FCC ID: 2AGKB-ELITE

RF EXPOSURE EVALUATION

According to FCC 1.1310: The criteria listed in the following table shall be used to evaluate the environment impact of human exposure to radio frequency(RF) Radiation as specified in §1.1307(b)

Limits for Maximum Permissible Exposure (MPE)

Frequency range (MHz)	Electric field strength (V/m)	Magnetic field strength (A/m)	Power density (mW/cm ²)	Averaging time (minutes)							
(A) Limits for Occupational/Controlled Exposure											
0.3-3.0	614	1.63	*100	6							
3.0-30	1842/	4.89/1	*900/f ²	6							
30-300	61.4	0.163	1.0	6							
300-1,500			f/300	6							
1,500-100,000			5	6							
(B) Limits for General Population/Uncontrolled Exposure											
0.3-1.34	614	1.63	*100	30							
1.34-30	824/	2.19/1	*180/f ²	30							
30-300	27.5	0.073	0.2	30							
300-1,500			f/1500	30							
1,500-100,000			1.0	30							

f = frequency in MHz * = Plane-wave equivalent power density

MPE Calculation Method

$$E (V/m) = \frac{\sqrt{30*P*G}}{d}$$
 Power Density: $Pd (W/m^2) = \frac{E^2}{377}$

E = Electric field (V/m)

P = Average RF output power (W)

G = EUT Antenna numeric gain (numeric)

d = Separation distance between radiator and human body (m)

The formula can be changed to

$$Pd = \frac{30 * P * G}{377 * D^2}$$

From the EUT RF output power, the minimum mobile separation distance, d=0.2m, as well as the gain of the used antenna, the RF power density can be obtained.

Measurement Result

Operation Frequency: 2402MHz-2480MHz; 2412MHz-2462MHz; 5180MHz-5240MHz; 5745MHz-

5825MHz;

Antenna Type: WIFI:FPC Antenna BT: Wire Antenna

Antenna gain:WIFI: 2.4G: 3.59dBi; 5G: 2.09 dBi

BT: 1dBi

R=20cm

Maximum Single sources

	in onigie sources								
		Max Conducted	Antenna	Separation distance (cm)	Evaluation result	Power density Limits	Verdict		
	Band	(dBm)	Gain		(mW/cm2)	(mW/cm2)			
			(dBi)						
	BLE-1M	3.551	1	20	0.000567	1	PASS		
	BLE-2M	3. 523	1	20	0.000564	1	PASS		
	Wi-Fi 2.4G	16. 57	3. 59	20	0. 02064	1	PASS		
	Wi-Fi 5.2G	10.88	2.09	20	0.003942	1	PASS		
	Wi-Fi 5.8G	10. 33	2.09	20	0.003473	1	PASS		

Note:

- 1. NO simultaneous transmissions are possible for this device of Wi-Fi 2.4G + BT.
- 2. NO simultaneous transmissions are possible for this device of Wi-Fi 5G + Wi-Fi 2.4G.

The conclusion should be 0.02064<1 for Max Power Density, Compliance the RF Exposure requirement.

Signature: Date: 2022-08-31

NAME AND TITLE (Please print or type): Alex/Manager

COMPANY (Please print or type): Shenzhen NTEK Testing Technology Co., Ltd./ 1/F, Building E, Fenda Science Park, Sanwei Community, Xixiang Street Bao'an District, Shenzhen P.R. China.