

PARTIAL Test Report 18-1-0097201T24a-C01

Number of pages: 27 Date of Report: 2021-Sep-08

Testing company: CETECOM GmbH Applicant: Actia Nordic AB

Im Teelbruch 116 45219 Essen Germany Tel. + 49 (0) 20 54 / 95 19-0 Fax: + 49 (0) 20 54 / 95 19-150

Test Object / 103360002, Telematics Device
Tested Device(s):

Listing FCC ID: 2AGKK103360002 **ISED:** 20839-103360002

Testing has been carried out in accordance with:

Tested Technology:

Title 47 CFR, Chapter I
FCC Regulations, Subchapter A
Subpart C: §15.247 (DTS),

RSS-247, Issue 2 (DTS) RSS-Gen., Issue 5

Deviations, modifications or clarifications (if any) to above mentioned documents are written in each section under "Test method and limit".

2.4GHz W-LAN (IEEE 802.11)

the test.

The test results relate only to devices specified in this document

 $The \ current \ version \ of the \ Test \ Report \ TR18-1-0097201T24a-C01 \ replaces \ the \ Test \ Report \ TR18-1-0097201T24a$

☑ The EUT complies with the requirements in respect of selected parameters subject to

dated 2020-07-23.

The replaced Test Report is herewith invalid.

Signatures:

Test Results:

Dipl.-Ing. Ninovic Perez
Test Lab Manager
Authorization of test report

M.Sc. Patrick Marzotko Test Manager Responsible of test report

Table of Contents

1	G	General information				
	1.1	Disclaimer and Notes	4			
	1.1.	Summary of Test Results	5			
	1.2.	Summary of Test Methods	5			
2	A	Administrative Data	6			
	2.1	Identification of the Testing Laboratory	6			
	2.2	General limits for environmental conditions	6			
	2.3	Test Laboratories sub-contracted	6			
	2.4	Organizational Items	6			
	2.5	Applicant's details	6			
	2.6	Manufacturer's details	6			
	2.7	EUT: Type, S/N etc. and short descriptions used in this test report	7			
	2.8	Auxiliary Equipment (AE): Type, S/N etc. and short descriptions	7			
	2.9	Connected cables	7			
	2.10	EUT set-ups	8			
	2.11	EUT operation modes	8			
3	E	quipment under test (EUT)	9			
	3.1	General Data of Main EUT as Declared by Applicant	9			
	3.2	Detailed Technical data of Main EUT as Declared by Applicant	10			
	3.3	Worst case identification	11			
	3.4	Modifications on Test sample	11			
4	N	Aeasurements	12			
	4.1	Duty-Cycle	12			
	4.2	RF output power	13			
	4.3	Radiated field strength emissions below 30 MHz	15			
	4.4	Radiated field strength emissions 30 MHz – 1 GHz	19			
	4.5	Radiated field strength emissions above 1 GHz	21			
	4.6	Radiated Band-Edge emissions	24			
	4.7	Results from external laboratory	26			
	4.8	Opinions and interpretations	26			
5	E	quipment lists	26			
6	N	Aeasurement Uncertainty valid for conducted/radiated measurements	28			
7	\	/ersions of test reports (change history)	29			

	Table of Annex					
Annex No.	Contents	Reference Description	Total Pages			
Annex 1 Test result diagrams		CETECOM_TR18_1_0097201T24a_C01_A1	49			
Annex 2 Internal photographs of EUT		CETECOM_TR18_1_0097201T24a_C01_A2	4			
Annex 3 External photographs of EUT		CETECOM_TR18_1_0097201T24a_C01_A3	12			
Annex 4 Test set-up photographs CETECOM_TR18_1_0097201T24a_C01_A4						
The listed attachments are separate documents.						

1 General information

1.1 Disclaimer and Notes

The test results of this test report relate exclusively to the test item specified in this test report as specified in chapter 2.7. CETECOM does not assume responsibility for any conclusions and generalizations drawn from the test results with regard to other specimens or samples of the type of the equipment represented by the test item.

The test report may only be reproduced or published in full. Reproduction or publication of extracts from the report requires the prior written approval of CETECOM.

The testing service provided by CETECOM has been rendered under the current "General Terms and Conditions for CETECOM". CETECOM will not be liable for any loss or damage resulting from false, inaccurate, inappropriate or incomplete product information provided by the customer.

Under no circumstances does the CETECOM test report include any endorsement or warranty regarding the functionality, quality or performance of any other product or service provided.

Under no circumstances does the CETECOM test report include or imply any product or service warranties from CETECOM, including, without limitation, any implied warranties of merchantability, fitness for purpose, or non-infringement, all of which are expressly disclaimed by CETECOM.

All rights and remedies regarding vendor's products and services for which CETECOM has prepared this test report shall be provided by the party offering such products or services and not by CETECOM.

In no case this test report can be considered as a Letter of Approval.

This test report is electronically signed and valid without handwritten signature. For verification of the electronic signatures, the public keys can be requested at the testing laboratory.

The test report must always be reproduced in full; reproduction of an excerpt only is subject to written approval of the testing laboratory. The documentation of the testing performed on the tested devices is archived for 10 years at CETECOM.

Also we refer on special conditions which the applicant should fulfill according §2.927 to §2.948, special focus regarding modification of the equipment and availability of sample equipment for market surveillance tests.

1.1. Summary of Test Results

The EUT integrates a 2.4 GHz W-LAN transmitter. Other implemented technologies were not considered within this test report.

Test case	Reference Clause FCC ⊠	Reference Clause ISED ⊠	Page	Remark	Result
<u>Duty-Cycle</u>	§15.35(c)	RSS-Gen Issue 5, §8.2	10		PASSED
Minimum Emission Bandwidth 6 dB	§15.247 5.2(a)	RSS-247, § 5.2(a)		*1)	NP
	315.247 5.2(a)	RSS-Gen Issue 5,: §6.7		-,	INI
Occupied Channel Bandwidth 99%	2.1049(h)	RSS-Gen Issue 5, § 6.7	-	*1)	NP
RF output power	§15.247(b)(3)	RSS-247, § 5.4(d)	11		PASSED
Emissions in non-restricted frequency bands	§15.247(d)	RSS-247, § 5.5		*1)	NP
Radiated Band-Edge emissions		RSS-Gen: Issue 5			
	§15.205(b)	§8.9, §8.10	21		PASSED
	§15.247(d)	RSS-247, § 5.5	21		
Power spectral density	§15.247(e)	RSS-247, § 5.2(b)		*1)	NP
Radiated field strength emissions below 30	§15.205(a)	RSS-Gen: Issue 5	13		PASSED
MHz	§15.209(a)	§8.9 Table 6	13		PASSED
Radiated field strength emissions 30 MHz –		RSS-Gen: Issue 5			
1GHz	§15.209	§8.9 Table 5	17		PASSED
	§15.247(d)	RSS-247, § 5.5	17		FASSED
Radiated field strength emissions above 1 GHz		RSS-Gen: Issue 5: §8.9			
	§15.209(a)	Table 5+7	19		PASSED
	§15.247(d)	RSS-247, § 5.5	13		FASSLU
AC-Power Lines Conducted Emissions	§15.207	RSS-Gen Issue 5:			Not
915.20		§ 8.8, Table 4			applicable

Remarks

*1) Please refer to Module test report "MDE_UBLOX_1701_FCCd_SIGNED" issued on 2018-May-05 with the FCC ID: XPYJODYW164-07A and ISED ID: 8595A-JODYW16407A

PASSED The EUT complies with the essential requirements in the standard.

