# FCC 47 CFR PART 15 SUBPART C

for

Prodrone Remote controller Model: CME01-M1 Brand: ProDrone Test Report Number: A151222683F

Issued for

# Prodrone Technology(Shenzhen) Co.,Ltd 8th Floor, Beike Building, South High Technology Park, Nanshan District, Shenzhen

Issued by: Shenzhen CTL Electron Technology Co.,Ltd.

Issued Date: December 18, 2015

Note:

# **Revision History**

| Rev. | Issue Data        | Revisions     | Effect<br>Page | Revised By |
|------|-------------------|---------------|----------------|------------|
| 00   | December 18, 2015 | Initial Issue | ALL            | Andy Zhang |
|      |                   |               |                |            |
|      |                   |               |                |            |
|      |                   |               |                |            |

# TABLE OF CONTENTS

| 1 TEST CERTIFICATION                            | 4   |
|-------------------------------------------------|-----|
| 2 TEST RESULT SUMMARY                           | 5   |
| 3 EUT DESCRIPTION                               |     |
| 4 TEST METHODOLOGY                              | 7   |
| 4.1. DESCRIPTION OF TEST MODES                  | 7   |
| 5 SETUP OF EQUIPMENT UNDER TEST                 | 8   |
| 5.1. DESCRIPTION OF SUPPORT UNITS               | 8   |
| 5.2. CONFIGURATION OF SYSTEM UNDER TEST         | 8   |
| 6 FACILITIES AND ACCREDITATIONS                 | 9   |
| 6.1. FACILITIES                                 | 9   |
| 6.2. ACCREDITATIONS                             |     |
| 6.3. MEASUREMENT UNCERTAINTY                    |     |
| 7 FCC PART 15.247 REQUIREMENTS                  | 10  |
| 7.1. POWER LINE CONDUCTED EMISSIONS MEASUREMENT | .10 |
| 7.2. SPURIOUS EMISSIONS MEASUREMENT             | .15 |
| 7.3. 6dB BANDWIDTH MEASUREMENT                  | .35 |
| 7.4. PEAK OUTPUT POWER                          | 40  |
| 7.5. ANTENNA GAIN                               | .43 |
| 7.6. BAND EDGES MEASUREMENT                     |     |
| 7.7. PEAK POWER SPECTRAL DENSITY MEASUREMENT    | 51  |

# **1 TEST CERTIFICATION**

| Product      | Prodrone Remote controller                                                        |
|--------------|-----------------------------------------------------------------------------------|
|              |                                                                                   |
| Model        | CME01-M1                                                                          |
| Brand        | ProDrone                                                                          |
| Tested       | December 15~ December 18, 2015                                                    |
| A multipant  | Prodrone Technology(Shenzhen) Co.,Ltd                                             |
| Applicant    | 8th Floor, Beike Building, South High Technology Park, Nanshan District, Shenzhen |
| Manufacturer | Prodrone Technology(Shenzhen) Co.,Ltd                                             |
|              | 8th Floor, Beike Building, South High Technology Park, Nanshan District, Shenzhen |

|              | APPLICABLE STANDARDS              |                              |                                                                                                   |  |  |  |  |  |
|--------------|-----------------------------------|------------------------------|---------------------------------------------------------------------------------------------------|--|--|--|--|--|
| Standard     | Test Type                         | Standard                     | Test Type                                                                                         |  |  |  |  |  |
| 15.207(a)    | Power Line Conducted<br>Emissions | 15.247(d)<br>15.209(a)       | <ul> <li>Spurious Emissions</li> <li>Conducted Measurement</li> <li>Radiated Emissions</li> </ul> |  |  |  |  |  |
| 15.247(a)(2) | 6dB Bandwidth Measurement         | 15.247(b)(3)<br>15.247(b)(4) | Peak Power Measurement                                                                            |  |  |  |  |  |
| 15.247(d)    | Band Edges Measurement            | 15.247(e)                    | Peak Power Spectral Density                                                                       |  |  |  |  |  |

# We hereby certify that:

The above equipment was tested by Dongguan Dongdian Testing Service Co.,Ltd. The test data, data evaluation, test procedures, and equipment configurations shown in this report were made in accordance with the procedures given in **ANSI C63.10: 2013** and the energy emitted by the sample EUT tested as described in this report is in compliance with the requirements of FCC Rules Part 15.207, 15.209, 15.247.

The test results of this report relate only to the tested sample EUT identified in this report.

Approved by:

Reviewed by:

# 2 TEST RESULT SUMMARY

| APPLICABLE STANDARDS         |                                                                                                   |        |                                |  |  |  |  |
|------------------------------|---------------------------------------------------------------------------------------------------|--------|--------------------------------|--|--|--|--|
| Standard                     | Test Type                                                                                         | Result | Remark                         |  |  |  |  |
| 15.247(a)(2)                 | 6dB Bandwidth Measurement                                                                         | Pass   | Meet the requirement of limit. |  |  |  |  |
| 15.247(b)(3)<br>15.247(b)(4) | Peak Power Measurement                                                                            | Pass   | Meet the requirement of limit. |  |  |  |  |
| 15.247(d)                    | Band Edges Measurement                                                                            | Pass   | Meet the requirement of limit. |  |  |  |  |
| 15.247(e)                    | Peak Power Spectral Density                                                                       | Pass   | Meet the requirement of limit. |  |  |  |  |
| 15.247(d)<br>15.209(a)       | <ul> <li>Spurious Emissions</li> <li>Conducted Measurement</li> <li>Radiated Emissions</li> </ul> | Pass   | Meet the requirement of limit. |  |  |  |  |
| 15.207(a)                    | Power line Conducted Emissions                                                                    | Pass   | Meet the requirement of limit. |  |  |  |  |

Note: 1. The statements of test result on the above are decided by the request of test standard only; the measurement uncertainties are not factored into this compliance determination.

2. The information of measurement uncertainty is available upon the customer's request.

# **3 EUT DESCRIPTION**

| Product               | Prodrone Remote controller                      |
|-----------------------|-------------------------------------------------|
| Model                 | CME01-M1                                        |
| Brand                 | ProDrone                                        |
| Model Discrepancy     | N/A                                             |
| Identify Number       |                                                 |
| Received Date         | December 15, 2015                               |
| Power Supply          | Internal Li-ion Battery 7.4V                    |
| Frequency Range       | 2405.5-2438 MHz                                 |
| Transmit Power        | 9.41dBm (Antenna 1)                             |
|                       | 9.11dBm (Antenna 2)                             |
| Modulation Technique  | GFSK for 1Mbps                                  |
| Number of Channels    | 16 Channels                                     |
| Antenna Specification | PCB antenna with 2.0dBi gain (Max) (Antenna 1)  |
|                       | CHIP antenna with 3.0dBi gain (Max) (Antenna 2) |
| Temperature Range     |                                                 |
| Hardware Version      |                                                 |
| Software Version      |                                                 |

*Note:* 1. The sample selected for test was engineering sample that approximated to production product and was provided by manufacturer.

2. This submittal(s) (test report) is intended for FCC ID: 2AGKH-PD-RC01-0102 filing to comply with Section 15.207, 15.209 and 15.247of the FCC Part 15, Subpart C Rules.

# **4 TEST METHODOLOGY**

# **4.1. DESCRIPTION OF TEST MODES**

The EUT has been tested under operating condition.

Software used to control the EUT for staying in continuous transmitting and receiving mode is programmed.

| Test Item          | Test mode  | Worse mode |
|--------------------|------------|------------|
| Conducted Emission | Mode 1: TX | $\square$  |
| Radiated Emission  | Mode 1: TX |            |

After verification, all tests were carried out with the worst case test modes as shown below except radiated spurious emission below 1GHz, which worst case was in normal link mode only.

# 5 SETUP OF EQUIPMENT UNDER TEST

# **5.1. DESCRIPTION OF SUPPORT UNITS**

The EUT has been tested as an independent unit together with other necessary accessories or support units. The following support units or accessories were used to form a representative test configuration during the tests.

| No. | Equipment | Model No. | Serial No. | FCC | Brand | Data Cable | Power Cord |
|-----|-----------|-----------|------------|-----|-------|------------|------------|
| 1   |           |           |            |     |       |            |            |

#### Note:

Grounding was established in accordance with the manufacturer's requirements and conditions for the intended use.

# 5.2. CONFIGURATION OF SYSTEM UNDER TEST

See test photographs attached in Appendix II for the actual connections between EUT and support equipment.

# 6 FACILITIES AND ACCREDITATIONS

# 6.1. FACILITIES

All measurement facilities used to collect the measurement data are located at Dongguan Dongdian Testing Service Co.,Ltd.

The sites are constructed in conformance with the requirements of ANSI C63.10, ANSI C63.7 and CISPR Publication 22. All receiving equipment conforms to CISPR Publication 16-1, "Radio Interference Measuring Apparatus and Measurement Methods."

# **6.2. ACCREDITATIONS**

The test facility is recognized, certified, or accredited by the following organizations:

## IC Registration No.: 10288A-1

The 3m alternate test site of Dongguan Dongdian Testing Service Co.,Ltd EMC Laboratory has been registered by Certification and Engineer Bureau of Industry Canada for the performance of with Registration No.: 10288A-1 on May, 2012.

## FCC-Registration No.: 270092

Dongguan Dongdian Testing Service Co.,Ltd EMC Laboratory has been registered and fully described in a report filed with the (FCC) Federal Communications Commission. The acceptance letter from the FCC is maintained in our files. Registration 270092, Mar, 2015.

# 6.3. MEASUREMENT UNCERTAINTY

Where relevant, the following measurement uncertainty levels have been estimated for tests performed on the EUT as specified in CISPR 16-4-2:

| Parameter                                                | Uncertainty |
|----------------------------------------------------------|-------------|
| Radiated Emission, 30 to 200 MHz<br>Test Site : 966(2)   | +/-3.6880dB |
| Radiated Emission, 200 to 1000 MHz<br>Test Site : 966(2) | +/-3.6695dB |
| Radiated Emission, 1 to 8 GHz                            | +/-5.1782dB |
| Radiated Emission, 8 to 18 GHz                           | +/-5.2173dB |
| Conducted Emissions                                      | +/-3.6836dB |
| Band Width                                               | 178kHz      |
| Peak Output Power MU                                     | +/-1.906dB  |
| Band Edge MU                                             | +/-0.182dB  |
| Channel Separation MU                                    | 416.178Hz   |
| Duty Cycle MU                                            | 0.054ms     |
| Frequency Stability MU                                   | 226Hz       |

This uncertainty represents an expanded uncertainty expressed at approximately the 95% confidence level using a coverage factor of k=2.

The measured result is above (below) the specification limit by a margin less than the measurement uncertainty; it is therefore not possible to state compliance based on the 95% level of confidence. However, the result indicates that compliance (non-compliance) is more probable than non-compliance) with the specification limit.

# 7 FCC PART 15.247 REQUIREMENTS

# 7.1. POWER LINE CONDUCTED EMISSIONS MEASUREMENT

# 7.1.1. LIMITS OF CONDUCTED EMISSIONS MEASUREMENT

According to §15.207(a), except as shown in paragraphs (b) and (c) of this section, for an intentional radiator that is designed to be connected to the public utility (AC) power line, the radio frequency voltage that is conducted back onto the AC power line on any frequency or frequencies within the band 150 kHz to 30 MHz shall not exceed the limits in the following table, as measured using a 50  $\mu$ H/50 ohms line impedance stabilization network (LISN). Compliance with the provisions of this paragraph shall be based on the measurement of the radio frequency voltage between each power line and ground at the power terminal. The lower limit applies at the boundary between the frequency ranges.

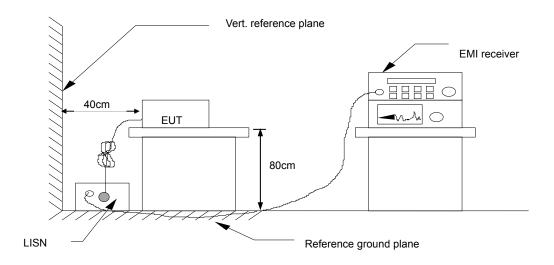
| Frequency Range |            | nits<br>µV) |
|-----------------|------------|-------------|
| (MHz)           | Quasi-peak | Average     |
| 0.15 to 0.50    | 66 to 56*  | 56 to 46*   |
| 0.50 to 5       | 56         | 46          |
| 5 to 30         | 60         | 50          |

#### NOTE:

- (1) The lower limit shall apply at the transition frequencies.
- (2) The limit decreases in line with the logarithm of the frequency in the range of 0.15 to 0.50 MHz.
- (3) All emanations from a class A/B digital device or system, including any network of conductors and apparatus connected thereto, shall not exceed the level of field strengths specified above.

# 7.1.2. TEST INSTRUMENTS

| Conducted Emission Test Site |               |              |               |                     |               |  |  |  |
|------------------------------|---------------|--------------|---------------|---------------------|---------------|--|--|--|
| Name of<br>Equipment         | Manufacturer  | Model Number | Serial Number | Last<br>Calibration | Cal. Interval |  |  |  |
| Artificial Mains             | Rohde&Schwarz | ENV216       | 101109        | 2015/10/22          | 1 years       |  |  |  |
| Artificial Mains             | Rohde&Schwarz | ESH3-Z5      | 100309        | 2015/10/22          | 1 years       |  |  |  |
| EMI Test Receiver            | Rohde&Schwarz | ESU8         | 100316        | 2015/10/22          | 1 years       |  |  |  |
| Pulse Limiter                | Rohde&Schwarz | ESH3-Z2      | 101242        | 2015/10/22          | 1 years       |  |  |  |
| EMI TEST Software            | Audix         | E3           | 6.111111      | N/A                 | N/A           |  |  |  |


**NOTE:** 1. The calibration interval of the above test instruments is 12 months and the calibrations are traceable to NML/ROC and NIST/USA.

