

REPORT No. : SZ22090340W03

TEST REPORT

APPLICANT	: JACS Solutions, Inc.
PRODUCT NAME	: Tablet
MODEL NAME	: TR810
BRAND NAME	: N/A
FCC ID	: 2AGCDJACSJL003
STANDARD(S)	: 47 CFR Part 15 Subpart C
RECEIPT DATE	: 2022-10-13
TEST DATE	: 2022-10-19 to 2022-11-08
ISSUE DATE	: 2022-11-15

Edited by: Peng Mi (Rapporteur) Approved by: Shop Junchem Shop Junchem

Shen Junsheng (Supervisor)

NOTE: This document is issued by Shenzhen Morlab Communications Technology Co., Ltd., the test report shall not be reproduced except in full without prior written permission of the company. The test results apply only to the particular sample(s) tested and to the specific tests carried out which is available on request for validation and information confirmed at our website.

Shenzhen Morlab Communications Technology Co., Ltd. FL1-3, Building A, FeiYang Science Park, No.8 LongChang Road, Block67, BaoAn District, ShenZhen , GuangDong Province, P. R. China

 Tel: 86-755-36698555
 Fax: 86-755-36698525

 Http://www.morlab.cn
 E-mail: service@morlab.cn

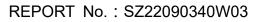
DIRECTORY

1. Technical Information 3
1.1. Applicant and Manufacturer Information 3
1.2. Equipment Under Test (EUT) Description 3
1.3. Modulation Type and Data Rate of EUT 5
1.4. The Channel Number and Frequency 5
1.5. Test Standards and Results ······ 6
1.6. Environmental Conditions 7
2. 47 CFR Part 15C Requirements ······ 8
2.1. Antenna Requirement ······ 8
2.2. Duty Cycle of Test Signal ······ 9
2.3. Maximum Peak and Average Conducted Output Power12
2.4. Bandwidth······15
2.5. Conducted Spurious Emissions and Band Edge22
2.6. Power Spectral Density 32
2.7. Conducted Emission45
2.8. Restricted Frequency Bands ······49
2.9. Radiated Emission59
Annex A Test Uncertainty72
Annex B Testing Laboratory Information73

Change History					
Version	Version Date Reason for change				
1.0 2022-11-15		First edition			

1. Technical Information

Note: Provide by applicant.


1.1. Applicant and Manufacturer Information

Applicant:	JACS Solutions, Inc.	
Applicant Address:809 Pinnacle Drive, Suite R, Linthicum Heights, MD 21090, United States		
Manufacturer: JACS Solutions, Inc.		
Manufacturer Address: 809 Pinnacle Drive, Suite R, Linthicum Heights, MD 21090 United States		

1.2. Equipment Under Test (EUT) Description

Product Name:	Tablet		
Sample No.:	1#		
Hardware Version:	TR810 JACS V1.	0.0	
Software Version:	TR810 JACS V1.	0.0	
Modulation Technology:	DSSS, OFDM		
Modulation Type:	Refer to section1	.3	
Operating Frequency Range:	802.11b/g/ n (HT2	20): 2412MHz–2472MHz	
Antenna Type:	FPC Antenna		
Antenna Gain:	ANT 0: 3.66dBi; ANT 1: 3.66dBi		
Directional Gain:	6.67dBi _{Note 3}		
	Battery		
	Brand Name:	DONGGUAN ENCORE ENERGY CO., LTD	
	Model No.:	72104114	
Accessory Information:	Serial No.:	N/A	
Accessory mormation.	Capacity:	8000mAh	
	Rated Voltage:	3.7V	
	Charge Limit:	4.2V	
	Manufacturer:	DONGGUAN ENCORE ENERGY CO., LTD	

	AC Adapter		
	Brand Name:	Shenzhen Candour Co.,Ltd	
	Model No.:	BCT050200-078ED	
Accessory Information:	Serial No.:	N/A	
	Rated Output:	5V=2A	
	Rated Input:	100-240V~50/60Hz, 0.3A	
	Manufacturer:	Shenzhen Candour Co.,Ltd	

Note 1: We use the dedicated software to control the EUT continuous transmission.

Note 2: The EUT has two antennas, only 802.11n modulation mode supports a MIMO function.

Note 3: According to KDB 662911 D01, the directional gain = G_{ANT} + 10log(N_{ANT}) dBi, where G_{ANT} is the maximum antenna gain in dBi, N_{ANT} is the number of outputs.

Note 4: For conducted test item Conducted Output Power and Power Spectral Density of each modulation mode, we recorded the test result of two antennas separately, for other conducted test items both of the two antennas were tested separately, we only recorded the worst test result (ANT 1) in this report.

Note 5: Radiation test items for all modulation operate at 2Tx mode during the test, only the worst test result(ANT1) was recorded in this report.

Note 6: For a more detailed description, please refer to Specification or User's Manual supplied by the applicant and/or manufacturer.

1.3. Modulation Type and Data Rate of EUT

Modulation technology	Modulation Type	Data Rate (Mbps) Note1
	DBPSK	1
DSSS (802.11b)	DQPSK	2
	CCK	5.5/ 11
	BPSK	6 / 9
OFDM (802.11g)	QPSK	12 / 18
	16QAM	24 / 36
	64QAM	48 / 54
	BPSK	6.5
OFDM	QPSK	13/19.5
(802.11n (HT20))	16QAM	26/39
	64QAM	52/58.5/65

Note1: The worst-case mode (bold face) in all data rates has been determined during the pre-scan, only the test data of the worst-case were recorded in this report.

1.4. The Channel Number and Frequency

Test Mode	Channel	Frequency (MHz)	Channel	Frequency (MHz)
	1	2412	8	2447
	2	2417	9	2452
902.11 h/a/p	3	2422	10	2457
802.11b/g/ n	4	2427	11	2462
(HT20)	5	2432	12	2467
	6	2437	13	2472
	7	2442		

Note 1: The black bold channels were selected for test.

1.5. Test Standards and Results

The objective of the report is to perform testing according to 47 CFR Part 15 Subpart C for the EUT FCC ID Certification:

No	. Identity	Document Title	
1	47 CFR Part 15	Radio Frequency Devices	

Test detailed items/section required by FCC rules and results are as below:

No.	Section	Description	Test Date	Test Engineer	Result	Method Determination /Remark
1	15.203	Antenna Requirement	N/A	N/A	PASS	No deviation
2	N/A	Duty Cycle of Test Signal	Oct. 21, 2022	Zhong Yanshan	PASS	No deviation
3	15.247(b)	Maximum Peak and Average Conducted Output Power	Oct. 21, 2022	Zhong Yanshan	PASS	No deviation
4	15.247(a)	Bandwidth	Oct. 21, 2022	Zhong Yanshan	PASS	No deviation
5	15.247(d)	Conducted Spurious Emission and Band Edge	Oct. 21, 2022	Zhong Yanshan	PASS	No deviation
6	15.247(e)	Power Spectral Density	Oct. 21, 2022	Zhong Yanshan	PASS	No deviation
7	15.207	Conducted Emission	Nov. 01, 2022	Fan Zehang	PASS	No deviation
8	15.247(d)	Restricted Frequency Bands	Nov. 08, 2022	Su Zhan	PASS	No deviation
9	15.209, 15.247(d)	Radiated Emission	Nov. 05, 2022	Su Zhan	PASS	No deviation
	Note 1: The tests were performed according to the method of measurements prescribed in ANSIC63.10-2013, KDB558074 D01 v05r02.					

Note 2: The path loss during the RF test is calibrated to correct the results by the offset setting in the test equipments. The ref offset 11.5dB contains two parts that cable loss 1.5dB and Attenuator 10dB.

Note 3: Additions to, deviation, or exclusions from the method shall be judged in the "method determination" column of add, deviate or exclude from the specific method shall be explained in the "Remark" of the above table.

Note 4: When the test result is a critical value, we will use the measurement uncertainty give the judgment result based on the 95% confidence intervals.

1.6. Environmental Conditions

During the measurement, the environmental conditions were within the listed ranges:

Temperature (°C):	15-35
Relative Humidity (%):	30-60
Atmospheric Pressure (kPa):	86-106

2.47 CFR Part 15C Requirements

2.1. Antenna Requirement

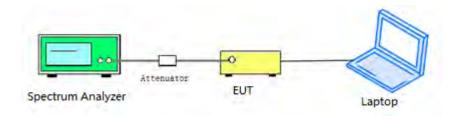
2.1.1. Applicable Standard

According to FCC 15.203, an intentional radiator shall be designed to ensure that no antenna other than that furnished by the responsible party shall be used with the device. The use of a permanently attached antenna or of an antenna that uses a unique coupling to the intentional radiator shall be considered sufficient to comply with the provisions of this section.

2.1.2. Test Result: Compliant

The EUT has a permanently and irreplaceable attached antenna. Please refer to the EUT internal photos.

