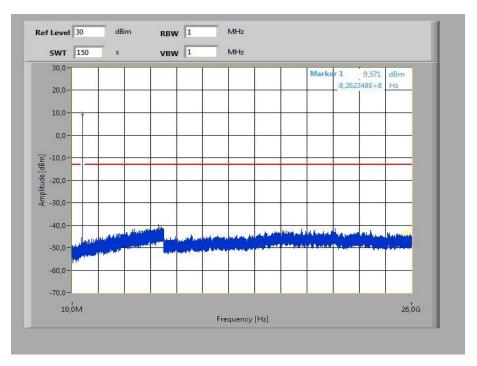


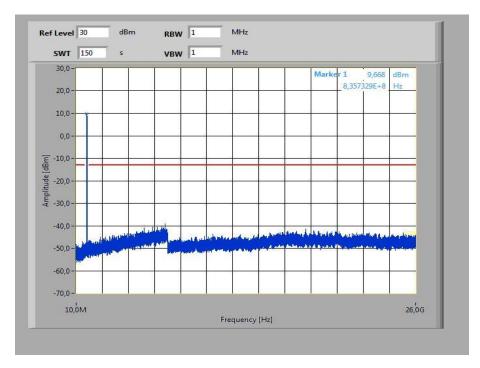
Plots: 16-QAM with 1.4 MHz channel bandwidth

Plot 4: Lowest Channel (10 MHz - 26 GHz)



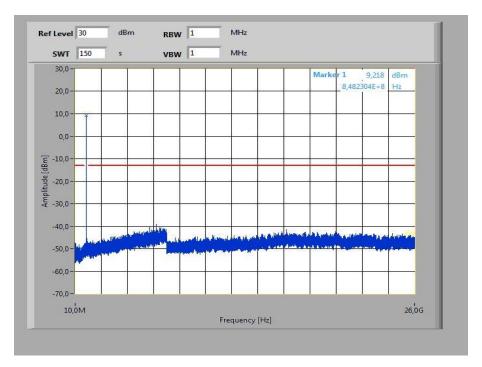

Plot 5: Middle Channel (10 MHz - 26 GHz)

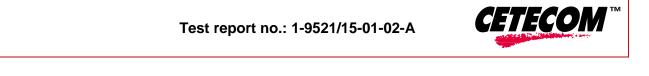

Plot 6: Highest Channel (10 MHz - 26 GHz)

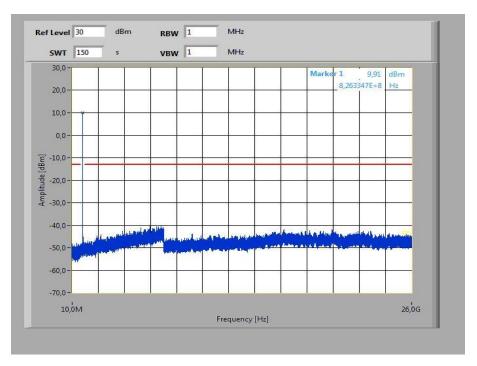


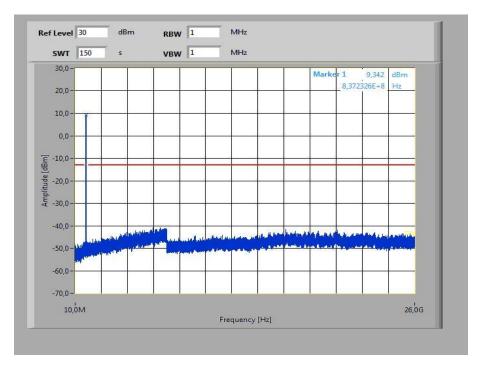
Plots: QPSK with 3 MHz channel bandwidth

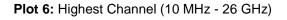
Plot 1: Lowest Channel (10 MHz - 26 GHz)

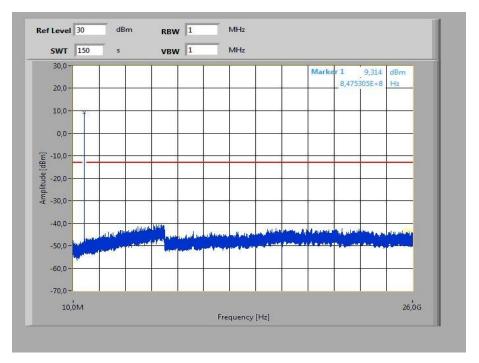


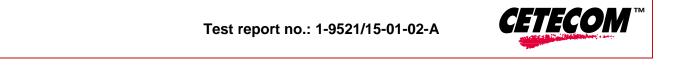

Plot 2: Middle Channel (10 MHz - 26 GHz)


Plot 3: Highest Channel (10 MHz - 26 GHz)

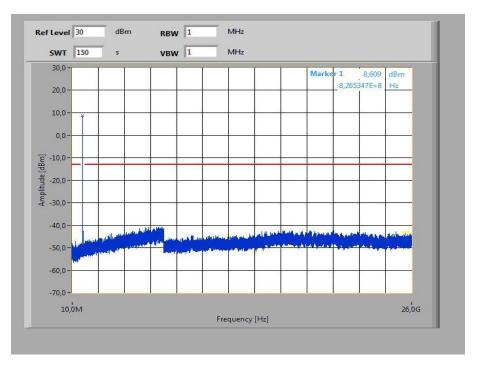


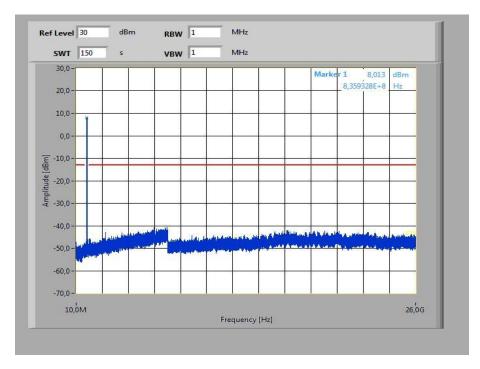

Plots: 16-QAM with 3 MHz channel bandwidth


Plot 4: Lowest Channel (10 MHz - 26 GHz)



