MPE Calculation

FCC ID: 2AGKH-PD-BYRD-0102

Remark: Average \leq Peak, which means that calculating the power density applying Peak power is worst case. The worst case operation mode generating the highest power in each frequency range is taken for calculation.

For $11 \mathrm{~b} / \mathrm{g} / \mathrm{n}(\mathrm{HT} 20)$:

Frequency range: 2412-2462 MHz
Typical use distance: $\mathrm{d} \geq 20 \mathrm{~cm}$
Power density limit for mobile devices at $2.4 \mathrm{GHz}: \mathrm{S} \leq 1 \mathrm{~mW} / \mathrm{cm}^{2}$
Maximum measured conducted power (Peak): pconducted $=19.37 \mathrm{dBm}=86.5 \mathrm{~mW}$
Antenna Gain: $\mathrm{G}=3 \mathrm{dBi}=2 \quad$ on the linear scale
Calculation: $P_{\text {radiated }}=P_{\text {conducted }}+G_{\text {linear }}=19.37 \mathrm{dBm}+3 \mathrm{dBi}=22.37 \mathrm{dBm}=172.58 \mathrm{~mW}$
Power density $S=\left(P_{\text {radiated }}\right) /\left(4 \pi \mathrm{xd}^{2}\right)=172.58 / 5026=0.0343 \mathrm{~mW} / \mathrm{cm}^{2}<1=$ below limit

For 16Ch. GFSK:

Frequency range: 2405.5-2438 MHz
Typical use distance: $\mathrm{d} \geq 20 \mathrm{~cm}$
Power density limit for mobile devices at $2.4 \mathrm{GHz}: \mathrm{S} \leq 1 \mathrm{~mW} / \mathrm{cm}^{2}$
Maximum measured conducted power (Peak): Pconducted $=9.99 \mathrm{dBm}=9.98 \mathrm{~mW}$
Antenna Gain: $\mathrm{G}=3 \mathrm{dBi}=2 \quad$ on the linear scale
Calculation: $P_{\text {radiated }}=P_{\text {conducted }}+G_{\text {linear }}=9.99 \mathrm{dBm}+3 \mathrm{dBi}=12.99 \mathrm{dBm}=19.91 \mathrm{~mW}$ Power density $S=\left(P_{\text {radiated }}\right) /\left(4 \pi \times d^{2}\right)=19.91 / 5026=0.0040 \mathrm{~mW} / \mathrm{cm}^{2}<1=>$ below limit

Remark: Both Tx portions can transmit simultaneously, however the sum of both Power Densities $\left(0.0343+0.004<1 \mathrm{~mW} / \mathrm{cm}^{2}\right)$ and the sum of both Powers ($0.17258+0.0191<1 \mathrm{~W}$) remain far below the indicated limits.

