

Report No.: HKEM210100010501 Page: 1 of 49

TEST REPORT

Application No.: Applicant: Address of Applicant:	HKEM2101000105AT Wise Ally Holdings Limited Unit 3203-3207, Tower 1, Enterprise Square Five, Kowloon Bay, Hong Kong
Equipment Under Test (EUT)	0
EUT Name:	Rapid Response Button
Model No.:	AP82
FCC ID:	2AGEG-AP82
Standard(s) :	47 CFR Part 15, Subpart C 15.247
Date of Receipt:	2021-02-09
Date of Test:	2021-02-09 to 2021-02-16
Date of Issue:	2021-02-16
Test Result:	Pass*

* In the configuration tested, the EUT complied with the standards specified above.

Law Man Kit EMC Manager

This document is issued by the Company subject to its General Conditions of Service printed overleat, available on request and accessible at http://www.sqs.com/en/Terms-and-conditions.aspx and, for electronic format documents, subject to Terms and Conditions for Electronic Documents at http://www.sqs.com/en/Terms-and-conditions.aspx Attention is drawn to the limitation of liability, indemnification is subject to Terms and Conditions of Liebtonic format documents, subject to Terms and Conditions of Liebtonic Document is advised that information contained hereon reflects the Company's findings at the time of its intervention only and within the limits of Client's instructions, if any. The Company's sole responsibility is to its Client and this document does not exonerate parties to a transaction form exercising all their rights and obligations under the transaction document. The document cannot be reproduced except in full, without prior written approval of the Company. Any unauthorized alteration, forgery or falsification of the content or appearance of this document is unlawful and offenders may be prosecuted to the fullest extent of the law.

Unless otherwise stated the results shown in this test report refer only to the sample(s) tested and such sample(s) are retained for 30 days only.

SGS Hong Kong Limited Laboratory: Unit 2 and 3, G/F, Block A, Po Lung Centre, 11 Wang Chiu Road, Kowloon Bay, Kowloon, Hong Kong www.sgsgroup.com.hk Office: Units 303 & 305, 3/F, Building 22E, Phase 3, HK Science Park, New Territories, Hong Kong t (852) 2334 4481 f (852) 2764 3126 e mktg.hk@sgs.com

	Revision Record				
Version	Chapter	Date	Modifier	Remark	
01		2021-02-16		Original	

Authorized for issue by:		
	Zen Xn.	
	Leo Xu /Project Engineer	Date: 2021-02-16
	Lais	
	Law Man Kit	
	/Reviewer	Date: 2021-02-16

2 Test Summary

Radio Spectrum Technical Requirement				
Item	Standard	Method	Requirement	Result
Antenna Requirement	47 CFR Part 15, Subpart C 15.247	N/A	47 CFR Part 15, Subpart C 15.203 & 15.247(b)(4)	Pass
Other requirements Frequency Hopping Spread Spectrum System Hopping Sequence	47 CFR Part 15, Subpart C 15.247	N/A	47 CFR Part 15, Subpart C 15.247(a)(1),(g),(h)	Pass

Radio Spectrum Matter Part				
Item	Standard	Method	Requirement	Result
Conducted Emissions at AC Power Line (150kHz-30MHz)	47 CFR Part 15, Subpart C 15.247	ANSI C63.10 (2013) Section 6.2	47 CFR Part 15, Subpart C 15.207	Pass
Conducted Peak Output Power	47 CFR Part 15, Subpart C 15.247	ANSI C63.10 (2013) Section 7.8.5	47 CFR Part 15, Subpart C 15.247(b)(2)	Pass
20dB Bandwidth	47 CFR Part 15, Subpart C 15.247	ANSI C63.10 (2013) Section 7.8.7	47 CFR Part 15, Subpart C 15.247(a)(1)	Pass
Carrier Frequencies Separation	47 CFR Part 15, Subpart C 15.247	ANSI C63.10 (2013) Section 7.8.2	47 CFR Part 15, Subpart C 15.247a(1)	Pass
Hopping Channel Number	47 CFR Part 15, Subpart C 15.247	ANSI C63.10 (2013) Section 7.8.3	47 CFR Part 15, Subpart C 15.247a(1)	Pass
Dwell Time	47 CFR Part 15, Subpart C 15.247	ANSI C63.10 (2013) Section 7.8.4	47 CFR Part 15, Subpart C 15.247a(1)	Pass
Conducted Band Edges Measurement	47 CFR Part 15, Subpart C 15.247	ANSI C63.10 (2013) Section 7.8.6	47 CFR Part 15, Subpart C 15.247(d)	Pass
Conducted Spurious Emissions	47 CFR Part 15, Subpart C 15.247	ANSI C63.10 (2013) Section 7.8.8	47 CFR Part 15, Subpart C 15.247(d)	Pass
Radiated Emissions which fall in the restricted bands	47 CFR Part 15, Subpart C 15.247	ANSI C63.10 (2013) Section 6.10.5	47 CFR Part 15, Subpart C 15.205 & 15.209	Pass
Radiated Spurious Emissions	47 CFR Part 15, Subpart C 15.247	ANSI C63.10 (2013) Section 6.4,6.5,6.6	47 CFR Part 15, Subpart C 15.205 & 15.209	Pass

Report No.: HKEM210100010501 Page: 4 of 49

Declaration of EUT Family Grouping: N/A

Abbreviation:

- Tx: In this whole report Tx (or tx) means Transmitter.
- Rx: In this whole report Rx (or rx) means Receiver.
- RF: In this whole report RF means Radiated Frequency.
- CH: In this whole report CH means channel.
- Volt: In this whole report Volt means Voltage.
- Temp: In this whole report Temp means Temperature.
- Humid: In this whole report Humid means humidity.
- Press: In this whole report Press means Pressure.
- N/A: In this whole report not application.

3 Contents

	Pa	age
1	COVER PAGE	1
2	TEST SUMMARY	3
3	CONTENTS	5
4	GENERAL INFORMATION	7
_	 4.1 DETAILS OF E.U.T. 4.2 DESCRIPTION OF SUPPORT UNITS. 4.3 MODULATION CONFIGURATION. 4.4 MEASUREMENT UNCERTAINTY	9 10 11 11 11 11
5	EQUIPMENT LIST	12
6	RADIO SPECTRUM TECHNICAL REQUIREMENT	.16
	6.1 ANTENNA REQUIREMENT. 6.1.1 Test Requirement: 6.1.2 Conclusion. 6.2 OTHER REQUIREMENTS FREQUENCY HOPPING SPREAD SPECTRUM SYSTEM HOPPING SEQUENCE 6.2.1 Test Requirement: 6.2.2 Conclusion.	16 16 17 17
7	RADIO SPECTRUM MATTER TEST RESULTS	18
	 7.1 CONDUCTED EMISSIONS AT AC POWER LINE (150kHz-30MHz) 7.1.1 E.U.T. Operation 7.1.2 Test Setup Diagram 7.1.3 Measurement Procedure and Data 7.2 CONDUCTED PEAK OUTPUT POWER 7.2.1 E.U.T. Operation 7.2.2 Test Setup Diagram 7.2.3 Measurement Procedure and Data 7.3 20DB BANDWIDTH 7.3.1 E.U.T. Operation 7.3.2 Test Setup Diagram 	19 19 22 22 22 22 23 23 23
	 7.3.3 Measurement Procedure and Data 7.4 CARRIER FREQUENCIES SEPARATION	24 <i>24</i> <i>24</i> <i>2</i> 4 25
	7.5.2 Test Setup Diagram 7.5.3 Measurement Procedure and Data	25

Report No.: HKEM210100010501 Page: 6 of 49

	7.7	CONDUCTED BAND EDGES MEASUREMENT	27
	7.7.	1 E.U.T. Operation	28
	7.7.2	2 Test Setup Diagram	28
	7.7.3		
	7.8	CONDUCTED SPURIOUS EMISSIONS	29
	7.8.	1 E.U.T. Operation	29
	7.8.2	2 Test Setup Diagram	29
	7.8.3		29
	7.9	RADIATED EMISSIONS WHICH FALL IN THE RESTRICTED BANDS	30
	7.9.	1 E.U.T. Operation	31
	7.9.2	2 Test Setup Diagram	31
	7.9.3	3 Measurement Procedure and Data	32
	7.10	RADIATED SPURIOUS EMISSIONS	33
	7.10		
	7.10		
	7.10	0.3 Measurement Procedure and Data	35
8	PHC	TOGRAPHS	39
	8.1	EUT CONSTRUCTIONAL DETAILS (EUT PHOTOS)	39
9	APP	ENDIX 15.247	40
	9.1	PEAK CONDUCTED OUTPUT POWER	40
	9.2	20dB Bandwidth	
	9.3	CARRIER FREQUENCY SEPARATION	
	9.4	DWELL TIME	
	9.5	HOPPING FREQUENCIES	
	9.6	Conducted Band Edge Measurement	
	9.7	CONDUCTED SPURIOUS EMISSION	