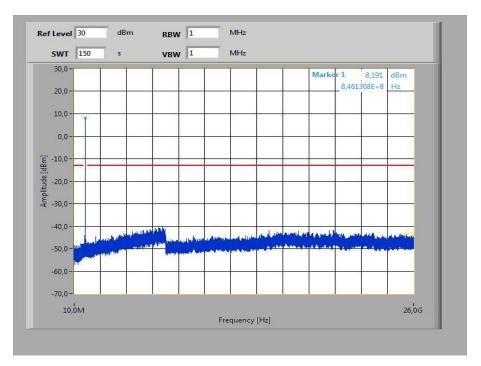
Plot 5: Middle Channel (10 MHz - 26 GHz)

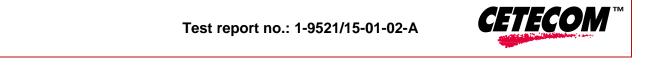


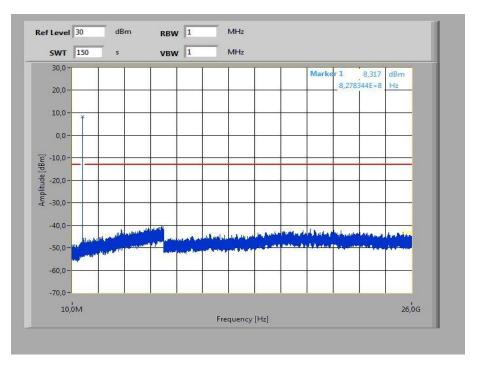


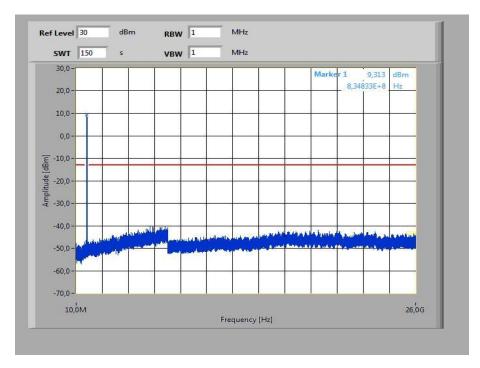
Plots: QPSK with 5 MHz channel bandwidth

Plot 1: Lowest Channel (10 MHz - 26 GHz)



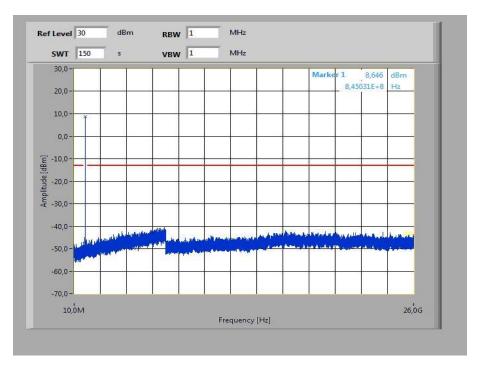

Plot 2: Middle Channel (10 MHz - 26 GHz)

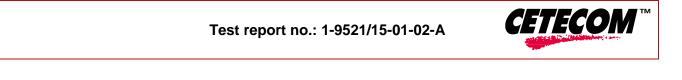

Plot 3: Highest Channel (10 MHz - 26 GHz)



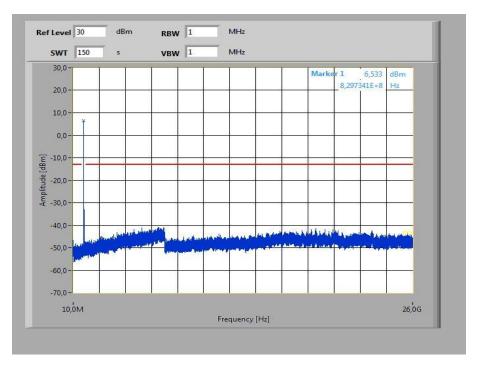
Plots: 16-QAM with 5 MHz channel bandwidth

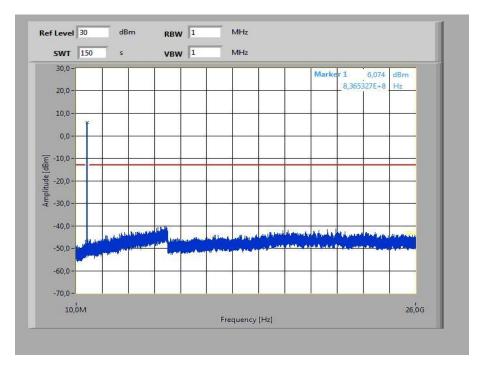
Plot 4: Lowest Channel (10 MHz - 26 GHz)




Plot 5: Middle Channel (10 MHz - 26 GHz)

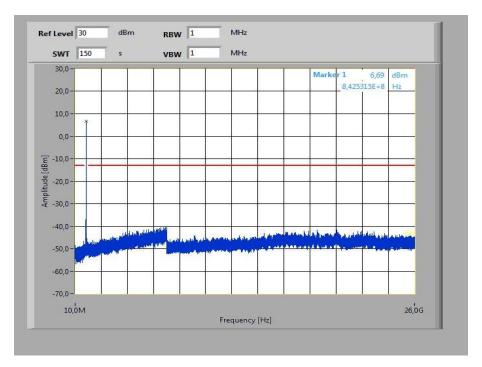
CETECOM[™]

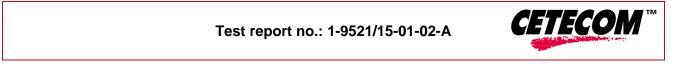

Plot 6: Highest Channel (10 MHz - 26 GHz)

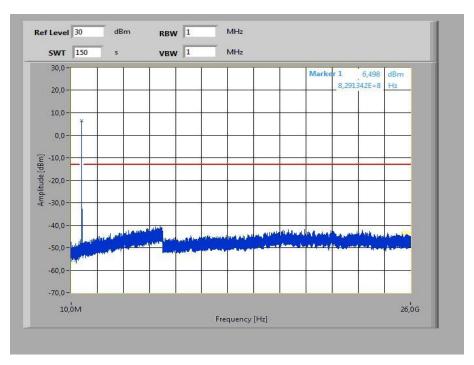


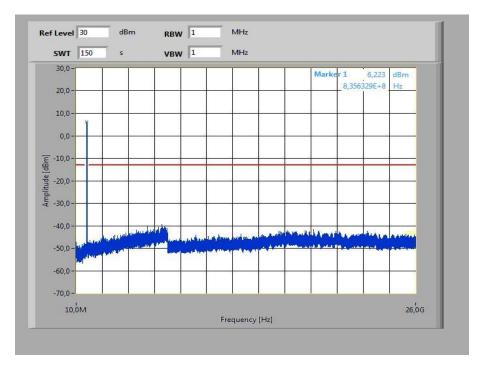
Plots: QPSK with 10 MHz channel bandwidth