2.2. Duty Cycle of Test Signal


2.2.1. Requirement

Preferably, all measurements of maximum conducted (average) output power will be performed with the EUT transmitting continuously (i.e., with a duty cycle of greater than or equal to 98%). When continuous operation cannot be realized, then the use of sweep triggering/signal gating techniques can be used to ensure that measurements are made only during transmissions at the maximum power control level. Such sweep triggering/signal gating techniques will require knowledge of the minimum transmission duration (T) over which the transmitter is on and is transmitting at its maximum power control level for the tested mode of operation. Sweep triggering/signal gating techniques can be set such that it does not exceed T at any time that data are being acquired (i.e., no transmitter OFF-time is to be considered).

When continuous transmission cannot be achieved and sweep triggering/signal gating cannot be implemented, alternative procedures are provided that can be used to measure the average power; however, they will require an additional measurement of the transmitter duty cycle (D). Within this subclause, the duty cycle refers to the fraction of time over which the transmitter is ON and is transmitting at its maximum power control level. The duty cycle is considered to be constant if variations are less than ±2%; otherwise, the duty cycle is considered to be nonconstant.

2.2.2. Test Description

Test Setup:

ANSI C63.10 2013 Clause 11.6 was used in order to prove compliance.

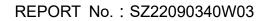
2.2.3. Test Result

A. Test Verdict:

Test Mode	Duty Cycle (%) (D)	Duty Factor (10*lg[1/D])
802.11b	100.00	0.00
802.11g	97.21	0.12
802.11n (HT20)	97.04	0.13

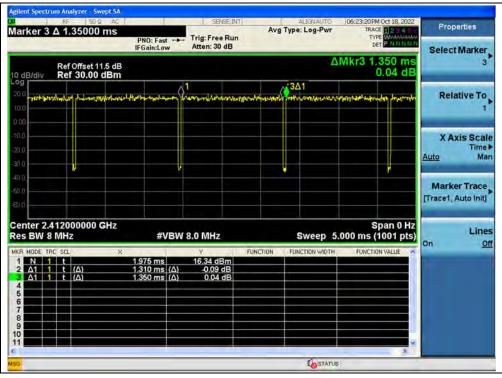
B. Test Plot:

rker 1 62.8000	50 Ω AC D ms	PNO: Fast IFGain:Low	Trig: Free Run Atten: 30 dB	Avg	ALIGNAUTO Type: Log-Pwr	06:21:08 PM Oct 18, 2022 TRACE 12:34 TYPE WARMAN DET P N N N N N	Peak Search
dB/div Ref 30	et 11.5 dB .00 dBm					Mkr1 62.80 ms 19.49 dBm	NextPeak
				~ ~	<u> </u>		Next Pk Righ
) 							Next Pk Lef
1 9 =							Marker Delt
nter 2.4120000 BW 8 MHz	00 GHz ×	#VB	N 8.0 MHz	FUNCTION	Sweep 1	Span 0 Hz 00.0 ms (1001 pts) FUNCTION VALUE	Mkr→C
N 1 t		62.80 ms	19.49 dBm				Mkr→RefLv
							Mon 1 of
					To STATUS	5	-


(Channel 1, 802.11b)

Shenzhen Morlab Communications Technology Co., Ltd. FL1-3, Building A, FeiYang Science Park, No.8 LongChang Road, Block67, BaoAn District, ShenZhen , GuangDong Province, P. R. China

Tel: 86-755-36698555 Http://www.morlab.cn E-mail: service@morlab.cn


Fax: 86-755-36698525

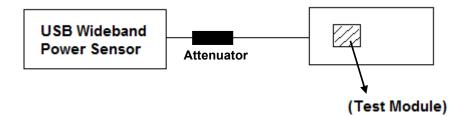
	1.43500 ms	PNO: Fast + IFGain:Low	Trig: Free Run Atten: 30 dB		Type: Log-Pwr	TRACE 12345 TYPE WANNER DET P NNNNN	Properties
B/div	tef Offset 11.5 d Ref 30.00 dBr	в			Δ	/kr3 1.435 ms -0.30 dB	Select Marker 3
whenty	ng ng pangang ng n	harrow f	1 หลุ่มาณะหมายนายในส	instruction of the second	3∆1 วารีงชาวอง	ware wantach at our	Relative To 1
							X Axis Scal Time <u>Auto</u> Ma
							Marker Trace [Trace1, Auto Init]
ter 2.41 BW 8 N	2000000 GHz IHz		W 8.0 MHz		Sweep 5.0	Span 0 Hz 000 ms (1001 pts)	Line On <u>C</u>
	t (Δ)	× 1.850 ms 1.395 ms (Δ 1.435 ms (Δ		FUNCTION	FUNCTION WIDTH	FUNCTION VALUE 5	

(Channel 1, 802.11g)

(Channel 1, 802.11n (HT20))

MORLAB

2.3. Maximum Peak and Average Conducted Output Power


2.3.1. Requirement

According to FCC section 15.247(b)(3), For systems using digital modulation in the 902-928 MHz, 2400-2483.5 MHz, and 5725-5850 MHz bands: The maximum peak conducted output power of the intentional radiator shall not exceed1 Watt.

2.3.2. Test Description

The measured output power was calculated by the reading of the USB Wideband Power Sensor and calibration.

Test Setup:

The EUT (Equipment under the test) which is coupled to the USB Wideband Power Sensor; the RF load attached to the EUT antenna terminal is 500hm; the path loss as the factor is calibrated to correct the reading.

2.3.3. Test Result

Maximum Peak Conducted Output Power

802.11b Mode

	Fraguanay		Measured		Lin	nit		
Channel	Frequency (MHz)	ANT 0		ANT 1		(dBm)		Verdict
	(IVITZ)	dBm	W	dBm	W	dBm	W	
1	2412	18.16	0.065	18.49	0.071			PASS
7	2442	18.27	0.067	18.34	0.068	30	1	PASS
13	2472	18.19	0.066	18.58	0.072			PASS

802.11g Mode

	Fraguanay		Measured	Peak Power		Lin	nit	
Channel	Frequency (MHz)	ANT 0		AN	ANT 1		(dBm)	
	(101112)	dBm	W	dBm	W	dBm	W	
1	2412	20.89	0.123	21.46	0.140			PASS
7	2442	21.54	0.143	21.00	0.126	30	1	PASS
13	2472	21.53	0.142	21.54	0.143			PASS

802.11n (HT20) Mode

	Frequency	Measur	ed Peak	Total	Total	Lin	hit	
Channel	(MHz)	Power	(dBm)	Power	Power	L.II.1	IIL	Verdict
	(IVITZ)	ANT 0	ANT 1	(dBm)	(W)	dBm	W	
1	2412	21.10	21.53	24.33	0.271			PASS
7	2442	21.34	21.67	24.52	0.283	29.33	0.86	PASS
13	2472	21.21	21.90	24.58	0.287			PASS
Note: Dire	ectional gain	= 3.60dBi +	10log(2) = 6.	67dBi>6dBi	, so the power	r limit sh	all be r	educed
to 30-(6.6	7-6)=29.33dE	3m.						

Maximum Average Conducted Output Power

802.11b Mode

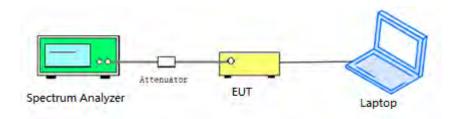
			Ave	Average Power						
Frequency	Meas	sured	Duty	Du	ity Factor	⁻ Calcula	ted	Limit		Verdic
(MHz)	ANT0	ANT1	Duty Factor	AN	IT0	AN	IT1			t
	dBm	dBm	Гасіог	dBm	W	dBm	W	dBm	W	
2412	14.99	14.52		14.99	0.032	14.52	0.028			PASS
2442	15.09	14.76	0.00	15.09	0.032	14.76	0.030	30	1	PASS
2472	14.86	15.13		14.86	0.031	15.13	0.033			PASS

802.11g Mode

			Ave	Average Power						
Frequency	Meas	sured	Duti	Du	ty Factor	⁻ Calcula	ted	Limit		Verdic
(MHz)	ANT0	ANT1	Duty Factor	AN	IT0	AN	IT1			t
	dBm	dBm	Гасіог	dBm	W	dBm	W	dBm	W	
2412	14.87	15.05		14.99	0.032	15.17	0.033			PASS
2442	14.90	15.12	0.12	15.02	0.032	15.24	0.033	30	1	PASS
2472	14.86	15.18		14.98	0.031	15.30	0.034			PASS

802.11n (HT20) Mode

			Avera	ge Power				
Frequency	Meas	ured	Dut	Total Dawar with Duty Faster		Lim	Verdict	
(MHz)	ANT0	ANT1	Duty Factor	Iotal Power with	Total Power with Duty Factor			
	dBm	dBm	Factor	dBm	W	dBm	W	
2412	14.66	14.95		17.92	0.062			PASS
2442	14.74	15.10	0.13	18.06	0.064	29.33	0.86	PASS
2472	14.75	15.12		18.06	0.064			PASS
Note: Direct	ional gain	= 3.60dB	i +10log(2	2) = 6.67dBi>6dE	Bi, so the powe	r limit sha	III be re	duced to
30-(6.76-6)=	29.33dBm	1.						


REPORT No. : SZ22090340W03

2.4.1. Requirement

According to FCC section 15.247(a) (2), Systems using digital modulation techniques may operate in the 902 - 928 MHz, 2400 - 2483.5 MHz, and 5725 - 5850 MHz bands. The minimum 6 dB bandwidth shall be at least 500 kHz.