2. N.C.R = No Calibration Request.

### 7.1.3. TEST PROCEDURES (please refer to measurement standard)

- The EUT and Support equipment, if needed, was placed on a non-conducted table, which is 0.8m above the ground plane and 0.4m away from the conducted wall.
- The test equipment EUT installed received AC main power, through a Line Impedance Stabilization Network (LISN), which supplied power source and was grounded to the ground plane. All support equipment power received from a second LISN. The two LISNs provide 50 ohm/ 50uH of coupling impedance for the measuring instrument.
- The EUT test program was started. Emissions were measured on each current carrying line of the EUT using an EMI Test Receiver connected to the LISN powering the EUT.
- The frequency range from 150 kHz to 30 MHz was searched. The test data of the worst-case condition(s) was recorded. Emission levels under limit 20dB were not recorded.

# 7.1.4. TEST SETUP



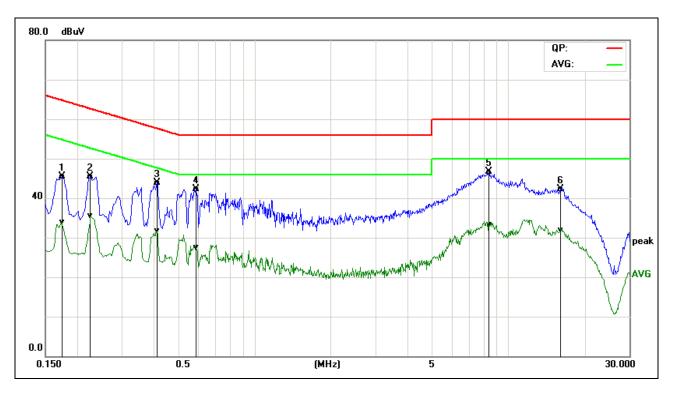
For the actual test configuration, please refer to the related item – Photographs of the Test Configuration.

## 7.1.5. DATA SAMPLE

| Frequency<br>(MHz) | / QuasiPeak<br>Reading<br>(dBuV) | Average<br>Reading<br>(dBuV) |       | QuasiPeak<br>Result<br>(dBuV) | Average<br>Result<br>(dBuV) | QuasiPeak<br>Limit<br>(dBuV) | Average<br>Limit<br>(dBuV) | QuasiPeak<br>Margin<br>(dB) | Margin | Remark<br>(Pass/Fail) |
|--------------------|----------------------------------|------------------------------|-------|-------------------------------|-----------------------------|------------------------------|----------------------------|-----------------------------|--------|-----------------------|
| X.XXXX             | 34.99                            | 19.33                        | 10.15 | 45.14                         | 29.48                       | 65.99                        | 56.00                      | -20.85                      | -26.52 | Pass                  |

Factor = Insertion loss of LISN + Cable Loss

Result = Quasi-peak Reading/ Average Reading + Factor

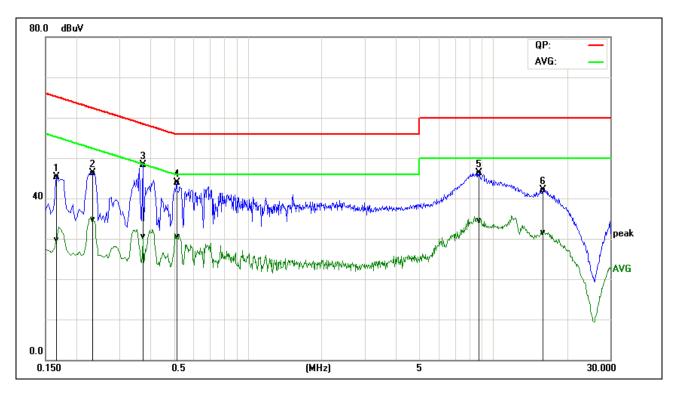

Limit = Limit stated in standard

Margin = Result (dBuV) – Limit (dBuV)

# 7.1.6. TEST RESULTS

# <u>Test Data</u>

|                             |                   | RBW,VBW   | 9 kHz  |
|-----------------------------|-------------------|-----------|--------|
| Environmental<br>Conditions | 26°C, 60% RH      | Test Mode | Mode 1 |
| Tested by                   | Eve Wang          | Line      | L1     |
| Test Date                   | December 16, 2015 |           |        |




| Frequency | QuasiPeak         | Average           | Correction     | QuasiPeak        | Average          | QuasiPeak       | Average         | QuasiPeak      | Average        | Remark      |
|-----------|-------------------|-------------------|----------------|------------------|------------------|-----------------|-----------------|----------------|----------------|-------------|
| (MHz)     | Reading<br>(dBuV) | Reading<br>(dBuV) | Factor<br>(dB) | Result<br>(dBuV) | Result<br>(dBuV) | Limit<br>(dBuV) | Limit<br>(dBuV) | Margin<br>(dB) | Margin<br>(dB) | (Pass/Fail) |
| 0.1740    | 35.87             | 24.36             | 9.63           | 45.50            | 33.99            | 64.76           | 54.77           | -19.26         | -20.78         | Pass        |
| 0.2260    | 35.88             | 25.75             | 9.69           | 45.57            | 35.44            | 62.59           | 52.60           | -17.02         | -17.16         | Pass        |
| 0.4140    | 34.22             | 21.95             | 9.68           | 43.90            | 31.63            | 57.57           | 47.57           | -13.67         | -15.94         | Pass        |
| 0.5899    | 32.50             | 17.83             | 9.72           | 42.22            | 27.55            | 56.00           | 46.00           | -13.78         | -18.45         | Pass        |
| 8.3740    | 36.77             | 23.55             | 9.83           | 46.60            | 33.38            | 60.00           | 50.00           | -13.40         | -16.62         | Pass        |
| 16.1220   | 32.48             | 21.92             | 9.89           | 42.37            | 31.81            | 60.00           | 50.00           | -17.63         | -18.19         | Pass        |

Note:

- 1. Measuring frequencies from 0.15 MHz to 30MHz.
- 2. The emissions measured in frequency range from 0.15 MHz to 30MHz were made with an instrument using Peak detector, Quasi-peak detector and average detector.
- 3. "---" denotes the emission level was or more than 2dB below the Average limit.
- 4. The IF bandwidth of SPA between 0.15MHz to 30MHz was 10kHz; the IF bandwidth of Test Receiver between 0.15MHz to 30MHz was 9kHz;
- 5. L1= Line One (Live Line)

|                             |                   | RBW,VBW   | 9 kHz  |
|-----------------------------|-------------------|-----------|--------|
| Environmental<br>Conditions | 26°C, 60% RH      | Test Mode | Mode 1 |
| Tested by                   | Eve Wang          | Line      | L2     |
| Test Date                   | December 16, 2015 |           |        |



| Frequency | QuasiPeak         | Average           | Correction     | QuasiPeak        | Average          |                 | Average         |                | Average        | Remark      |
|-----------|-------------------|-------------------|----------------|------------------|------------------|-----------------|-----------------|----------------|----------------|-------------|
| (MHz)     | Reading<br>(dBuV) | Reading<br>(dBuV) | Factor<br>(dB) | Result<br>(dBuV) | Result<br>(dBuV) | Limit<br>(dBuV) | Limit<br>(dBuV) | Margin<br>(dB) | Margin<br>(dB) | (Pass/Fail) |
| 0.1660    | 35.56             | 19.89             | 9.78           | 45.34            | 29.67            | 65.15           | 55.16           | -19.81         | -25.49         | Pass        |
| 0.2340    | 36.53             | 24.91             | 9.78           | 46.31            | 34.69            | 62.30           | 52.31           | -15.99         | -17.62         | Pass        |
| 0.3740    | 38.52             | 20.76             | 9.72           | 48.24            | 30.48            | 58.41           | 48.41           | -10.17         | -17.93         | Pass        |
| 0.5140    | 34.30             | 20.77             | 9.68           | 43.98            | 30.45            | 56.00           | 46.00           | -12.02         | -15.55         | Pass        |
| 8.7540    | 36.42             | 24.73             | 9.83           | 46.25            | 34.56            | 60.00           | 50.00           | -13.75         | -15.44         | Pass        |
| 16.0060   | 32.42             | 21.89             | 9.71           | 42.13            | 31.60            | 60.00           | 50.00           | -17.87         | -18.40         | Pass        |

### Note:

- 1. Measuring frequencies from 0.15 MHz to 30MHz.
- 2. The emissions measured in frequency range from 0.15 MHz to 30MHz were made with an instrument using Peak detector, Quasi-peak detector and average detector.
- 3. "---" denotes the emission level was or more than 2dB below the Average limit.
- 4. The IF bandwidth of SPA between 0.15MHz to 30MHz was 10kHz; the IF bandwidth of Test Receiver between 0.15MHz to 30MHz was 9kHz;
- 5. L2= Line Two (Neutral Line)

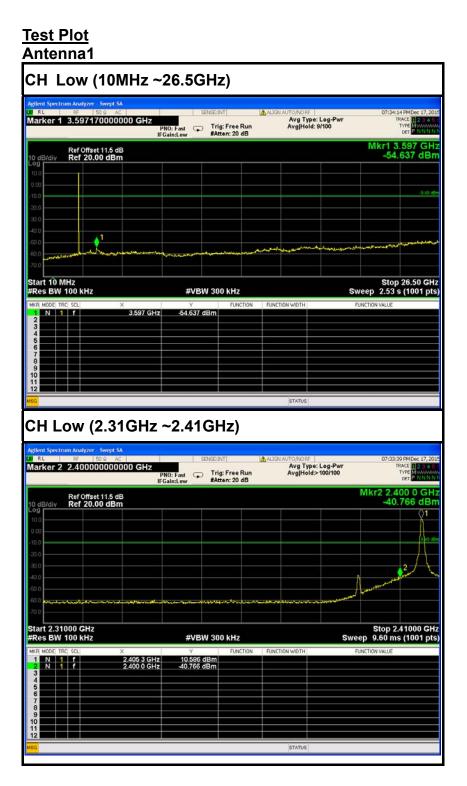
# 7.2. SPURIOUS EMISSIONS MEASUREMENT

# 7.2.1. LIMITS OF CONDUCTED EMISSIONS MEASUREMENT

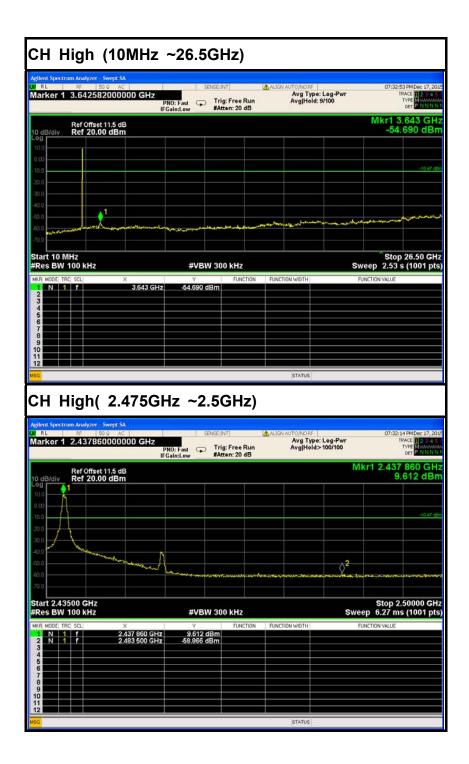
According to §15.247(d), in any 100 kHz bandwidth outside the frequency bands in which the spread spectrum intentional radiator in operating, the radio frequency power that is produced by the intentional radiator shall be at least 20 dB below that in the 100 kHz bandwidth within the band that contains the highest level of the desired power, based on either an RF conducted or a radiated measurement, provided the transmitter demonstrates compliance with the peak conducted power limits. In addition, radiated emissions which fall in the restricted bands, as defined in §15.205(a), must also comply with the radiated emission limits specified in 15.209(a) (see Section 15.205(c)).

### 7.2.2. TEST INSTRUMENTS

| Name of<br>Equipment | Manufacturer | Model  | Serial Number | Last<br>Calibration | Due<br>Calibration |
|----------------------|--------------|--------|---------------|---------------------|--------------------|
| PXA Signal Analyzer  | Agilent      | N9030A | JTT-E003      | 2015/04/22          | 2016/04/21         |


#### 7.2.3. TEST PROCEDURE (please refer to measurement standard)

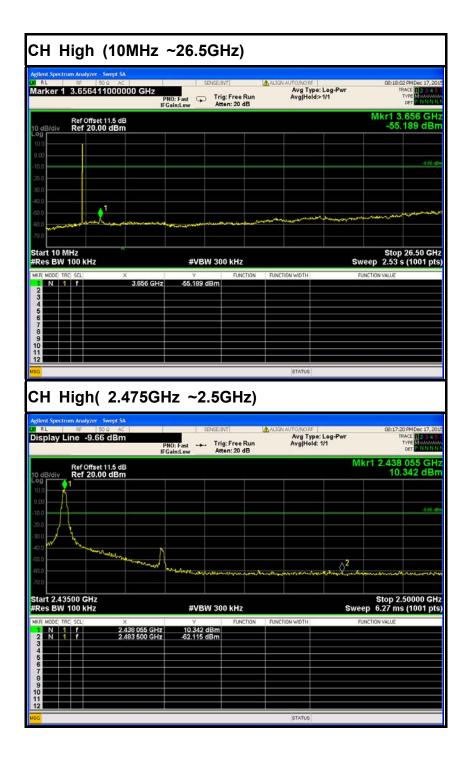
Conducted RF measurements of the transmitter output were made to confirm that the EUT antenna port conducted emissions meet the specified limit and to identify any spurious signals that require further investigation or measurements on the radiated emissions site. The transmitter output is connected to the spectrum analyzer. The resolution bandwidth is set to 100 kHz. The video bandwidth is set to 300 kHz.