Plot 1: Lowest Channel (10 MHz - 26 GHz)



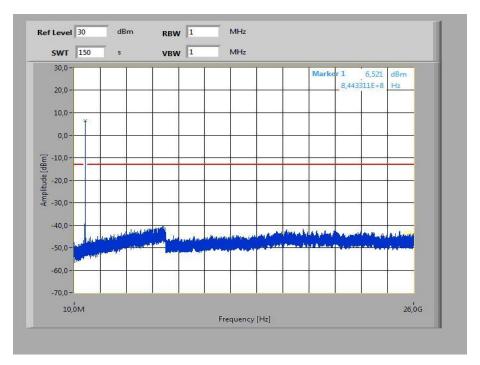

Plot 2: Middle Channel (10 MHz - 26 GHz)


Plot 3: Highest Channel (10 MHz - 26 GHz)



Plots: 16-QAM with 10 MHz channel bandwidth

Plot 4: Lowest Channel (10 MHz - 26 GHz)



Plot 5: Middle Channel (10 MHz - 26 GHz)

CETECOM

Plot 6: Highest Channel (10 MHz - 26 GHz)

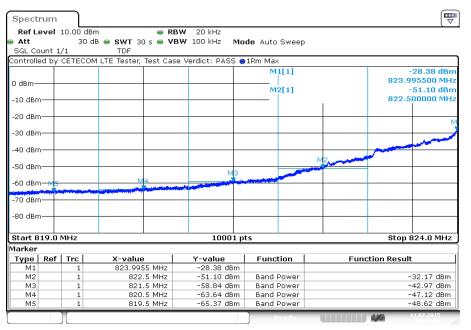
11.1.5 Block edge compliance

Description:

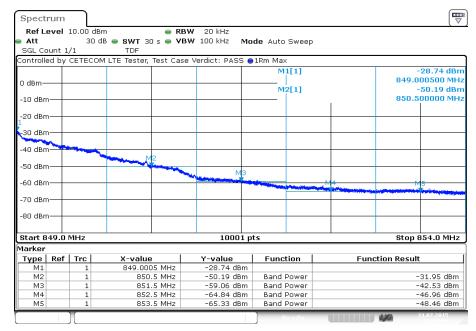
The spectrum at the band edges must comply with the spurious emissions limits.

Measurement:

Measuremer	nt parameters
Detector:	RMS
Sweep time:	30 s
Resolution bandwidth:	1% - 5% of the OBW
Video bandwidth:	≥ 3xRBW
Span:	5 MHz
Trace-Mode:	Max Hold
Used equipment:	see chapter 7.2 - A
Measurement uncertainty:	see chapter 8


Limits:

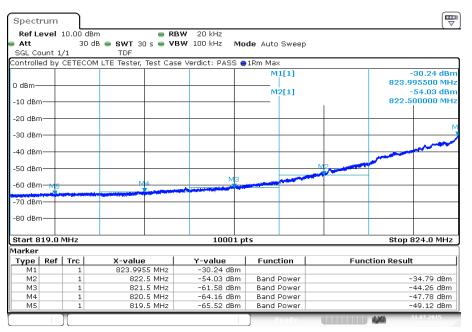
FCC	IC
CFR Part 22.917 CFR Part 2.1051	RSS 132
Block Edge	Compliance
Attenuation ≥ (P, Power	43 + 10log(P) r in Watts)
-13	dBm



Results: 1.4 MHz channel bandwidth

Plot 1: Lowest channel - QPSK

Date: 31.JUL.2015 12:37:44



Plot 2: Highest channel - QPSK

Date: 31.JUL.2015 12:39:09

Plot 3: Lowest channel - 16-QAM

Date: 31.JUL.2015 12:38:22

Ref L	evel	10.00	dBm 🖷	RBW 20 kHz							
Att			0 dB 🖷 SWT 30 s 🖷		Mod	e Auto S	Sween				
SGL Co	unt 1		TDF	1011 100 1112		e Auto t	omeep				
			COM LTE Tester, Test	Case Verdict: PASS	5 😐 1	Rm Max					
						M1	[1]				-30.47 dBr
										940	0.003000 MH
0 dBm-	-					M2	C 4 1			043	-51.60 dBr
-10 dBm						112				0.50	1.500000 MH
-10 aBn								1		000	1.500000 MIH
-20 dBm	-										
1	·										
-30 dBr	η										
Wanner	<u>~</u>										
-40 dBn	i —										
			M2								
-50 dBr											
-60 dBm				M	3			M			
-00 ubii	-				-	and the state of	Miles States			and the second second	MS
-70 dBm	-									(and a state of the state of t	
-80 dBm	י—⊢										
Start 8	49.0	MHz		1000	1 pt	5		- 1		Sto	p 854.0 MHz
Marker											
Type	Ref	Trc	X-value	Y-value	1	Functi	on I		Fun	ction Res	ult
M1		1	849.003 MH		m	i unoci	0.1		1 411	0010111000	une
M2		1	850.5 MH			Band P	ower				-34.21 dBm
MB		1	851.5 MH			Band P					-43.70 dBm
M4		1	852.5 MH			Band P					-47.57 dBm
M5		1	853.5 MH			Band P					-48.92 dBm

Plot 4: Highest channel - 16-QAM

Date: 31.JUL.2015 12:39:46

Results: 3 MHz channel bandwidth

Plot 1: Lowest channel – QPSK

Spectrum									ſ	The second secon
Ref Level Att SGL Count	3(dBm) dB e SWT 30 TDF	● RBV)s ● VBV		Mode Au	:o Sweep			(
Controlled by	/ CETEC	OM LTE Tester,	Test Case	Verdict: PASS	⊖1Rm M	ах				
0 dBm						M1[1]			-27.01 d 823.997500 M	111
-10 dBm						M2[1]	1		-41.21 d 822.500000 M	
-20 dBm						_				1
-30 dBm										/
-40 dBm				M	3		M2	<u> </u>		-
-50 dBm - M	5	M	4			_				
60 dBm										
-70 dBm										
-80 dBm										
Start 819.0) MHz			10001	pts				Stop 824.0 MH	١z
larker										
	Trc	X-value		Y-value		ction		Function	n Result	
M1 M2	1	823.997	5 MHz 5 MHz	-27.01 dBr -41.21 dBr		l Power			-26.14 dB	
M2 M3	1		5 MHz	-41.21 UB		d Power			-26.14 UB -31.44 dB	
M4	1		5 MHz	-52.71 dBr		d Power			-37.48 dB	
M5	1		5 MHz	-57.03 dBr		d Power			-41.89 dB	
][Ready		4/4	31.07.2015	