4 General Information

4.1 Details of E.U.T.

Power supply:	Adaptor Model: IEC 005
	Input: AC 100 V - 240 V, 50/60 Hz, 0.75 A
	Output: DC 5 V, 1 A
	or
	Battery Model: SD364040
	Output: DC 3.7 V, 1.85 Wh
Test voltage:	AC 120 V
Cable:	Power Cable: 18.8 cm unshielded 4-wire USB cable
	Data Cable: 18.8 cm unshielded 4-wire USB cable
Antenna Gain:	0 dBi
Antenna Type:	Monopole Antenna
Lora Radio Configuration:	US915
Channel Spacing:	LoRa (125 kHz): 200 kHz
Modulation Type:	DBPSK
Number of Channels:	LoRa (125 kHz): 64
Operation Frequency:	LoRa (125 kHz): 902.3 MHz - 914.9 MHz
Spectrum Spread Technology:	Frequency Hopping Spread Spectrum(FHSS)
Series No.:	A1
Firmware Version:	1.0.8
Hardware Version:	4.2

Frequency List:

Channel	Frequency (MHz)	Channel	Frequency (MHz)
0	902.300000	32	908.700000
1	902.500000	33	908.900000
2	902.700000	34	909.100000
3	902.900000	35	909.300000
4	903.100000	36	909.500000
5	903.300000	37	909.700000
6	903.500000	38	909.900000
7	903.700000	39	910.100000
8	903.900000	40	910.300000
9	904.100000	41	910.500000
10	904.300000	42	910.700000
11	904.500000	43	910.900000
12	904.700000	44	911.100000
13	904.900000	45	911.300000
14	905.100000	46	911.500000
15	905.300000	47	911.700000
16	905.500000	48	911.900000
17	905.700000	49	912.100000
18	905.900000	50	912.300000
19	906.100000	51	912.500000
20	906.300000	52	912.700000
21	906.500000	53	912.900000
22	906.700000	54	913.100000
23	906.900000	55	913.300000
24	907.100000	56	913.500000
25	907.300000	57	913.700000
26	907.500000	58	913.900000
27	907.700000	59	914.100000
28	907.900000	60	914.300000
29	908.100000	61	914.500000
30	908.300000	62	914.700000
31	908.500000	63	914.900000

The frequencies under test are bolded.

4.2 Description of Support Units

Description	Manufacturer	Model No.	Serial No.
Laptop	DELL	P75F	H55LXQ2
Linear Adaptor	SGS HK Ltd	IEC 005	N/A
flash_download_to ol_3.8.5.exe	PricewaterhouseCoopers Advisory Services LLC	N/A	N/A
ComTestSerial.exe	PricewaterhouseCoopers Advisory Services LLC	N/A	N/A

4.3 Modulation Configuration

RF software:	ComTestSerial.exe			
Modulation	Packet	Packet Type	Packet Size	Power
DBPSK	Default	Default	Default	22
Remark:				
1. 22 value was set in t	test software as maxim	num output power set	tting.	

4.4 Measurement Uncertainty

RF

No.	Item	Measurement Uncertainty
1	Radio Frequency	± 7.25 x 10 ⁻⁸
2	Duty cycle	± 0.37%
3	Occupied Bandwidth	± 3%
4	RF conducted power (30MHz-40GHz)	1.5dB
5	RF power density	1.5dB
6	Conducted Spurious emissions	1.5dB
		4.9dB (30MHz-1GHz)
7	RF Radiated power &	4.6dB (1GHz-6GHz)
7	Radiated Spurious emission test	4.7dB (6GHz-18GHz)
		5.6dB (18GHz-40GHz)
8	Temperature test	± 1 °C
9	Humidity test	± 3%
10	Supply voltages	± 1.5%
11	Time	± 3%

The data and results referenced in this document are true and accurate. The reader is cautioned that there may be errors in calibration limits of the equipment and facilities. The measurement uncertainty was calculated for all measurements listed in this test report according to TR-100028-01 "Electromagnetic compatibility and Radio spectrum Matters (ERM);Uncertainties in the measurement of mobile radio equipment characteristics; Part 1" and TR-100028-02 "Electromagnetic compatibility and Radio spectrum Matters (ERM);Uncertainties in the measurement of mobile radio equipment characteristics; Part 1" and TR-100028-02 "Electromagnetic compatibility and Radio spectrum Matters (ERM);Uncertainties in the measurement of mobile radio equipment characteristics; Part 2" and is documented in the test lab quality system according to ISO/IEC 17025. Furthermore, component and process variability of devices similar to that tested may result in additional deviation. The manufacturer has the sole responsibility of continued compliance of the device.

4.5 Test Location

All tests were performed at:

SGS Hong Kong Limited

Unit 2 and 3, G/F, Block A, Po Lung Centre,

11 Wang Chiu Road, Kowloon Bay, Kowloon, Hong Kong

Tel: +852 2305 2570 Fax: +852 2756 4480

No tests were sub-contracted.

4.6 Test Facility

The test facility is recognized, certified, or accredited by the following organizations:

HOKLAS (Lab Code: 009)

SGS Hong Kong Limited has been accepted by HKAS Executive, on the recommendation of the Accreditation Advisory Board, as a HOKLAS Accredited Laboratory, this laboratory meets the requirements of ISO/IEC 17025:2017 an it has been accredited for performing specific test as listed in the scope of accreditation within the test category of Electrical and Electronic Products.

IAS Accreditation (Lab Code: TL-187)

SGS Hong Kong Limited has met the requirements of AC89, IAS Accreditation Criteria for Testing Laboratories, and has demonstrated compliance with ISO/IEC Standard 17025:2017, General requirements for the competence of testing and calibration laboratories. This organization is accredited to provide the services specified in the scope of accreditation maintained on the IAS website (www.iasonline.org).

The report must not be used by the client to claim product certification, approval, or endorsement by IAS, NIST, or any agency of the Federal Government.

• FCC Recognized Accredited Test Firm(CAB Registration No.: 514599)

SGS Hong Kong Limited has been accredited and fully described in a report filed with the (FCC) Federal Communications Commission. The acceptance letter from the FCC is maintained in our files. Designation Number: HK0015, Test Firm Registration Number: 514599.

Industry Canada (Site Registration No.: 26103; CAB Identifier No.: HK0015)

SGS Hong Kong Limited has been recognized by Department of Innovation, Science and Economic Development (ISED) Canada as a wireless testing laboratory. The acceptance letter from the ISED is maintained in our files. CAB Identifier No: HK0015, Site Registration Number: 26103.

4.7 Deviation from Standards

None

4.8 Abnormalities from Standard Conditions

None

5 Equipment List

Conducted Emissions at AC Power Line (150kHz-30MHz)					
Equipment	Manufacturer	Model No	Inventory No	Cal Date	Cal Due Date
EMI Test Receiver 9kHz to 3.6GHz	Rohde & Schwarz	ESR3 / 102326	E231	2020/08/31	2021/08/30
Artificial Mains Network (LISN)	Schwarzbeck	NSLK 8127 / 8127312	E005	2020/05/12	2021/05/11
Impulse Limiter	Rohde & Schwarz	ESH-3-Z2/ 357881052	E028	2020/09/12	2021/09/11
EMC32 Test software	Rohde & Schwarz	Version 10	N/A	N/A	N/A

	Conducted	Peak C	Jutput	Power
--	-----------	--------	--------	-------

Equipment	Manufacturer	Model No	Inventory No	Cal Date	Cal Due Date
SMBV100A VECTOR SIGNAL GENERATOR	Rohde & Schwarz	SMBV100A	E234	2020/08/31	2021/08/30
FSV40 SIGNAL ANALYZER 40GHz	Rohde & Schwarz	FSV40	E235	2020/08/31	2021/08/30
Wireless Conn. Tester (CMW)	Rohde & Schwarz	CMW270	E240	CAL IN USE	CAL IN USE
OSP	Rohde & Schwarz	OSP-B157W8	E242	2020/08/31	2021/08/30
Cable	Rohde & Schwarz	J12J103539- 00-2	E239	2020/09/21	2021/09/20

20dB Bandwidth					
Equipment	Manufacturer	Model No	Inventory No	Cal Date	Cal Due Date
SMBV100A VECTOR SIGNAL GENERATOR	Rohde & Schwarz	SMBV100A	E234	2020/08/31	2021/08/30
FSV40 SIGNAL ANALYZER 40GHz	Rohde & Schwarz	FSV40	E235	2020/08/31	2021/08/30
Wireless Conn. Tester (CMW)	Rohde & Schwarz	CMW270	E240	CAL IN USE	CAL IN USE
OSP	Rohde & Schwarz	OSP-B157W8	E242	2020/08/31	2021/08/30
Cable	Rohde & Schwarz	J12J103539- 00-2	E239	2020/09/21	2021/09/20

Carrier Frequencies Separation					
Equipment	Manufacturer	Model No	Inventory No	Cal Date	Cal Due Date
SMBV100A VECTOR SIGNAL GENERATOR	Rohde & Schwarz	SMBV100A	E234	2020/08/31	2021/08/30
FSV40 SIGNAL ANALYZER 40GHz	Rohde & Schwarz	FSV40	E235	2020/08/31	2021/08/30
Wireless Conn. Tester (CMW)	Rohde & Schwarz	CMW270	E240	CAL IN USE	CAL IN USE
OSP	Rohde & Schwarz	OSP-B157W8	E242	2020/08/31	2021/08/30
Cable	Rohde & Schwarz	J12J103539- 00-2	E239	2020/09/21	2021/09/20