Measurements are made over the 10MHz to 26.5GHz range with the transmitter set to the lowest, middle, and highest channels.

## 7.2.4. TEST RESULTS

No emission found between lowest internal used/generated frequency to 30MHz  $^{\rm ,}$  it is only recorded 30MHz to 26GHz




|                        |                        | g:FreeRun<br>ten:20 dB | ALIGN ALITO/NORF<br>Avg Typ<br>Avg Hold | e: Log-Pwr<br>: 13/100 | 1                                                                       | 54 PMDec 17, 2<br>IRACE 2 3 4<br>TYPE MONOCO<br>DET PINNN                                                                         |
|------------------------|------------------------|------------------------|-----------------------------------------|------------------------|-------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------|
| t 11.5 dB<br>00 dBm    |                        |                        |                                         |                        | Miked 3                                                                 |                                                                                                                                   |
|                        |                        |                        |                                         |                        |                                                                         | 3.616 GI<br>.413 dB                                                                                                               |
|                        |                        |                        |                                         |                        |                                                                         |                                                                                                                                   |
|                        |                        |                        |                                         |                        |                                                                         |                                                                                                                                   |
|                        |                        |                        |                                         |                        |                                                                         | -9.50                                                                                                                             |
|                        |                        |                        |                                         |                        |                                                                         |                                                                                                                                   |
|                        |                        |                        |                                         |                        |                                                                         |                                                                                                                                   |
| 1                      |                        |                        |                                         |                        |                                                                         |                                                                                                                                   |
| and an art and a state | بواريد الروسيدور وراري | Auguran                | mer man and marked                      | man                    | d water we block and a                                                  | the second second                                                                                                                 |
|                        |                        |                        |                                         |                        |                                                                         |                                                                                                                                   |
|                        | #VBW 30                | 0 kHz                  |                                         |                        | Stop<br>weep 2.53                                                       | 26.50 G<br>s (1001 p                                                                                                              |
| ×                      | Ŷ                      | FUNCTION               | FUNCTION WIDTH                          |                        |                                                                         |                                                                                                                                   |
| 3.616 GHz              | -55.413 dBm            |                        |                                         |                        |                                                                         |                                                                                                                                   |
|                        |                        |                        |                                         |                        |                                                                         |                                                                                                                                   |
|                        |                        |                        |                                         |                        |                                                                         |                                                                                                                                   |
|                        |                        |                        |                                         |                        |                                                                         |                                                                                                                                   |
|                        |                        |                        |                                         |                        |                                                                         |                                                                                                                                   |
|                        |                        |                        |                                         |                        |                                                                         |                                                                                                                                   |
|                        |                        |                        |                                         |                        |                                                                         |                                                                                                                                   |
|                        |                        | X Y                    | #VBW 300 kHz                            | #VEW 300 KHz           | #VBW 300 kHz SI<br>X Y FUNCTION FUNCTION WIDTH<br>3.616 GHz -55.413 dBm | #VBW 300 kHz         Stop           #VBW 300 kHz         Sweep 2.53           X         Y           3.616 GHz         -55.413 dBm |



# Antenna 2

|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 0MHz ~26.5                                                                                                                                    | , <b>(</b> (), (), (), (), (), (), (), (), (), (),                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |                                                                                                                 |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |
|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| gjient Spectrum Analyzer - Sw<br>RL RF 50 G<br>Marker 1 3.7033140                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | AC                                                                                                                                            | SENSE:INT<br>Trig: Free Run<br>Atten: 20 dB                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | ALIGN AUTO/NORF Avg Type: Log-Pwr<br>Avg Type: Log-Pwr<br>Avg Hold>1/1                                          | 08:12:24 PMDec 17, 201<br>TRACE 2 2 4 5<br>TYPE MUNICIPAL<br>DET PNNNN                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |
| Ref Offset 11<br>10 dB/div Ref 20.00                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | I.5 dB<br>dBm                                                                                                                                 |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                 | Mkr1 3.703 GH:<br>-55.729 dBn                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |
| 10.00                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |                                                                                                                                               |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                 |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |
| -20.0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |                                                                                                                                               |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                 |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |
| 40.0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |                                                                                                                                               |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                 |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |
| -50.0<br>-60.0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | serted the many all show                                                                                                                      | and a start of the | and a state of the second s | لينافر الإستينية والمراجع الماري ماريطين من المراجع المراجع المراجع المراجع المراجع المراجع المراجع المراجع ال                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |
| Start 10 MHz<br>#Res BW 100 kHz                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |                                                                                                                                               | ≠VBW 300 kHz                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | ~                                                                                                               | Stop 26.50 GHz<br>Sweep 2.53 s (1001 pts                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |
| MKR MODE TRC SCL                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | x                                                                                                                                             | Y FUNCTION<br>729 dBm                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | FUNCTION WIDTH                                                                                                  | FUNCTION VALUE                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |
| 2 3 4 6                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |                                                                                                                                               |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                 |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |
| 6 7 8 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |                                                                                                                                               |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                 |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |
| 9<br>10<br>11<br>12                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |                                                                                                                                               |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                 |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |
| 12                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |                                                                                                                                               |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                 |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |
| MSG                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |                                                                                                                                               |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | STATUS                                                                                                          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |
| MSG                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | .31GHz ~2.4                                                                                                                                   | 41GHz)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | STATUS                                                                                                          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |
| CH Low (2.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | nepit SA                                                                                                                                      | 41GHz)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |                                                                                                                 | 00:11:52 PM Dec: 17, 30                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |
| CH Low (2.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | rept SA                                                                                                                                       | -                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |                                                                                                                 | TRACE 12 3 4 5<br>TYPE M<br>DET P N N N N                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |
| Addent Spectrum Analyzer Sw<br>R R P 2000<br>Display Line -9.04 d<br>Ref Offset 11                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | nept SA<br>AC<br>IBM<br>PNO: Fast<br>IFGain:Low                                                                                               | SENSE:INT                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | ALICH AUTO/NORF                                                                                                 | Mkr1 2.405 5 GH2<br>10.960 dBn                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |
| Applient Spectrum Adulyar Se<br>CH Low (2.<br>Applient Spectrum Adulyar Se<br>P RL PP E00<br>Display Line -9.04 (<br>Ref Offset 11<br>10 dB/div Ref 20.00<br>000                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | nept SA<br>AC<br>IBM<br>PNO: Fast<br>IFGain:Low                                                                                               | SENSE:INT                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | ALICH AUTO/NORF                                                                                                 | Mkr1 2.405 5 GH:<br>10.960 dBn                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |
| Aplent Spectrum Analyzer Sec<br>RL IF Soc<br>Display Line -9.04 of<br>Ref Offset 11<br>10 dB/div Ref Offset 11<br>10 dB/div Ref 20.00<br>10 0<br>10 0<br>1   | nept SA<br>AC<br>IBM<br>PNO: Fast<br>IFGain:Low                                                                                               | SENSE:INT                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | ALICH AUTO/NORF                                                                                                 | Mkr1 2:405 5 GH:<br>10,960 dBn                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |
| Ref         CH Low (2.           Addlent Spectrum Analyzer         Sw           Display Line         -9.04           0         -9.04           0         -9.04           0         -9.04           0         -9.04           0         -9.04           0         -9.04           0         -9.04           0         -9.04           0         -9.04           0         -9.04           0         -9.04           0         -9.04           0         -9.04           0         -9.04           0         -9.04           0         -9.04           0         -9.04           0         -9.04           0         -9.04           0         -9.04           0         -9.04           0         -9.04           0         -9.04           0         -9.04           0         -9.04           0         -9.04           0         -9.04           0         -9.04                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | nept SA<br>AC<br>IBM<br>PNO: Fast<br>IFGain:Low                                                                                               | SENSE:INT                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | ALICH AUTO/NORF                                                                                                 | Mkr1 2.405 5 GH:<br>10.960 dBn                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |
| Aglent Spectrum Atalyzer - Ser<br>20 AL DP 50 0<br>Display Line -9.04 (<br>10 dB/div Ref Offset 11<br>10 dB/div Ref 20.00<br>10 0<br>10 0<br>10<br>10 0<br>10 0<br>1 | nept SA<br>AC<br>IBM<br>PNO: Fast<br>IFGain:Low                                                                                               | SENSE:INT                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | ALICH AUTO/NORF                                                                                                 | Mkr1 2:405 5 GH:<br>10,960 dBn                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |
| Ref Offset 1           10         884           10         884           10         884           10         884           10         884           10         884           10         10           10         10           10         10           10         10           10         10           10         10           10         10           10         10           10         10           10         10           10         10           10         10           10         10           10         10           10         10           10         10           10         10           10         10           10         10           10         10           10         10           10         10           10         10           10         10           10         10           10         10           10         10           10         1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | ngt SA<br>AC<br>BM<br>PNO: Faat<br>IF GainLow<br>I.5 dB<br>dBm                                                                                | SDECENT<br>Trig: Free Run<br>Atten: 20 dB                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | ALCO AUTO/NORF Avg Type: Log-Pwr<br>Avg Type: Log-Pwr<br>Avg Hold>1/1                                           | Mkr1 2.405 5 GH<br>10.960 dBn                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |
| Ref         Office         Ref         Office         State         S                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | AC A                                                                                                      | SDECENT<br>Trig: Free Run<br>Atten: 20 dB                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | ALCO AUTO/NORF Avg Type: Log-Pwr<br>Avg Type: Log-Pwr<br>Avg Hold>1/1                                           | Mkr1 2:405 5 GH:<br>10.960 dBn                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |
| Ref         Office         Ref         Office         State         S                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | ngt SA<br>AC<br>dBm<br>PNO: Fast<br>IFGaind.ow<br>1.5 dB<br>dBm<br>4<br>Bm<br>4<br>4<br>4<br>4<br>4<br>4<br>4<br>4<br>4<br>4<br>5 5 GHz<br>10 | SDACEBUT                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | ALCO AUTO/NORF<br>Avg Type: Log-Pwr<br>Avg Hold>1/1                                                             | Mkr1 2.405 5 GH<br>10.960 dBn<br>10.960 dBn<br>1 |
| Ref Offset 11           000         Ref Offset 11           010         Ref 011           010         Ref 11           11         1           12         N           13         1           14         1           15         1           16<                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | AC A                                                                                                      | SDECENT<br>Trig: Free Run<br>Atten: 20 dB                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | ALCO AUTO/NORF<br>Avg Type: Log-Pwr<br>Avg Hold>1/1                                                             | Mkr1 2.405 5 GH<br>10.960 dBn<br>10.960 dBn<br>1 |
| Ref         Office         Ref         Office         State         S                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | AC A                                                                                                      | SDECENT<br>Trig: Free Run<br>Atten: 20 dB                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | ALCO AUTO/NORF<br>Avg Type: Log-Pwr<br>Avg Hold>1/1                                                             | Mkr1 2.405 5 GH<br>10.960 dBn<br>10.960 dBn<br>1 |

|                              | - Swept SA              | SENSE:IN                                                                                                       | NT                    | ALIGN AUTO/NORF            |                   | 08:12:                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 54 PMDec 17, 2          |
|------------------------------|-------------------------|----------------------------------------------------------------------------------------------------------------|-----------------------|----------------------------|-------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------|
| isplay Line -9.3             | 4 dBm                   | 0: Fast 🕞 Trig                                                                                                 | g:FreeRun<br>en:20 dB |                            | : Log-Pwr<br>>1/1 |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | TYPE MONON<br>DET PININ |
| Ref Offse<br>dB/dlv Ref 20.0 | et 11.5 dB<br>00 dBm    |                                                                                                                |                       |                            |                   |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | .616 GI<br>.589 dB      |
| o o                          |                         |                                                                                                                |                       |                            |                   |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                         |
| .00                          |                         |                                                                                                                |                       |                            |                   |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                         |
| 0.0                          |                         |                                                                                                                |                       |                            | _                 |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | -9.34                   |
| 0.0                          |                         |                                                                                                                |                       |                            |                   |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                         |
| 0.0                          |                         |                                                                                                                |                       |                            |                   |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                         |
|                              | 1                       |                                                                                                                |                       |                            |                   |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                         |
| 0.0                          | Many man the second man | بيد بوراد الدرم وس                                                                                             | and an an and an      | and a strategy and and and | -                 | and the second stranged and a second stranged and a second strange and second stranged at the second strange a | and the second          |
| 0.0                          |                         | Commenter of the second se |                       |                            |                   |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                         |
| tart 10 MHz                  |                         |                                                                                                                |                       |                            |                   | Stop                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 26.50 G                 |
| Res BW 100 kHz               |                         | #VBW 30                                                                                                        |                       |                            |                   | weep 2.53                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | s (1001 p               |
| KR MODE TRC SCL              | ×<br>3.616 GHz          | Y<br>-55.589 dBm                                                                                               | FUNCTION              | FUNCTION WIDTH             |                   | FUNCTION VALUE                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |                         |
| 3                            |                         |                                                                                                                |                       |                            |                   |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                         |
| 4                            |                         |                                                                                                                |                       |                            |                   |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                         |
| 6                            |                         |                                                                                                                |                       |                            |                   |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                         |
|                              |                         |                                                                                                                |                       |                            |                   |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                         |
| 8                            |                         |                                                                                                                |                       |                            |                   |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                         |



#### 7.2.4.1. LIMITS OF RADIATED EMISSIONS MEASUREMENT

According to §15.209(a), except as provided elsewhere in this Subpart, the emissions from an intentional radiator shall not exceed the field strength levels specified in the following table:

| Frequency (MHz) | Field Strength (mV/m) | Measurement Distance<br>(m) |
|-----------------|-----------------------|-----------------------------|
| 0.009-0.490     | 2400/F(kHz)           | 300                         |
| 0.490-1.705     | 24000/F(kHz)          | 30                          |
| 1.705-30.0      | 30                    | 30                          |
| 30-88           | 100*                  | 3                           |
| 88-216          | 150*                  | 3                           |
| 216-960         | 200*                  | 3                           |
| Above 960       | 500                   | 3                           |

- **Remark:** Except as provided in paragraph (g), fundamental emissions from intentional radiators operating under this Section shall not be located in the frequency bands 54-72 MHz, 76-88 MHz, 174-216 MHz or 470-806 MHz. However, operation within these frequency bands is permitted under other sections of this Part, e.g., Sections 15.231 and 15.241.
- 1. In the emission table above, the tighter limit applies at the band edges.

| Frequency<br>(MHz) | Field Strength<br>(µV/m at 3-meter) | Field Strength<br>(dBµV/m at 3-meter) |
|--------------------|-------------------------------------|---------------------------------------|
| 30-88              | 100                                 | 40                                    |
| 88-216             | 150                                 | 43.5                                  |
| 216-960            | 200                                 | 46                                    |
| Above 960          | 500                                 | 54                                    |

**NOTE**: (1) The lower limit shall apply at the transition frequencies.

(2) Emission level (dBuV/m) = 20 log Emission level (uV/m).