Date: 31.JUL.2015 12:40:37

Ref L	evel	10.00	dBm	👄 RE	30 kHz							
Att		з) dB 👄 SWT	30 s 🖷 🗸	3W 100 kHz	Mod	le Auto	Sweep				
SGL Co	unt 1	/1	TDF									
Controlle	ed bv	CETEO	OM LTE Test	er. Test Cas	e Verdict: PAS	S 이 1	LRm Max	(
	Ť						M	1[1]				-25.98 dB
0 dBm-								1 ° °			849	.000000 MH
U UBIII-							M	2[1]				-40.19 dB
-10 dBm)——							1 ° °			850	.500000 MH
	·											
-20 dBm	η 					<u> </u>						
ŧ												
30 dBr												
-40 dBm		-		M2	N	0						
-40 UBI												
-50 dBm	-						and the second second		M4			
00 000	·									-		1.1.2
-60 dBr	⊢ ⊢ι											
-70 dBr	ד ו											
-80 dBm												
-00 001	'											
Start 8	10.0				1000						01	054.0.00
	49.0	MHZ			1000	1 pt	s				sto	0 854.0 MHz
Marker												
Туре	Ref	Trc	X-va		Y-value		Func	tion		Func	tion Resu	ult
M1		1		49.0 MHz	-25.98 dE		Description					05.00 -0
M2 M3		1		50.5 MHz 51.5 MHz	-40.19 dE -44.83 dE		Band I Band I					-25.03 dBm
M3		1		51.5 MHZ 52.5 MHZ	-44.83 dE		Band					-30.39 dBm
M5		1		53.5 MHz	-55.92 dE		Band					-40.69 d

Plot 2: Highest channel – QPSK

Date: 31.JUL.2015 12:42:02

Plot 3: Lowest channel - 16-QAM

Spectr	um										
Ref Le	vel 1			👄 RB							
Att			IdB 👄 SWT 3	0 s 👄 VB	W 100 kHz M	1ode Auto	Sweep				
SGL Co			TDF								
ontrolle	dby	CETEC	OM LTE Tester,	Test Cas	e Verdict: PASS	-					
						M	1[1]				27.84 dBn
) dBm—						<u> </u>					99500 MH
10 ID						IVI	2[1]				42.46 dBn 00000 MH:
-10 dBm								1		022.3	
-20 dBm	_										
-30 dBm	_										
-40 dBm								M2		-	
					M						
-50 dBm			A N	4	and the second division of the second divisio						
60. d0.m	M5	-	No. of Concession, Name								
-70 dBm	_										
-80 dBm											
Start 8:	19.0 M	ИHz			10001	pts				Stop 8	324.0 MHz
1arker											
Туре	Ref	Trc	X-value	.	Y-value	Func	tion		Functi	on Result	
M1		1	823.99		-27.84 dBr						
M2		1		.5 MHz	-42.46 dBr						27.12 dBm
M3		1		.5 MHz	-48.90 dBr -54.93 dBr						33.67 dBm
M4 M5		1		.5 MHz .5 MHz	-54.93 dBr -60.29 dBr						39.51 dBm 44.46 dBm
CINI	_	1	619		00.29 UBI		rower				77.70 UBIII

Date: 31.JUL.2015 12:41:15

Ref Level	10.00 dB	m 🖴 RI	3W 30 kHz			
Att		B 🖷 SWT 30 s 🖷 V		de Auto Sweep		
SGL Count		TDF		ue Auto Sweep		
		/ LTE Tester, Test Cas	a Vardict: DASS a	1Pm May		
	CETECON	TETE Tester, Test Ca.		M1[1]		-27.31 dBi
				MILI		849.001500 MF
0 dBm						-40.38 dBi
				M2[1]		-40.38 dBi 850.500000 MH
-10 dBm					1	850.500000 MH
-20 dBm						
30 dBm						
		M2				
-40 dBm — 🕂			- M3			
					M4	
-50 dBm 🕂				Statement of the local division of the local		M5
-60 dBm						
-70 dBm						
, o abiii						
-80 dBm						
Start 849.0	MHz		10001 pt	ts		Stop 854.0 MHz
/larker			10001 p			
	Trc	X-value	Y-value	Function	Func	tion Result
M1	1	849.0015 MHz	-27.31 dBm			
M2	1	850.5 MHz	-40.38 dBm	Band Power		-25.59 dBm
M3	1	851.5 MHz	-46.57 dBm	Band Power		-32.19 dBm
M4	1	852.5 MHz	-52.19 dBm	Band Power		-38.02 dBm
M5	1	853.5 MHz	-58.33 dBm	Band Power		-42.94 dBm

Plot 4: Highest channel – 16-QAM

Date: 31.JUL.2015 12:42:39

Results: 5 MHz channel bandwidth

Plot 1: Lowest channel – QPSK

Spectru	ım												
Ref Lev	el 1			👄 RB									
Att			idB 👄 SWT 30) s 👄 VB	SW 200 kHz (Mode	a Auto S	Sweep					
SGL Cou			TDF										
ontrolleu	by (LETEC	OMILIE lester,	Test Casi	e Verdict: PASS	0 0 TI							15 dBm
							M1	[1]				-29.3 23.9995	
) dBm—	-						 M2	r 4 1			°		39 dBn
10 dBm-											9	22.5000	
-10 aBm-									1		- °	22.5000	00 10112
-20 dBm—	-												
-30 dBm—	_												
-40 dBm-					м	3			M2				
40 ubiii-			M	4		_							
-50 dBm-	145	_									_		
-60 dBm-													
-70 dBm-	_												
-80 dBm-													
Start 81	9.0 N	/Hz			10001	nts					8	top 824.	0 MHz
1arker												•	
	tef	Trc	X-value		Y-value	1	Functi	on l		Fur	nction R	esult	
M1	_	1	823.999		-29.15 dB	m							
M2		1	822	.5 MHz	-40.39 dB	m	Band P	ower				-27.5	4 dBm
MЗ		1		.5 MHz	-43.13 dB		Band P						1 dBm
M4		1		5 MHz	-46.34 dB		Band P						IO dBm
M5		1	819	.5 MHz	-51.71 dB	m	Band P	ower				-37.6	1 dBm