2.4.2. Test Description

Test Setup:

The EUT is coupled to the Spectrum Analyzer; the RF load attached to the EUT antenna terminal is 500hm; the path loss as the factor is calibrated to correct the reading.

Make the measurement with the spectrum analyzer's resolution bandwidth (RBW) = 100 kHz. In order to make an accurate measurement, set the span greater than RBW.

2.4.3. Test Procedure

KDB 558074 Section 8.2 was used in order to prove compliance.

REPORT No. : SZ22090340W03

2.4.4. Test Result

802.11b Mode

A. Test Verdict:

Channel	Frequency (MHz)	6 dB Bandwidth (MHz)	Limits(kHz)	Result
1	2412	9.072	≥500	PASS
7	2442	9.066	≥500	PASS
13	2472	9.066	≥500	PASS

B. Test Plot:

(Channel 1, 802.11b)

Fax: 86-755-36698525

(Channel 7, 802.11b)

(Channel 13, 802.11b)

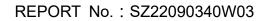
Shenzhen Morlab Communications Technology Co., Ltd. FL1-3, Building A, FeiYang Science Park, No.8 LongChang Road, Block67, BaoAn District, ShenZhen , GuangDong Province, P. R. China Fax: 86-755-36698525 E-mail: service@morlab.cn

_ ...

REPORT No. : SZ22090340W03

802.11g Mode

A. Test Verdict:


Channel	Frequency (MHz)	6 dB Bandwidth (MHz)	Limits(kHz)	Result
1	2412	16.38	≥500	PASS
7	2442	16.37	≥500	PASS
13	2472	16.39	≥500	PASS

B. Test Plot:

(Channel 1, 802.11g)

(Channel 7, 802.11g)

(Channel 13, 802.11g)

Shenzhen Morlab Communications Technology Co., Ltd. FL1-3, Building A, FeiYang Science Park, No.8 LongChang Road, Block67, BaoAn District, ShenZhen , GuangDong Province, P. R. China Tel: 86-755-36698555 Http://www.morlab.cn Fax: 86-755-36698525

E-mail: service@morlab.cn

REPORT No. : SZ22090340W03

802.11n (HT20) Mode

A. Test Verdict:

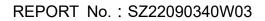
Channel	Frequency (MHz)	6 dB Bandwidth (MHz)	Limits(kHz)	Result
1	2412	17.63	≥500	PASS
7	2442	17.62	≥500	PASS
13	2472	17.61	≥500	PASS

B. Test Plot:

Center Freq 2.412000000	Trig: F	SENSE:INT r Freq: 2.412000000 GHz free Run Avg Hold: h: 10 dB	Radio S	evice: BTS		eas Setup g/Hold Num
Ref Offset 11.5 d 10 dB/div Ref 20.00 dBn					On	10 Off
100 00 00 00 00 00 00 00 00 00	hh.	y	hurtrees		Exp	Avg Mode Repea
30.0 40.0 				min		OBW Powe r 99.00 %
Center 2.412 GHz #Res BW 100 kHz	#	VBW 300 kHz		an 30 MHz 3.733 ms		
Occupied Bandwidt	^h 7.768 MHz	Total Power	22.0 dBm			x dB
Transmit Freq Error x dB Bandwidth	-868 Hz 17.63 MHz	OBW Power x dB	99.00 % -6.00 dB			-6.00 dB
						More 1 of 2
155			STATUS			

(Channel 1, 802.11n (HT20))

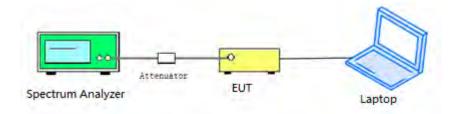
(Channel 7, 802.11n (HT20))



(Channel 13, 802.11n (HT20))

Shenzhen Morlab Communications Technology Co., Ltd. FL1-3, Building A, FeiYang Science Park, No.8 LongChang Road, Block67, BaoAn District, ShenZhen , GuangDong Province, P. R. China Tel: 86-755-36698555 Http://www.morlab.cn Fax: 86-755-36698525

morlab.cn E-mail: service@morlab.cn


2.5. Conducted Spurious Emissions and Band Edge

2.5.1. Requirement

According to FCC section 15.247(c), in any 100kHz bandwidth outside the frequency band in which the spread spectrum or digitally modulated intentional radiator is operating, the radio frequency power that is produced by the intentional radiator shall be at least 20dB below that in the 100kHz bandwidth within the band that contains the highest level of the desired power, based on either an RF conducted or a radiated measurement.

2.5.2. Test Description

Test Setup:

The EUT is coupled to the Spectrum Analyzer; the RF load attached to the EUT antenna terminal is 500hm; the path loss as the factor is calibrated to correct the reading.

Make the measurement with the spectrum analyzer's resolution bandwidth (RBW) = 100 kHz. In order to make an accurate measurement, set the span greater than RBW.

2.5.3. Test Procedure

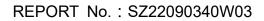
KDB 558074 Section 8.5 and 8.7 was used in order to prove compliance.

2.5.4. Test Result

802.11b Mode

A. Test Verdict:

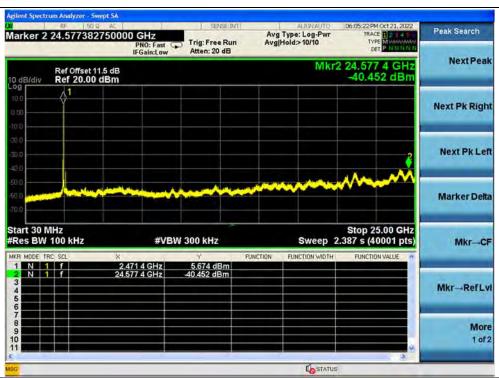
		Measured Max. Out	Limit (dBm)		
Channel	Frequency (MHz)	of Band Emission	Carrier	Calculated	Verdict
		(dBm)	Level	-20dBc Limit	
1	2412	-40.07	6.47	-13.53	PASS
7	2442	-40.57	5.67	-14.33	PASS
13	2472	-40.45	5.67	-14.33	PASS


B. Test Plot:

(30MHz to 25GHz, Channel 1, 802.11b)

Fax: 86-755-36698525

(Band Edge, Channel 1, 802.11b)



(30MHz to 25GHz, Channel 7, 802.11b)



(30MHz to 25GHz, Channel 13, 802.11b)

(Band Edge, Channel 13, 802.11b)

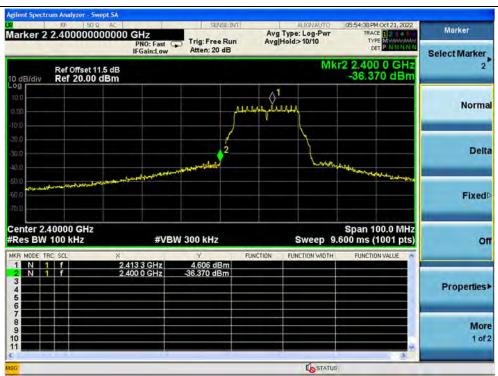
802.11g Mode

A. Test Verdict:

		Measured Max. Out	Limit (dBm)		
Channel	Frequency (MHz)	of Band Emission	Carrier	Calculated	Verdict
		(dBm)	Level	-20dBc Limit	
1	2412	-40.21	4.11	-15.89	PASS
7	2442	-39.68	3.55	-16.45	PASS
13	2472	-41.17	3.99	-16.01	PASS

B. Test Plot:

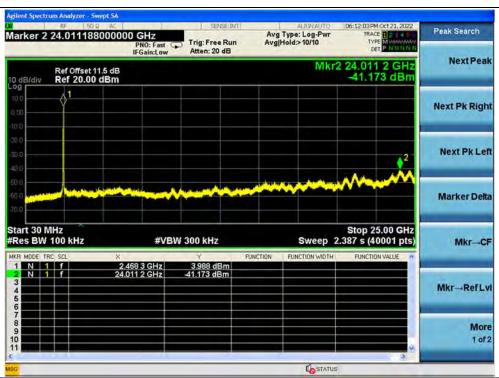
(30MHz to 25GHz, Channel 1, 802.11g)



Shenzhen Morlab Communications Technology Co., Ltd. FL1-3, Building A, FeiYang Science Park, No.8 LongChang Road, Block67, BaoAn District, ShenZhen , GuangDong Province, P. R. China Tel: 86-755-36698555 Fax: 86-755-36698525 Http://www.morlab.cn

E-mail: service@morlab.cn

(Band Edge, Channel 1, 802.11g)



(30MHz to 25GHz, Channel 7, 802.11g)

(30MHz to 25GHz, Channel 13, 802.11g)

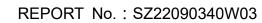
(Band Edge, Channel 13, 802.11g)

