RF Exposure statement

TÜV SÜD Zacta Ltd. 4149-7 Hachimanpara 5-chome Yonezawa-shi, Yamagata 992-1128 Japan

To whom it may concern:

TÜV SÜD Zacta is authorized as an agency from Applicant: HOKUBU Communication & Industrial Co., Ltd. (FCC ID: 2AGF8-TXMEPA, IC: 20931-TXMEPA) to act on their behalf in all matters relating to applications for equipment authorization, including testing the device and the signing of all documents relating to these matters.

MAXIMUM PERMISSIBLE EXPOSURE

FCC RULES

§1.1310 The criteria listed in Table 1 shall be used to evaluate the environmental impact of human exposure to radio-frequency (RF) radiation as specified in §1.1307(b), except in the case of portable devices which shall be evaluated according to the provisions of §2.1093 of this chapter.

TABLE 1-LIMITS FOR MAXIMUM PERMISSIBLE EXPOSURE (MPE)

Frequency range (MHz)	Electric field strength (V/m)	Magnetic field strength (A/m)	Power density (mW/cm²)	Averaging time (minutes)		
(A) Limits for Occupational/Controlled Exposures						
0.3–3.0 3.0–30 30–300 300–1500 1500–100,000	614 1842/f 61.4	1.63 4.89# 0.163	*(100) *(900/f²) 1.0 f/300 5	6 6 6 6		
(B) Limits	for General Populati	on/Uncontrolled Exp	oosure			
0.3–1.34	614 824/f	1.63 2.19/f	*(100) *(180/f²)	30 30		

TABLE 1—LIMITS FOR MAXIMUM PERMISSIBLE EXPOSURE (MPE)—Continued

Frequency range (MHz)	Electric field strength (V/m)	Magnetic field strength (A/m)	Power density (mW/cm²)	Averaging time (minutes)
30–300 300–1500	27.5	0.073	0.2 f/1500	30 30
1500–100,000			1.0	30

f = frequency in MHz

f = frequency in MHz
* = Plane-wave equivalent power density
NOTE 1 TO TABLE 1: Occupational/controlled limits apply in situations in which persons are exposed as a consequence of their
employment provided those persons are fully aware of the potential for exposure and can exercise control over their exposure.
Limits for occupational/controlled exposure also apply in situations when an individual is transient through a location where occupational/controlled limits apply provided he or she is made aware of the potential for exposure.

NOTE 2 TO TABLE 1: General population/uncontrolled exposures apply in situations in which the general public may be exposed, or in which persons that are exposed as a consequence of their employment may not be fully aware of the potential for
exposure or can not exercise control over their exposure.

IC RULES

IC RSS-102 Issue 5, Section 4 Exposure Limits, For the purpose of this standard, Industry Canada has adopted the SAR and RF field strength limits established in Health Canada's RF exposure guideline, Safety Code 6.

Table 6: RF Field Strength Limits for Controlled Use Devices (Controlled Environment)

Frequency Range	Electric Field	Magnetic Field	Power Density	Reference Period
(MHz)	(V/m rms)	(A/m rms)	(W/m^2)	(minutes)
$0.003 - 10^{23}$	170	180	-	Instantaneous*
0.1-10	-	1.6/ f	-	6**
1.29-10	$193/f^{0.5}$	-	-	6**
10-20	61.4	0.163	10	6
20-48	$129.8/f^{0.25}$	$0.3444/f^{0.25}$	$44.72/f^{0.5}$	6
48-100	49.33	0.1309	6.455	6
100-6000	$15.60 f^{0.25}$	$0.04138 f^{0.25}$	$0.6455 f^{0.5}$	6
6000-15000	137	0.364	50	6
15000-150000	137	0.364	50	616000/ f ^{1.2}
150000-300000	$0.354 f^{0.5}$	$9.40 \times 10^{-4} f^{0.5}$	3.33 x 10 ⁻⁴ f	616000/ f ^{1.2}

Note: f is frequency in MHz.

^{*}Based on nerve stimulation (NS).

^{**} Based on specific absorption rate (SAR).

CALCULATIONS

Given

 $E = \sqrt{(30 * P * G)} / d$

and

 $S = E^{2}/3770$

where

E = Field Strength in Volts/meter

P = Power in Watts

G = Numeric antenna gain

d = Distance in meters

S = Power Density in milliwatts/square centimeter

Combining equations, rearranging the terms to express the distance as a function of the remaining variables, changing to units of Power to mW and Distance to cm, and substituting the logarithmic form of power and gain yields:

$$d = 0.282 * 10 ^ ((P + G) / 20) / \sqrt{S}$$

where

d = MPE distance in cm

P = Power in dBm

G = Antenna Gain in dBi

S = Power Density Limit in mW/cm^2

Rearranging terms to calculate the power density at a specific distance yields

$$S = 0.0795 * 10 ^ ((P + G) / 10) / (d^2)$$

The power density in units of mW/cm^2 is converted to units of W/m^2 by multiplying by a factor of 10.

LIMITS

From FCC $\S1.1310$ Table 1 (B), the maximum value of S = 1.0 mW/cm²

From IC RSS-102 Issue 5, Section 4 Table 6, S: $S = 0.6455f^{0.5} = 0.6455^*2400^{0.5} = 31.623 \text{ W /m}^2$

RESULTS

(MPE distance equals 20 cm)

Mode	Band	MPE	Output	Antenna	FCC Power	IC Power
		Distance	Power	Gain	Density	Density
		(cm)	(dBm)	(dBi)	(mW/cm^2)	(W/m^2)
GFSK	2.4 GHz	20.0	7.5	0	0.00112	0.01118

NOTE: For mobile or fixed location transmitters, the minimum separation distance is 20 cm, even if calculations indicate that the MPE distance would be less.