FAILED The EUT does not comply with the essential requirements in the standard.

NP The test was not performed by the CETECOM Laboratory.

1.2. Summary of Test Methods

Test case	Test method		
Duty-Cycle	ANSI 63.10:2013, §11.6(b)		
Minimum Emission Bandwidth 6 dB	ANSI C63.10:2013, §6.9.2, §11.8		
Occupied Channel Bandwidth 99%	ANSI C63.10:2013, §6.9.3		
RF output power	ANSI C63.10:2013, §11.9		
Power spectral density	ANSI C63.10:2013, §11.10		
Emissions in non-restricted frequency bands	ANSI C63.10:2013, §11.11, §6.10.5		
Radiated Band-Edge emissions	ANSI C63.10-2013; "Marker-Delta method", §6.10.5, §11.13		
Transmitter Peak output power radiated	Result calculated with measured conducted RF-power value and		
	stated/measured antenna gain for band of interest		
Radiated field strenght emissions below 30MHz	ANSI C63.10-2013 §6.3, §6.4		
Radiated field strenght emissions 30MHz- 1GHz	ANSI C63.4-2014 §8.2.3, ANSI C63.10-2013 §6.3, § 6.5		
Radiated field strenght emissions above 1GHz	ANSI C63.4-2014 §8.3, ANSI C63.10-2013 §6.3, § 6.6		
AC-Power Lines Conducted Emissions	ANSI C63.4-2014 §7, ANSI C63.10-2013 § 6.2		

And reference also to Test methods in KDB558074

^{*}The calculation of the measurement uncertainty shows compliance with the "maximum measurement uncertainties" of the tested standard and therefore for result evaluation the stated uncertainties will not be additionally added to the measured results.

2 Administrative Data

2.1 Identification of the Testing Laboratory

Company name: CETECOM GmbH
Address: Im Teelbruch 116

45219 Essen - Kettwig

Germany

Responsible for testing laboratory: Dipl.-Ing. Ninovic Perez

Accreditation scope: DAkkS Webpage

Test location: CETECOM GmbH; Im Teelbruch 116;45219 Essen - Kettwig

2.2 General limits for environmental conditions

Temperature:	22±2° C
Relative. humidity:	45±15% rH

2.3 Test Laboratories sub-contracted

Company name: -

2.4 Organizational Items

Order No.: 18-1-00972

Responsible test manager: B.Sc. M. Ahmed

Receipt of EUT: 2019-Nov-27

Date(s) of test: 2019-Dez-11 – 2020-Apr-06

Version of template: 13.03

2.5 Applicant's details

Applicant's name: ACTIA Nordic AB

Address: Hammarbacken 4A, 3tr

191 49 Sollentuna

Sweden

Contact Person: Mr. Salah Alazawi
Contact Person's Email: salah.alazawi@actia.se

2.6 Manufacturer's details

Manufacturer's name:	see applicant's details
Address:	see applicant's details

2.7 EUT: Type, S/N etc. and short descriptions used in this test report

Short descrip tion*)	PMT Sample No.	Model Name	Туре	S/N	HW status	SW status
EUT A	Sample 20	103360002	Telematics Device	AN103350102B160	H1	1
EUT B	Sample 17	103360002	Telematics Device	AN103350102B163	H1	1

^{*)} EUT short description is used to simplify the identification of the EUT in this test report.

2.8 Auxiliary Equipment (AE): Type, S/N etc. and short descriptions

Short descrip tion*)	PMT Sample No.	Auxiliary Equipment	Туре	S/N	HW status	SW status
AE1	Sample 10	Cable Harness	Power Cable			
AE2	Sample 11	Fakra Cable				
AE3	Sample 12	Fakra Cable				
AE4	Sample 13	Fakra Cable				
AE5	Sample 14	Fakra Cable				
AE6	Sample 58	CALEARO LTE Antenna	7680588		16MA800CP	
AE7	Sample 59	CALEARO LTE Antenna	7680588		16MA800CP	
AE8	Sample 64	CALEARO Wifi Antenna	7750162		16MA396CP	
AE9	Sample 16	Cable	USB Cable			
AE10	Sample 78	GNSS Antenna	CALEARO GNSS Antenna	7750161	16MA439CP	
AE11		AN103640101	NI-MH Hybride Battery	BK-12F3G1	REV-A Sep10	
AE12		DELL Laptop	Latitude E6420	DPN:VVF52 A01	Intel core i5	Windows 7

^{*)} AE short description is used to simplify the identification of the auxiliary equipment in this test report.

2.9 Connected cables

Cable short descrip tion *)	Cable type	Connectors	Length
CAB 1	AE2 to AE5(Shielded)	FAKRA	2 m
CAB 2	AE9 (Shielded)	USB , RS232	2 m

^{*)} AE short description is used to simplify the identification of the auxiliary equipment in this test report.

2.10 EUT set-ups

set-up no.*)	Combination of EUT and AE	Description
1	EUT A + AE1 + AE2 + AE3 + AE4 + AE5 + AE6 + AE7	Used for Radiated measurements. AE11 was used to setup the
1	+ AE8 + AE9 + AE10 + (AE12)	operating mode and was removed during measurements.
2	EUT B + AE1 + AE9 + AE12	Used for Conducted measurements

^{*)} EUT set-up no. is used to simplify the identification of the EUT set-up in this test report.

2.11 EUT operation modes

EUT operating mode no.*)	Operating modes	Additional information				
op. 1	WLAN_TX-Mode	With help of special test firmware TX-mode was set-up.				
		We refer to applicants information/papers for details about necessary commands.				
op. 2	WLAN_RX-Mode	With help of special test firmware RX-mode was set-up.				
		We refer to applicants information/papers for details about necessary commands.				

^{*)} EUT operating mode no. is used to simplify the test report.