## 7.2.4.2. TEST INSTRUMENTS

|                               | Radiated Emission Test Site |              |                  |                     |               |  |  |  |  |  |
|-------------------------------|-----------------------------|--------------|------------------|---------------------|---------------|--|--|--|--|--|
| Name of Equipment             | Manufacturer                | Model Number | Serial<br>Number | Last<br>Calibration | Cal. Interval |  |  |  |  |  |
| Ultra-Broadband<br>Antenna    | ShwarzBeck                  | VULB9163     | 462              | 2014/04/12          | 3 years       |  |  |  |  |  |
| EMI TEST Receiver             | Rohde&Schwarz               | ESU8         | 100316           | 2015/10/21          | 1 years       |  |  |  |  |  |
| EMI TEST Software             | Audix                       | E3           | 6.111111         | N/A                 | N/A           |  |  |  |  |  |
| Horn Anternna                 | EMCO                        | 3116         | 00060095         | 2014/04/12          | 3 years       |  |  |  |  |  |
| Pre-Amplifer                  | Rohde&Schwarz               | SCU-01       | 10049            | 2015/10/21          | 1 years       |  |  |  |  |  |
| Pre-Amplifer                  | A.H.                        | PAM0-0118    | 360              | 2015/10/21          | 1 years       |  |  |  |  |  |
| Pre-Amplifer                  | A.H.                        | PAM-1840VH   | 562              | 2015/10/21          | 1 years       |  |  |  |  |  |
| Double Ridged Horn<br>Antenna | Rohde&Schwarz               | HF907        | 100265           | 2014/04/12          | 3 years       |  |  |  |  |  |
| Active Loop Antenna           | Schwarz beck                | FMZB1519     | 0.38             | 2014/04/12          | 3 years       |  |  |  |  |  |
| TURNTABLE                     | MATURO                      | TT2.0        |                  | N/A                 | N/A           |  |  |  |  |  |
| ANTENNA MAST                  | MATURO                      | TAM-4.0-P    |                  | N/A                 | N/A           |  |  |  |  |  |
| Spectrum Analyzer             | Rohde&Schwarz               | FSU26        | 1166.1660.26     | 2015/10/21          | 1 years       |  |  |  |  |  |
| Ultra-Broadband<br>Antenna    | ShwarzBeck                  | VULB9163     | 462              | 2014/04/12          | 3 years       |  |  |  |  |  |

**NOTE:** 1. The calibration interval of the above test instruments is 12 months and the calibrations are traceable to NML/ROC and NIST/USA.

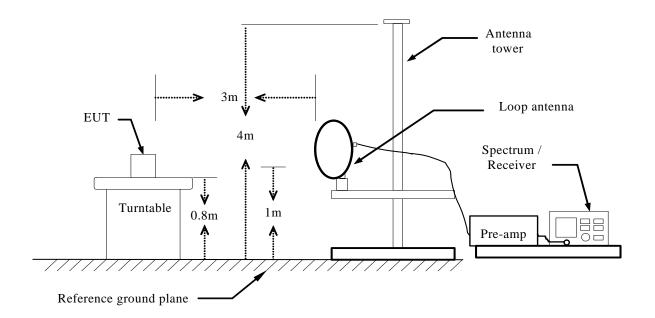
2. The FCC Site Registration number is 101879.

3. N.C.R = No Calibration Required.

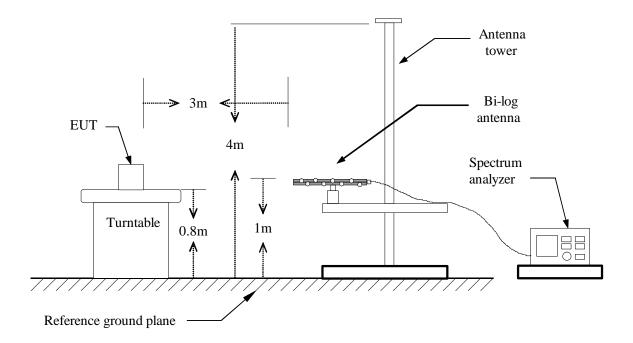
#### 7.2.4.3. TEST PROCEDURE (please refer to measurement standard)

- 1. The EUT is placed on a turntable, which is 0.8m above ground plane.
- 2. The turntable shall be rotated for 360 degrees to determine the position of maximum emission level.
- 3. EUT is set 3m away from the receiving antenna, which is varied from 1m to 4m to find out the highest emissions.
- 4. Maximum procedure was performed on the six highest emissions to ensure EUT compliance.
- 5. And also, each emission was to be maximized by changing the polarization of receiving antenna both horizontal and vertical.
- 6. Set the spectrum analyzer in the following setting as:

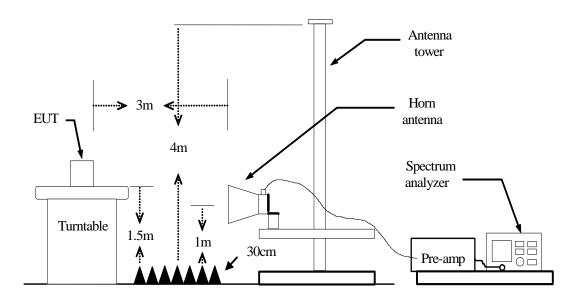
Below 1GHz:


RBW=100kHz / VBW=300kHz / Sweep=AUTO

Above 1GHz:


- (a) PEAK: RBW=VBW=1MHz / 3 MHz / Sweep=AUTO
- (b) AVERAGE: RBW=1MHz / VBW=9.1kHz / Sweep=AUTO
- 7. Repeat above procedures until the measurements for all frequencies are complete.

#### 7.2.4.4. TEST SETUP


#### Below 30MHz



# Below 1 GHz



# Above 1 GHz



For the actual test configuration, please refer to the related item – Photographs of the Test Configuration.

### 7.2.4.5. DATA SAMPLE

#### Below 1GHz

| Frequency<br>(MHz) | Reading<br>(dBuV) | Correct<br>Factor<br>(dB/m) | Result<br>(dBuV/m) | Limit<br>(dBuV/m) | Margin<br>(dB) | Antenna<br>Pole<br>(V/H) | Remark |
|--------------------|-------------------|-----------------------------|--------------------|-------------------|----------------|--------------------------|--------|
| XXX.XXXX           | 53.41             | -18.63                      | 34.78              | 43.50             | -8.72          | V                        | QP     |

Frequency (MHz) Reading (dBuV) Correct Factor (dB/m) Result (dBuV/m) Limit (dBuV/m) Margin (dB) Q.P. = Emission frequency in MHz

= Uncorrected Analyzer / Receiver reading

= Antenna factor + Cable loss – Amplifier gain

= Reading (dBuV) + Corr. Factor (dB/m)

= Limit stated in standard

) = Result (dBuV/m) – Limit (dBuV/m)

= Quasi-peak Reading

#### Above 1GHz

| Frequency<br>(MHz) | Reading<br>(dBuV) | Correction<br>Factor<br>(dB/m) | Result<br>(dBuV/m) | Limit<br>(dBuV/m) | Margin<br>(dB) | Antenna<br>Pole<br>(V/H) | Remark |
|--------------------|-------------------|--------------------------------|--------------------|-------------------|----------------|--------------------------|--------|
| XXXX.XXXX          | 62.09             | -11.42                         | 50.67              | 74.00             | -23.33         | V                        | Peak   |
| XXXX.XXXX          | 49.78             | -11.42                         | 38.36              | 54.00             | -15.64         | V                        | AVG    |

| Frequency (MHz)<br>Reading (dBuV)<br>Correction Factor (dB/m)<br>Result (dBuV/m)<br>Limit (dBuV/m)<br>Margin (dB)<br>Peak | <ul> <li>= Emission frequency in MHz</li> <li>= Uncorrected Analyzer / Receiver reading</li> <li>= Antenna factor + Cable loss – Amplifier gain</li> <li>= Reading (dBuV) + Corr. Factor (dB/m)</li> <li>= Limit stated in standard</li> <li>= Result (dBuV/m) – Limit (dBuV/m)</li> <li>= Peak Reading</li> </ul> |
|---------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
|                                                                                                                           | 5                                                                                                                                                                                                                                                                                                                  |
| AVG                                                                                                                       | = Average Reading                                                                                                                                                                                                                                                                                                  |

#### **Calculation Formula**

Margin (dB) = Result (dBuV/m) – Limits (dBuV/m) Result (dBuV/m) = Reading (dBuV) + Correction Factor

#### 7.2.4.6. TEST RESULTS

## Below 1 GHz

#### Antenna 1

#### Test Mode: <u>TX</u>

#### Tested by: Ad Gan

|                    | mperatur          | <u>е: 24 С</u> <b>к</b> е      |                    | muity. <u>52</u>  |                | Date: December 16, 2015  |        |  |
|--------------------|-------------------|--------------------------------|--------------------|-------------------|----------------|--------------------------|--------|--|
| Frequency<br>(MHz) | Reading<br>(dBuV) | Correction<br>Factor<br>(dB/m) | Result<br>(dBuV/m) | Limit<br>(dBuV/m) | Margin<br>(dB) | Antenna<br>Pole<br>(V/H) | Remark |  |
| 37.7600            | 47.03             | -15.48                         | 31.55              | 40.00             | -8.45          | V                        | QP     |  |
| 198.7800           | 55.65             | -22.75                         | 32.90              | 43.50             | -10.60         | V                        | QP     |  |
| 503.3600           | 38.17             | -14.32                         | 23.85              | 46.00             | -22.15         | V                        | QP     |  |
| 600.3600           | 38.02             | -12.86                         | 25.16              | 46.00             | -20.84         | V                        | QP     |  |
| 670.2000           | 38.26             | -12.13                         | 26.13              | 46.00             | -19.87         | V                        | QP     |  |
| 835.1000           | 39.15             | -10.66                         | 28.49              | 46.00             | -17.51         | V                        | QP     |  |
|                    |                   |                                |                    |                   |                |                          |        |  |
| 37.7600            | 48.23             | -15.48                         | 32.75              | 40.00             | -7.25          | Н                        | QP     |  |
| 219.1500           | 53.54             | -20.45                         | 33.09              | 46.00             | -12.91         | Н                        | QP     |  |
| 305.4800           | 49.18             | -19.36                         | 29.82              | 46.00             | -16.18         | Н                        | QP     |  |
| 493.6600           | 37.89             | -14.36                         | 23.53              | 46.00             | -22.47         | Н                        | QP     |  |
| 666.3200           | 38.26             | -12.22                         | 26.04              | 46.00             | -19.96         | Н                        | QP     |  |
| 827.3400           | 39.54             | -10.53                         | 29.01              | 46.00             | -16.99         | Н                        | QP     |  |

Ambient temperature: <u>24°C</u> Relative humidity: <u>52% RH</u> Date: <u>December 18, 2015</u>

\*\*Remark: No emission found between lowest internal used/generated frequency to 30MHz.