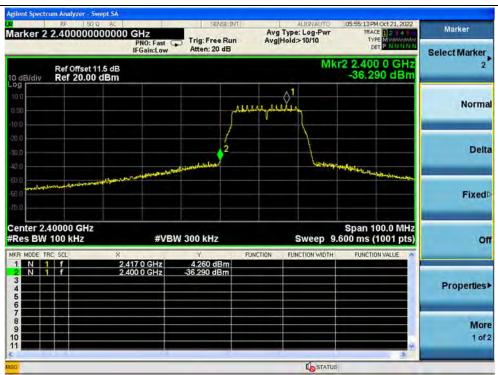
REPORT No. : SZ22090340W03

802.11n (HT20) Mode

A. Test Verdict:

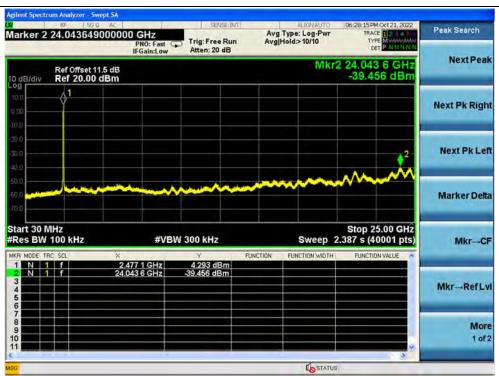
		Measured Max. Out	Limit (dBm)		
Channel	Frequency (MHz)	of Band Emission	Carrier	Calculated	Verdict
		(dBm)	Level	-20dBc Limit	
1	2412	-40.68	2.95	-17.05	PASS
7	2442	-40.44	4.05	-15.95	PASS
13	2472	-39.46	4.29	-15.71	PASS


B. Test Plot:


(30MHz to 25GHz, Channel 1, 802.11n (HT20))

Shenzhen Morlab Communications Technology Co., Ltd. FL1-3, Building A, FeiYang Science Park, No.8 LongChang Road, Block67, BaoAn District, ShenZhen , GuangDong Province, P. R. China Tel: 86-755-36698555 Fax: 86-755-36698525 Http://www.morlab.cn E-mail: service@morlab.cn

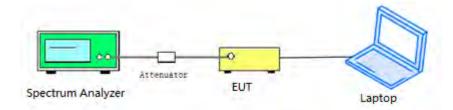
(Band Edge, Channel 1, 802.11n (HT20))



(30MHz to 25GHz, Channel 7, 802.11n (HT20))

(30MHz to 25GHz, Channel 13, 802.11n (HT20))

(Band Edge, Channel 13, 802.11n (HT20))


2.6. Power Spectral Density

2.6.1. Requirement

For digitally modulated systems, the power spectral density conducted from the intentional radiator to the antenna shall not be greater than 8dBm in any 3 kHz band during any time interval of continuous transmission. This power spectral density shall be determined in accordance with the provisions of paragraph (b) of this section. The same method of determining the conducted output power shall be used to determine the power spectral density.

2.6.2. Test Description

Test Setup:

The EUT is coupled to the Spectrum Analyzer; the RF load attached to the EUT antenna terminal is 500hm; the path loss as the factor is calibrated to correct the reading.

2.6.3. Test Procedure

KDB 558074 Section 8.4 was used in order to prove compliance.

REPORT No. : SZ22090340W03

2.6.4. Test Result

802.11b Mode

A. Test Verdict:

Channel	Frequency (MHz)	Measured PSD (dBm/3kHz)		Limit	Verdict
		ANT 0	ANT 1	(dBm/3kHz)	
1	2412	-5.71	-5.28	8	PASS
7	2442	-5.44	-7.05	8	PASS
13	2472	-8.60	-6.29	8	PASS

B. Test Plot:

(Channel 1, 802.11b, ANT0)

Shenzhen Morlab Communications Technology Co., Ltd. FL1-3, Building A, FeiYang Science Park, No.8 LongChang Road, Block67, BaoAn District, ShenZhen , GuangDong Province, P. R. China Tel: 86-755-36698555 Fax: 86-755-36698525 Http://www.morlab.cn

E-mail: service@morlab.cn

(Channel 7, 802.11b, ANT0)

(Channel 13, 802.11b, ANT0)

Shenzhen Morlab Communications Technology Co., Ltd. FL1-3, Building A, FeiYang Science Park, No.8 LongChang Road, Block67, BaoAn District, ShenZhen , GuangDong Province, P. R. China Tel: 86-755-36698555 Fax: 8 Http://www.morlab.cn E-mail

Fax: 86-755-36698525 E-mail: service@morlab.cn

(Channel 1, 802.11b, ANT1)

(Channel 7, 802.11b, ANT1)

MORLAB

Shenzhen Morlab Communications Technology Co., Ltd. FL1-3, Building A, FeiYang Science Park, No.8 LongChang Road, Block67, BaoAn District, ShenZhen , GuangDong Province, P. R. China Tel: 86-755-36698555 Fax: 86-755-36698525 Http://www.morlab.cn

E-mail: service@morlab.cn

(Channel 13, 802.11b, ANT1)

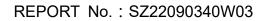
Shenzhen Morlab Communications Technology Co., Ltd. FL1-3, Building A, FeiYang Science Park, No.8 LongChang Road, Block67, BaoAn District, ShenZhen , GuangDong Province, P. R. China Tel: 86-755-36698555 Fax: 86-755-36698525 Http://www.morlab.cn E-mail: service@morlab.cn

802.11g Mode

A. Test Verdict:

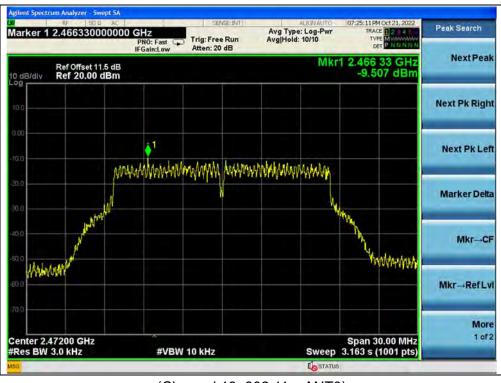
Channel	Frequency	Measured PS	D (dBm/3kHz)	Limit	Verdict
Channon	(MHz)	ANT 0	ANT 1	(dBm/3kHz)	Voluiot
1	2412	-9.60	-9.10	8	PASS
7	2442	-9.46	-9.30	8	PASS
13	2472	-9.51	-8.74	8	PASS

B. Test Plot:

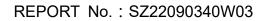


(Channel 1, 802.11g, ANT0)

Shenzhen Morlab Communications Technology Co., Ltd. FL1-3, Building A, FeiYang Science Park, No.8 LongChang Road, Block67, BaoAn District, ShenZhen , GuangDong Province, P. R. China Tel: 86-755-36698555 Fa Http://www.morlab.cn E-r


Fax: 86-755-36698525 E-mail: service@morlab.cn

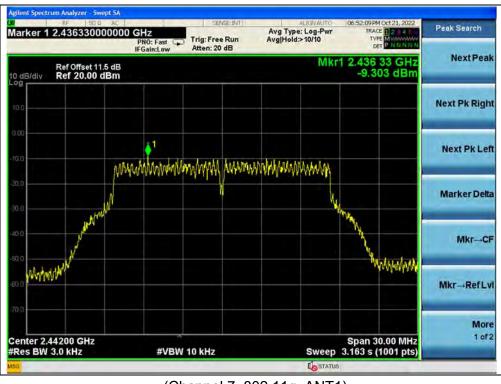
(Channel 7, 802.11g, ANT0)



(Channel 13, 802.11g, ANT0)


MORLAB

Shenzhen Morlab Communications Technology Co., Ltd. FL1-3, Building A, FeiYang Science Park, No.8 LongChang Road, Block67, BaoAn District, ShenZhen , GuangDong Province, P. R. China Tel: 86-755-36698555 Fax: 8 Http://www.morlab.cn E-mai


Fax: 86-755-36698525 E-mail: service@morlab.cn

(Channel 1, 802.11g, ANT1)

(Channel 7, 802.11g, ANT1)

Shenzhen Morlab Communications Technology Co., Ltd. FL1-3, Building A, FeiYang Science Park, No.8 LongChang Road, Block67, BaoAn District, ShenZhen , GuangDong Province, P. R. China

(Channel 13, 802.11g, ANT1)

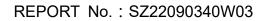
802.11n (HT20) Mode

A. Test Verdict:

Channel	Frequency	Measured PS	D (dBm/3kHz)	Total PSD	Limit	Verdict
Chainer	(MHz)	ANT 0	ANT 1	(dBm/3kHz)	(dBm/3kHz)	, or anot
1	2412	-9.90	-10.46	-7.16	7.33	PASS
7	2442	-9.18	-9.90	-6.51	7.33	PASS
13	2472	-9.09	-8.19	-5.61	7.33	PASS
		0.00 10 101			1 10 11	·· · · · ·

Note: Directional gain = 3.66dBi + $10\log(2) = 6.67$ dBi>6dBi, so the power density limit shall be reduced to 8-(6.67-6)=7.33dBm.