3 Equipment under test (EUT)

3.1 General Data of Main EUT as Declared by Applicant

Product name	103360002					
Kind of product	Telematics Device					
Firmware	\square for normal use		Special version for test execution			
	☐ AC Mains	-				
	☑ DC Mains	13.8 \	/ DC			
	☑ Battery	NI-MH 3.6V 1200 mAh				
Operational conditions	T _{nom} = 23 °C					
EUT sample type	Pre-Production					
Weight						
Size						
Interfaces/Ports						
For further details refer Applicants Decla	For further details refer Applicants Declaration & following technical documents					
For further details regarding radio parameters, please refer to IEEE802.11 Specification						

3.2 Detailed Technical data of Main EUT as Declared by Applicant

Frequency Band	2.4 GHz ISM Band (2400 MHz - 24	2.4 GHz ISM Band (2400 MHz - 2483.5 MHz)					
MIMO	☐ yes ⊠ no						
	⊠ WLAN 2.4 GHz	Ch 1 2 3 4 5 6 7	Dandwidth 20 MHz				
Frequency Channel B.W.	802.11b g n (SISO)	Ch. 8 9 10 11 12 13	Bandwidth 20 MHz				
(USA bands only)	☐ WLAN 2.4 GHz	Ch 3 4 5 6 7 8 9 10	Danadaridah 40 MII-				
	802.11n (SISO)	11	Bandwidth 40 MHz				
002.441- 84-4-05084	☑ DBPSK 1 Mbps						
802.11b – Mode OFDM	☑ DQPSK 2 Mbps						
Modulation Data Rates	☑ CCK-PBCC 5.5 Mbps / 11 Mbp	os					
	☑ BPSK 6 Mbps / 9 Mbps						
802.11g – Mode OFDM	☑ QPSK 12 Mbps / 18 Mbps						
Modulation Data Rates	□ 16-QAM 24 Mbps / 36 Mbps						
	⊠ 64-QAM 48 Mbps / 54 Mbps						
802.11n – Mode OFDM	⊠ HT20(MCS0 to MCS7) 7.2 / 2	☑ HT20(MCS0 to MCS7) 7.2 / 14.4 / 21.7 / 28.9 / 43.3 / 57.8 / 65 / 72.2 Mbps					
Modulation Data Rates	☐ HT40(MCS0 to MCS15) 15/30/45/60/90/120/135/150/180/240/270/300 Mbps						
	☑ WLAN 5 GHz 802.11 a/n/ac mode ((not tested within this report)						
	 ☑ Bluetooth LE (not tested within this report) 						
Other wireless options		, .					
	☐ Cellular transceiver (2G/3G/4G/5G/GPS, not tested in this report)						
EIRP Calculation	Max Conducted Output Power+ Antenna Gain – Cable Loss (only external Antenna)						
Max. Conducted Output Power	b-mode: 12.81 dBm						
(External Antenna)	g-mode: 13.01 dBm						
(Measured RMS Power)	n-mode(20MHz): 12.81 dBm						
EIRP WLAN	b-mode: 12.81 dBm + 0 dBi – 1.8 d	dB= 11.01 dBm					
(External Antenna)	g-mode: 13.01 dBm+ 0 dBi - 1.8 d	B = 11.21 dBm					
(Calculated EIRP)	n-mode(20MHz): 12.81 dBm + 0 d	Bi - 1.8 dB = 11.01 dBm					
Max. Conducted Output Power	b-mode: 13.01 dBm						
(Internal Antenna)	g-mode: 12.81 dBm						
(Measured RMS Power)	n-mode(20MHz): 12.81 dBm						
EIRP WLAN	b-mode: 13.01 dBm + 3 dBi = 16.0						
(Internal Antenna)	g-mode: 12.81 dBm+ 3 dBi = 15.8 ?						
(Calculated EIRP)	n-mode(20MHz): 12.81 dBm + 3 d						
Antenna Type	PIFA Antenna (Internal) , PCB Pat	ch Antenna (External)					
Antenna Gain(s)	3 dBi (Internal), 0 dBi (External)						
FCC label attached	☐ yes ⊠ no						
FCC label attached	☐ yes ⊠ no						
Test firmware / software and	AE11						
storage location	to Declaration O fellowing to 1.1	-1 d					
	ts Declaration & following technica						
Description of Reference Docume		Version	Total Pages				
ACU6 Technical Description 1033	60002 (US_CANADA)_0.2	17-12-2019	14				

3.3 Worst case identification

WLAN mode	Data rate
802.11b	1 Mbit
802.11g	6 Mbit
802.11n, 20MHz bandwidth	MCS0

3.4 Modifications on Test sample

Additions/deviations or exclusions -

4 Measurements

4.1 Duty-Cycle

Testing method:

The measurement is made according to relevant reference clauses: (See Tables Summary of Test Results and Summary of Test Methods on page 5)

The necessary duty-cycle correction factor is determined on nominal conditions on middle channel only. It is assumed that no noticeable changes occur when tested on other channels or climatic conditions.

EUT settings

The EUT was instructed to send with maximum power (if adjustable) according applicants instructions. Different modulation characteristics have been checked, e.g. data rates which EUT can operate.

A special firmware program is used for test purposes. In opposite to normal operating mode a higher duty-cycle is set in order to facilitate the measurements. This is maximized at the extent possible.

The necessary duty-cycle correction factor is determined on nominal conditions on one channel in each operable frequency-band. It is assumed that no noticeable changes occur when tested on other channels or climatic conditions. The Duty-Cycle was constant, means without variations.

Formula to calculate Duty-Cycle:

Duty cycle calculations:	Duty cycle factor: DC=	Regarding power: $10*$ $log(^1/_{\chi})$ dB
$x = \frac{TX_{ON}}{(TX_{ON} + TX_{OFF})}$.,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,	Regarding field strength: $20*log(^{1}/_{x}) dB$

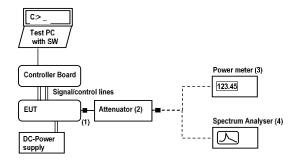
 \Box The results were corrected in order to evaluate for worst-case result each time when average values are necessary for example average radiated emissions or similar

☑ No correction necessary: Duty-Cycle > 98%

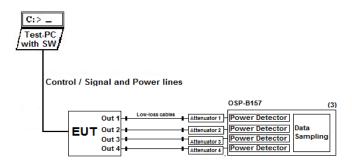
4.1.1 Result

Mode	DUT	DutyCycle	Duty Cycle Correction
ivioue	Frequency	(%)	dB
b-mode 1M; 2412MHz	2412.0000	99.925	DC > 98% = 0dB
b-mode 1M; 2437MHz	2437.0000	99.925	DC > 98% = 0dB
b-mode 1M; 2462MHz	2462.0000	99.925	DC > 98% = 0dB
g-mode 6M; 2412MHz	2412.0000	99.288	DC > 98% = 0dB
g-mode 6M; 2437MHz	2437.0000	99.286	DC > 98% = 0dB
g-mode 6M; 2462MHz	2462.0000	99.286	DC > 98% = 0dB
n-mode MCS0; 2412MHz	2412.0000	99.234	DC > 98% = 0dB
n-mode MCS0; 2437MHz	2437.0000	99.231	DC > 98% = 0dB
n-mode MCS0; 2462MHz	2462.0000	99.232	DC > 98% = 0dB

4.2 RF output power


4.2.1 Description of the general test setup and methodology, see below example:

The EUT's RF-signal is coupled out by a suitable antenna coupling connector (1). The signal is first attenuated (2) then connected to power meter (3) or spectrum-analyzer (4) for RF-conducted measurements. The specific attenuation loss is determined prior to the measurement within a set-up attenuation measurement. These are then taken into account by correcting the measurement readings.