Notes:

- 1. Radiated emissions measured in frequency range from 9kHz to 1GHz were made with an instrument using Quasi-peak detector mode.
- 2. Data of measurement within this frequency range shown "---" in the table above means the reading of emissions are attenuated more than 20dB below the permissible limits or the field strength is too small to be measured.
- 3. The IF bandwidth of Receiver between 30MHz to 1GHz was 120kHz.

| 4. Frequency (MHz).    | = Emission frequency in MHz                    |
|------------------------|------------------------------------------------|
| Reading (dBµV/m)       | = Receiver reading                             |
| Correction Factor (dB) | = Antenna factor + Cable loss – Amplifier gain |
| Limit (dBµV/m)         | = Limit stated in standard                     |
| Margin (dB)            | = Measured (dBμV/m) – Limits (dBμV/m)          |
| Antenna Pol e(H/V)     | = Current carrying line of reading             |

## Antenna 2

#### Test Mode: <u>TX</u>

#### Tested by: Ad Gan

| Frequency<br>(MHz) | Reading<br>(dBuV) | Correction<br>Factor<br>(dB/m) | Result<br>(dBuV/m) | Limit<br>(dBuV/m) | Margin<br>(dB) | Antenna<br>Pole<br>(V/H) | Remark |
|--------------------|-------------------|--------------------------------|--------------------|-------------------|----------------|--------------------------|--------|
| 37.7600            | 48.53             | -15.48                         | 33.05              | 40.00             | -6.95          | V                        | QP     |
| 168.7100           | 53.91             | -22.87                         | 31.04              | 43.50             | -12.46         | V                        | QP     |
| 324.8800           | 44.76             | -18.67                         | 26.09              | 46.00             | -19.91         | V                        | QP     |
| 600.3600           | 43.02             | -12.86                         | 30.16              | 46.00             | -15.84         | V                        | QP     |
| 666.3200           | 38.81             | -12.22                         | 26.59              | 46.00             | -19.41         | V                        | QP     |
| 831.2200           | 40.45             | -10.60                         | 29.85              | 46.00             | -16.15         | V                        | QP     |
|                    |                   | ·                              |                    |                   |                |                          |        |
| 37.7600            | 48.23             | -15.48                         | 32.75              | 40.00             | -7.25          | Н                        | QP     |
| 165.8000           | 59.22             | -22.76                         | 36.46              | 43.50             | -7.04          | Н                        | QP     |
| 305.4800           | 48.18             | -19.36                         | 28.82              | 46.00             | -17.18         | Н                        | QP     |
| 600.3600           | 38.93             | -12.86                         | 26.07              | 46.00             | -19.93         | Н                        | QP     |
| 666.3200           | 38.26             | -12.22                         | 26.04              | 46.00             | -19.96         | Н                        | QP     |
| 827.3400           | 39.54             | -10.53                         | 29.01              | 46.00             | -16.99         | Н                        | QP     |

# Ambient temperature: <u>24°C</u> Relative humidity: <u>52% RH</u> Date: <u>December 18, 2015</u>

\*\*Remark: No emission found between lowest internal used/generated frequency to 30MHz.

Notes:

- 1. Radiated emissions measured in frequency range from 9kHz to 1GHz were made with an instrument using Quasi-peak detector mode.
- 2. Data of measurement within this frequency range shown "--- " in the table above means the reading of emissions are attenuated more than 20dB below the permissible limits or the field strength is too small to be measured.
- 3. The IF bandwidth of Receiver between 30MHz to 1GHz was 120kHz.

| 4. Frequency (MHz).    | = Emission frequency in MHz                    |
|------------------------|------------------------------------------------|
| Reading (dBµV/m)       | = Receiver reading                             |
| Correction Factor (dB) | = Antenna factor + Cable loss – Amplifier gain |
| Limit (dBµV/m)         | = Limit stated in standard                     |
| Margin (dB)            | = Measured (dBμV/m) – Limits (dBμV/m)          |
| Antenna Pol e(H/V)     | = Current carrying line of reading             |

## Above 1 GHz

#### Antenna 1

#### Test Mode: GFSK (CH Low)

#### Tested by: Ad Gan

| Frequency<br>(MHz) | Reading<br>(dBµV) | Correction<br>Factor<br>(dB/m) | Result<br>(dBµV/m) | Limit<br>(dBµV/m) | Margin<br>(dB) | Antenna<br>Pole<br>(V/H) | Remark |
|--------------------|-------------------|--------------------------------|--------------------|-------------------|----------------|--------------------------|--------|
| 1657.000           | 44.08             | -6.58                          | 37.50              | 74.00             | -36.50         | V                        | peak   |
| 2575.000           | 42.80             | -2.12                          | 40.68              | 74.00             | -33.32         | V                        | peak   |
| 3628.000           | 40.30             | 0.02                           | 40.32              | 74.00             | -33.68         | V                        | peak   |
| 4528.000           | 39.48             | 3.44                           | 42.92              | 74.00             | -31.08         | V                        | peak   |
| 5410.000           | 39.87             | 5.71                           | 45.58              | 74.00             | -28.42         | V                        | peak   |
| 6211.000           | 40.10             | 6.42                           | 46.52              | 74.00             | -27.48         | V                        | peak   |
|                    |                   |                                |                    |                   |                |                          |        |
| 2611.000           | 42.89             | -2.06                          | 40.83              | 74.00             | -33.17         | Н                        | peak   |
| 3709.000           | 40.09             | 0.36                           | 40.45              | 74.00             | -33.55         | Н                        | peak   |
| 4807.000           | 41.19             | 4.35                           | 45.54              | 74.00             | -28.46         | Н                        | peak   |
| 5626.000           | 40.49             | 5.92                           | 46.41              | 74.00             | -27.59         | Н                        | peak   |
| 6607.000           | 39.74             | 7.06                           | 46.80              | 74.00             | -27.20         | Н                        | peak   |
| 6778.000           | 40.11             | 7.34                           | 47.45              | 74.00             | -26.55         | Н                        | peak   |

Ambient temperature: <u>24°C</u> Relative humidity: <u>52% RH</u> Date: <u>December 18, 2015</u>

REMARKS:

1. Measuring frequencies from 1 GHz to the 10th harmonic of highest fundamental frequency.

- 2. Radiated emissions measured in frequency above 1000MHz were made with an instrument using peak/average detector mode.
- 3. Average test would be performed if the peak result were greater than the average limit or as required by the applicant.
- 4. Data of measurement within this frequency range shown "----" in the table above means the reading of emissions are attenuated more than 20dB below the permissible limits or the field strength is too small to be measured.
- 5. Measurements above show only up to 6 maximum emissions noted, or would be lesser, with " N/A " remark, if no specific emissions from the EUT are recorded (ie: margin>20dB from the applicable limit) and considered that's already beyond the background noise floor.
- 6. Margin (dB) = Remark result (dBuV/m) Average limit (dBuV/m).

#### Test Mode: GFSK (CH Mid)

#### Tested by: Ad Gan

| Frequency<br>(MHz) | Reading<br>(dBµV) | Correction<br>Factor<br>(dB/m) | Result<br>(dBµV/m) | Limit<br>(dBµV/m) | Margin<br>(dB) | Antenna<br>Pole<br>(V/H) | Remark |
|--------------------|-------------------|--------------------------------|--------------------|-------------------|----------------|--------------------------|--------|
| 2161.000           | 45.29             | -4.12                          | 41.17              | 74.00             | -32.83         | V                        | peak   |
| 2494.000           | 44.63             | -2.29                          | 42.34              | 74.00             | -31.66         | V                        | peak   |
| 3916.000           | 41.10             | 1.24                           | 42.34              | 74.00             | -31.66         | V                        | peak   |
| 4573.000           | 40.83             | 3.59                           | 44.42              | 74.00             | -29.58         | V                        | peak   |
| 4915.000           | 40.85             | 4.70                           | 45.55              | 74.00             | -28.45         | V                        | peak   |
| 5500.000           | 40.03             | 5.87                           | 45.90              | 74.00             | -28.10         | V                        | peak   |
|                    |                   |                                |                    | ·                 |                |                          |        |
| 1324.000           | 45.84             | -7.34                          | 38.50              | 74.00             | -35.50         | Н                        | peak   |
| 2512.000           | 43.18             | -2.24                          | 40.94              | 74.00             | -33.06         | Н                        | peak   |
| 2809.000           | 41.73             | -1.70                          | 40.03              | 74.00             | -33.97         | Н                        | peak   |
| 3889.000           | 41.75             | 1.12                           | 42.87              | 74.00             | -31.13         | Н                        | peak   |
| 4834.000           | 42.49             | 4.44                           | 46.93              | 74.00             | -27.07         | Н                        | peak   |
| 5266.000           | 41.72             | 5.45                           | 47.17              | 74.00             | -26.83         | Н                        | peak   |
| REMARKS:           |                   |                                |                    | -                 |                |                          |        |

#### Ambient temperature: <u>24°C</u> Relative humidity: <u>52% RH</u> Date: <u>December 18, 2015</u>

1. Measuring frequencies from 1 GHz to the 10th harmonic of highest fundamental frequency.

2. Radiated emissions measured in frequency above 1000MHz were made with an instrument using peak/average detector mode.

- 3. Average test would be performed if the peak result were greater than the average limit or as required by the applicant.
- 4. Data of measurement within this frequency range shown "----" in the table above means the reading of emissions are attenuated more than 20dB below the permissible limits or the field strength is too small to be measured.
- Measurements above show only up to 6 maximum emissions noted, or would be lesser, with " N/A " remark, if no specific emissions from the EUT are recorded (ie: margin>20dB from the applicable limit) and considered that's already beyond the background noise floor.
- 6. Margin (dB) = Remark result (dBuV/m) Average limit (dBuV/m).

### Test Mode: GFSK (CH High)

## Tested by: Ad Gan

| Frequency<br>(MHz) | Reading<br>(dBµV) | Correction<br>Factor<br>(dB/m) | Result<br>(dBµV/m) | Limit<br>(dBµV/m) | Margin<br>(dB) | Antenna<br>Pole<br>(V/H) | Remark |
|--------------------|-------------------|--------------------------------|--------------------|-------------------|----------------|--------------------------|--------|
| 2125.000           | 46.00             | -4.31                          | 41.69              | 74.00             | -32.31         | V                        | peak   |
| 2827.000           | 44.34             | -1.67                          | 42.67              | 74.00             | -31.33         | V                        | peak   |
| 3979.000           | 44.17             | 1.50                           | 45.67              | 74.00             | -28.33         | V                        | peak   |
| 4258.000           | 44.51             | 2.50                           | 47.01              | 74.00             | -26.99         | V                        | peak   |
| 5203.000           | 41.68             | 5.34                           | 47.02              | 74.00             | -26.98         | V                        | peak   |
| 6121.000           | 43.33             | 6.28                           | 49.61              | 74.00             | -24.39         | V                        | peak   |
|                    |                   |                                |                    |                   |                |                          |        |
| 2539.000           | 44.41             | -2.19                          | 42.22              | 74.00             | -31.78         | Н                        | peak   |
| 3241.000           | 44.92             | -0.96                          | 43.96              | 74.00             | -30.04         | Н                        | peak   |
| 3376.000           | 43.94             | -0.73                          | 43.21              | 74.00             | -30.79         | Н                        | peak   |
| 4834.000           | 41.14             | 4.44                           | 45.58              | 74.00             | -28.42         | Н                        | peak   |
| 5014.000           | 40.64             | 5.00                           | 45.64              | 74.00             | -28.36         | Н                        | peak   |
| 5599.000           | 40.25             | 5.91                           | 46.16              | 74.00             | -27.84         | Н                        | peak   |

## Ambient temperature: <u>24°C</u> Relative humidity: <u>52% RH</u> Date: <u>December 18, 2015</u>

- 1. Measuring frequencies from 1 GHz to the 10th harmonic of highest fundamental frequency.
- 2. Radiated emissions measured in frequency above 1000MHz were made with an instrument using peak/average detector mode.
- 3. Average test would be performed if the peak result were greater than the average limit or as required by the applicant.
- 4. Data of measurement within this frequency range shown "----" in the table above means the reading of emissions are attenuated more than 20dB below the permissible limits or the field strength is too small to be measured.
- 5. Measurements above show only up to 6 maximum emissions noted, or would be lesser, with " N/A " remark, if no specific emissions from the EUT are recorded (ie: margin>20dB from the applicable limit) and considered that's already beyond the background noise floor.
- 6. Margin (dB) = Remark result (dBuV/m) Average limit (dBuV/m).

## Antenna 2

#### Test Mode: GFSK (CH Low)

### Tested by: Ad Gan

| Frequency<br>(MHz) | Reading<br>(dBµV) | Correction<br>Factor<br>(dB/m) | Result<br>(dBµV/m) | Limit<br>(dBµV/m) | Margin<br>(dB) | Antenna<br>Pole<br>(V/H) | Remark |
|--------------------|-------------------|--------------------------------|--------------------|-------------------|----------------|--------------------------|--------|
| 2107.000           | 45.14             | -4.41                          | 40.73              | 74.00             | -33.27         | V                        | peak   |
| 2575.000           | 43.80             | -2.12                          | 41.68              | 74.00             | -32.32         | V                        | peak   |
| 3412.000           | 44.03             | -0.67                          | 43.36              | 74.00             | -30.64         | V                        | peak   |
| 4267.000           | 39.20             | 2.53                           | 41.73              | 74.00             | -32.27         | V                        | peak   |
| 5410.000           | 39.87             | 5.71                           | 45.58              | 74.00             | -28.42         | V                        | peak   |
| 6211.000           | 40.10             | 6.42                           | 46.52              | 74.00             | -27.48         | V                        | peak   |
|                    |                   |                                |                    |                   |                |                          |        |
| 1954.000           | 48.65             | -5.29                          | 43.36              | 74.00             | -30.64         | Н                        | peak   |
| 2539.000           | 44.77             | -2.19                          | 42.58              | 74.00             | -31.42         | Н                        | peak   |
| 3709.000           | 41.09             | 0.36                           | 41.45              | 74.00             | -32.55         | Н                        | peak   |
| 4420.000           | 41.27             | 3.07                           | 44.34              | 74.00             | -29.66         | Н                        | peak   |
| 4807.000           | 42.19             | 4.35                           | 46.54              | 74.00             | -27.46         | Н                        | peak   |
| 5626.000           | 39.49             | 5.92                           | 45.41              | 74.00             | -28.59         | Н                        | peak   |

## Ambient temperature: <u>24°C</u> Relative humidity: <u>52% RH</u> Date: <u>December 18, 2015</u>

- 7. Measuring frequencies from 1 GHz to the 10th harmonic of highest fundamental frequency.
- 8. Radiated emissions measured in frequency above 1000MHz were made with an instrument using peak/average detector mode.
- 9. Average test would be performed if the peak result were greater than the average limit or as required by the applicant.
- 10. Data of measurement within this frequency range shown " --- " in the table above means the reading of emissions are attenuated more than 20dB below the permissible limits or the field strength is too small to be measured.
- 11. Measurements above show only up to 6 maximum emissions noted, or would be lesser, with "N/A" remark, if no specific emissions from the EUT are recorded (ie: margin>20dB from the applicable limit) and considered that's already beyond the background noise floor.
- 12. Margin (dB) = Remark result (dBuV/m) Average limit (dBuV/m).