Date: 31.JUL.2015 12:43:30

Ref L	evel	10.00	dBm	🖷 R	BW 50 kHz							
Att		3	0 dB 👄 SW	T 30 s 🖷 V	BW 200 kHz	Mod	ie Auto	Sweep				
SGL Co	unt 1	/1	TD	F								
Controlle	ed by	CETEO	OM LTE Te:	ster, Test Ca:	se Verdict: PAS	s 😑	1Rm Max	<				
	Ť						M	1[1]				-28.50 dB
0 dBm-											849.0	003000 MF
o ubiii							M	2[1]				-37.54 dB
-10 dBm	n——					-					850.5	500000 MH
-20 dBm	י י רי					+						+
30 dBm												
JO GDI				M2		-						
-40 dBm	1				- D	13	-		M4			
											· · ·	45
-50 dBr	η 											-
-60 dBr												
-00 ubii												
-70 dBm	η											
-80 dBr	η 					-						
Start 8	49.0	MHz	·		1000	1 pt	5				Stop	854.0 MHz
Marker												
Type	Ref	Trc	X-v	alue	Y-value		Func	tion		Functi	on Resul	t
M1		1	84	19.003 MHz	-28.50 dB							
M2		1		850.5 MHz	-37.54 dE			Power				-25.34 dBm
M3		1		851.5 MHz	-41.28 dE			Power				-27.60 dBm
M4		1		852.5 MHz	-43.67 dE			Power				-30.77 dBm
M5		1		853.5 MHz	-48.80 dE	3m	Band	Power				-35.12 dBm

Plot 2: Highest channel – QPSK

Date: 31.JUL.2015 12:44:55

Plot 3: Lowest channel - 16-QAM

Spectrum								
Ref Level	10.00	dBm	e RB	N 50 kHz				
Att)dB 👄 SWT 30	s 👄 VB'	W 200 kHz 🛛 🕅	lode Auto) Sweep		
SGL Count 1		TDF						
ontrolled by	CETEC	OM LTE Tester,	Test Case	Verdict: PASS	-			
					M	1[1]		-30.47 dBn
0 dBm								823.998500 MH
					M	2[1]		-40.56 dBn
-10 dBm							1	822.500000 MH
-20 dBm								
-30 dBm								
							M2	
-40 dBm		M	4	MO		-		
-50 dBm <u>- M</u> 5								
-60 dBm								
-70 dBm								
-80 dBm								
Start 819.0	MHz			10001	pts			Stop 824.0 MHz
1arker								
Type Ref	Trc	X-value		Y-value	Func	tion	Fu	nction Result
M1	1	823.998		-30.47 dBm				
M2	1		5 MHz	-40.56 dBm		Power		-28.15 dBm
M3	1		5 MHz	-45.04 dBn		Power		-31.25 dBm
M4 M5	1		5 MHz 5 MHz	-48.89 dBn -53.47 dBn		Power Power		-35.39 dBm -39.72 dBm
	1 1	819.		-55.47 UBN	- Dariu	rower		-39.72 UBM

Date: 31.JUL.2015 12:44:08

Ref Lo	evel	10.00	dBm	👄 RB	W 50 kHz							
Att) dB 👄 SWT 3	0 s 🖷 VB	W 200 kHz r	Mod	e Auto:	Sween				
SGL Co	unt 1		TDF				e nate .	oncop				
			OM LTE Tester.	Test Case	e Verdict: PASS	01	Rm Max					
				1				[1]			-	29.41 dBr
o -10							Ĩ					00000 MH
0 dBm—							M2	[1]				38.16 dBr
-10 dBm							ī					00000 MH
10 000	·											
-20 dBm	∩—				_							
L .												
-30 dBm) 		N	12								
-40 dBm					M	3						
-40 ubii							_	-	1014			_
-50 dBm)— — —										M	5
-60 dBm	י − ⊢ר											
-70 dBm												
-70 aBm												
-80 dBm												
Start 8	49 0	MHz			10001	1 nts					Ston 8	54.0 MHz
Marker												
Type	Ref	Trc	X-valu	• I	Y-value	1	Functi	ion		Functio	n Result	
M1		1		.0 MHz	-29,41 dB	m						
M2		1	850	1.5 MHz	-38.16 dB	m	Band P	ower			-2	25.71 dBm
MЗ		1		.5 MHz	-42.24 dB		Band P					28.35 dBm
M4		1		.5 MHz	-45.37 dB		Band P					32.57 dBm
M5		1	853	I.5 MHz	-51.67 dB	m	Band P	ower			-3	37.65 dBm

Plot 4: Highest channel – 16-QAM

Date: 31.JUL.2015 12:45:32

Results: 10 MHz channel bandwidth

Plot 1: Lowest channel – QPSK

Spectr	um										
Ref Le	vel				/ 100 kHz						
Att SGL Cou	unt 1) dB ● SWT 30 ≤ TDF	; 👄 VBV	7 300 kHz	Mod	e Auto Swee	эр			
			OM LTE Tester, Te	et Caco	Verdict: DASS	1	Pm May				
oncione				50 0456	Verdice, PASe		M1[1]				-32.17 dBm
							(inter)			823	.998000 MH;
) dBm—							M2[1]			020	-39.49 dBm
10 dBm·										822	.500000 MH
10 0.0111								1			
-20 dBm-											
-30 dBm-	_										1
-40 dBm-			M4		M	3		M2			_
	-				-						
-50 dBm-											
-60 dBm·										_	
-70 dBm-											
-80 dBm-											
Start 81	19.01	MHz			1000	1 pt:	5			Sto	p 824.0 MHz
1arker											
Type	Ref	Trc	X-value		Y-value		Function		Fur	nction Res	ult
M1		1	823.998	MHz	-32.17 dB	m					
M2		1	822.5		-39.49 dB		Band Power				-29.78 dBm
MЗ		1	821.5		-41.38 dB		Band Power				-31.98 dBm
M4		1	820.5		-43.41 dB		Band Power				-33.94 dBm
M5		1	819.5	MHz	-45.36 dB	m	Band Power	·			-35.64 dBm