MIMO

The EUT use MIMO technology as it use multiple antennas for receive and transmit. The measurements are performed by using R&S TS8997 (Ref.No. 693) test system which is able to perform measurements simultanuously and time-synchronized on maximum 8 antenna conducted RF-ports. A common trigger ensures the sampling time is minimized so the total power represents a sampling value calculated for all 8-ports simultanuously for each time bin/frame. A high data sampling rate together with a wide band power measurement capability ensures that latest modulation schemes are correctly measured. Therefore testing method Subchapter E1 of KDB662911 is fulfilled. (measure-and-sum technique).

Schematic:

Schematic MIMO:

Testing method:

The measurement is made according to relevant reference clauses: (See Tables *Summary of Test Results* and *Summary of Test Methods* on page 5)

Measurement is made using Rohde & Schwarz TS8997 test system.

•	,		
Test method AVPM-G (duty-cycle < 98% (constant)			
SISO			
MIMO	☐ Summation of values from two antenna ports		
Remarks	In Compliance		

The measurement was performed in non-hopping transmission mode with the carrier set to lowest/middle and highest channel.

EUT settings

The EUT was instructed to send with maximum power (if adjustable) according applicants instructions. Different modulation characteristics have been checked, e.g. data rates which EUT can operate

4.2.2 Limit

Frequency Range [MHz]	Limit [W]	Limit [dBm]	Detector	RBW / VBW [MHz]
2400 - 2483.5	1	30	RMS	1/3

4.2.3 Result

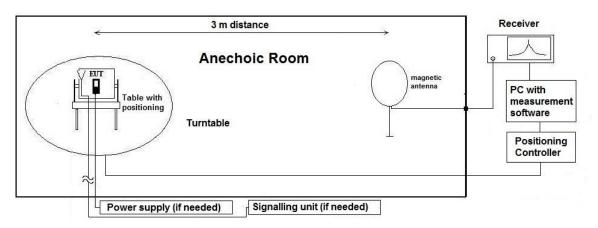
4.2.3.1 External Antenna

Mode	Channel	f _c [MHz]	Max conducted Power [dBm]	Internal loss (dBm)	Max RMS Power [dBm]	Temperature [°C]	Result
b-mode [1 Mbps]	1	2412	12.4	0.31	12.71	23	PASS
b-mode [1 Mbps]	6	2437	12.5	0.31	12.81	23	PASS
b-mode [1 Mbps]	11	2462	11.4	0.31	11.71	23	PASS
g-mode [6 Mbps]	1	2412	12.6	0.31	12.91	23	PASS
g-mode [6 Mbps]	6	2437	12.7	0.31	13.01	23	PASS
g-mode [6 Mbps]	11	2462	11.5	0.31	11.81	23	PASS
n-mode [MCS0]	1	2412	12.3	0.31	12.61	23	PASS
n-mode [MCS0]	6	2437	12.5	0.31	12.81	23	PASS
n-mode [MCS0]	11	2462	11.5	0.31	11.81	23	PASS

Remark: for more informations and graphical plot see annex A1 CETECOM_TR18_1_0097201T24a_C01_A1

4.2.3.2 Internal Antenna

Mode	Channel	f _c [MHz]	Max conducted Power [dBm]	Internal loss (dBm)	Max RMS Power [dBm]	Temperature [°C]	Result
b-mode [1 Mbps]	1	2412	11.9	0.31	12.21	23	PASS
b-mode [1 Mbps]	6	2437	12.7	0.31	13.01	23	PASS
b-mode [1 Mbps]	11	2462	11.4	0.31	11.71	23	PASS
g-mode [6 Mbps]	1	2412	11.9	0.31	12.21	23	PASS
g-mode [6 Mbps]	6	2437	12.5	0.31	12.81	23	PASS
g-mode [6 Mbps]	11	2462	11.4	0.31	11.71	23	PASS
n-mode [MCS0]	1	2412	11.9	0.31	12.21	23	PASS
n-mode [MCS0]	6	2437	12.5	0.31	12.81	23	PASS
n-mode [MCS0]	11	2462	11.4	0.31	11.71	23	PASS


4.3 Radiated field strength emissions below 30 MHz

4.3.1 Description of the general test setup and methodology, see below example:

Evaluating the radiated field emissions are done first by an exploratory emission measurement and a final measurement for most critical frequencies determined.

The loop antenna was placed at 1 m height above ground plane and 3 m measurement distance from set-up for investigations. Because of reduced measurement distance, correction data were applied, as stated in chapter "General Limit - Radiated field strength emissions below 30 MHz". The tests are performed in the semi anechoic room recognized by the regulatory commission.

Schematic:

Testing method:

The measurement is made according to relevant reference clauses: (See Tables Summary of Test Results and Summary of Test Methods on page 5)

Exploratory, preliminary measurements

The EUT and it's associated accessories are placed on a non-conductive position manipulator (tipping device) of 0.8 m height which is placed on the turntable. By rotating the turntable (step 90°, range 0°to 360°) and the EUT itself either on 3-orthogonal axis (portable equipment) or 2-orthogonal axis (defined operational position of EUT), the emission spectrum was recorded.

The loop antenna was moved at least to 2-perpendicular axes (antenna vector in direction of EUT and parallel to EUT) in order to maximize the emissions. The results are documented in a diagram. Critical frequencies (low margin to limit) are saved within a data reduction table for further investigations. If various operating modes are supported, further investigations are made to find the worst-case. Also the interconnection cables and equipment position were varied in order to maximize the emissions.

Final measurement on critical frequencies

Based on the exploratory measurements, the most critical frequencies are re-measured by maintaining the EUT's worst-case operation mode, cable position, etc.

First a frequency zoom around the critical frequency is done to locate the frequency more precisely. After this step, for all identified critical frequencies, the maximum peak was determined.

Following parameters were varied: the turntable angle continuously in the range 0 to 360 degree, the EUT itself either over 3-orthogonal axis (not defined usage position) or 2-orthogonal axis (defined usage position).

On the determined worst-case position, a final measurement with necessary bandwidth and detector according standard has been carried out.

Formula:

 $E_C = E_R + AF + C_L + D_F - G_A \hspace{1cm} AF = Antenna \ factor$

C_L = Cable loss

 $M = L_T - E_C$ $D_F = Distance correction factor (if used)$

 E_C = Electrical field – corrected value

E_R = Receiver reading

G_A = Gain of pre-amplifier (if used)

 L_T = Limit M = Margin

All units are dB-units, positive margin means value is below limit.