#### Test Mode: GFSK (CH Mid)

#### Tested by: Ad Gan

| Frequency<br>(MHz) | Reading<br>(dBµV) | Correction<br>Factor<br>(dB/m) | Result<br>(dBµV/m) | Limit<br>(dBµV/m) | Margin<br>(dB) | Antenna<br>Pole<br>(V/H) | Remark |
|--------------------|-------------------|--------------------------------|--------------------|-------------------|----------------|--------------------------|--------|
| 2233.000           | 45.50             | -3.72                          | 41.78              | 74.00             | -32.22         | V                        | peak   |
| 2575.000           | 45.30             | -2.12                          | 43.18              | 74.00             | -30.82         | V                        | peak   |
| 2800.000           | 45.84             | -1.72                          | 44.12              | 74.00             | -29.88         | V                        | peak   |
| 3628.000           | 42.80             | 0.02                           | 42.82              | 74.00             | -31.18         | V                        | peak   |
| 5086.000           | 39.66             | 5.13                           | 44.79              | 74.00             | -29.21         | V                        | peak   |
| 5410.000           | 40.37             | 5.71                           | 46.08              | 74.00             | -27.92         | V                        | peak   |
|                    |                   |                                |                    |                   |                |                          |        |
| 2125.000           | 43.36             | -4.31                          | 39.05              | 74.00             | -34.95         | Н                        | peak   |
| 2782.000           | 43.12             | -1.75                          | 41.37              | 74.00             | -32.63         | Н                        | peak   |
| 4420.000           | 42.27             | 3.07                           | 45.34              | 74.00             | -28.66         | Н                        | peak   |
| 4807.000           | 42.69             | 4.35                           | 47.04              | 74.00             | -26.96         | Н                        | peak   |
| 5293.000           | 40.78             | 5.50                           | 46.28              | 74.00             | -27.72         | Н                        | peak   |
| 5626.000           | 39.49             | 5.92                           | 45.41              | 74.00             | -28.59         | Н                        | peak   |

#### Ambient temperature: <u>24°C</u> Relative humidity: <u>52% RH</u> Date: <u>December 18, 2015</u>

- 7. Measuring frequencies from 1 GHz to the 10th harmonic of highest fundamental frequency.
- 8. Radiated emissions measured in frequency above 1000MHz were made with an instrument using peak/average detector mode.
- 9. Average test would be performed if the peak result were greater than the average limit or as required by the applicant.
- 10. Data of measurement within this frequency range shown "----" in the table above means the reading of emissions are attenuated more than 20dB below the permissible limits or the field strength is too small to be measured.
- 11. Measurements above show only up to 6 maximum emissions noted, or would be lesser, with " N/A " remark, if no specific emissions from the EUT are recorded (ie: margin>20dB from the applicable limit) and considered that's already beyond the background noise floor.
- 12. Margin (dB) = Remark result (dBuV/m) Average limit (dBuV/m).

### Test Mode: GFSK (CH High)

## Tested by: Ad Gan

| Frequency<br>(MHz) | Reading<br>(dBµV) | Correction<br>Factor<br>(dB/m) | Result<br>(dBµV/m) | Limit<br>(dBµV/m) | Margin<br>(dB) | Antenna<br>Pole<br>(V/H) | Remark |
|--------------------|-------------------|--------------------------------|--------------------|-------------------|----------------|--------------------------|--------|
| 2287.000           | 44.63             | -3.43                          | 41.20              | 74.00             | -32.80         | V                        | peak   |
| 3016.000           | 47.37             | -1.33                          | 46.04              | 74.00             | -27.96         | V                        | peak   |
| 3223.000           | 47.38             | -0.99                          | 46.39              | 74.00             | -27.61         | V                        | peak   |
| 3610.000           | 44.66             | -0.06                          | 44.60              | 74.00             | -29.40         | V                        | peak   |
| 4357.000           | 41.55             | 2.85                           | 44.40              | 74.00             | -29.60         | V                        | peak   |
| 4879.000           | 42.34             | 4.59                           | 46.93              | 74.00             | -27.07         | V                        | peak   |
|                    |                   |                                |                    |                   |                |                          |        |
| 2665.000           | 44.98             | -1.96                          | 43.02              | 74.00             | -30.98         | Н                        | peak   |
| 3682.000           | 45.07             | 0.25                           | 45.32              | 74.00             | -28.68         | Н                        | peak   |
| 3826.000           | 44.62             | 0.86                           | 45.48              | 74.00             | -28.52         | Н                        | peak   |
| 4195.000           | 41.84             | 2.28                           | 44.12              | 74.00             | -29.88         | Н                        | peak   |
| 5023.000           | 40.11             | 5.02                           | 45.13              | 74.00             | -28.87         | Н                        | peak   |
| 5320.000           | 40.51             | 5.55                           | 46.06              | 74.00             | -27.94         | Н                        | peak   |

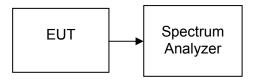
## Ambient temperature: <u>24°C</u> Relative humidity: <u>52% RH</u> Date: <u>December 18, 2015</u>

- 7. Measuring frequencies from 1 GHz to the 10th harmonic of highest fundamental frequency.
- 8. Radiated emissions measured in frequency above 1000MHz were made with an instrument using peak/average detector mode.
- 9. Average test would be performed if the peak result were greater than the average limit or as required by the applicant.
- 10. Data of measurement within this frequency range shown " ---- " in the table above means the reading of emissions are attenuated more than 20dB below the permissible limits or the field strength is too small to be measured.
- 11. Measurements above show only up to 6 maximum emissions noted, or would be lesser, with " N/A " remark, if no specific emissions from the EUT are recorded (ie: margin>20dB from the applicable limit) and considered that's already beyond the background noise floor.
- 12. Margin (dB) = Remark result (dBuV/m) Average limit (dBuV/m).

# 7.3. 6dB BANDWIDTH MEASUREMENT

### 7.3.1. LIMITS

According to §15.247(a)(2), systems using digital modulation techniques may operate in the 902 - 928 MHz, 2400 - 2483.5MHz bands. The minimum 6 dB bandwidth shall be at least 500 kHz.


### 7.3.2. TEST INSTRUMENTS

| Name of<br>Equipment | Manufacturer | Model  | Serial Number | Last<br>Calibration | Calibration<br>Due |
|----------------------|--------------|--------|---------------|---------------------|--------------------|
| PXA Signal Analyzer  | Agilent      | N9030A | JTT-E003      | 2015/04/22          | 2016/04/21         |

#### 7.3.3. TEST PROCEDURES (please refer to measurement standard)

- 1. Place the EUT on the table and set it in the transmitting mode.
- 2. Remove the antenna from the EUT and then connect a low loss RF cable from the antenna port to the spectrum analyzer.
- 3. Set the spectrum analyzer as RBW = 100kHz, VBW = 300kHz, Span = 3MHz, Sweep = auto.
- 4. Mark the peak frequency and –6dB (upper and lower) frequency.
- 5. Repeat until all the rest channels are investigated.

#### 7.3.4. TEST SETUP

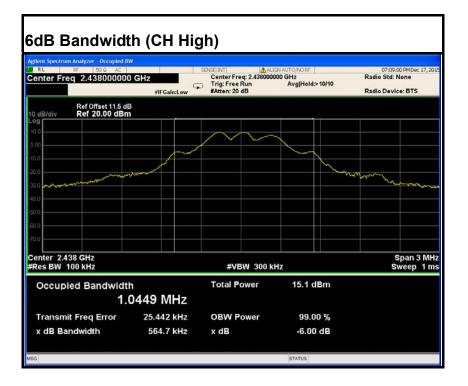


# 7.3.5. TEST RESULTS

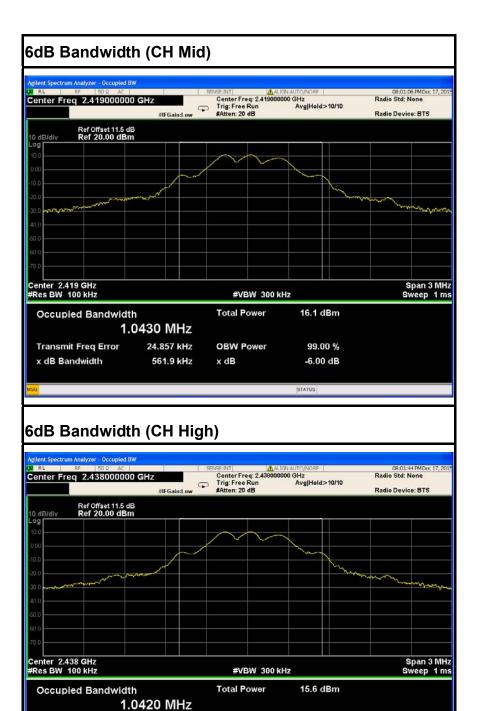
No non-compliance noted

# <u>Test Data</u>

# Antenna 1


| Channel | Frequency<br>(MHz) | Bandwidth<br>(kHz) | Limit<br>(kHz) | Margin<br>(kHz) |
|---------|--------------------|--------------------|----------------|-----------------|
| Low     | 2405.5             | 559.8              | >500           | PASS            |
| Mid     | 2419               | 554.5              |                | PASS            |
| High    | 2438               | 564.7              |                | PASS            |

## Antenna 2


| Channel | Frequency<br>(MHz) | Bandwidth<br>(kHz) | Limit<br>(kHz) | Margin<br>(kHz) |
|---------|--------------------|--------------------|----------------|-----------------|
| Low     | 2405.5             | 560.2              |                | PASS            |
| Mid     | 2419               | 561.9              | >500           | PASS            |
| High    | 2438               | 562.8              |                | PASS            |