Hopping Channel Number					
Equipment	Manufacturer	Model No	Inventory No	Cal Date	Cal Due Date
SMBV100A VECTOR SIGNAL GENERATOR	Rohde & Schwarz	SMBV100A	E234	2020/08/31	2021/08/30
FSV40 SIGNAL ANALYZER 40GHz	Rohde & Schwarz	FSV40	E235	2020/08/31	2021/08/30
Wireless Conn. Tester (CMW)	Rohde & Schwarz	CMW270	E240	CAL IN USE	CAL IN USE
OSP	Rohde & Schwarz	OSP-B157W8	E242	2020/08/31	2021/08/30
Cable	Rohde & Schwarz	J12J103539- 00-2	E239	2020/09/21	2021/09/20

Dwell Time					
Equipment	Manufacturer	Model No	Inventory No	Cal Date	Cal Due Date
SMBV100A VECTOR SIGNAL GENERATOR	Rohde & Schwarz	SMBV100A	E234	2020/08/31	2021/08/30
FSV40 SIGNAL ANALYZER 40GHz	Rohde & Schwarz	FSV40	E235	2020/08/31	2021/08/30
Wireless Conn. Tester (CMW)	Rohde & Schwarz	CMW270	E240	CAL IN USE	CAL IN USE
OSP	Rohde & Schwarz	OSP-B157W8	E242	2020/08/31	2021/08/30
Cable	Rohde & Schwarz	J12J103539- 00-2	E239	2020/09/21	2021/09/20

Conducted Band Edges Measurement					
Equipment	Manufacturer	Model No	Inventory No	Cal Date	Cal Due Date
SMBV100A VECTOR SIGNAL GENERATOR	Rohde & Schwarz	SMBV100A	E234	2020/08/31	2021/08/30
FSV40 SIGNAL ANALYZER 40GHz	Rohde & Schwarz	FSV40	E235	2020/08/31	2021/08/30
Wireless Conn. Tester (CMW)	Rohde & Schwarz	CMW270	E240	CAL IN USE	CAL IN USE
OSP	Rohde & Schwarz	OSP-B157W8	E242	2020/08/31	2021/08/30
Cable	Rohde & Schwarz	J12J103539- 00-2	E239	2020/09/21	2021/09/20

Conducted Spurious Emissions					
Equipment	Manufacturer	Model No	Inventory No	Cal Date	Cal Due Date
SMBV100A VECTOR SIGNAL GENERATOR	Rohde & Schwarz	SMBV100A	E234	2020/08/31	2021/08/30
FSV40 SIGNAL ANALYZER 40GHz	Rohde & Schwarz	FSV40	E235	2020/08/31	2021/08/30
Wireless Conn. Tester (CMW)	Rohde & Schwarz	CMW270	E240	CAL IN USE	CAL IN USE
OSP	Rohde & Schwarz	OSP-B157W8	E242	2020/08/31	2021/08/30
Cable	Rohde & Schwarz	J12J103539- 00-2	E239	2020/09/21	2021/09/20

Radiated Spurious Emissions					
Equipment	Manufacturer	Model No	Inventory No	Cal Date	Cal Due Date
3m Semi-Anechoic Chamber	ChamPro	N/A	E229	2020/08/09	2021/08/08
Coaxial Cable	SGS	N/A	E167	2020/07/20	2021/07/19
EMI Test Receiver 9kHz to 7GHz	Rohde & Schwarz	ESR7 / 102298	E314	2020/05/18	2021/05/18
TRILOG Super Broadb. Test Antenna, (25) 30-1000 Mz	Schwarzbeck	9168-1110	E311	2020/02/13	2022/02/12
EMC32 Test software	Rohde & Schwarz	Version 10	N/A	N/A	N/A
Spectrum Analyzer 9kHz - 30GHz	Rohde & Schwarz	FSP30	E204	2020/05/11	2021/05/10
Horn Antenna 1 - 18GHz	Schwarzbeck	BBHA9120D	E211	2020/03/11	2022/03/10
Preamplifier 33dB, 1 - 18GHz	Schwarzbeck	BBV9718	E214	2020/04/09	2021/04/08
Band Reject Filter WRCGV10-891.69- 901.69-928.32-938.32- 45TT	Wainwright	WRCGV10- 891.69-901.69- 928.32-938.32- 45TT	E278	2019/05/06	2021/05/05
RF cable SMA to SMA 10000mm	HUBER+SUHNER	SF104- 26.5/2*11SMA 45	E207	2020/09/21	2021/09/20
Boresight Mast Controller	ChamPro	AM-BS-4500-E	E237	N/A	N/A
Turntable with Controller	ChamPro	EM1000	E238	N/A	N/A

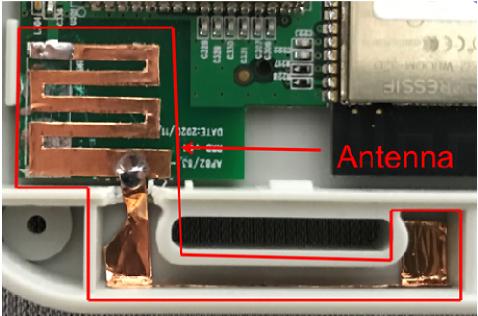
General used equipmen	t				
Equipment	Manufacturer	Model No	Inventory No	Cal Date	Cal Due Date
Digital temperature & humidity data logger	SATO	SK-L200TH II	E232	2020/09/12	2021/09/11
Electronic Digital Thermometer with Hygrometer	nil	2074/2075	E159	2020/09/12	2021/09/11
Barometer with digital thermometer	SATO	7612-00	E218	2020/4/23	2021/04/22
Conditional Chamber	Zhong Zhi Testing Instruments	CZ-E-608D	E216	2020/8/31	2021/08/30

6 Radio Spectrum Technical Requirement

6.1 Antenna Requirement

6.1.1 Test Requirement:

47 CFR Part 15, Subpart C 15.203 & 15.247(b)(4)


6.1.2 Conclusion

Standard Requirement:

An intentional radiator shall be designed to ensure that no antenna other than that furnished by the responsible party shall be used with the device. The use of a permanently attached antenna or of an antenna that uses a unique coupling to the intentional radiator, the manufacturer may design the unit so that a broken antenna can be replaced by the user, but the use of a standard antenna jack or electrical connector is prohibited.

15.247(b) (4) requirement:

The conducted output power limit specified in paragraph (b) of this section is based on the use of antennas with directional gains that do not exceed 6 dBi. Except as shown in paragraph (c) of this section, if transmitting antennas of directional gain greater than 6 dBi are used, the conducted output power from the intentional radiator shall be reduced below the stated values in paragraphs (b)(1), (b)(2), and (b)(3) of this section, as appropriate, by the amount in dB that the directional gain of the antenna exceeds 6 dBi.

INTERESTIMON REPORT ADMINISTRATION AND ADMINISTRATION AND ADMINISTRATIC ADMINISTRATION AD

EUT Antenna:

The antenna is integrated on the main PCB and no consideration of replacement. The best case gain of the antenna is 0 dBi.

Antenna location: Refer to internal photo.

6.2 Other requirements Frequency Hopping Spread Spectrum System Hopping Sequence

6.2.1 Test Requirement:

47 CFR Part 15, Subpart C 15.247(a)(1),(g),(h)

6.2.2 Conclusion

Standard Requirement:

The system shall hop to channel frequencies that are selected at the system hopping rate from a Pseudorandom ordered list of hopping frequencies. Each frequency must be used equally on the average by each transmitter. The system receivers shall have input bandwidths that match the hopping channel bandwidths of their corresponding transmitters and shall shift frequencies in synchronization with the transmitted signals.

Frequency hopping spread spectrum systems are not required to employ all available hopping channels during each transmission. However, the system, consisting of both the transmitter and the receiver, must be designed to comply with all of the regulations in this section should the transmitter be presented with a continuous data (or information) stream. In addition, a system employing short transmission bursts must comply with the definition of a frequency hopping system and must distribute its transmissions over the minimum number of hopping channels specified in this section.

The incorporation of intelligence within a frequency hopping spread spectrum system that permits the system to recognize other users within the spectrum band so that it individually and independently chooses and adapts its hopsets to avoid hopping on occupied channels is permitted. The coordination of frequency hopping systems in any other manner for the express purpose of avoiding the simultaneous occupancy of individual hopping frequencies by multiple transmitters is not permitted.

Compliance for section 15.247(a)(1): According to Technical Specification, the pseudorandom sequence may be generated in a nine-stage shift register whose 5th and 9th stage outputs are added in a modulo-two addition stage. And the result is fed back to the input of the first stage. The sequence begins with the first ONE of 9 consecutive ONEs; i.e. the shift register is initialized with nine ones.

> Number of shift register stages: 9

> Length of pseudo-random sequence: 29 -1 = 511 bits

> Longest sequence of zeros: 8 (non-inverted signal)

Linear Feedback Shift Register for Generation of the PRBS sequence

An example of Pseudorandom Frequency Hopping Sequence as follow:

Each frequency used equally on the average by each transmitter.

According to Technical Specification, the receivers are designed to have input and IF bandwidths that match the hopping channel bandwidths of any transmitters and shift frequencies in synchronization with the transmitted signals.

Compliance for section 15.247(g): According to Technical Specification, the system transmits the packet with the pseudorandom hopping frequency with a continuous data and the short burst transmission from the Bluetooth system is also transmitted under the frequency hopping system with the pseudorandom hopping frequency system.