Correction factors due to reduced meas. distance (f< 30 MHz):

The used correction factors when the measurement distance is reduced compared to regulatory measurement distance, are calculated according Extrapolation formulas valid for EUT's with maximum dimension of 0.625xLambda. Formula 2+3+4 as presented in ANSI C63.10, Chapter 6.4.4 are used for the calculations of proper extrapolation factors

Frequency	f [kHz/MHz]	Lambda	Far-Field	Distance Limit	1st Condition	2'te	Distance
-Range	[]	[m]	Point [m]	accord. 15.209	(dmeas<	Condition	Correction
-nange		[]	i onic [m]	[m]	Dnear-field)	(Limit	
				[m]	Dhear-Heid)		accord.
						distance	Formula
						bigger	
						dnear-field)	
	9.00E+03	33333.33	5305.17	_	fullfilled	not fullfilled	-80.00
	1.00E+04	30000.00	4774.65		fullfilled	not fullfilled	-80.00
	2.00E+04	15000.00	2387.33		fullfilled	not fullfilled	-80.00
	3.00E+04	10000.00	1591.55		fullfilled	not fullfilled	-80.00
	4.00E+04	7500.00	1193.66		fullfilled	not fullfilled	-80.00
	5.00E+04	6000.00	954.93		fullfilled	not fullfilled	-80.00
	6.00E+04	5000.00	795.78		fullfilled	not fullfilled	-80.00
	7.00E+04	4285.71	682.09	300	fullfilled	not fullfilled	-80.00
	8.00E+04	3750.00	596.83		fullfilled	not fullfilled	-80.00
1.11-	9.00E+04	3333.33	530.52		fullfilled	not fullfilled	-80.00
kHz	1.00E+05	3000.00	477.47		fullfilled	not fullfilled	-80.00
	1.25E+05	2400.00	381.97		fullfilled	not fullfilled	-80.00
	2.00E+05	1500.00	238.73		fullfilled	fullfilled	-78.02
	3.00E+05	1000.00	159.16	-	fullfilled	fullfilled	-74.49
	4.00E+05	750.00	119.37		fullfilled	fullfilled	-72.00
	4.90E+05	612.24	97.44		fullfilled	fullfilled	-70.23
	5.00E+05	600.00	95.49		fullfilled	not fullfilled	-40.00
	6.00E+05	500.00	79.58		fullfilled	not fullfilled	-40.00
	7.00E+05	428.57	68.21		fullfilled	not fullfilled	-40.00
	8.00E+05	375.00	59.68		fullfilled	not fullfilled	-40.00
	9.00E+05	333.33	53.05		fullfilled	not fullfilled	-40.00
	1.00	300.00	47.75		fullfilled	not fullfilled	-40.00
	1.59	188.50	30.00		fullfilled	not fullfilled	-40.00
	2.00	150.00	23.87		fullfilled	fullfilled	-38.02
	3.00	100.00	15.92		fullfilled	fullfilled	-34.49
	4.00	75.00	11.94		fullfilled	fullfilled	-32.00
	5.00	60.00	9.55		fullfilled fullfilled	fullfilled fullfilled	-30.06
	6.00	50.00	7.96	-	fullfilled	fullfilled	-28.47
	7.00	42.86	6.82		fullfilled	fullfilled	-27.13
	8.00	37.50	5.97				-25.97
	9.00	33.33 30.00	5.31 4.77	30	fullfilled fullfilled	fullfilled fullfilled	-24.95
			4.77	- 30	fullfilled	fullfilled	-24.04 -23.53
	10.60	28.30 27.27	4.34		fullfilled	fullfilled	
MHz	11.00						-23.21 -22.45
	12.00 13.56	25.00 22.12	3.98 3.52		fullfilled fullfilled	fullfilled fullfilled	-22.45
	15.00	20.00	3.18		fullfilled	fullfilled	-20.51
	15.92	18.85	3.00		fullfilled	fullfilled	-20.00
		17.65			not fullfilled	fullfilled	-20.00
	17.00 18.00	16.67	2.81	1	not fullfilled	fullfilled	-20.00
	20.00	15.00	2.39	1	not fullfilled	fullfilled	-20.00
	21.00	14.29	2.39	1	not fullfilled	fullfilled	-20.00
	23.00	13.04	2.08	1	not fullfilled	fullfilled	-20.00
	25.00	12.00	1.91	-	not fullfilled	fullfilled	-20.00
	27.00	11.11	1.77	-	not fullfilled	fullfilled	-20.00
	29.00	10.34	1.65	†	not fullfilled	fullfilled	-20.00
	30.00	10.00	1.59	-	not fullfilled	fullfilled	-20.00
	30.00	10.00	1.55	I	not fullfilled	rummeu	20.00

4.3.2 Limit

	Radiated emissions limits (3 meters)								
Frequency Range [MHz]	Limit [μV/m]	Limit [dBμV/m]	Distance [m]	Detector	RBW [kHz]				
0.009 - 0.09	2400 / f [kHz]	67.6 – 20Log(f) (kHz)	300	Pk & Avg	0.2				
0.09 - 0.11	2400 / f [kHz]	67.6 – 20Log(f) (kHz)	300	Quasi peak	0.2				
0.11 - 0.15	2400 / f [kHz]	67.6 – 20Log(f) (kHz)	300	Pk & Avg	0.2				
0.15 - 0.49	2400 / f [kHz]	67.6 – 20Log(f) (kHz)	300	Pk & Avg	9				
0.49 - 1.705	24000 / f	87.6 – 20Log(f) (kHz)	30	Quasi peak	9				
	[kHz]								
1.705 - 30	30	29.5	30	Quasi peak	9				

^{*}Remark: In Canada same limits apply, just unit reference is different

4.3.3 Result

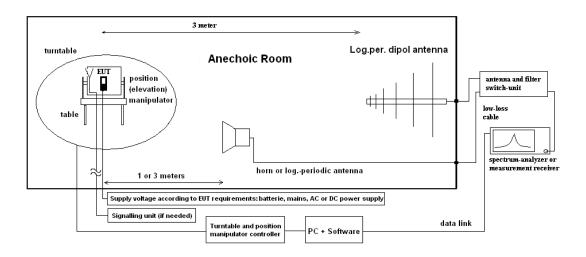
4.3.3.1 External Antenna

Diagram	Channel	Mode	Maximum Level [dBμV/m]	Result
			Frequency Range 0.009 – 30MHz	
2.01a	6	g-mode 6Mbit laying	18.10 @ 19.61 MHz	Passed
2.01b	6	g-mode 6Mbit standing	20.72 @ 25.35 MHz	Passed

Remark: for more informations and graphical plot see annex A1 CETECOM_TR18_1_0097201T24a_C01_A1

4.3.3.2 Internal Antenna

Diagram	Channel	Mode	Maximum Level [dBμV/m] Frequency Range 0.009 – 30MHz	Result
2.02a	6	b-mode 1Mbit laying	17.80 @ 20.62 MHz	Passed
2.02b	6	b-mode 1Mbit standing	18.07 @ 16.13 MHz	Passed



4.4 Radiated field strength emissions 30 MHz - 1 GHz

4.4.1 Description of the general test setup and methodology, see below example:

Evaluating the emissions have to be done first by an exploratory emissions measurement and a final measurement for most critical frequencies. The tests are performed in a CISPR 16-1-4:2010 compliant fully anechoic room (FAR) recognized by the regulatory commission. The measurement distance was set to 3 meter for frequencies up to 18 GHz and 2 meter above 18 GHz. A logarithmic periodic antenna is used for the frequency range 30 MHz to 1 GHz. Horn antennas are used for frequency range 1 GHz to 40 GHz. The EUT is aligned within 3 dB beam width of the measurement antenna with three orthogonal axis measurements on the EUT.