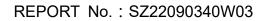
B. Test Plot:


(Channel 1, 802.11n (HT20), ANT0)

Shenzhen Morlab Communications Technology Co., Ltd. FL1-3, Building A, FeiYang Science Park, No.8 LongChang Road, Block67, BaoAn District, ShenZhen , GuangDong Province, P. R. China Tel: 86-755-36698555

Fax: 86-755-36698525

Http://www.morlab.cn



(Channel 7, 802.11n (HT20), ANT0)

(Channel 13, 802.11n (HT20), ANT0)


MORLAB

(Channel 1, 802.11n (HT20), ANT1)

(Channel 7, 802.11n (HT20), ANT1)

MORLAB

Shenzhen Morlab Communications Technology Co., Ltd. FL1-3, Building A, FeiYang Science Park, No.8 LongChang Road, Block67, BaoAn District, ShenZhen , GuangDong Province, P. R. China

Tel: 86-755-36698555 Http://www.morlab.cn E-mail: service@morlab.cn

Fax: 86-755-36698525

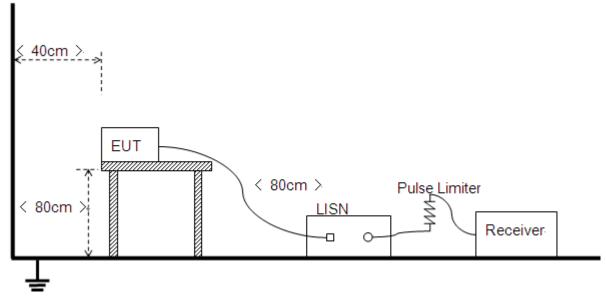
(Channel 13, 802.11n (HT20), ANT1)

2.7. Conducted Emission

2.7.1. Requirement

According to FCC section 15.207, for an intentional radiator that is designed to be connected to the public utility (AC) power line, the radio frequency voltage that is conducted back onto the AC power line on any frequency within the band 150kHz to 30MHz shall not exceed the limits in the following table, as measured using a 50μ H/ 50Ω line impedance stabilization network (LISN).

Frequency Penge (MHz)	Conducted	Limit (dBµV)
Frequency Range (MHz)	Quai-peak	Average
0.15 - 0.50	66 to 56	56 to 46
0.50 - 5	56	46
5 - 30	60	50


NOTE:

(a) The lower limit shall apply at the band edges.

(b) The limit decreases linearly with the logarithm of the frequency in the range 0.15 - 0.50MHz.

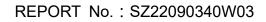
2.7.2. Test Description

Test Setup:

The Table-top EUT was placed upon a non-metallic table 0.8m above the horizontal metal reference ground plane. EUT was connected to LISN and LISN was connected to reference Ground Plane. EUT was 80cm from LISN. The set-up and test methods were according to ANSI C63.10 2013.

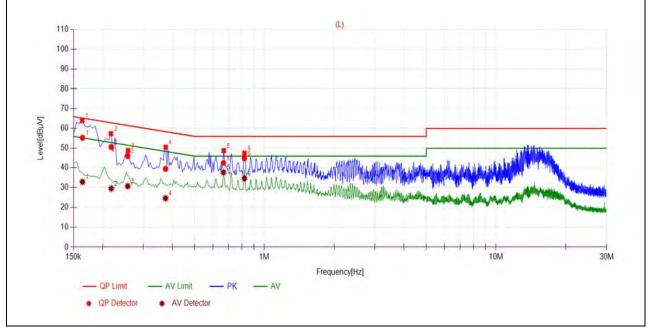
MORLAB

2.7.3. Test Result

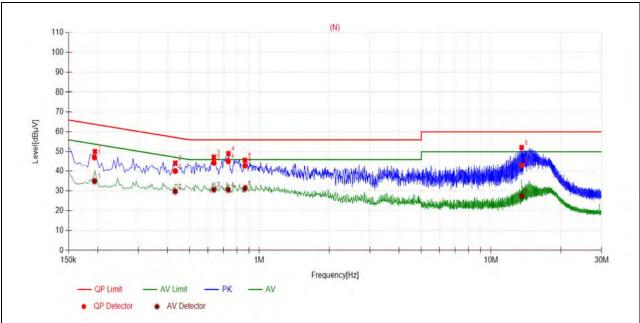

The maximum conducted interference is searched using Peak (PK), if the emission levels more than the AV and QP limits, and that have narrow margins from the AV and QP limits will be re-measured with AV and QP detectors. Tests for both L phase and N phase lines of the power mains connected to the EUT are performed. Set RBW=9kHz, VBW=30kHz. Refer to recorded points and plots below.

Note: Both of the test voltage AC 120V/60Hz and AC 230V/50Hz were considered and tested respectively, only the results of the worst case AC 120V/60Hz were recorded in this report.

A. Test Setup:

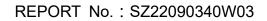

Test Mode: <u>EUT+Adapter+Earphone + WIFI TX</u> Test Voltage: <u>AC 120V/60Hz</u> The measurement results are obtained as below: E [dB μ V] =U_R + L_{Cable loss} [dB] + A_{Factor} U_R: Receiver Reading A_{Factor}: Voltage division factor of LISN

B. Test Plot:



(L Phase)

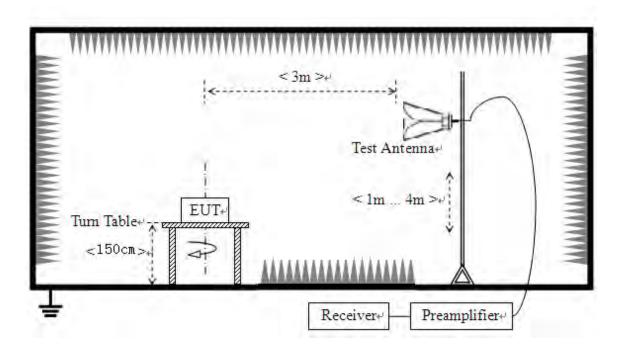
No.	Fre.	Emission L	.evel (dBµV)	Limit (dBµV)	Power-line	Verdict
	(MHz)	Quai-peak	Average	Quai-peak	Average		voruiot
1	0.1639	55.29	32.76	65.26	55.26		PASS
2	0.2182	50.61	29.42	62.89	52.89		PASS
3	0.2569	46.08	30.58	61.53	51.53	Line	PASS
4	0.3743	39.34	24.49	58.40	48.40	Line	PASS
5	0.6653	42.45	37.58	56.00	46.00		PASS
6	0.8198	44.91	34.55	56.00	46.00		PASS


(N	Phase))
----	--------	---

No.	Fre.	Emission L	evel (dBµV)	Limit (dBµV)	Power-line	Verdict
	(MHz)	Quai-peak	Average	Quai-peak	Average		
1	0.1941	47.13	34.88	63.86	53.86		PASS
2	0.4331	40.02	29.71	57.19	47.19		PASS
3	0.6360	44.46	30.64	56.00	46.00	Noutral	PASS
4	0.7330	45.28	30.50	56.00	46.00	Neutral	PASS
5	0.8656	42.81	31.15	56.00	46.00		PASS
6	13.5720	42.99	27.26	60.00	50.00		PASS

Tel: 86-755-36698555 Fax Http://www.morlab.cn E-m

Fax: 86-755-36698525


2.8. Restricted Frequency Bands

2.8.1. Requirement

According to FCC section 15.247(d), in any 100kHz bandwidth outside the frequency band in which the spread spectrum or digitally modulated intentional radiator is operating, the radio frequency power that is produced by the intentional radiator shall be at least 20dB below that in the 100kHz bandwidth within the band that contains the highest level of the desired power, In addition, radiated emissions which fall in the restricted bands, as defined in 15.205(a), must also comply with the radiated emission limits specified in 15.209(a).

2.8.2. Test Description

Test Setup

The EUT is located in a 3m Semi-Anechoic Chamber; the antenna factors, cable loss and so on of the site as factors are calculated to correct the reading.

For the Test Antenna:

Test Antenna is 3m away from the EUT. Test Antenna height is varied from 1m to 4m above the ground to determine the maximum value of the field strength.

2.8.3. Test Procedure

KDB 558074 Section 8.6 and 8.7 was used in order to prove compliance.

2.8.4. Test Result

The lowest and highest channels are tested to verify Restricted Frequency Bands.

The measurement results are obtained as below:

 $E [dB\mu V/m] = U_R + A_T + A_{Factor} [dB]; A_T = L_{Cable loss} [dB] - G_{preamp} [dB]$

AT: Total correction Factor except Antenna

U_R: Receiver Reading

G_{preamp}: Preamplifier Gain

A_{Factor}: Antenna Factor at 3m

Note: Restricted Frequency Bands were performed when antenna was at vertical and horizontal polarity, and only the worse test condition (vertical) was recorded in this test report.