Compliance for section 15.247(h): According to Technical specification, the system incorporates with an adaptive system to detect other user within the spectrum band so that it individually and independently to avoid hopping on the occupied channels.

The system is designed not have the ability to coordinated with other FHSS System in an effort to avoid the simultaneous occupancy of individual hopping frequencies by multiple transmitter.

7 Radio Spectrum Matter Test Results

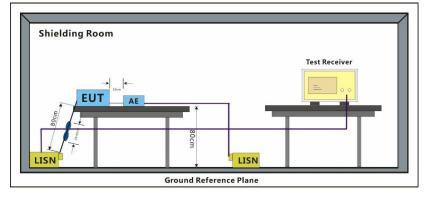
7.1 Conducted Emissions at AC Power Line (150kHz-30MHz)

Test Requirement Test Method: Limit: 47 CFR Part 15, Subpart C 15.207 ANSI C63.10 (2013) Section 6.2

Execution of omission (MHz)	Conducted limit(dBµV)				
Frequency of emission(MHz)	Quasi-peak	Average			
0.15-0.5	66 to 56*	56 to 46*			
0.5-5	56	46			
5-30 60 50					
*Decreases with the logarithm of the frequency.					

7.1.1 E.U.T. Operation

Operating Environment:


Temperature: 25 °C Humidity: 50 % RH

- Test mode

a: Charge + TX Hop mode Keep the EUT in frequency hopping mode with DBPSK modulation. All modes have been tested and only the data of worst case (125 kHz) is recorded in the report.

•

7.1.2 Test Setup Diagram

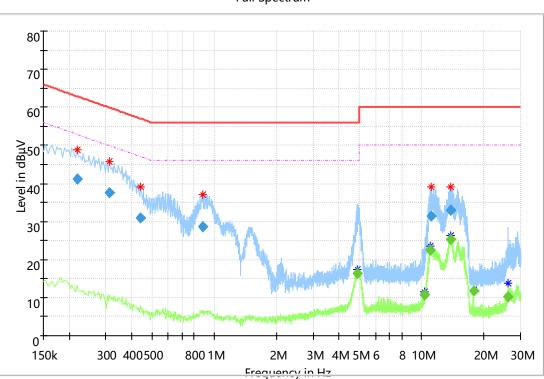
7.1.3 Measurement Procedure and Data

1) The mains terminal disturbance voltage test was conducted in a shielded room.

2) The EUT was connected to AC power source through a LISN 1 (Line Impedance Stabilization Network) which provides a 50ohm/50µH + 5ohm linear impedance. The power cables of all other units of the EUT were connected to a second LISN 2, which was bonded to the ground reference plane in the same way as the LISN 1 for the unit being measured. A multiple socket outlet strip was used to connect multiple power cables to a single LISN provided the rating of the LISN was not exceeded.

3) The tabletop EUT was placed upon a non-metallic table 0.8m above the ground reference plane. And for floor-standing arrangement, the EUT was placed on the horizontal ground reference plane,

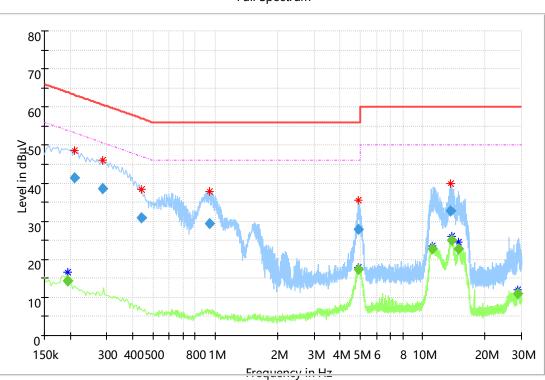
4) The test was performed with a vertical ground reference plane. The rear of the EUT shall be 0.4 m from the vertical ground reference plane. The vertical ground reference plane was bonded to the horizontal ground reference plane. The LISN 1 was placed 0.8 m from the boundary of the unit under test and bonded to a ground reference plane for LISNs mounted on top of the ground reference plane. This distance was between the closest points of the LISN 1 and the EUT. All other units of the EUT and associated equipment was at least 0.8 m from the LISN 2.


5) In order to find the maximum emission, the relative positions of equipment and all of the interface cables must be changed according to ANSI C63.10 on conducted measurement.

Remark: LISN=Read Level+ Cable Loss+ LISN Factor

Report No.: HKEM210100010501 Page: 20 of 49

Mode:a; Line:Live Line


Frequency	QuasiPeak	Average	Limit	Margin	Corr.	Result
(MHz)	(dBµV)	(dBµV)	(dBµV)	(dB)	(dB)	
0.218000	41.1		62.9	21.8	10.1	Pass
0.314000	37.6		59.9	22.2	10.0	Pass
0.442000	30.8		57.0	26.2	10.1	Pass
0.882000	28.6		56.0	27.4	10.1	Pass
4.890000		16.4	46.0	29.6	10.1	Pass
10.354000		10.8	50.0	39.3	10.1	Pass
11.022000		22.4	50.0	27.6	10.2	Pass
11.146000	31.5		60.0	28.5	10.6	Pass
13.778000	33.0		60.0	27.0	11.0	Pass
13.862000		25.3	50.0	24.7	11.3	Pass
17.778000		11.9	50.0	38.2	11.2	Pass
25.950000		10.3	50.0	39.7	11.1	Pass

Full Spectrum

Report No.: HKEM210100010501 Page: 21 of 49

Mode:a; Line:Neutral Line

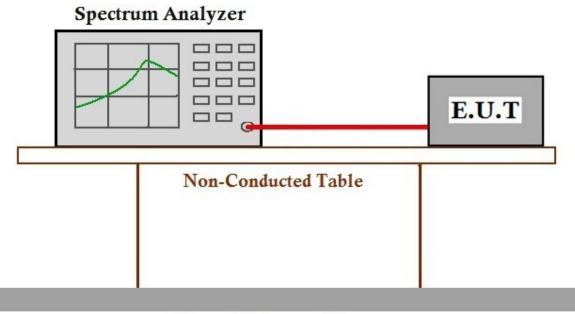
Frequency	QuasiPeak	Average	Limit	Margin	Corr.	Result
(MHz)	(dBµV)	(dBµV)	(dBµV)	(dB)	(dB)	
0.194000		14.4	53.9	39.4	10.1	Pass
0.210000	41.4		63.2	21.8	10.0	Pass
0.286000	38.5		60.6	22.2	10.1	Pass
0.442000	31.0		57.0	26.1	10.1	Pass
0.938000	29.4		56.0	26.6	10.1	Pass
4.902000		17.4	46.0	28.6	10.1	Pass
4.910000	27.8		56.0	28.2	10.2	Pass
11.070000		22.7	50.0	27.3	10.6	Pass
13.718000	32.6		60.0	27.4	11.0	Pass
13.798000		25.0	50.0	25.0	11.3	Pass
14.934000		22.6	50.0	27.4	11.2	Pass
28.818000		11.1	50.0	39.0	11.1	Pass

Full Spectrum

7.2 Conducted Peak Output Power

Test Requirement	47 CFR Part 15, Subpart C 15.247(b)(2)
Test Method:	ANSI C63.10 (2013) Section 7.8.5
Limit:	

Frequency range(MHz)	Output power of the intentional radiator(watt)
902-928	1 for ≥50 hopping channels
	0.25 for 25≤ hopping channels <50
	1 for digital modulation
2400-2483.5	1 for ≥75 non-overlapping hopping channels
	0.125 for all other frequency hopping systems
	1 for digital modulation
5725-5850	1 for frequency hopping systems and digital modulation


7.2.1 E.U.T. Operation

Operating Environment:

Temperature: 25 °C Humidity: 50 % RH :

Test mode b: Charge + TX_non-Hop mode_Keep the EUT in charging and continuously transmitting mode with DBPSK modulation. All modes have been tested and only the data of worst case (125 kHz) is recorded in the report.

7.2.2 Test Setup Diagram

Ground Reference Plane

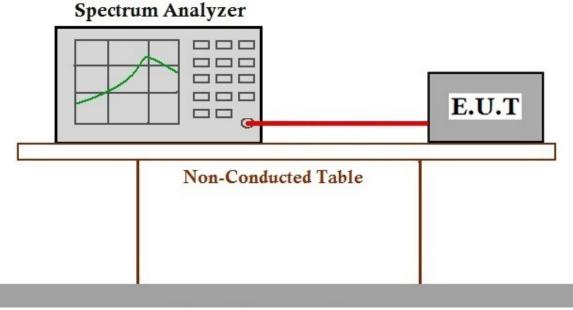
7.2.3 Measurement Procedure and Data

The test method: ANSI C63.10 (2013) Section 7.8.5 The detailed test data see: Appendix 15.247

Report No.: HKEM210100010501 Page: 23 of 49

7.3 20dB Bandwidth

Test Requirement	47 CFR Part 15, Subpart C 15.247(a)(1)
Test Method:	ANSI C63.10 (2013) Section 7.8.7
Limit:	500 kHz
7.3.1 E.U.T. Operation	


Operating Environment:

Temperature: 25 °C Humidity: 50 % RH

Test mode b: Charge + TX_non-Hop mode_Keep the EUT in charging and continuously transmitting mode with DBPSK modulation. All modes have been tested and only the data of worst case (125 kHz) is recorded in the report.