Schematic:

Testing method:

The measurement is made according to relevant reference clauses: (See Tables Summary of Test Results and Summary of Test Methods on page 5)

Exploratory, preliminary measurements

The EUT and its associated accessories are placed on a non-conductive position manipulator (tipping device) of 0.8 m height which is placed on the turntable. By rotating the turntable (range 0° to 360°, step 90°) and the EUT itself either on 3-orthogonal axis (portable equipment) or 2-orthogonal axis (defined operational position of EUT) the emission spectrum and it's characteristics was recorded with an EMI-receiver, broadband antenna and software.

Measurement antenna: horizontal and vertical, heights: 1,0 m and 1,82 m as worst-case determined by an exploratory emission measurements. The results are documented in a diagram. Critical frequencies (low margin to limit) are saved within a table for further investigations. If various operating modes are supported, further investigations are made to find the worst-case of them. Also the interconnection cables and equipment position were varied in order to maximize the emissions.

Final measurement on critical frequencies

Based on the exploratory measurements, the most critical frequencies are re-measured by maintaining the EUT's worst-case operation mode, cable position, etc. either on 10m OATS or 3m semi-anechoic room.

First a frequency zoom around the critical frequency is done to locate the frequency more precisely. After this step, for all identified critical frequencies, the maximum peak was determined.

Following parameters were varied: the turntable angle continuously in the range 0 to 360 degree, the EUT itself either over 3-orthogonal axis (not defined usage position) or 2-orthogonal axis (defined usage position). The measurement antenna height between 1 m and 4 m.

On the determined worst-case position, a final measurement with necessary bandwidth and detector according standard has been carried out

Formula:

 $E_C = E_R + AF + C_L + D_F - G_A \quad \text{(1)} \\ C_L = \text{Cable loss} \\ M = L_T - E_C \quad \text{(2)} \\ E_C = \text{Electrical field} - \text{corrected value} \\ E_R = \text{Receiver reading} \\ \end{array}$

G_A = Gain of pre-amplifier (if used)

 L_T = Limit M = Margin

All units are dB-units, positive margin means value is below limit.

4.4.2 Limit

	Radiated emissions limits (3 meters)						
Frequency Range [MHz]			Detector	RBW / VBW [kHz]			
30 - 88	100	40.0	Quasi peak	100 / 300			
88 - 216	150	43.5	Quasi peak	100 / 300			
216 - 960	200	46.0	Quasi peak	100 / 300			
960 - 1000	500	54.0	Quasi peak	100 / 300			

4.4.3 Result

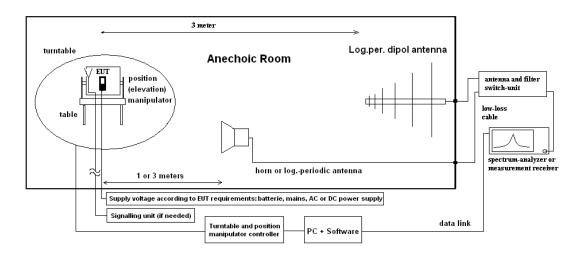
4.4.3.1 External Antenna

Diagram	Channel	Mode	Maximum Level [dBμV/m] Frequency Range 30 – 1000MHz	Result
3.01a	6	g-mode 6Mbit laying	41.94 @ 934.69 MHz	Passed
3.01b	6	g-mode 6Mbit standing	41.99 @ 894.4 MHz	Passed

Remark: for more informations and graphical plot see annex A1 CETECOM_TR18_1_0097201T24a_C01_A1

4.4.3.2 Internal Antenna

Diagram	Channel Mode		Maximum Level [dBμV/m] Frequency Range 30 – 1000MHz	Result
3.02a	6	b-mode 1Mbit laying	41.32 @ 839.16 MHz	Passed
3.02b	6	b-mode 1Mbit standing	41.62 @ 852.8 MHz	Passed



4.5 Radiated field strength emissions above 1 GHz

4.5.1 Description of the general test setup and methodology, see below example:

Evaluating the emissions have to be done first by an exploratory emissions measurement and a final measurement for most critical frequencies. The tests are performed in a CISPR 18-1-4:2010 compliant fully anechoic room (FAR) recognized by the regulatory commission. The measurement distance was set to 3 meter for frequencies up to 18 GHz and 2 meter above 18 GHz. A logarithmic periodic antenna is used for the frequency range 30 MHz to 1 GHz. Horn antennas are used for frequency range 1 GHz to 40 GHz. The EUT is aligned within 3 dB beam width of the measurement antenna with three orthogonal axis measurements on the EUT.

Schematic:

Testing method:

The measurement is made according to relevant reference clauses: (See Tables *Summary of Test Results* and *Summary of Test Methods* on page 5)

Exploratory, preliminary measurements

The EUT and its associated accessories are placed on a non-conductive position manipulator (tipping device) of 1.55 m height which is placed on the turntable. By rotating the turntable (range 0° to 360°, step 15°) and the EUT itself either on 3-orthogonal axis (portable equipment) or 2-orthogonal axis (defined operational position of EUT) the emission spectrum and it's characteristics was recorded with an EMI-receiver, broadband antenna and software.

The measurements are performed in horizontal and vertical polarization of the measurement antennas. The results are documented in a diagram. Critical frequencies (low margin to limit) are saved within a table for further investigations. If various operating modes are supported, further investigations are made to find the worst-case of them. Also the interconnection cables and equipment position were varied in order to maximize the emissions.

Final measurement on critical frequencies

Based on the exploratory measurements, the most critical frequencies are re-measured by maintaining the EUT's worst-case operation mode, cable position, etc.

First a frequency zoom around the critical frequency is done to locate the frequency more precisely. After this step, for all identified critical frequencies, the maximum peak was determined.

Following parameters were varied: the turntable angle continuously in the range 0 to 360 degree, the EUT itself over 3-orthogonal axis and the height for EUT with large dimensions or three axis scan for portable/small equipment.

On the determined worst-case position, a final measurement with necessary bandwidth and detector according standard has been carried out.