802.11b Mode

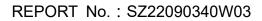
A. Test Verdict:

	Frequency	Detector	Receiver Reading	A _T	A _{Factor}	Max. Emission	Limit	Verdict
Channel	(MHz)	PK/ AV	U _R (dB) (dB@3m) E (dBμ (dBμV) (dBμV/m) (dBμV/m) (dBμ	(dBµV/m)	Veralet			
1	2383.55	PK	23.29	6.74	27.20	57.23	74	PASS
1	2390.00	AV	11.85	6.74	27.20	45.79	54	PASS
13	2486.97	PK	26.21	6.74	27.20	60.15	74	PASS
13	2485.75	AV	17.40	6.74	27.20	51.34	54	PASS

Http://www.morlab.cn

B. Test Plot:

RL	RF PRESEL 50 Ω DC		SENSE:INT	ALIGN OFF	12:15:29 AM Oct 22, 2022	
larker 2	2.3835520000	00 GHz PNO: Fast		Avg Type: Voltage Avg Hold:>100/100	TRACE 1 3 4 5 6 TVPE M	Marker
-	PREAMP	IFGain:Low	#Atten: 6 dB		DET PENNIN	Select Marker
0 dB/div	Ref 82.99 dBµ	v		Mkr	2 2.383 55 GHz 23.294 dBµV	2
og 73.0 63.0					-	Norma
53.0 43.0 33.0				2	01	Delt
23.0 13.0 2.99 7.01						Fixed
Res BW	000 GHz (CISPR) 1 MHz		V 3.0 MHz		Stop 2.41200 GHz .000 ms (1001 pts)	o
IKR MODE TH	1	x 2.390 00 GHz 2.383 55 GHz	22.377 dBμV 23.294 dBμV	NCTION FUNCTION WIDTH	FUNCTION VALUE	Properties
5 6 7 8 9 10						Mor 1 of
			175	1		


(PEAK, Channel 1, 802.11b)

(AVERAGE, Channel 1, 802.11b)

Shenzhen Morlab Communications Technology Co., Ltd. FL1-3, Building A, FeiYang Science Park, No.8 LongChang Road, Block67, BaoAn District, ShenZhen , GuangDong Province, P. R. China Fax: 86-755-36698525 E-mail: service@morlab.cn

Marker	12:23:30 AM Oct 31, 2022 TRACE 1 2 3 4 5 0 TYPE	ALIGN OFF pe: Voltage d:>100/100		SE:INT	Trig: Free		00000 G	86966	
Select Marker	DET PENNNN	and an over o			#Atten: 6	PNO: Fast G FGain:Low	1	EAMP	PR
2	2.486 966 GHz 26.206 dBµV	Mkr2					dBµV	ef 82.99	v R
Norm									
								/	
Del				×1					
_		horeman	armine.	annersher	~				
Fixed									
	Stop 2.50000 GHz							GHz	
0	FUNCTION VALUE	Sweep 1.	TION	EUDA	3.0 MHz	#VBV	AHz	SPR) 1	W (CI
	PONCTION VALUE		-Hon	V	23.210 dB	00 GHz 66 GHz	2.483 5 2.486 9	2014 - C	1
Properties									
Mo									
1 01									
	1.4			1	m		_		

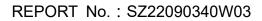
(PEAK, Channel 13, 802.11b)

(AVERAGE, Channel 13, 802.11b)

Shenzhen Morlab Communications Technology Co., Ltd. FL1-3, Building A, FeiYang Science Park, No.8 LongChang Road, Block67, BaoAn District, ShenZhen , GuangDong Province, P. R. China

802.11g Mode

A. Test Verdict:


Channel	Frequency	Detector	Receiver Reading	A _T	A _{Factor}	Max. Emission	Limit	Verdict
Channel	(MHz)	PK/ AV	U _R (dBµV)	(dB)	(dB@3m)	E (dBµV/m)	(dBµV/m)	verdict
1	2389.04	PK	25.55	6.74	27.20	59.49	74	PASS
1	2390.00	AV	14.17	6.74	27.20	48.11	54	PASS
13	2483.50	PK	30.67	6.74	27.20	64.61	74	PASS
13	2483.50	AV	16.60	6.74	27.20	50.54	54	PASS

B. Test Plot:

TRACE 123450 TYPE NUMBER PPNNNN	ALIGN OFF Avg Type: Voltage vg Hold:>100/100		Trig: Free				
2 2.389 04 GHz 25.554 dBµV	Mkr				.99 dBµV	Ref 82	ldiv
2 human		al and the state of the state o	مىلىرىلىدىنى بەردىرىدى مەردىلىرىدىن بەردىرىدى بىرى		ا بداد ما دو برا مراد ال		
000 ms (1001 pts)	Sweep 1.		W 3.0 MHz	#VB	1 MHz	(CISPR)	BW (
FUNCTION VALUE	EUNCTION WIDTH	dBuV			2.39	1	N 1 N 1
	2 2.389 04 GHz 25.554 dBµV	Avg Type: Voltage Avg Hold:>100/100 Mkr2 2.389 04 GHz 25.554 dBµV	Avg Type: Voltage Avg Type: Voltage AvgHold:>100/100 Trace Det Mkr2 2.389 04 GHz 25.554 dBµV Avg 22 2 2 5 5 5 5 4 2 2 5 5 4 4 8 4 5 5 5 4 4 8 4 5 5 5 4 4 8 4 5 5 4 5 5 4 4 8 4 5 5 4 4 8 4 5 5 4 4 8 4 5 5 4 4 8 4 5 5 4 4 8 4 5 5 4 4 8 4 5 5 4 4 8 4 5 5 5 4 4 8 4 5 5 5 4 4 8 4 5 5 5 4 4 8 4 5 5 5 4 4 8 1 2 5 5 5 4 4 8 1 2 5 5 4 4 8 1 2 5 5 4 4 8 1 2 5 5 4 4 8 1 2 5 5 4 4 8 1 2 5 5 4 4 8 1 2 5 5 4 4 8 1 1 5 5 5 4 5 5 4 5 5 4 5 5 5 4 5 5 5 5 5 4 5 5 5 5 5 5 5 5 5 5 5 5 5	Avg Type: Voltage Trig: Free Run #Atten: 6 dB Mkr2 2.389 04 GHz 25.554 dBµV 25.554 dBµV 26 Stop 2.41200 GHz Sweep 1.000 ms (1001 pts)	GHz PRO: Fast IFGain:Low Trig: Free Run #Atten: 6 dB Avg Type: Voltage Avg/Hold:>100/100 TRACE TRACE DEPARTURE TO DEPARTURE DEPART	40000000 GHz PRO; Fast IFGain:Low Trig: Free Run #Atten: 6 dB Avg Type: Voltage Avg/Hold:>100/100 Trace DB 4 as to the provide the providet the provide the provide the provide the provide the provided the provide the providet the provide the provide the providet the	2.389040000000 GHz PREAMP PNO: Fast PRO: Fast Proce Run #Atten: 6 dB PREAMP PRO: Fast Proce Run #Atten: 6 dB Mkr2 2.389 04 GHz 25.554 dBµV 25.554 dBµV 25.5

(PEAK, Channel 1, 802.11g)

ker 2 2.38982		Trig: Free Run #Atten: 6 dB	Avg Type: Voltage Avg Hold:>100/100	12:33:04 AM Oct 22, 2022 TRACE 123450 TYPE M WWWWW DET P P N N N N	Marker Select Marker
Bidiv Ref 82.9	99 dBµV		Mkr	2 2.389 82 GHz 14.012 dBµV	2
)					Norma
				2	Delt
					Fixed
rt 2.30000 GHz s BW (CISPR)		W 750 Hz		Stop 2.41200 GHz 71.3 ms (1001 pts)	o
MODE TRC SCL	x 2.390 00 GHz 2.389 82 GHz	Υ 14.171 dBμV 14.012 dBμV	UNCTION FUNCTION WIDTH	FUNCTION VALUE	Properties
					Mor 1 of
<u>م مراجع</u>				-	

(AVERAGE, Channel 1, 802.11g)

(PEAK, Channel 13, 802.11g)

MORLAB

Shenzhen Morlab Communications Technology Co., Ltd. FL1-3, Building A, FeiYang Science Park, No.8 LongChang Road, Block67, BaoAn District, ShenZhen , GuangDong Province, P. R. China Tel: 86-755-36698555 Fax Http://www.morlab.cn E-m

Fax: 86-755-36698525 E-mail: service@morlab.cn

- 6									nalyzer - Sv		ight Sp
Marker	5:32 AM Oct 31, 2022 TRACE 1 2 3 4 5 0 TYPE MMMAAAAA	12	ALIGN OFF Type: Voltage Hold:>100/100			Trig: Free	GHz PNO: Fast	000000	35840		er 2
Select Marker	DET PENNNN	_	Contraction of the second	_	dB	#Atten: 6	IFGain:Low	_	MP	PREA	_
2	33 584 GHz 5.047 dBµV	2 2.4	Mkr2					dBµV	82.99	Ref	div
Norm											
								-			1
Delt				2	5						J
Fixed											
0	2.50000 GHz ms (1001 pts)	Sto 58.13	Sweep 5			750 Hz	#VBW	VIHz	GHz PR) 1 M	200 ((CISF	
_	UNCTION VALUE	H.	FUNCTION WIDTH	FUNCTION		Y		x	5	C SCL	
Properties						16.604 dB) 16.047 dB)					N
Mor											
1 of											
_	1.4		STATU	-	-	tre:			-	-	

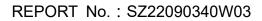
(AVERAGE, Channel 13, 802.11g)

Shenzhen Morlab Communications Technology Co., Ltd. FL1-3, Building A, FeiYang Science Park, No.8 LongChang Road, Block67, BaoAn District, ShenZhen , GuangDong Province, P. R. China

Tel: 86-755-36698555 Fax: 86-755-36698525 Http://www.morlab.cn E-mail: service@morlab.cn