:

7.3.2 Test Setup Diagram

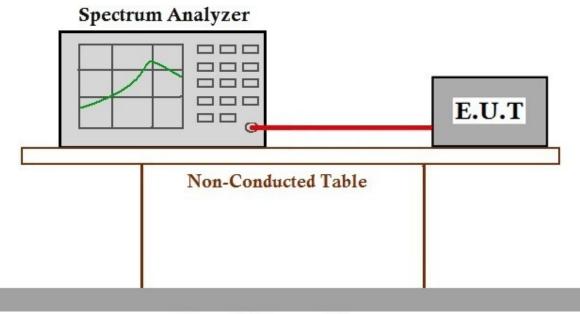
Ground Reference Plane

7.3.3 Measurement Procedure and Data

The test method: ANSI C63.10 (2013) Section 7.8.7 The detailed test data see: Appendix 15.247

Report No.: HKEM210100010501 Page: 24 of 49

7.4 Carrier Frequencies Separation


Test Requirement	47 CFR Part 15, Subpart C 15.247a(1)
Test Method:	ANSI C63.10 (2013) Section 7.8.2
Limit:	25 kHz or the 20dB bandwidth, whichever is greater

7.4.1 E.U.T. Operation

Operating Environment:

Temperature:	25 °C Humidity: 50 % RH :
Test mode	a: Charge + TX_Hop mode_Keep the EUT in frequency hopping mode with DBPSK modulation. All modes have been tested and only the data of worst case (125 kHz) is recorded in the report.

7.4.2 Test Setup Diagram

Ground Reference Plane

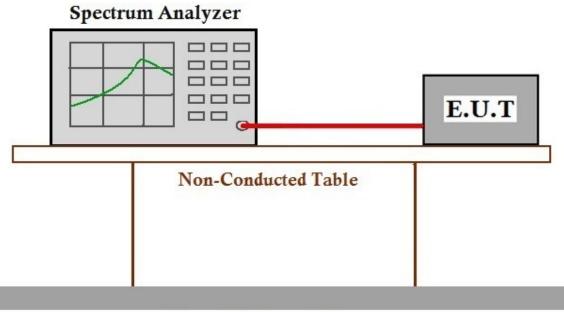
7.4.3 Measurement Procedure and Data

The test method: ANSI C63.10 (2013) Section 7.8.2 The detailed test data see: Appendix 15.247

7.5 Hopping Channel Number

Test Requirement	47 CFR Part 15, Subpart C 15.247a(1)
Test Method:	ANSI C63.10 (2013) Section 7.8.3
Limit:	

Frequency range(MHz)	Number of hopping channels (minimum)
902-928	50 for 20dB bandwidth <250kHz
	25 for 20dB bandwidth ≥250kHz
2400-2483.5	15
5725-5850	75


7.5.1 E.U.T. Operation

Operating Environment:

Temperature: 25 °C Humidity: 50 % RH :

Test mode a: Charge + TX_Hop mode_Keep the EUT in frequency hopping mode with DBPSK modulation. All modes have been tested and only the data of worst case (125 kHz) is recorded in the report.

7.5.2 Test Setup Diagram

Ground Reference Plane

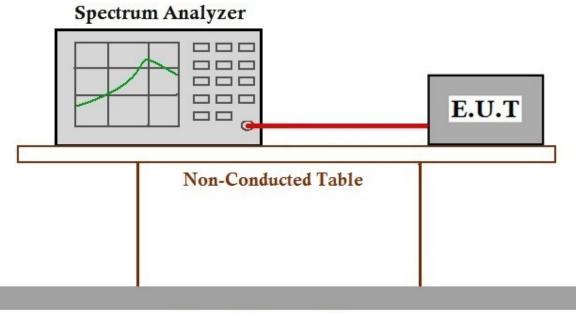
7.5.3 Measurement Procedure and Data

The test method: ANSI C63.10 (2013) Section 7.8.3 The detailed test data see: Appendix 15.247

7.6 Dwell Time

Test Requirement	47 CFR Part 15, Subpart C 15.247a(1)
Test Method:	ANSI C63.10 (2013) Section 7.8.4
Limit:	

Frequency(MHz)	Limit
902-928	0.4S within a 20S period(20dB bandwidth<250kHz)
	0.4S within a 10S period(20dB bandwidth≥250kHz)
2400-2483.5	0.4S within a period of 0.4S multiplied by the number
2400-2483.5	of hopping channels
5725-5850	0.4S within a 30S period


7.6.1 E.U.T. Operation

Operating Environment:	
------------------------	--

Temperature:25 °CHumidity:50 % RH:Test modea: Charge + TX Hop modeKeep the EUT in freque

a: Charge + TX_Hop mode_Keep the EUT in frequency hopping mode with DBPSK modulation. All modes have been tested and only the data of worst case (125 kHz) is recorded in the report.

7.6.2 Test Setup Diagram

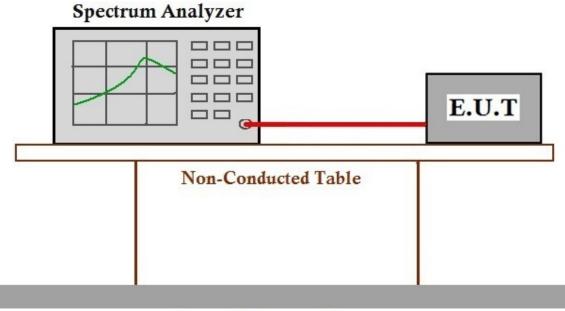
Ground Reference Plane

7.6.3 Measurement Procedure and Data

The test method: ANSI C63.10 (2013) Section 7.8.4 The detailed test data see: Appendix 15.247

7.7 Conducted Band Edges Measurement

Test Requirement	47 CFR Part 15, Subpart C 15.247(d)
Test Method:	ANSI C63.10 (2013) Section 7.8.6
Limit:	In any 100 kHz bandwidth outside the frequency band in which the spread spectrum or digitally modulated intentional radiator is operating, the radio frequency power that is produced by the intentional radiator shall be at least 20 dB below that in the 100 kHz bandwidth within the band that contains the highest level of the desired power, based on either an RF conducted or a radiated measurement, provided the transmitter demonstrates compliance with the peak conducted power limits. If the transmitter complies with the conducted power limits based on the use of RMS averaging over a time interval, as permitted under paragraph (b)(3) of this section, the attenuation required under this paragraph shall be 30 dB instead of 20 dB. Attenuation below the general limits specified in §15.209(a) is not required. In addition, radiated emissions which fall in the restricted bands, as defined in §15.209(a), must also comply with the radiated emission limits specified in §15.209(a) (see §15.205(c)



7.7.1 E.U.T. Operation

Operating Environment:

1 0	
Temperature:	25 °C Humidity: 50 % RH :
Pretest these modes to find the worst case:	a: Charge + TX_Hop mode_Keep the EUT in frequency hopping mode with DBPSK modulation. All modes have been tested and only the data of worst case (125 kHz) is recorded in the report.
	b: Charge + TX_non-Hop mode_Keep the EUT in charging and continuously transmitting mode with DBPSK modulation. All modes have been tested and only the data of worst case (125 kHz) is recorded in the report.
The worst case for final test:	a: Charge + TX_Hop mode_Keep the EUT in frequency hopping mode with DBPSK modulation. All modes have been tested and only the data of worst case (125 kHz) is recorded in the report.
	b: Charge + TX_non-Hop mode_Keep the EUT in charging and continuously transmitting mode with DBPSK modulation. All modes have been tested and only the data of worst case (125 kHz) is recorded in the report.

7.7.2 Test Setup Diagram

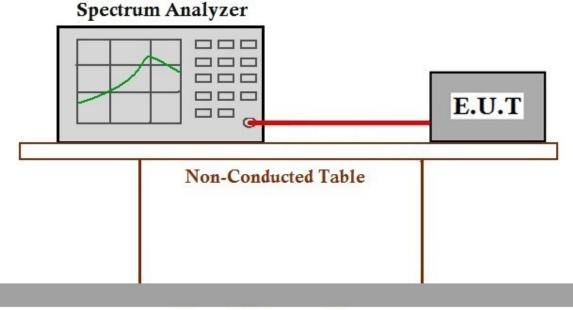
Ground Reference Plane

7.7.3 Measurement Procedure and Data

The test method: ANSI C63.10 (2013) Section 7.8.6 The detailed test data see: Appendix 15.247

7.8 Conducted Spurious Emissions

Test Requirement	47 CFR Part 15, Subpart C 15.247(d)
Test Method:	ANSI C63.10 (2013) Section 7.8.8
Limit:	In any 100 kHz bandwidth outside the frequency band in which the spread spectrum or digitally modulated intentional radiator is operating, the radio frequency power that is produced by the intentional radiator shall be at least 20 dB below that in the 100 kHz bandwidth within the band that contains the highest level of the desired power, based on either an RF conducted or a radiated measurement, provided the transmitter demonstrates compliance with the peak conducted power limits. If the transmitter complies with the conducted power limits based on the use of RMS averaging over a time interval, as permitted under paragraph (b)(3) of this section, the attenuation required under this paragraph shall be 30 dB instead of 20 dB. Attenuation below the general limits specified in §15.209(a) is not required. In addition, radiated emissions which fall in the restricted bands, as defined in §15.209(a) (see §15.205(c)


7.8.1 E.U.T. Operation

Operating Environment:

Temperature:	25 °C	Humidity: 50	% RH :
Test mode	b: Charge + TX	non-Hop mode	Keep the EUT i

b: Charge + TX_non-Hop mode_Keep the EUT in charging and continuously transmitting mode with DBPSK modulation. All modes have been tested and only the data of worst case (125 kHz) is recorded in the report.