Date: 31.JUL.2015 12:46:23

Ref Lo	evel	10.00 0	dBm 😑	RBW 100 kHz				
Att		30	dB 🖷 SWT 30 s 🖷	VBW 300 kHz	Mod	le Auto Swee	h	
SGL Co	unt 1	/1	TDF				-	
			OM LTE Tester, Test C	ase Verdict: PASS		1.Rm Max		
	/				-	M1[1]		-32.62 dB
0 dBm—								849.003000 MH
U dBm—						M2[1]		-36.51 dB
-10 dBm								850.500000 MH
-10 000	'						1	
-20 dBm	η							
1								
-30 dBm	ו—ר		M2	м	2			
-40 dBm					Ĕ		M4	M5
-40 aBm								
-50 dBm								
00 000	.							
-60 dBm	∩—— -				-			
-70 dBm	–ר							
-80 dBm								
-00 001	'							
Start 8								
	49.0	MHZ		1000:	I pt	5		Stop 854.0 MH:
Marker	-			1 .				
Туре	Ref	Trc	X-value	Y-value	_	Function		Function Result
M1		1	849.003 MHz					
M2		1	850.5 MHz			Band Power		-26.68 dBm
M3 M4		1	851.5 MHz 852.5 MHz			Band Power Band Power		-28.23 dBm -29.42 dBm
M4 M5		1	852.5 MHz 853.5 MHz			Band Power Band Power		-29.42 dBm -30.29 dBm
1915		1	853.5 MHZ	-39.72 UB	<u></u>	banu POwer		-30.29 UBI

Plot 2: Highest channel – QPSK

Date: 31.JUL.2015 12:47:48

Plot 3: Lowest channel - 16-QAM

Spectrum									Ē
Ref Level				W 100 kHz					,
Att) dB 👄 SWT 30) s 👄 VB'	W 300 kHz 🛚 N	lode Auto	Sweep			
SGL Count :		TDF							
ontrolled by	CETEC	OM LTE Tester,	Test Case	Verdict: PASS	-				
					M	1[1]			-33.01 dBn
) dBm —						0141		823	3.998000 MH:
					IVI	2[1]			-40.16 dBn 2.500000 MH:
10 dBm							1	82.	2.300000 MH.
-20 dBm									
-30 dBm									r
				M	}		M2		
40 dBm		M	4	-					
-50 dBm									
-60 dBm									
-70 dBm									
-80 dBm									
Start 819.0	MHz			10001	pts			Sto	p 824.0 MHz
1arker									-
Type Ref	Trc	X-value		Y-value	Func	tion		Function Res	ult
M1	1	823.99	98 MHz	-33.01 dBr					
M2	1		.5 MHz	-40.16 dBr		Power			-30.53 dBm
MЗ	1		.5 MHz	-42.21 dBr		Power			-32.68 dBm
M4	1		5 MHz	-44.41 dBr		Power			-34.40 dBm
M5	1	819	.5 MHz	-45.88 dBr	n Band	Power			-36.32 dBm

Date: 31.JUL.2015 12:47:00

Ref Level 1	LO.OO dB	m 🖷 RI	3W 100 kHz			· · · · · · · · · · · · · · · · · · ·
Att		18 🖷 SWT 30 s 🖷 VI		de Auto Sweep		
GL Count 1/	/1	TDF				
		M LTE Tester, Test Cas	e Verdict: PASS 🙃	1Rm Max		
				M1[1]		-32.91 dB
dBm						849.002500 MH
ubin				M2[1]		-37.43 dB
10 dBm						850.500000 MF
20 dBm —						
30 dBm						
30 UBIII		M2	мз		M4	M5
40 dBm						1110
50 dBm —						
50 dBm						
70 dBm						
30 dBm —						
tart 849.0 M	MHz		10001 pt	s		Stop 854.0 MH:
arker						
「ype Ref	Trc	X-value	Y-value	Function	Fu	nction Result
M1	1	849.0025 MHz	-32.91 dBm			
						-27.52 dBm
						-28.85 dBm
1714	1	852.5 MHz 853.5 MHz	-39.86 dBm -40.74 dBm	Band Power Band Power		-30.06 dBm -31.27 dBm
Type Ref	1 1 1 1	849.0025 MHz 850.5 MHz 851.5 MHz 852.5 MHz	Y-value -32.91 dBm -37.43 dBm -38.99 dBm -39.86 dBm	Function Band Power Band Power Band Power	Fu	-

Plot 4: Highest channel – 16-QAM

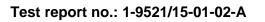
Date: 31.JUL.2015 12:48:25

Verdict: compliant

11.1.6 Occupied bandwidth

Description:

Measurement of the occupied bandwidth of the transmitted signal.


Measurement:

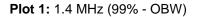
Similar to conducted emissions, occupied bandwidth measurements are only provided for selected frequencies in order to reduce the amount of submitted data. Data were taken at the extreme and mid frequencies of the LTE band V. The table below lists the measured 99% power and -26 dBc occupied bandwidths. Spectrum analyzer plots are included on the following pages.

Measurement parameters				
Detector:	Peak			
Sweep time:	Auto			
Resolution bandwidth:	1% - 5% of the OBW			
Video bandwidth:	≥ 3xRBW			
Span:	2 x nominal BW			
Trace-Mode:	Max Hold			
Used equipment:	see chapter 7.2			
Measurement uncertainty:	see chapter 8			

Limits:

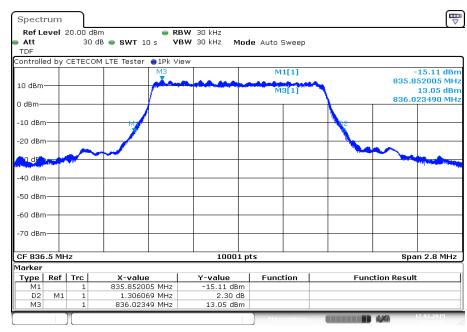
FCC	IC			
CFR Part 22.917 CFR Part 2.1049	RSS 132			
Occupied Bandwidth				
Spectrum must fall completely in the specified band				

Results:


Occupied Bandwidth – QPSK				
Bandwidth (MHz)	99% OBW (kHz)	-26 dBc BW (kHz)		
1.4	1092	1306		
3.0	2732	3109		
5.0	4501	5030		
10.0	9055	10193		

Occupied Bandwidth – 16-QAM					
Bandwidth (MHz)	99% OBW (kHz)	-26 dBc BW (kHz)			
1.4	1097	1310			
3.0	2730	3132			
5.0	4492	5011			
10.0	9051	10081			