Formula:

 $E_C = E_R + A_F + C_L + D_F - G_A \quad \text{(1)}$ $E_C = \text{Electrical field} - \text{corrected value}$ $E_R = \text{Receiver reading}$ $M = L_T - E_C \quad \text{(2)}$ M = Margin $L_T = \text{Limit}$

A_F = Antenna factor C_L = Cable loss

 D_F = Distance correction factor (if used) G_A = Gain of pre-amplifier (if used)

All units are dB-units, positive margin means value is below limit.

4.5.2 Limit

	Radiated emissions limits (3 meters)						
Frequency Range [MHz]	Limit [μV/m]	Limit [dBμV/m]	Detector	RBW / VBW [kHz]			
Above 1000	500	54	Average	1000 / 3000			
Above 1000	5000	74	Peak	1000 / 3000			

4.5.3 Result

4.5.3.1 External Antenna

Diagram	Channel	Channel Mode Maximum Level [dBμV/m] Frequency Range 1 – 18 GHz		Result
4.01a	6	g-mode 6Mbit laying	63.51 @ 17.25 GHz (PK) 51.511 @ 17.24 GHz (AV)	Passed
4.01b	6	g-mode 6Mbit standing	63.49 @ 17.22 GHz (PK) 51.414 @ 17.211 GHz (AV)	Passed

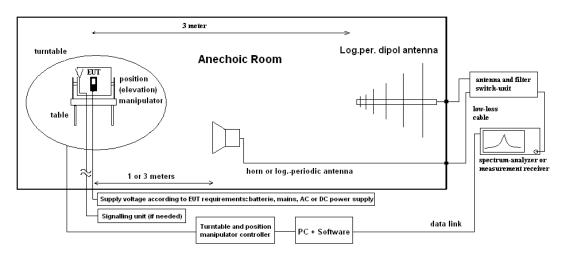
Remark: for more informations and graphical plot see annex A1 CETECOM_TR18_1_0097201T24a_C01_A1

Diagram	Channel	Mode	Maximum Level [dBμV/m] Frequency Range 18 – 26.5 GHz	Result
4.11a	6	g-mode 6Mbit laying	57.80 @ 25.96 GHz(PK) 49.71 @ 25.99 GHz(AV)	Passed

4.5.3.2 Internal Antenna

Diagram	Channel	Mode	Maximum Level [dBμV/m] Frequency Range 1 – 18 GHz	Result
4.02a	6	b-mode 1Mbit laying	60.08 @ 16.24 GHz 57.67 @ 16.24 GHz (AV)	Passed
4.02b	6	b-mode 1Mbit standing	60.34 @ 17.70 GHz (PK) 48.04 @ 17.70 GHz (AV)	Passed

Remark: for more informations and graphical plot see annex A1 CETECOM_TR18_1_0097201T24a_C01_A1


Diagram	Channel	Mode	Maximum Level [dBμV/m] Frequency Range 18 – 26.5 GHz	Result
4.12a	6	b-mode 1Mbit laying	56.44 @ 25.47 GHz (PK) 47.98 @ 25.42 GHz (AV)	Passed

4.6 Radiated Band-Edge emissions

4.6.1 Description of the general test setup and methodology, see below example:

Schematic:

Testing method:

The measurement is made according to relevant reference clauses: (See Tables *Summary of Test Results* and *Summary of Test Methods* on page 5)

For uncritical results where a measurement resolution bandwidth of 1MHz can clearly show the compliance without influencing the results, a field strength measurement was performed to show compliance.

For critical results a Marker-Delta marker method was used for showing compliance to restricted bands. The method consists of three independent steps:

- 1. Step: Prior to the measurement the fundamental radiated In-Band field strength was performed. The determined value is used as reference value.
- 2. Step: Second step consist of finding the relative attenuation between the fundamental emission and the maximum local out-of-band emission (within 2 MHz range around the band edge either on the band-edge directly or some modulation product if the level is greater than that on the band-edge) when measured with lower resolution bandwidth.
- 3. .Step: The delta value recorded in step 2 will be subtracted from value recorded in step 1, thus giving the required field strength at the band-edge. This value must fulfil the requirements for radiated spurious emissions in restricted bands in FCC §15.205 with the general limits of FCC §15.209

The EUT was instructed to send with maximum power (if adjustable) according to applicants instructions.

4.6.2 Limit

Frequency Range [MHz]	Pk Limit [dBc]	Avg Limit [dBc]	Avg Limit [dBμV/m]	Pk Limit [dBμV/m]	Detector	RBW / VBW [kHz]
Below 2390	-	-	54	74	Average / Peak	100 / 300
Above 2483.5	-	-	54	74	Average / Peak	1000 / 3000
2390 - 2400	-20	-	-	-	Peak	100 / 300
2390 - 2400	-	-30	-	-	Average	100 / 300

4.6.3 **Result**

4.6.3.1 External Antenna

Non-restricted bands near-by

Diagram	Channel	Mode	Peak [dBc]	Average [dBc]	Result
9.01a	01	b-mode 1Mbit laying	44.87	44.87	Passed
9.01b	01	b-mode 1Mbit standing	47.57	46.8	Passed
9.03a	01	g-mode 6Mbit laying	38.19	39.48	Passed
9.03b	01	g-mode 6Mbit standing	36.38	38.87	Passed
9.05a	01	n-mode HT20 MCS0 laying	35.56	39.15	Passed
9.05b	01	n-mode HT20 MCS0 standing	33.84	38.80	Passed

Restricted bands near-by

Diagram	Channel	Mode	Peak [dBμV/m]	Average [dBμV/m]	Result
9.02a	11	b-mode 1Mbit laying	57.80	46.62	Passed
9.02b	11	b-mode 1Mbit standing	57.92	47.12	Passed
9.04a	11	g-mode 6Mbit laying	61.84	49.13	Passed
9.04b	11	g-mode 6Mbit standing	63.7	52.58	Passed
9.06a	11	n-mode HT20 MCS0 laying	66.94	51.26	Passed
9.06b	11	n-mode HT20 MCS0 standing	62.4	49.77	Passed

Remark: for more informations and graphical plot see annex A1 CETECOM_TR18_1_0097201T24a_C01_A1

4.6.3.2 Internal Antenna

Non-restricted bands near-by

Diagram	Channel	Mode	Peak [dBc]	Average [dBc]	Result
9.11a	01	b-mode 1Mbit laying	44.34	44.76	Passed
9.11b	01	b-mode 1Mbit standing	44.42	46.51	Passed
9.13a	01	g-mode 6Mbit laying	35.53	39.41	Passed
9.13b	01	g-mode 6Mbit standing	33.60	38.04	Passed
9.15a	01	n-mode HT20 MCS0 laying	35.18	38.17	Passed
9.15b	01	n-mode HT20 MCS0 standing	36.18	38.82	Passed