7.8.2 Test Setup Diagram

Ground Reference Plane

7.8.3 Measurement Procedure and Data

The test method: ANSI C63.10 (2013) Section 7.8.8 The detailed test data see: Appendix 15.247

7.9 Radiated Emissions which fall in the restricted bands

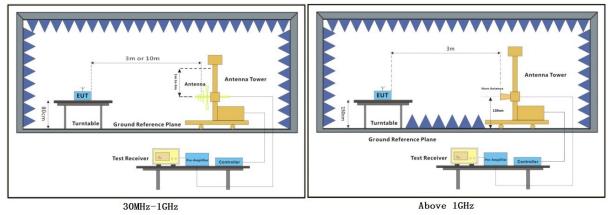
Test Requirement	47 CFR Part 15, Subpart C 15.205 & 15.209
Test Method:	ANSI C63.10 (2013) Section 6.10.5
Measurement Distance:	3m
Limit:	

Frequency(MHz)	Field strength(microvolts/meter)	Measurement distance(meters)
0.009-0.490	2400/F(kHz)	300
0.490-1.705	24000/F(kHz)	30
1.705-30.0	30	30
30-88	100	3
88-216	150	3
216-960	200	3
Above 960	500	3

Remark: The emission limits shown in the above table are based on measurements employing a CISPR quasi-peak detector except for the frequency bands 9-90kHz, 110-490kHz and above 1000 MHz. Radiated emission limits in these three bands are based on measurements employing an average detector, the peak field strength of any emission shall not exceed the maximum permitted average limits specified above by more than 20 dB under any condition of modulation.

7.9.1 E.U.T. Operation

Operating Environment:


Temperature: 25 °C Humidity: 50 % RH

Test mode

:

b: Charge + TX_non-Hop mode_Keep the EUT in charging and continuously transmitting mode with DBPSK modulation. All modes have been tested and only the data of worst case (125 kHz) is recorded in the report.

7.9.2 Test Setup Diagram

7.9.3 Measurement Procedure and Data

a. For below 1GHz, the EUT was placed on the top of a rotating table 0.8 meters above the ground at a 3 or 10 meter semi-anechoic chamber. The table was rotated 360 degrees to determine the position of the highest radiation.

b. For above 1GHz, the EUT was placed on the top of a rotating table 1.5 meters above the ground at a 3 meter fully-anechoic chamber. The table was rotated 360 degrees to determine the position of the highest radiation.

c. The EUT was set 3 or 10 meters away from the interference-receiving antenna, which was mounted on the top of a variable-height antenna tower.

d. The antenna height is varied from one meter to four meters above the ground to determine the maximum value of the field strength. Both horizontal and vertical polarizations of the antenna are set to make the measurement.

e. For each suspected emission, the EUT was arranged to its worst case and then the antenna was tuned to heights from 1 meter to 4 meters (for the test frequency of below 30MHz, the antenna was tuned to heights 1 meter) and the rotatable table was turned from 0 degrees to 360 degrees to find the maximum reading.

f. The test-receiver system was set to Peak Detect Function and Specified Bandwidth with Maximum Hold Mode.

g. If the emission level of the EUT in peak mode was 10dB lower than the limit specified, then testing could be stopped and the peak values of the EUT would be reported. Otherwise the emissions that did not have 10dB margin would be re-tested one by one using peak, quasi-peak or average method as specified and then reported in a data sheet.

h. Test the EUT in the lowest channel, the middle channel, the Highest channel.

i. The radiation measurements are performed in X, Y, Z axis positioning for Transmitting mode, and found the X axis positioning which it is the worst case.

j. Repeat above procedures until all frequencies measured was complete.

Remark 1: Level= Read Level+ Cable Loss+ Antenna Factor- Preamp Factor

Remark 2: For frequencies above 1GHz, the field strength limits are based on average limits. However, the peak field strength of any emission shall not exceed the maximum permitted average limits specified above by more than 20 dB under any condition of modulation. For the emissions whose peak level is lower than the average limit, only the peak measurement is shown in the report.

Frequency	Antenna	Emission Le	vel (dBµV/m)	Limit (d	BμV/m)	Remark
(MHz)	Polarization	Peak	Average	Peak	Average	nemark
614.000000	Н	36.9	20.9	74.0	54.0	Pass
960.000000	Н	45.2	28.0	74.0	54.0	Pass
614.000000	V	36.1	19.9	74.0	54.0	Pass
960.000000	V	39.6	21.8	74.0	54.0	Pass

7.10 Radiated Spurious Emissions

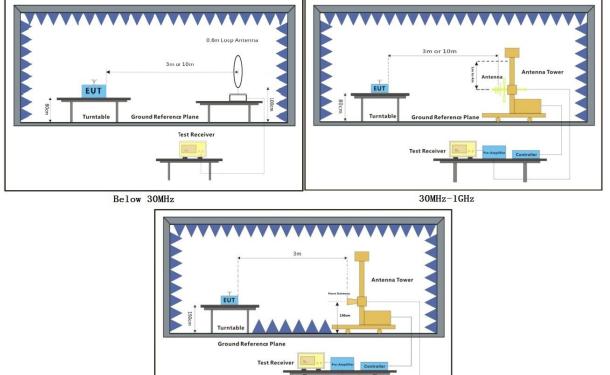
Test Requirement	47 CFR Part 15, Subpart C 15.205 & 15.209
Test Method:	ANSI C63.10 (2013) Section 6.4,6.5,6.6
Measurement Distance:	3m
Limit:	

Frequency(MHz)	Field strength(microvolts/meter)	Measurement distance(meters)
0.009-0.490	2400/F(kHz)	300
0.490-1.705	24000/F(kHz)	30
1.705-30.0	30	30
30-88	100	3
88-216	150	3
216-960	200	3
Above 960	500	3

Remark: The emission limits shown in the above table are based on measurements employing a CISPR quasi-peak detector except for the frequency bands 9-90kHz, 110-490kHz and above 1000 MHz. Radiated emission limits in these three bands are based on measurements employing an average detector, the peak field strength of any emission shall not exceed the maximum permitted average limits specified above by more than 20 dB under any condition of modulation.

7.10.1 E.U.T. Operation

Operating Environment:


Temperature: 25 °C Humidity: 50 % RH

Test mode

b: Charge + TX_non-Hop mode_Keep the EUT in charging and continuously transmitting mode with DBPSK modulation. All modes have been tested and only the data of worst case (125 kHz) is recorded in the report.

:

7.10.2 Test Setup Diagram

Above 1GHz

7.10.3 Measurement Procedure and Data

a. For below 1GHz, the EUT was placed on the top of a rotating table 0.8 meters above the ground at a 3 or 10 meter semi-anechoic chamber. The table was rotated 360 degrees to determine the position of the highest radiation.

b. For above 1GHz, the EUT was placed on the top of a rotating table 1.5 meters above the ground at a 3 meter fully-anechoic chamber. The table was rotated 360 degrees to determine the position of the highest radiation.

c. The EUT was set 3 or 10 meters away from the interference-receiving antenna, which was mounted on the top of a variable-height antenna tower.

d. The antenna height is varied from one meter to four meters above the ground to determine the maximum value of the field strength. Both horizontal and vertical polarizations of the antenna are set to make the measurement.

e. For each suspected emission, the EUT was arranged to its worst case and then the antenna was tuned to heights from 1 meter to 4 meters (for the test frequency of below 30MHz, the antenna was tuned to heights 1 meter) and the rotatable table was turned from 0 degrees to 360 degrees to find the maximum reading.

f. The test-receiver system was set to Peak Detect Function and Specified Bandwidth with Maximum Hold Mode.

g. If the emission level of the EUT in peak mode was 10dB lower than the limit specified, then testing could be stopped and the peak values of the EUT would be reported. Otherwise the emissions that did not have 10dB margin would be re-tested one by one using peak, quasi-peak or average method as specified and then reported in a data sheet.

h. Test the EUT in the lowest channel, the middle channel, the Highest channel.

i. The radiation measurements are performed in X, Y, Z axis positioning for Transmitting mode, and found the X axis positioning which it is the worst case.

j. Repeat above procedures until all frequencies measured was complete.

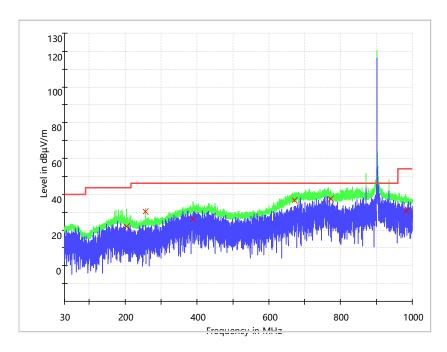
Remark:

1) For emission below 1GHz, through pre-scan found the worst case is the lowest channel. Only the worst case is recorded in the report.