# <u>Test Plot</u>

|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |                                             | w)                                                                                   |                                              |                                                               |
|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------------------------------|--------------------------------------------------------------------------------------|----------------------------------------------|---------------------------------------------------------------|
| lent Spectrum Analyzer - Occupied                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | BW                                          |                                                                                      |                                              |                                                               |
| RL RF 50 Q AC                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |                                             | Center Freq: 2.40550                                                                 | LIGN AUTO/NORF                               | 07:11:20 PMDec 17, 20<br>Radio Std: None                      |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |                                             | Trig: Free Run<br>#Atten: 20 dB                                                      | Avg Held>10/10                               | Radio Device: BTS                                             |
| Ref Offset 11.5 d<br>dB/dly Ref 20.00 dB                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | dB<br>m                                     |                                                                                      |                                              |                                                               |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |                                             |                                                                                      |                                              |                                                               |
| 00                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |                                             | $\sim$                                                                               |                                              |                                                               |
| .0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |                                             |                                                                                      |                                              |                                                               |
| 10 - manufacture                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | man solver                                  |                                                                                      |                                              | mm                                                            |
| . V Margaret M.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |                                             |                                                                                      |                                              | and the second                                                |
| .0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |                                             |                                                                                      |                                              |                                                               |
| .0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |                                             |                                                                                      |                                              |                                                               |
| .0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |                                             |                                                                                      |                                              |                                                               |
| enter 2.406 GHz<br>Res BW 100 kHz                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |                                             | #VBW 300                                                                             | kHz                                          | Span 3 MH<br>Sweep 1 m                                        |
| Occupied Bandwid                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | th                                          | Total Power                                                                          | 15.7 dBm                                     |                                                               |
| 1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | .0407 MHz                                   |                                                                                      |                                              |                                                               |
| Transmit Freq Error                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 23.450 kHz                                  | OBW Power                                                                            | 99.00 %                                      |                                                               |
| x dB Bandwidth                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 559.8 kHz                                   | x dB                                                                                 | -6.00 dB                                     |                                                               |
| 3                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |                                             |                                                                                      | STATUS                                       |                                                               |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | th (CH Mi                                   | d)                                                                                   |                                              |                                                               |
| RL RF 50 Q AC                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | BW                                          | SENSE:INT                                                                            | LIGN AUTO/NORF                               |                                                               |
| RL RF 50 Q AC                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | BW<br>D0 GHz                                | •                                                                                    | LIGN AUTO/NORF<br>0000 GHz<br>Avg Hold>10/10 | 07:07:09 FMDxc 17, 20<br>Radio Std: None<br>Radio Device: BTS |
| RL RF 50 Q AC<br>enter Freq 2.41900000<br>Ref Offset 11.5 c                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | BW<br>00 GHz<br>#FGain:Low                  | SENSE:INT Center Freq: 2.41900<br>Trig: Free Run                                     | 0000 GHz                                     |                                                               |
| RL         RE         50.9         AC           enter Freq         2.41900000         AC         AC <td>BW<br/>00 GHz<br/>#FGain:Low</td> <td>SENSE:INT Center Freq: 2.41900<br/>Trig: Free Run</td> <td>0000 GHz</td> <td>Radio Std: None</td>                       | BW<br>00 GHz<br>#FGain:Low                  | SENSE:INT Center Freq: 2.41900<br>Trig: Free Run                                     | 0000 GHz                                     | Radio Std: None                                               |
| RL         PF         50.0         Ar           enter Freq         2.41900000         Ref 0ffset 11.5 c         Ref 0ffset 11.5 c           dB/dlv         Ref 20.00 dBr         Ref 20.00 dBr         Ref 20.00 dBr                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | BW<br>00 GHz<br>#FGain:Low                  | SENSE:INT Center Freq: 2.41900<br>Trig: Free Run                                     | 0000 GHz                                     | Radio Std: None                                               |
| RL         PF         50.0         Ar           enter Freq         2.41900000         Ref 0ffset 11.5 c         Ref 0ffset 11.5 c           dB/dlv         Ref 20.00 dBr         Ref 20.00 dBr         Ref 20.00 dBr                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | BW<br>00 GHz<br>#FGain:Low                  | SENSE:INT Center Freq: 2.41900<br>Trig: Free Run                                     | 0000 GHz                                     | Radio Std: None                                               |
| RL         PF         50.0         Ar           enter Freq         2.41900000         Ref 0ffset 11.5 c         Ref 0ffset 11.5 c           dB/div         Ref 20.00 dBr         Ref 20.00 dBr         Ref 20.00 dBr                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | BW<br>00 GHz<br>#FGain:Low                  | SENSE:INT Center Freq: 2.41900<br>Trig: Free Run                                     | 0000 GHz                                     | Radio Std: None                                               |
| RL         PF         50.0         Ar           enter Freq         2.41900000         Ref Offset 11.5 c         Ref Offset 11.5 c           dB/div         Ref Offset 11.5 c         Ref Offset 11.5 c         Ref Offset 11.5 c           dB/div         Ref Offset 11.5 c         Ref Offset 11.5 c         Ref Offset 11.5 c           0         0         0         0         0           0         0         0         0         0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | BW<br>00 GHz<br>#FGain:Low                  | SENSE:INT Center Freq: 2.41900<br>Trig: Free Run                                     | 0000 GHz                                     | Radio Std: None                                               |
| RL         PF         50.0         Ar           enter Freq         2.41900000         Ref Offset 11.5 c         Ref Offset 11.5 c           dB/div         Ref 20.00 dBr         Ref 20.00 dBr         Ref 20.00 dBr                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | BW<br>00 GHz<br>#FGain:Low                  | SENSE:INT Center Freq: 2.41900<br>Trig: Free Run                                     | 0000 GHz                                     | Radio Std: None                                               |
| RL         PS         SO 0         Ar           enter Freq         2.41900000         Ar         Ar         Ar           dB/div         Ref Offset 11.5 c         Ref 20.00 dBr         Ar         Ar         Ar           dB/div         Ref 20.00 dBr         Ar         Ar<                                                                                                                                                             | BW<br>00 GHz<br>#FGain:Low                  | SENSE:INT Center Freq: 2.41900<br>Trig: Free Run                                     | 0000 GHz                                     | Radio Std: None                                               |
| RL         PS         SO 0         Ar           enter Freq         2.41900000         Ar         Ar         Ar           dB/div         Ref Offset 11.5 c         Ref 20.00 dBr         Ar         Ar         Ar           dB/div         Ref 20.00 dBr         Ar         Ar<                                                                                                                                                             | BW<br>00 GHz<br>#FGain:Low                  | SENSE:INT Center Freq: 2.41900<br>Trig: Free Run                                     | 0000 GHz                                     | Radio Std: None                                               |
| RL         PS         SO 0         AF           enter Freq         2.41900000         AF         AF <td>BW<br/>00 GHz<br/>#FGain:Low</td> <td>SENSE:INT Center Freq: 2.41900<br/>Trig: Free Run</td> <td>0000 GHz<br/>Avg Hold&gt;10/10</td> <td>Radio Std: None</td> | BW<br>00 GHz<br>#FGain:Low                  | SENSE:INT Center Freq: 2.41900<br>Trig: Free Run                                     | 0000 GHz<br>Avg Hold>10/10                   | Radio Std: None                                               |
| RL         PE         ISO 0         AC           enter Freq         2.41900000         Ref 0ffset 11.5 c         Ref 20.00 dB           dB/dlv         Ref 20.00 dB         Ref 20.00 dB         Ref 20.00 dB           90         Ref 20.00 dB         Ref 20.00 dB         Ref 20.00 dB           90         Ref 20.00 dB         Ref 20.00 dB         Ref 20.00 dB           90         Ref 20.00 dB         Ref 20.00 dB         Ref 20.00 dB           90         Ref 20.00 dB         Ref 20.00 dB         Ref 20.00 dB           90         Ref 20.00 dB         Ref 20.00 dB         Ref 20.00 dB           90         Ref 20.00 dB         Ref 20.00 dB         Ref 20.00 dB           90         Ref 20.00 dB         Ref 20.00 dB         Ref 20.00 dB           90         Ref 20.00 dB         Ref 20.00 dB         Ref 20.00 dB           90         Ref 20.00 dB         Ref 20.00 dB         Ref 20.00 dB           90         Ref 20.00 dB         Ref 20.00 dB         Ref 20.00 dB           90         Ref 20.00 dB         Ref 20.00 dB         Ref 20.00 dB           90         Ref 20.00 dB         Ref 20.00 dB         Ref 20.00 dB           90         Ref 20.00 dB         Ref 20.00 dB         Ref 20.00 dB                                                                                 | DW<br>DO GHZ<br>#FGain:Low<br>dB<br>m<br>   | Center Freq: 2.41900<br>Trig: Free Run<br>#Atten: 20 dB                              | 0000 GHz<br>Avg Hold>10/10                   | Radio Std: None<br>Radio Device: BTS                          |
| Rt         P3 0         Ar           enter Freq         2.41900000         Ref Offset 11.5 c           dB/dlv         Ref Offset 11.5 c         Ref 000000000000000000000000000000000000                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | DW<br>DO GHZ<br>//IFGain:Low<br>dB<br>m<br> | Center Freq: 2.41900<br>Trig: Free Run<br>#Atten: 20 dB<br>#VBW 300 l<br>Total Power | 0000 GHz<br>Avg Hold>10/10                   | Radio Std: None<br>Radio Device: BTS                          |
| Ref Offset 11.5 c           dB/div         Ref Offset 11.5 c           dB/div         Ref 20.00 dB           00         0           00         0           00         0           00         0           00         0           00         0           00         0           00         0           00         0           00         0           00         0           00         0           00         0           00         0           00         0           00         0           00         0           00         0           00         0           00         0           00         0           00         0           00         0           00         0           00         0           00         0           00         0           00         0           00         0           00         0           00         0           00                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | DW<br>DO GHZ<br>#FGain:Low<br>dB<br>m<br>   | SPISE-INT<br>Center Freq: 2.41900<br>Trig: Free Run<br>#Atten: 20 dB                 | 0000 GHz<br>Avg Hold>10/10                   | Radio Std: None<br>Radio Device: BTS                          |







Transmit Freq Error

x dB Bandwidth

24.717 kHz

562.8 kHz

**OBW Power** 

x dB

99.00 %

-6.00 dB

STATUS

# 7.4. PEAK OUTPUT POWER

### 7.4.1. LIMITS

The maximum peak output power of the intentional radiator shall not exceed the following:

- 1. According to §15.247(b)(3), for systems using digital modulation in the bands of 902-928 MHz, 2400-2483.5 MHz: 1 Watt.
- 2. According to §15.247(b)(4), the conducted output power limit specified in paragraph (b) of this section is based on the use of antennas with directional gains that do not exceed 6 dBi. Except as shown in paragraph (c) of this section, if transmitting antennas of directional gain greater than 6 dBi are used, the conducted output power from the intentional radiator shall be reduced below the stated values in paragraphs (b)(1), (b)(2), and (b)(3) of this section, as appropriate, by the amount in dB that the directional gain of the antenna exceeds 6 dBi.

### 7.4.2. TEST INSTRUMENTS

| Name of<br>Equipment | Manufacturer  | Model   | Serial Number | Last<br>Calibration | Calibration<br>Due |
|----------------------|---------------|---------|---------------|---------------------|--------------------|
| Power Sensor         | Rohde&Schwarz | NRP-Z81 | 102638        | 2015/10/28          | 2016/10/27         |
| Spectrum Analyzer    | Rohde&Schwarz | FSU26   | 1166.1660.26  | 2015/10/21          | 2016/10/20         |

7.4.3. TEST PROCEDURES (please refer to measurement standard)

### 9.1.1 RBW ≥ *DTS* bandwidth

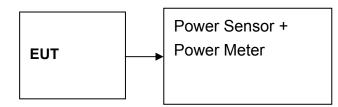
This procedure shall be used when the measurement instrument has available a resolution bandwidth that is greater than the *DTS bandwidth*.

- a) Set the RBW  $\geq$  DTS bandwidth.
- b) Set VBW  $\geq$  3 RBW.
- c) Set span  $\ge$  3 x RBW
- d) Sweep time = auto couple.
- e) Detector = peak.
- f) Trace mode = max hold.
- g) Allow trace to fully stabilize.
- h) Use peak marker function to determine the peak amplitude level.

### 9.1.2 Integrated band power method

This procedure may be used when the maximum available RBW of the measurement instrument is less than the *DTS bandwidth*.

- a) Set the RBW = 1 MHz.
- b) Set the VBW  $\geq$  3 RBW
- c) Set the span  $\ge$  1.5 x DTS bandwidth.
- d) Detector = peak.
- e) Sweep time = auto couple.
- f) Trace mode = max hold.
- g) Allow trace to fully stabilize.


h) Use the instrument's band/channel power measurement function with the band limits set equal to the DTS bandwidth edges (for some instruments, this may require a manual

override to select peak detector). If the instrument does not have a band power function, sum the spectrum levels (in linear power units) at intervals equal to the RBW extending across the DTS bandwidth.

### 9.1.3 PKPM1 Peak power meter method

The maximum peak conducted output power may be measured using a broadband peak RF power meter. The power meter shall have a video bandwidth that is greater than or equal to the DTS bandwidth and shall utilize a fast-responding diode detector.

### 7.4.4. TEST SETUP



## 7.4.5. TEST RESULTS

No non-compliance noted

### <u>Test Data</u>

### Antenna 1

| Channel | Frequency<br>(MHz) | Output Power<br>(dBm) | Output Power<br>(W) | Limit<br>(W) | Peak/AVG | Result |
|---------|--------------------|-----------------------|---------------------|--------------|----------|--------|
| Low     | 2405.5             | 9.41                  | 0.00873             |              |          | PASS   |
| Mid     | 2419               | 8.49                  | 0.00706             | 1            | Peak     | PASS   |
| High    | 2438               | 7.43                  | 0.00553             |              |          | PASS   |
| Low     | 2405.5             | 6.51                  | 0.00448             |              |          | PASS   |
| Mid     | 2419               | 5.81                  | 0.00381             | 1            | AVG      | PASS   |
| High    | 2438               | 4.71                  | 0.00296             |              |          | PASS   |

| Channel | Frequency<br>(MHz) | Output Power<br>(dBm) | Output Power<br>(W) | Limit<br>(W) | Peak/AVG | Result |
|---------|--------------------|-----------------------|---------------------|--------------|----------|--------|
| Low     | 2405.5             | 9.11                  | 0.00815             |              |          | PASS   |
| Mid     | 2419               | 8.25                  | 0.00668             | 1            | Peak     | PASS   |
| High    | 2438               | 7.25                  | 0.00531             |              |          | PASS   |
| Low     | 2405.5             | 5.06                  | 0.00423             |              |          | PASS   |
| Mid     | 2419               | 4.41                  | 0.00321             | 1            | AVG      | PASS   |
| High    | 2438               | 4.74                  | 0.00276             |              |          | PASS   |

## 7.5. ANTENNA GAIN

## **MEASUREMENT**

The antenna gain of the complete system is calculated by the difference of radiated power in EIRP and the conducted power of the module. For normal BT devices, the GFSK mode is used.