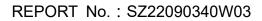
802.11n (HT20) Mode

A. Test Verdict:


Channel	Frequency	Detector	Receiver Reading	A _T	A _{Factor}	Max. Emission E	Limit	Verdict	
	(MHz)	PK/ AV	U _R (dBµV)	(dB)	(dB@3m)	⊏ (dBµV/m)	(dBµV/m)		
1	2389.38	PK	28.11	6.74	27.20	62.05	74	PASS	
1	2389.15	AV	16.70	6.74	27.20	50.64	54	PASS	
13	2483.50	PK	30.54	6.74	27.20	64.48	74	PASS	
13	2483.50	AV	18.04	6.74	27.20	51.98	54	PASS	

B. Test Plot:

(PEAK, Channel 1, 802.11n (HT20))


Marker	13:26 AM Oct 31, 2022 TRACE 123450 TYPE MWWWWW DET P. P. N. N. N	ALIGN OFF Type: Voltage Hold:>100/100	Avg	SENSE:IM	PNO: Fast	50 9 DC 15200000		rker 2
Select Marke	.389 15 GHz 6.701 dBµV	Mkr2			I GUILLOW	2.99 dBµV		Bidiv
Norn	~~~~							
De								0
Fixe								0 9 1
	p 2.41200 GHz ms (1001 pts)	Sweep 15	FUNCTION	820 Hz	#VBW		0000 GHz (CISPR)	
Propertie				16,456 dBµV 16,701 dBµV	90 00 GHz 189 15 GHz	2.	T T	N
Mc 1 c								
	1.1	STATUS	_	m				

(AVERAGE, Channel 1, 802.11n (HT20))

(PEAK, Channel 13, 802.11n (HT20))

2.46200 GHz 5 BW (CISPR) 1 MHz	Select Trace	0654450 PM Oct 27, 2022 TR4CE 12 3 4 3 50 TVPE DET P P NAMA 2.483 562 GHz 17.659 dBµV
PREAMP IFG	Select Trace 2 Clear Write	2.483 562 GHz
t 2.46200 GHz s BW (CISPR) 1 MHz	Clear Write	2.483 562 GHz 17.659 dBµV
2.46200 GHz 5 BW (CISPR) 1 MHz	Clear Write	
s BW (CISPR) 1 MHz	Trace Average	
s BW (CISPR) 1 MHz	(
s BW (CISPR) 1 MHz	Max Hold	
	lz s) Min Hole	Stop 2.50000 GHz .20 ms (1001 pts)
MODE TRC SCL X N 1 f 2.483 500	1	FUNCTION VALUE
N 1 f 2.483 562	View Blank Blank	E
	Mon	
	-	

(AVERAGE, Channel 13, 802.11n (HT20))

Shenzhen Morlab Communications Technology Co., Ltd. FL1-3, Building A, FeiYang Science Park, No.8 LongChang Road, Block67, BaoAn District, ShenZhen , GuangDong Province, P. R. China

Tel: 86-755-36698555 Fax: 86-755-36698525 Http://www.morlab.cn E-mail: service@morlab.cn

Page 58 of 75

2.9. Radiated Emission

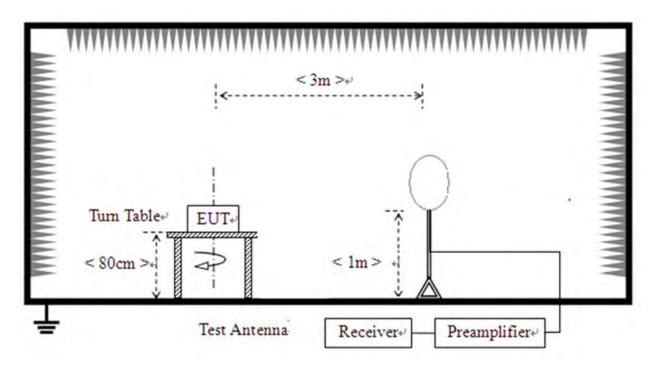
2.9.1. Requirement

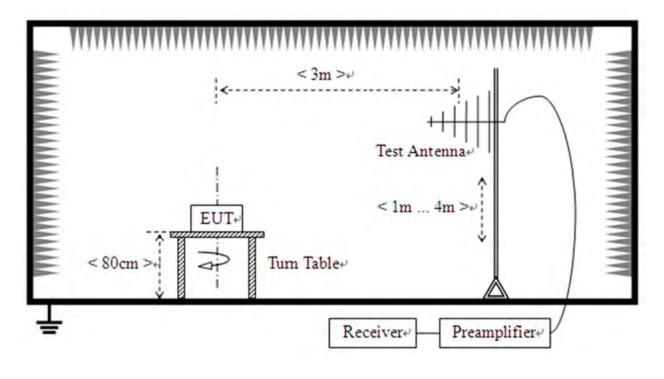
According to FCC section 15.247(d), radiated emission outside the frequency band attenuation below the general limits specified in FCC section 15.209(a) is not required. In addition, radiated emissions which fall in the restricted bands, as defined in FCC section 15.205(a), must also comply with the radiated emission limits specified in FCC section 15.209(a).

According to FCC section 15.209 (a), except as provided elsewhere in this subpart, the emissions from an intentional radiator shall not exceed the field strength levels specified in the following table:

Frequency (MHz)	Field Strength (µV/m)	Measurement Distance (m)
0.009 - 0.490	2400/F(kHz)	300
0.490 - 1.705	24000/F(kHz)	30
1.705 - 30.0	30	30
30 - 88	100	3
88 - 216	150	3
216 - 960	200	3
Above 960	500	3

Note1: For above 1000MHz, the emission limit in this paragraph is based on measurement instrumentation employing an average detector, measurement using instrumentation with a peak detector function, corresponding to 20dB above the maximum permitted average limit. **Note2:** For above 1000MHz, limit field strength of harmonics: 54dBuV/m@3m (AV) and 74dBuV/m@3m (PK). In addition, radiated emissions which fall in the restricted bands, as defined in Section 15.205(a), also should comply with the radiated emission limits specified in Section 15.209(a)(above table).

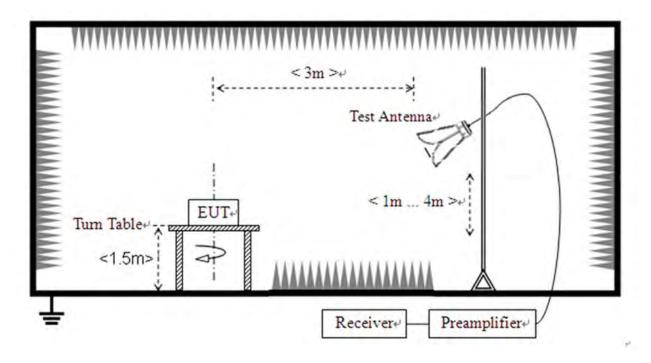



2.9.2. Test Description

Test Setup:

1) For radiated emissions from 9kHz to 30MHz

2) For radiated emissions from 30MHz to1GHz


Shenzhen Morlab Communications Technology Co., Ltd. FL1-3, Building A, FeiYang Science Park, No.8 LongChang Road, Block67, BaoAn District, ShenZhen , GuangDong Province, P. R. China
 Tel: 86-755-36698555
 Fax: 86-755-36698525

 Http://www.morlab.cn
 E-mail: service@morlab.cn

ice@morlab.cn

3) For radiated emissions above 1GHz

The EUT is placed on a non-conducting table 80 cm above the ground plane for measurement below 1GHz; 1.5 m above the ground plane for measurement above 1GHz.The antenna to EUT distance is 3meters. The EUT is configured in accordance with ANSI C63.10. The EUT is set to transmit in a continuous mode.

For measurements below 30MHz, the emission limits shown in the above table are based on measurements employing a CISPR quasi-peak detector except for the frequency bands 9kHz-90 kHz, 110kHz-490 kHz. Radiated emission limits in these two bands are based on measurements employing an average detector.

For measurements below 1GHz the resolution bandwidth is set to 100kHz for peak detection measurements or 120kHz for quasi-peak detection measurements. Peak detection is used unless otherwise noted as quasi-peak.

For measurements above 1GHz the resolution bandwidth is set to 1MHz, the video band width is set to 3MHz for peak measurements and as applicable for average measurements.

The EUT is rotated through 360 degrees to maximize emissions received. The antenna is scanned from 1 to 4 meters above the ground plane to further maximize the emission. Measurements are made with the antenna polarized in both the vertical and the horizontal positions. For measurements above 1 GHz, keeping the measurement antenna aimed at the source of emissions at each frequency of significant emissions, with polarization oriented for maximum response.

2.9.3. Test Result

According to ANSI C63.10, because of peak detection will yield amplitudes equal to or greater than amplitudes measured with the quasi-peak (or average) detector, the measurement data from a spectrum analyzer peak detector will represent the worst-case results, if the peak measured value complies with the quasi-peak (or average) limit, it is unnecessary to perform an quasi-peak measurement (or average).