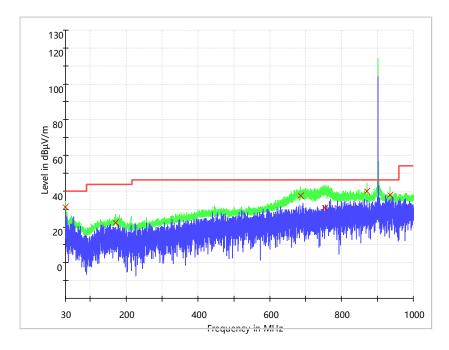
2) The field strength is calculated by adding the Antenna Factor, Cable Factor & Preamplifier. The basic equation with a sample calculation is as follows:

Final Test Level =Receiver Reading + Antenna Factor + Cable Factor – Preamplifier Factor

3) Scan from 9kHz to 25GHz, the disturbance above 18GHz and below 30MHz was very low. The points marked on above plots are the highest emissions could be found when testing, so only above points had been displayed. The amplitude of spurious emissions from the radiator which are attenuated more than 20dB below the limit need not be reported.


4) For frequencies above 1GHz, the field strength limits are based on average limits. However, the peak field strength of any emission shall not exceed the maximum permitted average limits specified above by more than 20 dB under any condition of modulation. For the emissions whose peak level is lower than the average limit, only the peak measurement is shown in the report.

Report No.: HKEM210100010501 Page: 36 of 49


Radiated emission below 1GHz

Mode:b; Polarization:Horizontal; Modulation:DBPSK;

Frequency	QuasiPeak	Pol.	Corr.	Margin	Limit	Deput
(MHz)	(dBµV/m)		(dB/m)	(dB)	(dBµV/m)	Result
203.976429	21.8	Н	10.7	21.7	43.5	Pass
255.594286	30.3	н	13.1	15.7	46.0	Pass
388.484286	25.9	Н	17.1	20.1	46.0	Pass
672.070714	36.7	Н	22.7	9.3	46.0	Pass
771.565000	37.4	н	24.8	8.6	46.0	Pass
984.133571	30.6	Н	26.7	23.4	54.0	Pass

Mode:b; Polarization:Vertical; Modulation: DBPSK;

Frequency	QuasiPeak	Pol.	Corr.	Margin	Limit	Beault
(MHz)	(dBµV/m)		(dB/m)	(dB)	(dBµV/m)	Result
30.207857	31.0	V	12.5	9.0	40.0	Pass
170.372857	22.3	V	14.0	21.2	43.5	Pass
686.205000	37.5	V	22.9	8.5	46.0	Pass
754.243571	30.9	V	24.7	15.1	46.0	Pass
870.227857	40.1	V	25.3	5.9	46.0	Pass
934.317143	37.9	V	26.4	8.2	46.0	Pass

Remark: Only the worst case is shown.

Report No.: HKEM210100010501 Page: 38 of 49

Above 1GHz

Channel:Low

Frequency	Antenna	Emission Level (dBμV/m)		Limit (d	Remark	
(MHz)	Polarization	Peak	Average	Peak	Average	
1804.500	Н	45.4	42.3	74.0	54.0	PASS
3609.500	Н	44.1	36.5	74.0	54.0	PASS
4511.500	Н	46.2	38.5	74.0	54.0	PASS
1664.000	V	47.7	26.6	74.0	54.0	PASS
2660.500	V	47.4	25.0	74.0	54.0	PASS
3609.000	V	44.9	38.8	74.0	54.0	PASS

Channel:Middle

Frequency	Antenna	Emission Level (dBµV/m) Limit (dBµV/m)		lBμV/m)	Remark	
(MHz)	Polarization	Peak	Average	Peak	Average	
1817.500	Н	45.8	43.0	74.0	54.0	PASS
2664.000	Н	42.0	23.7	74.0	54.0	PASS
3635.000	Н	43.3	35.3	74.0	54.0	PASS
1997.000	V	50.6	28.9	74.0	54.0	PASS
3635.000	V	44.5	37.5	74.0	54.0	PASS
4544.000	V	45.2	33.9	74.0	54.0	PASS

Channel: High

Frequency	Antenna	Emission Level (dBµV/m)		Limit (d	Remark	
(MHz)	Polarization	Peak	Average	Peak	Average	
1830.000	Н	46.1	43.2	74.0	54.0	PASS
2661.000	Н	42.0	23.7	74.0	54.0	PASS
3660.000	Н	43.5	35.2	74.0	54.0	PASS
2015.500	V	44.2	24.0	74.0	54.0	PASS
3660.000	V	44.9	37.0	74.0	54.0	PASS
4575.000	V	44.6	33.6	74.0	54.0	PASS

Report No.: HKEM210100010501 Page: 39 of 49

8 Photographs

8.1 EUT Constructional Details (EUT Photos)

Refer to the appendices setup, external and internal photos.

9 Appendix 15.247

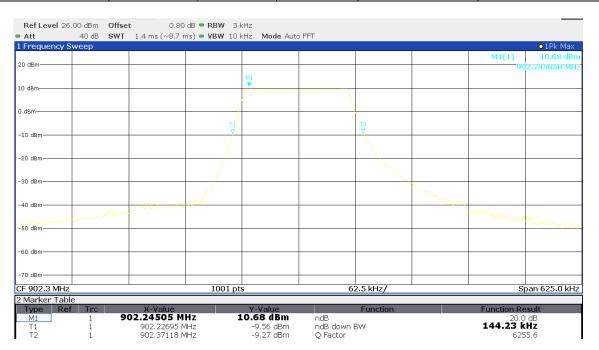
9.1 Peak conducted output power

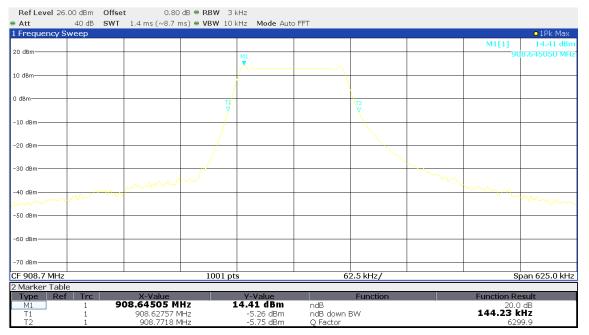
DUT Frequency (MHz)	Peak Power (dBm)	Limit Max (dBm)	Result
902.300000	20.9	30.0	PASS
908.700000	20.9	30.0	PASS
914.900000	20.8	30.0	PASS

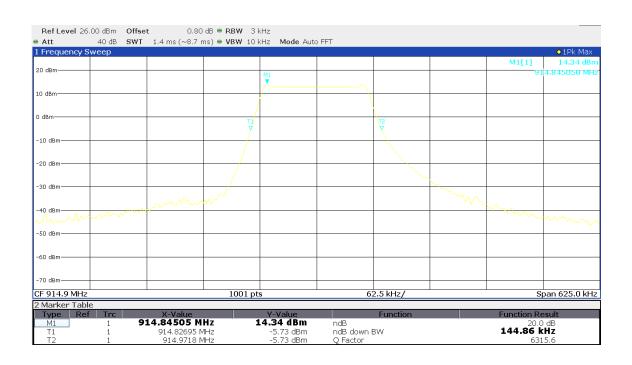
Remark: Antenna gain is 0 dBi

Ref Level 30		0.80 dB 🖷 RBW 1 M						
Att		µs (~6.8 ms) 🖷 VBW 3 N	/Hz Mode Auto	FFT				
1 Frequency S	Sweep H1 30.000 dBm	-			1	1		o1Pk Max
	HI 30.000 dBm						M1[1]	20.86 dBm
			M1				902	266680 MHz
20-dBm			•					
10 dBm								
10 000								
0 dBm								
-10 dBm								
-20 dBm								
-30 dBm								
-40 dBm								
-50 dBm								
-60 dBm								
-00 ubiii-								
CF 902.3 MHz		1001 pt	S	7	2.5 kHz/	1	Spa	n 725.0 kHz

Report No.: HKEM210100010501 Page: 41 of 49


Att		6 µs (~6.8 ms) 🖷 ۷	BW 3 MHz Mode	Auto FFT			
Frequency	Sweep H1 30.000 dBm				-		o1Pk Ma
	HI 30.000 UBII					M1[1]	20.85 dB
			M1			90	8.643510 M
dBm —							
dBm							
dBm							
.0 dBm							
:0 dBm							
30 dBm							
0 dBm							
ro ubili							
50 dBm							
i0 dBm							
F 908.7 MHz	2		1001 pts		72.5 kHz/	s	pan 725.0 kł
	00 ID 011 .	0.00 10 0 0					
er Level 30	.80 dBm Offset	0.80 dB 🖷 R	RM INHZ				


Att	40 00 0111	-1.10 µ3 (0.0		IHz Mode Auto	, , , , ,				
1 Frequency S	weep		I				1		o1Pk Max
	H1 30.000 dBm) 						M1[1]	20.84 dBn
				M1				91	4.852920 MH
				M1					
20-dBm									
10 dBm									
0 dBm									
-10 dBm									
-20 dBm									
-30 dBm									
-40 dBm									
-50 dBm									
-60 dBm									
						[
CF 914.9 MHz		1	1001 pts	• •	7	2.5 kHz/		S	oan 725.0 kHz