Verdict: compliant

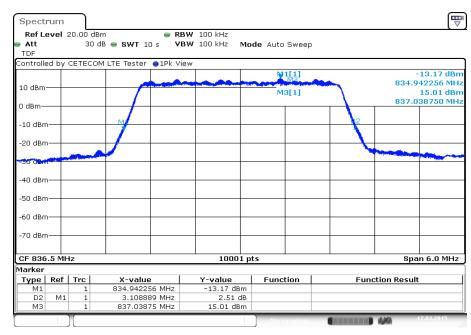


Plots: QPSK

Date: 17.MAR.2015 13:01:40

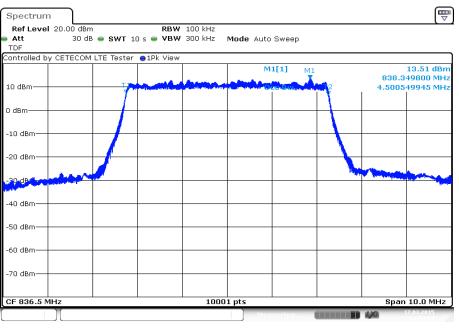


Plot 2: 1.4 MHz (-26 dBc BW)


Date: 17.MAR.2015 13:02:15

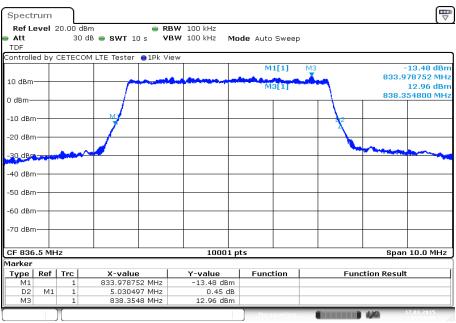
Plot 3: 3 MHz (99% - OBW)

Date: 17.MAR.2015 13:30:23



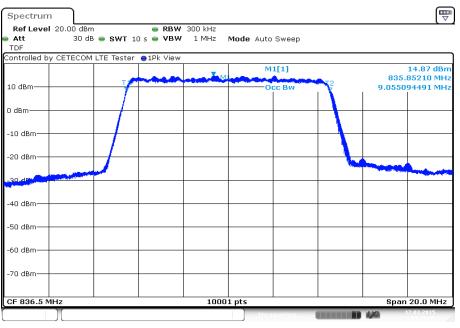
Plot 4: 3 MHz (-26 dBc BW)

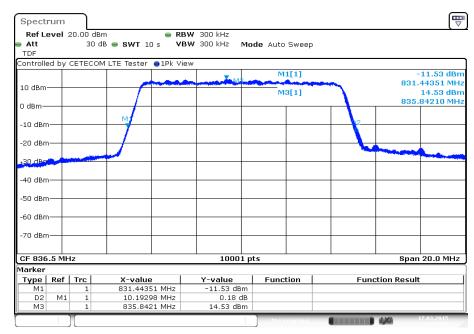
Date: 17.MAR.2015 13:30:58



Plot 5: 5 MHz (99% - OBW)

Date: 17.MAR.2015 13:59:05


Plot 6: 5 MHz (-26 dBc BW)

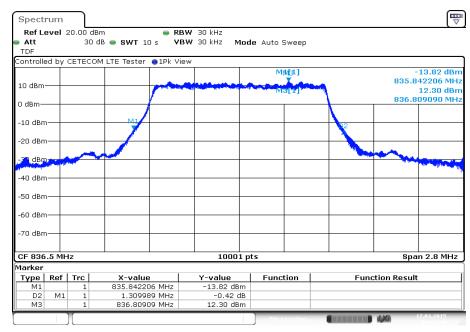

Date: 17.MAR.2015 13:59:39

Plot 7: 10 MHz (99% - OBW)

Date: 17.MAR.2015 14:27:46

Plot 8: 10 MHz (-26 dBc BW)

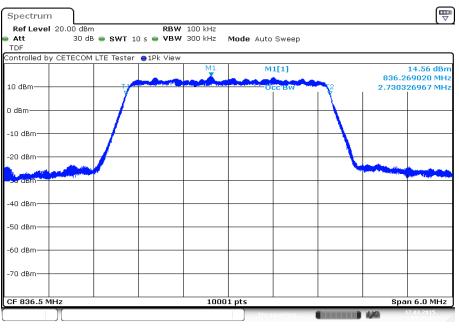
Date: 17.MAR.2015 14:28:20



Plots: 16-QAM

Plot 1: 1.4 MHz (99% - OBW)

Date: 17.MAR.2015 13:06:36

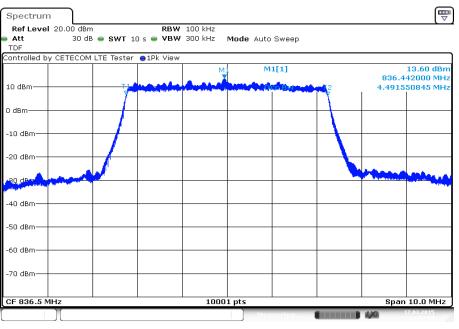


Plot 2: 1.4 MHz (-26 dBc BW)

Date: 17.MAR.2015 13:07:11

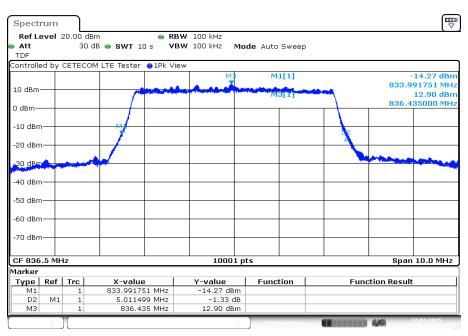
Plot 3: 3 MHz (99% - OBW)

Date: 17.MAR.2015 13:35:18


P Spectrum Ref Level 20.00 dBm 💿 RBW 100 kHz Att TDF 30 dB 👄 SWT 10 s **VBW** 100 kHz Mode Auto Sweep Controlled by CETECOM LTE Tester 🛛 1Pk View M1[1] 12.13 dBr x 834.935056 MH 10 dBm M3[1] 14.00 dBm 836.267220 MH 0 dBm -10 dBm -20 dBm-40 dBm -50 dBm -60 dBm--70 dBm-CF 836.5 MHz 10001 pts Span 6.0 MHz Marker Type Ref Trc M1 1 1 D2 M1 1 M3 1 1 X-value 834.935056 MHz 3.131687 MHz 836.26722 MHz Y-value -12.13 dBm 0.14 dB 14.00 dBm Function Function Result **IIII** 4/4