Restricted bands near-by

Diagram	Channel	Mode	Peak [dBμV/m]	Average [dBμV/m]	Result
9.12a	11	b-mode 1Mbit laying	58.22	46.83	Passed
9.12b	11	b-mode 1Mbit standing	58.54	47.25	Passed
9.14a	11	g-mode 6Mbit laying	63.33	50.7	Passed
9.14b	11	g-mode 6Mbit standing	64.36	50.73	Passed
9.16a	11	n-mode HT20 MCS0 laying	64.18	51.09	Passed
9.16b	11	n-mode HT20 MCS0 standing	65	51.39	Passed

4.7 Results from external laboratory

None	-

4.8 Opinions and interpretations

None	-

5 Equipment lists

ID	Description	Manufacturer	SerNo	Cal due date
	120901 - SAC - Radiated Emission <1GHz			29.09.2015
20574	Biconilog Hybrid Antenna BTA-L	Frankonia GmbH	980026L	03.05.2022
20620	EMI Test Receiver ESU26	Rohde & Schwarz Messgerätebau GmbH	100362	13.05.2021
20482	filter matrix Filter matrix SAR 1	CETECOM GmbH	-	
20885	Power Supply EA3632A	Agilent Technologies Deutschland GmbH	75305850	
20487	System CTC NSA-Verification SAR-EMI System EMI field (SAR) NSA	ETS-Lindgren Gmbh	-	23.03.2021
25038	Loop Antenna HFH2-Z2	Rohde & Schwarz Messgerätebau GmbH	879824/13	07.04.2022
	120904 - FAC1 - Radiated Emissions			
20341	Digital Multimeter Fluke 112	Fluke Deutschland GmbH	81650455	25.05.2022
20720	EMC32 [FAC]	Rohde & Schwarz Messgerätebau GmbH	V10.xx	
20489	EMI Test Receiver ESU40	Rohde & Schwarz Messgerätebau GmbH	1000-30	13.05.2021
20868	High Pass Filter AFH-07000	AtlanTecRF	16071300004	
20291	High Pass Filter WHJ 2200-4EE (GSM 850/900)	Wainwright Instruments GmbH	14	
20020	Horn Antenna 3115 (Subst 1)	EMCO Elektronik GmbH	9107-3699	19.07.2021
20302	Horn Antenna BBHA9170 (Meas 1)	Schwarzbeck Mess-Elektronik OHG	155	15.04.2023
20549	Log.Per-Antenna HL025	Rohde & Schwarz Messgerätebau GmbH	1000060	31.07.2021
20611	Power Supply E3632A	Agilent Technologies Deutschland GmbH	KR 75305854	
20338	Pre-Amplifier 100MHz - 26GHz JS4-00102600-38-5P	Miteq Inc.	838697	
20484	Pre-Amplifier 2,5GHz - 18GHz AMF-5D-02501800-25- 10P	Miteq Inc.	1244554	
20287	Pre-Amplifier 25MHz - 4GHz AMF-2D-100M4G-35-10P	Miteq Inc.	379418	
20670	Radio Communication Tester CMU200	Rohde & Schwarz Messgerätebau GmbH	106833	16.06.2022
20690	Spectrum Analyzer FSU	Rohde & Schwarz Messgerätebau GmbH	100302/026	23.05.2021

ID	Description	Manufacturer	SerNo	Cal due date
20439	UltraLog-Antenna HL 562	Rohde & Schwarz Messgerätebau GmbH	100248	10.03.2023
20828	Netgear Nighthawk x4S	NETGEAR Ireland International Ltd	5K5188590067B	
20732	Signal- and Spectrum Analyzer FSW67	Rohde & Schwarz Messgerätebau GmbH	104023	27.05.2021
	120910 - Radio Laboratory 1 (TS 8997)			
20904	Climatic Chamber ClimeEvent C/1000/70a/5	Weiss Umwelttechnik GmbH	58226223240010	09.05.2021
20866	FSV3030 Signal Analyzer 30GHz	Rohde & Schwarz Messgerätebau GmbH	101247	02.10.2020
20805	Open Switch and control Platform OSP B157WX 40GHz 8Port Switch	Rohde & Schwarz Messgerätebau GmbH	101264	13.05.2021
20691	Open Switch and control Platform OSP120	Rohde & Schwarz Messgerätebau GmbH	101056	13.05.2021
20687	Signal Generator SMF 100A	Rohde & Schwarz Messgerätebau GmbH	102073	07.02.2021
20559	Vector Signal Generator SMU200A	Rohde & Schwarz Messgerätebau GmbH	103736	22.05.2021
20873	WTS-80 Schirmbox	CETECOM GmbH	P3101	

6 Measurement Uncertainty valid for conducted/radiated measurements

The reported uncertainties are calculated based on the standard uncertainty multiplied with the appropriate coverage factor \mathbf{k} , such that a confidence level of approximately 95% is achieved. For uncertainty determination, each component used in the concrete measurement set-up was taken in account and it contribution to the overall uncertainty according its statistical distribution calculated.

RF-Measurement	Reference	Frequency range	Calculated uncertainty based on a confidence level of 95%		a	Remarks			
Conducted emissions (U CISPR 16-2-1		9 kHz - 150 kHz 150 kHz - 30 MHz	4.0 dB 3.6 dB					-	
Power Output radiated	-	30 MHz - 4 GHz	3.17 dB			Substitution method			
Power Output conducted		Set-up No.	Cel- C1	Cel- C2	BT1	W1	W2		
Power Output conducted	-	9 kHz - 12.75 GHz	N/A	0.60	0.7	0.25	N/A		
		12.75 - 26.5 GHz	N/A	0.82		N/A	N/A		
Conducted emissions	-	9 kHz - 2.8 GHz	0.70	N/A	0.70	N/A	0.69		
on RF-port		2.8 GHz - 12.75 GHz	1.48	N/A	1.51	N/A	1.43		N/A - not applicable
		12.75 GHz – 18 GHz	1.81	N/A	1.83	N/A	1.77		
		18 GHz - 26.5 GHz	1.83	N/A	1.85	N/A	1.79		
Occupied bandwidth	-	9 kHz - 4 GHz	0.1272	ppm (E	elta Ma	rker)			Frequency error
			1.0 dB						Power
- Emission bandwidth		9 kHz - 4 GHz	0.1272 ppm (Delta Marker)					Frequency error	
	-		See above: 0.70 dB						Power
Frequency stability	-	9 kHz - 20 GHz	0.0636 ppm		-				
Dedicted environment		150 kHz - 30 MHz	5.01dE	5.01dB				Magnetic field strength	
Radiated emissions Enclosure	-	30 MHz - 1 GHz	5.83 d	В					Electrical
LIICIOSUIE		1 GHz - 18 GHz	4.91 d	4.91 dB			Field		
		18-26.5 GHz	5.06 d	5.06 dB				strength	

7 Versions of test reports (change history)

V	Version	Applied changes	Date of release
		Initial release	2020-Jul-23
	C01	- Updated antenna gains of external and internal antenna (p. 10)- Updated conducted power values (p. 10)	2021-Sep-08

End Of Test Report