9.2 20dB Bandwidth

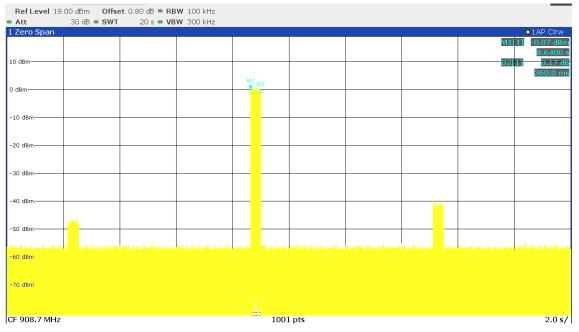
DUT Frequency	Bandwidth	Limit Min Limit Max Band Edg		Band Edge Left	Band Edge Right
(MHz)	(MHz)	(MHz)	(MHz)	(MHz)	(MHz)
902.300000	0.144230		0.500000	902.226950	902.371180
908.700000	0.144230		0.500000	908.625750	908.771800
914.900000	0.144860		0.500000	914.826950	914.971800

9.3 Carrier Frequency Separation

DUT Frequency (MHz)	Frequency Separation (MHz)	Limit (MHz)	Result
902.500000	0.203800	0.096573	PASS

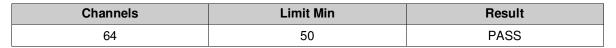
Worse plot as shown below:

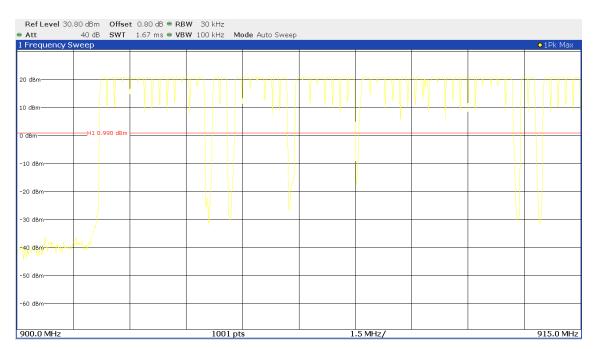
Att	.80 dBm Offset 40 dB SWT		dB = RBW 30 ns) = VBW 100	kHz Mode Au	to FFT			
l Frequency S								●1Pk Max
		M1	D2				D2[1] M1[1]	-0,14 dl 203.80 kH _20,58 dBr
20 dBm				$\Lambda \Lambda$		٨		02.49850 MH
10 dBm					V l			
) dBm	H1 0.990 dBm							
10 dBm				V				
-20 dBm								
30 dBm								
40 dBm								
50 dBm								
-60 dBm								
902.0 MHz			1001 pt			0.0 kHz/		904.0 MH;



9.4 Dwell Time

Channel (MHz)	Width of Burst (ms)	Number of Burst	Active Channels	Measurement Time (s)	Dwell Time (ms)	Limit (ms)	Result
908.700000	360.0000	1	64	20.0	360.0000	≤400	Pass


*Remark: the channel shown is the worst case.


Why measure time is 20s?

9.5 Hopping Frequencies

9.6 Conducted Band Edge Measurement

Non-hopping mode

Inband Peak

Frequency (MHz)	Level (dBm)
902.190000	20.8
914.840000	20.8

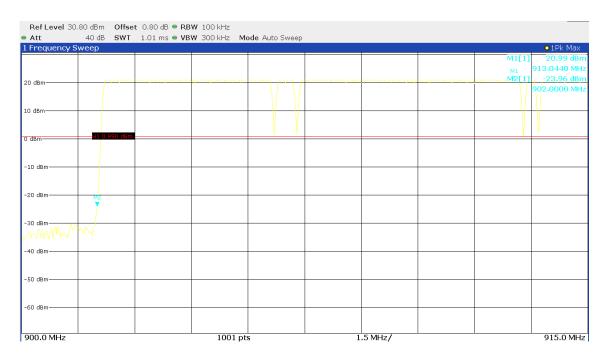
Frequency (MHz)	Level (dBm)	Margin (dB)	Limit (dBm)	Result
902.000000	-14.3	15.1	0.8	PASS
928.000000	-46.0	46.8	0.8	PASS

Remark: Limit = Inband peak - 20dB

Report No.: HKEM210100010501 Page: 46 of 49

Ref Level 30	0.80 dBm Offs	et 0.80 dB 🖷 RB	W 100 kHz							
Att		1.01 ms 👄 VB	W 300 kHz M	ode Auto Sweep						
Frequency S	Sweep			1	1					o 1 Pk Max
									M1[1]	20.79 dB
						M1				902.1900 MH
20 dBm									M2[1]	-14.28 dB
										902.0000 MF
0 dBm										
dBm	H1 0.790 dBr									
abiii										
10 dBm						M2				
-20 dBm										
30 dBm										
						$ \mathcal{M} $				
40 dBm						Jo W				
	وروار والمعاد	vernament	And a ground	and a state	Arama mouth	P	Mormonio		Mar Mary	mound
50 dBm	and APL Province and	A. W. M. M. W.	to A suprose where h	annaharla va al. a	An and a model of			- 1	And the second date.	1
60 dBm	-									
						<u> </u>				<u> </u>
F 889.0 MHz			1001 pt	S	10	0.0 MHz/	•		S	oan 100.0 M⊦

Att 40 dB SWT 1.01 ms VBW 300 kHz Mode Auto Sweep IFrequency Sweep Z0 dBm Y	
M3 M1	-46.04 dBm 928.0000 MHz 20.78 dBm
MI	20.78 dBm
V 1111	
	914.8400 MHz
10 dBm-	
0 dBm- H1 0.780 dBm	
-10 dBm	
-20 dBm-	
-30 dBm-	
-40 dBm	
had a war and the second a second a second a second and the	an and the second
-50 dBm	
-60 dBm	
900.0 MHz 1001 pts 10.0 MHz/	1.0 GHz


Hopping mode

Inband Peak

Frequency (MHz)	Level (dBm)
913.044000	21.0
907.590000	20.9

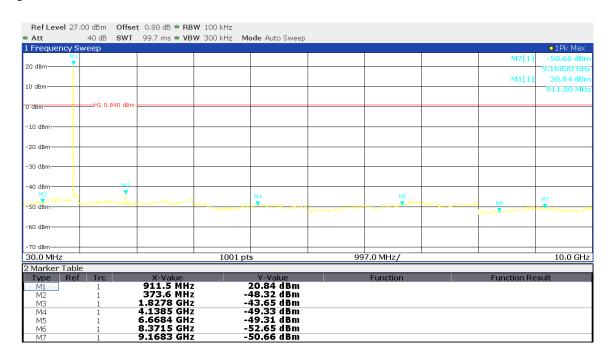
Frequency (MHz)	Level (dBm)	Margin (dB)	Limit (dBm)	Result
902.000000	-24.0	25.0	1.0	PASS
928.000000	-45.1	46.0	0.9	PASS

Remark: Limit = Inband peak - 20dB

Ref Level 30		ffset 0.80 dB 🖷 RB	W 100 kHz						
Att		WT 2 m s 🖷 VB	W 300 kHz Mo	de Auto Sweep					
1 Frequency S	Sweep							MOLU	•1Pk Max -45.14 dBn
								M2[1]	928.000 MH
					M1			M1[1]	
20 dBm									907.590 MH
10 dBm									
0 dBm	H1 0.920	dBm							
-10 dBm									
-20 dBm									
-30 dBm									
50 dbiii									
						۸.			
-40 dBm					ų.	<u>л</u> М2			
	monorthing	mound	and party many	moundand		Wowwwww	himhandren	any many march	yel when my
-50 dBm							_		
-60 dBm									
-00 ubiii									
800.0 MHz	1	1	1001 pt	S		20.0 MHz/	1	1	1.0 GHz

9.7 Conducted spurious emission

Lowest Channel


Ref Level 27	.00 dBm Off	set 0.80 dB 🖷 RI	3W 100 kHz						
 Att 	40 dB 🛛 SW	T 99.7 m s 🗢 V B	3W 300 kHz 🛛 N	lode Auto Sweep					
1 Frequency S	Sweep								o1Pk Max
M1								M7[1]	-51.77 dBm
20 dBm									9.62650 GHz
10 dBm								M1[1]	20.94 dBm
10 UBIII									901.50 MHz
0 dBm	H1 0.940 dB	im:							
-10 dBm									
-20 dBm									
-30 dBm									
-30 ubm									
-40 dBm <mark>M2</mark>	МЗ								
M2	. I		М4				45		
-50 dBm	montonel	an Man marker warder	many would be a series and		and the strength of the second se	a supplement	and had a support of the second	M6	M7
-60 dBm									
-70 dBm			1001 p			07.0 MHz/			10.0 GHz
2 Marker Tabl	-		1001 p	ls	99	97.0 MHZ/			10.0 GH2
Type Ref		X-Value		Y-Value		Function		Function Re	sult
M1	1	901.5 MH		20.94 dBm				T GHOUGHT (C	
M2	1	572.8 MH		46.55 dBm					
M3 M4	1	1.8079 GH 3.8397 GH		42.97 dBm 50.32 dBm					
M5	1	7.0468 GH	z -	48.28 dBm					
M6	1	8.6305 GH	z -	51.99 dBm					
M7	1	9.6265 GH	z -	51.77 dBm					

Middle Channel

Highest Channel

- End of the Report -