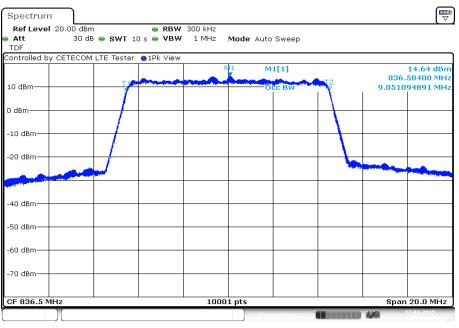
Plot 4: 3 MHz (-26 dBc BW)

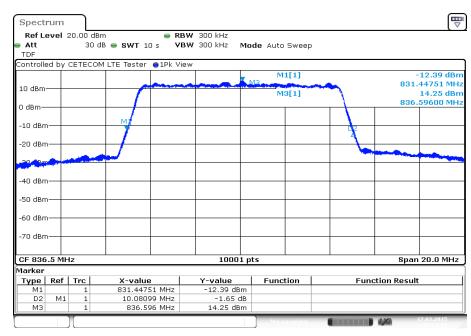
Date: 17.MAR.2015 13:35:53



Plot 5: 5 MHz (99% - OBW)

Date: 17.MAR.2015 14:04:00


Plot 6: 5 MHz (-26 dBc BW)


Date: 17.MAR.2015 14:04:34

Plot 7: 10 MHz (99% - OBW)

Date: 17.MAR.2015 14:32:40

Plot 8: 10 MHz (-26 dBc BW)

Date: 17.MAR.2015 14:33:15

12 **Observations**

No observations except those reported with the single test cases have been made.

Annex A Document history

Version	Applied changes	Date of release
	Initial release	2015-06-23
A	Editorial changes	2015-08-04

Annex B Further information

<u>Glossary</u>

AVG	-	Average
DUT	-	Device under test
EMC	-	Electromagnetic Compatibility
EN	-	European Standard
EUT	-	Equipment under test
ETSI	-	European Telecommunications Standard Institute
FCC	-	Federal Communication Commission
FCC ID	-	Company Identifier at FCC
HW	-	Hardware
IC	-	Industry Canada
Inv. No.	-	Inventory number
N/A	-	Not applicable
PP	-	Positive peak
QP	-	Quasi peak
S/N	-	Serial number
SW	-	Software

Annex C Accreditation Certificate

Front side of certificate	Back side of certificate	
DAKKS Devische Akkreditierungsselle		
Deutsche Akkreditierungsstelle GmbH	Deutsche Akkreditierungsstelle GmbH	
Bellehene gemäß § 8 Absatz 1 Akkistelle G i V.m. § 1 Absatz 1 AkkistelleGBV Unterzeichnerin der Multilateralen Abikummen von EA, ILAC und IAF zur gegenseitigen Anerkennung Akkreditierung	Standort Berlin Standort Frankfurt am Main Standort Braunschweig Spittelmarkt 10 Gartenstraße Bundesalles 100 10117 Serlin 60594 Frankfurt am Main 38116 Braunschweig	
Die Deutsche Akkreditierungsstelle GmbH bestätigt hiermit, dass das Prüflaboratorium		
CETECOM ICT Services GmbH Untertürkheimer Straße 6-10, 66117 Saarbrücken		
die Kompetenz nach DIN EN ISO/IEC 17025:2005 besitzt, Prüfungen in folgenden Bereichen durchzuführen:		
Drahtgebundene Kommunikation einschließlich xDSL VorP und DECT Akustik Funk einschließlich WLAN Short Range Deutes (SRO) RFID Mebilitunk (SSM / DCS, Over the Air (DTA) Performance) Elektromagnetische Verträglichkeit (EMV) einschließlich Automotive Produktischerheit SAR und Hearing ald Compatibility (NAC) Umweltismulation Smart Card Terminals Bloetooth Wir-Fi- Services	Die auszugsweise Veröffentlichung der Aktreditiorungsuntunde bestahl der vorherigen schriftlichen Zusimmung der Deutsche Aktreditiorungstellte Gribbi (DAHS). Ausgenemmen davon ist die separate Weberveronsteuten des Decklististes durch die umseitig genemme Kindermittlikkewertungsschle in unweit diefter Form. Es darf nicht der Anschein omsetzt werden, dass sich die Aktreditierung auch auf Bersiche erstreset, die Ber den durch die DAHS bestätigten Aktreditierungsbernich in nausgehan. Die Aktreditierung erstellte gemößt dass Geschreichen die Aktreditierung auch auf Bersiche setzteset, durch Ber den durch die DAHS bestätigten Aktreditierungsbernich in nausgehan. Die Aktreditierung erstellte gemößt dass Geschreichen die Aktreditierung zuch dass zu deitschen Parlaments und des Attes vom 9. Jahl 2008 über die Verorthung (16) Nr. 765/2008 dass zu deptischen Parlaments und des Attes vom 9. Jahl 2008 über die Verorthung (16) Nr. 765/2008 dass zu deptischen Parlaments und des Attes vom 9. Jahl 2008 über die Verorthung (16) Nr. 765/2008 dass zu deptischen Parlaments und des Attes vom 9. Jahl 2008 über die Verorthung (16) Nr. 765/2008 dass zu deptischen Zusig- ten Zusammenhang mit der Vermanktung und Patkand literung auch Marktüberweichung im Zusammenhang mit der Vermanktung und Patkand literung auch auf 2009 (17) Jahl der europeen nicht ogeneration für Aztreditation (14), 21 vom 2001 Jahl 2001 vom 10) and der mermanismen Lakarstury Azzreditation (Locaparation (LAC). Die Unterzeichner eleser Abkommen erkemmen ihre Aktreditierung anne Bagamen Big an. Der aktue in Stunit der Vilgliedendit kann, folgenden Webseiten ertnommen werden: FAL: www.inzeptierung 18	
Registrierungsnummer der Urkunde: D-PL-12076-01-00	IAF: www.inf.nu	
Frankfurt cm (/ a)n, 67.63.23.4 (m Aufred 0)n in give frank igner Absallungsleiter er give frank igner		

Note:

The current certificate including annex is published on our website (see link below) or may be received from CETECOM ICT Services on request.

http://www.cetecom.com/eu/de/cetecom-group/europa/deutschland-saarbruecken/akkreditierungen.html