## **MEASUREMENT PARAMETERS**

| Measurement parameter |          |  |  |  |
|-----------------------|----------|--|--|--|
| Detector              | Peak     |  |  |  |
| Sweep time            | Auto     |  |  |  |
| Resolution bandwidth  | 3 MHz    |  |  |  |
| Video bandwidth       | 3 MHz    |  |  |  |
| Trace-Mode            | Max hold |  |  |  |

## **LIMITS**

| FCC          | IC |  |  |  |
|--------------|----|--|--|--|
| Antenna Gain |    |  |  |  |
| 6 dBi        |    |  |  |  |

# **TEST RESULTS**

## <u>GFSK</u>

## Antenna 1

| T <sub>nom</sub>                                    | V <sub>nom</sub> | Lowest channel<br>2405.5MHz | Middle channel<br>2419MHz | Highest channel<br>2438MHz |
|-----------------------------------------------------|------------------|-----------------------------|---------------------------|----------------------------|
| Conducted power [dBm] Measured with GFSK modulation |                  | 9.24                        | 8.31                      | 7.24                       |
| Radiated power [dBm] Measured with GFSK modulation  |                  | 2.02                        | 0.85                      | -0.33                      |
| Gain [dBi] Calculated                               |                  | -7.22 -7.46 -7.             |                           | -7.57                      |
| Measurement und                                     | ertainty         | ± 1.5                       | dB (cond.) / ± 3 dB       | (rad.)                     |

| T <sub>nom</sub>                                    | V <sub>nom</sub> | Lowest channel<br>2405.5MHz      | Middle channel<br>2419MHz | Highest channel<br>2438MHz |  |
|-----------------------------------------------------|------------------|----------------------------------|---------------------------|----------------------------|--|
| Conducted power [dBm] Measured with GFSK modulation |                  | 8.96                             | 8.07                      | 7.07                       |  |
| Radiated power [dBm] Measured with GFSK modulation  |                  | 2.02                             | 1.10                      | 0.18                       |  |
| Gain [dBi] Calculated                               |                  | -6.94 -6.97 -                    |                           | -6.89                      |  |
| Measurement und                                     | ertainty         | ± 1.5 dB (cond.) / ± 3 dB (rad.) |                           |                            |  |

## 7.6. BAND EDGES MEASUREMENT

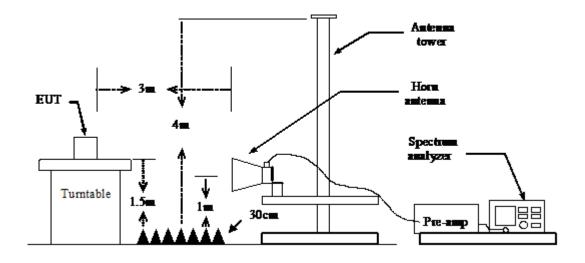
### 7.6.1. LIMITS

According to §15.247(d), in any 100 kHz bandwidth outside the frequency bands in which the spread spectrum intentional radiator in operating, the radio frequency power that is produced by the intentional radiator shall be at least 20 dB below that in the 100 kHz bandwidth within the band that contains the highest level of the desired power, based on either an RF conducted or a radiated measurement, provided the transmitter demonstrates compliance with the peak conducted power limits. In addition, radiated emissions which fall in the restricted bands, as defined in §15.205(a), must also comply with the radiated emission limits specified in 15.209(a) (see Section 15.205(c)).

| Radiated Emission Test Site   |               |              |                  |                     |               |  |
|-------------------------------|---------------|--------------|------------------|---------------------|---------------|--|
| Name of Equipment             | Manufacturer  | Model Number | Serial<br>Number | Last<br>Calibration | Cal. Interval |  |
| Ultra-Broadband<br>Antenna    | ShwarzBeck    | VULB9163     | 462              | 2014/04/12          | 3 years       |  |
| EMI TEST Receiver             | Rohde&Schwarz | ESU8         | 100316           | 2015/10/21          | 1 years       |  |
| EMI TEST Software             | Audix         | E3           | 6.111111         | N/A                 | N/A           |  |
| Horn Anternna                 | EMCO          | 3116         | 00060095         | 2014/04/12          | 3 years       |  |
| Pre-Amplifer                  | Rohde&Schwarz | SCU-01       | 10049            | 2015/10/21          | 1 years       |  |
| Pre-Amplifer                  | A.H.          | PAM0-0118    | 360              | 2015/10/21          | 1 years       |  |
| Pre-Amplifer                  | A.H.          | PAM-1840VH   | 562              | 2015/10/21          | 1 years       |  |
| Double Ridged Horn<br>Antenna | Rohde&Schwarz | HF907        | 100265           | 2014/04/12          | 3 years       |  |
| Active Loop Antenna           | Schwarz beck  | FMZB1519     | 0.38             | 2014/04/12          | 3 years       |  |
| TURNTABLE                     | MATURO        | TT2.0        |                  | N/A                 | N/A           |  |
| ANTENNA MAST                  | MATURO        | TAM-4.0-P    |                  | N/A                 | N/A           |  |
| Spectrum Analyzer             | Rohde&Schwarz | FSU26        | 1166.1660.26     | 2015/10/21          | 1 years       |  |
| Ultra-Broadband<br>Antenna    | ShwarzBeck    | VULB9163     | 462              | 2014/04/12          | 3 years       |  |

### 7.6.2. TEST INSTRUMENTS

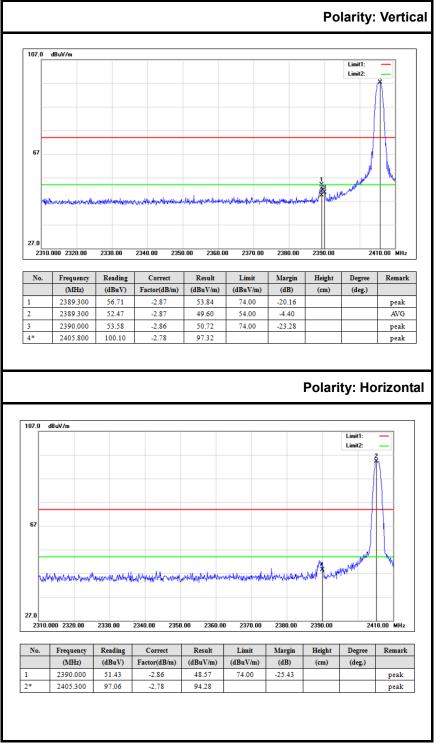
**NOTE:** 1. The calibration interval of the above test instruments is 12 months and the calibrations are traceable to NML/ROC and NIST/USA.


2. The FCC Site Registration number is 101879.

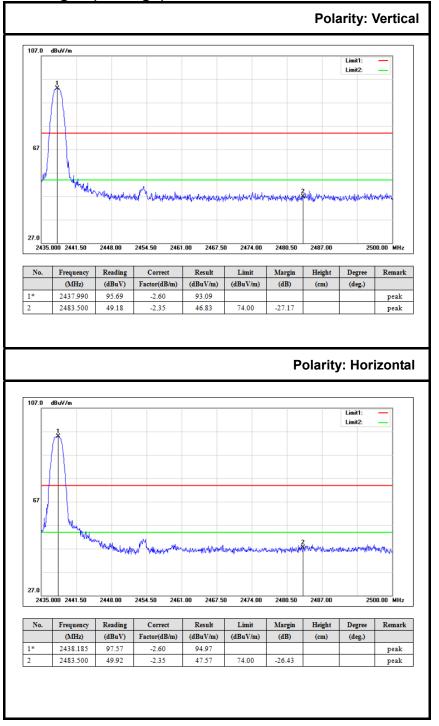
3. N.C.R = No Calibration Required.

### 7.6.3. TEST PROCEDURES (please refer to measurement standard)

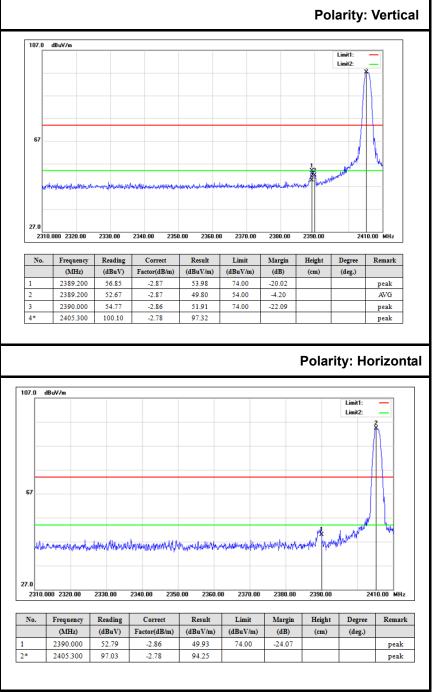
- 1. The EUT is placed on a turntable, which is 0.8m above the ground plane.
- 2. The turntable shall be rotated for 360 degrees to determine the position of maximum emission level.
- 3. EUT is set 3m away from the receiving antenna, which is varied from 1m to 4m to find out the highest emission.
- 4. Set the spectrum analyzer in the following setting in order to capture the lower and upper band-edges of the emission:
  - (a) PEAK: RBW=1MHz / VBW=1MHz / Sweep=AUTO
  - (b) AVERAGE: RBW=1MHz / VBW=9.1kHz / Sweep=AUTO
- 5. Repeat the procedures until all the PEAK and AVERAGE versus POLARIZATION are


### 7.6.4. TEST SETUP

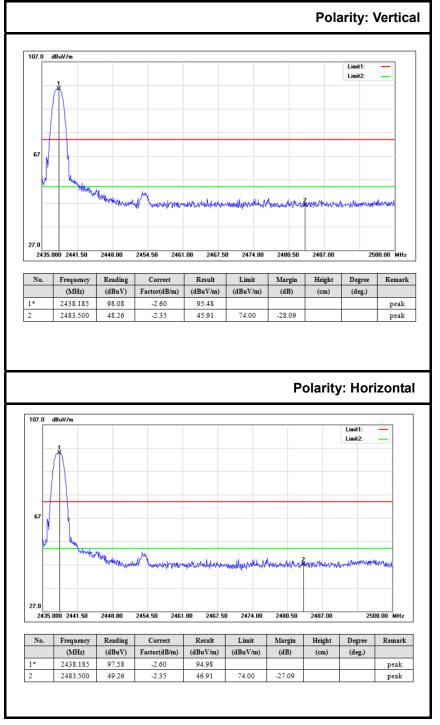



### 7.6.5. TEST RESULTS

#### Test Plot


### Band Edges (CH Low)




Band Edges (CH-High)







Band Edges (CH-High)

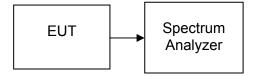


## 7.7. PEAK POWER SPECTRAL DENSITY MEASUREMENT

### 7.7.1. LIMITS

According to §15.247(e), for digitally modulated systems, the power spectral density conducted from the intentional radiator to the antenna shall not be greater than 8 dBm in any 3 kHz band during any time interval of continuous transmission.

According to §15.247(f), the digital modulation operation of the hybrid system, with the frequency hopping turned off, shall comply with the power density requirements of paragraph (d) of this section.


### 7.7.2. TEST INSTRUMENTS

| Name of<br>Equipment | Manufacturer | Model  | Serial Number | Last<br>Calibration | Calibration<br>Due |
|----------------------|--------------|--------|---------------|---------------------|--------------------|
| PXA Signal Analyzer  | Agilent      | N9030A | JTT-E003      | 2015/04/22          | 2016/04/21         |

#### 7.7.3. TEST PROCEDURES (please refer to measurement standard)

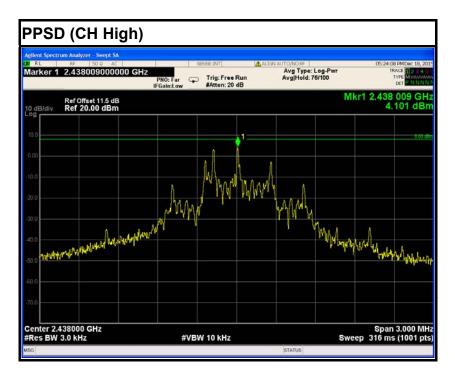
- 1. Set analyzer center frequency to DTS channel center frequency.
- 2. Set the span to 1.5 times the DTS bandwidth.
- 3. Set the RBW to:  $3 \text{ kHz} \leq \text{RBW} \leq 100 \text{ kHz}$ .
- 4. Set the VBW  $\geq$  3 RBW.
- 5. Detector = peak.
- 6. Sweep time = auto couple.
- 7. Trace mode = max hold.
- 8. Allow trace to fully stabilize.
- 9. Use the peak marker function to determine the maximum amplitude level within the RBW.
- 10. If measured value exceeds limit, reduce RBW (no less than 3 kHz) and repeat.

#### 7.7.4. TEST SETUP

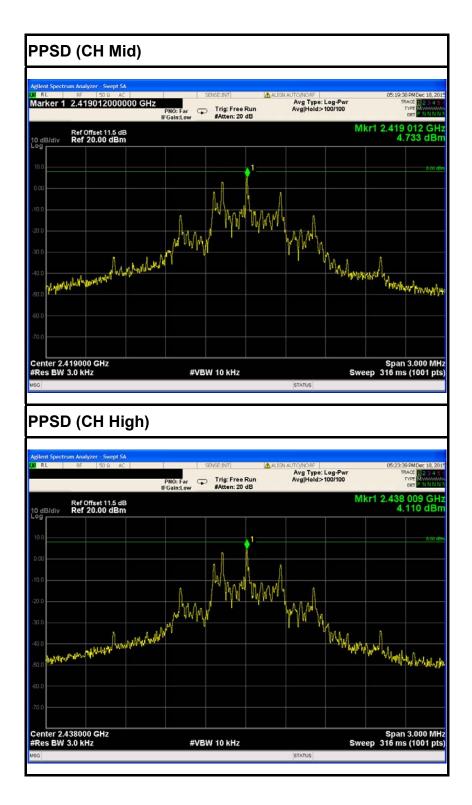


## 7.7.5. TEST RESULTS

No non-compliance noted


# <u>Test Data</u>

## Antenna 1


| Channel | Frequency<br>(MHz) | PPSD<br>(dBm) | Limit<br>(dBm) | Test Result |
|---------|--------------------|---------------|----------------|-------------|
| Low     | 245.5              | 5.171         |                | PASS        |
| Mid     | 2419               | 4.874         | 8.00           | PASS        |
| High    | 2438               | 4.101         |                | PASS        |

| Channel | Frequency<br>(MHz) | PPSD<br>(dBm) | Limit<br>(dBm) | Test Result |
|---------|--------------------|---------------|----------------|-------------|
| Low     | 245.5              | 5.198         |                | PASS        |
| Mid     | 2419               | 4.733         | 8.00           | PASS        |
| High    | 2438               | 4.110         |                | PASS        |