The measurement results are obtained as below:

 $E [dB\mu V/m] = U_R + A_T + A_{Factor} [dB]; A_T = L_{Cable loss} [dB] - G_{preamp} [dB]$

A_T: Total correction Factor except Antenna

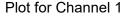
U_R: Receiver Reading

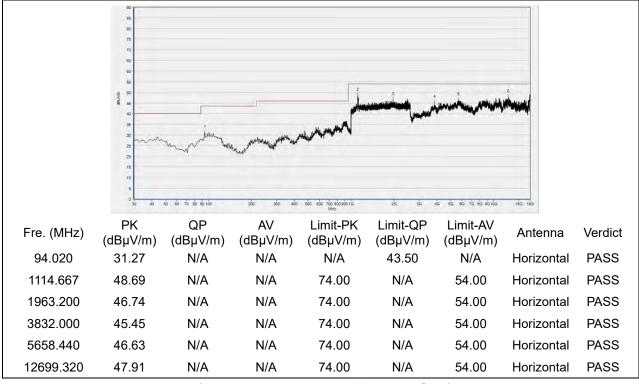
G_{preamp}: Preamplifier Gain

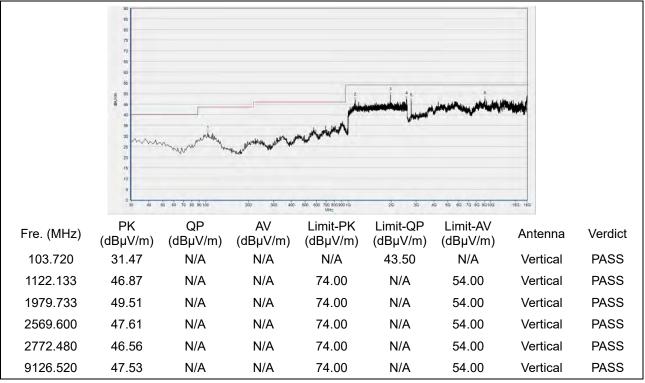
A_{Factor}: Antenna Factor at 3m

During the test, the total correction Factor A_T and A_{Factor} were built in test software.

Note1: All radiated emission tests were performed in X, Y, Z axis direction. And only the worst axis test condition was recorded in this test report.


Note2: For the frequency, which started from 9kHz to 30MHz, was pre-scanned and the result which was 20dB lower than the limit was not recorded.

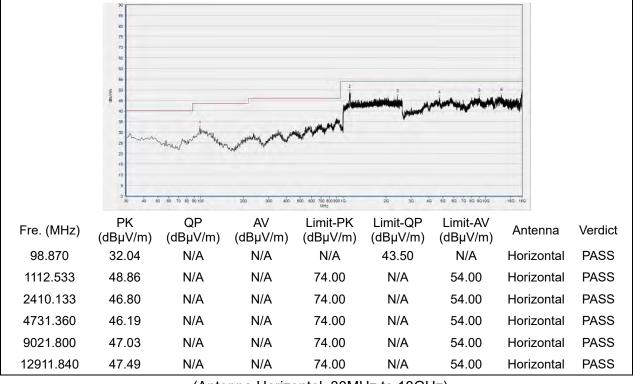

Note3: For the frequency, which started from 18GHz to 10th harmonic of the highest frequency, was pre-scanned and the result which was 20dB lower than the limit was not recorded.



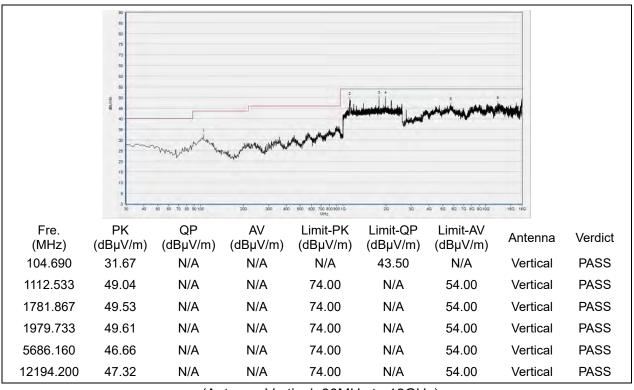
802.11b Mode

(Antenna Horizontal, 30MHz to 18GHz)

(Antenna Vertical, 30MHz to 18GHz)


Shenzhen Morlab Communications Technology Co., Ltd. FL1-3, Building A, FeiYang Science Park, No.8 LongChang Road, Block67, BaoAn District, ShenZhen , GuangDong Province, P. R. China Tel: 86-755-36698555

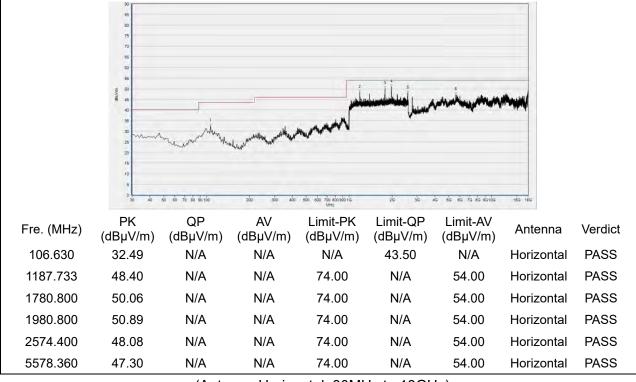
Fax: 86-755-36698525


Http://www.morlab.cn

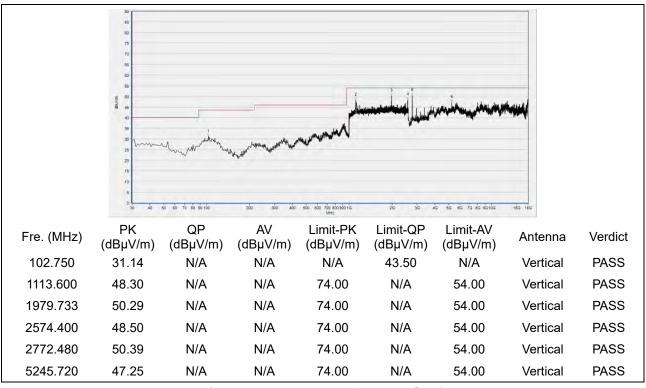
Plot for Channel 7

(Antenna Horizontal, 30MHz to 18GHz)

(Antenna Vertical, 30MHz to 18GHz)


Shenzhen Morlab Communications Technology Co., Ltd. FL1-3, Building A, FeiYang Science Park, No.8 LongChang Road, Block67, BaoAn District, ShenZhen , GuangDong Province, P. R. China Tel: 86-755-36698555

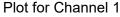
Fax: 86-755-36698525

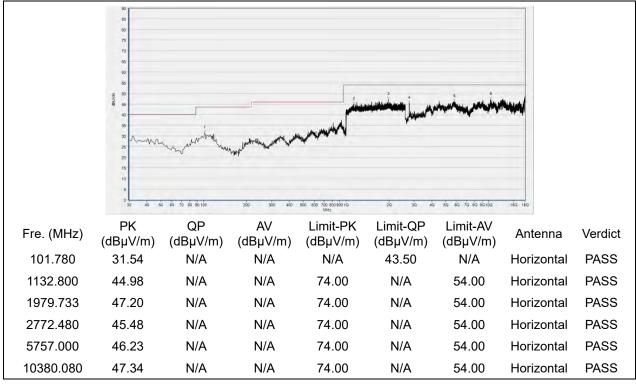

Http://www.morlab.cn

Plot for Channel 13

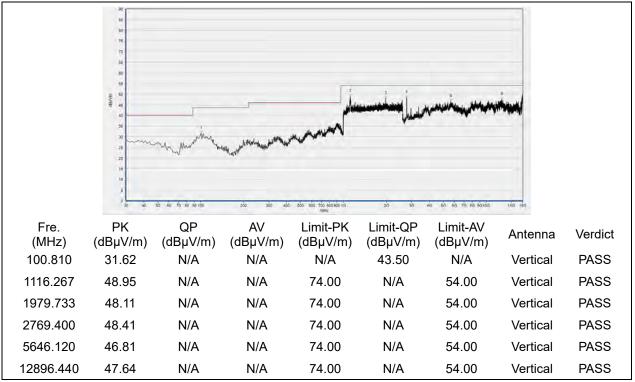
(Antenna Horizontal, 30MHz to 18GHz)

(Antenna Vertical, 30MHz to 18GHz)


Shenzhen Morlab Communications Technology Co., Ltd. FL1-3, Building A, FeiYang Science Park, No.8 LongChang Road, Block67, BaoAn District, ShenZhen , GuangDong Province, P. R. China Tel: 86-755-36698555


Fax: 86-755-36698525

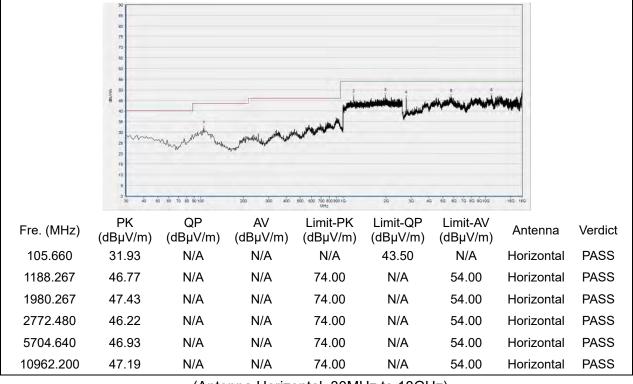
Http://www.morlab.cn



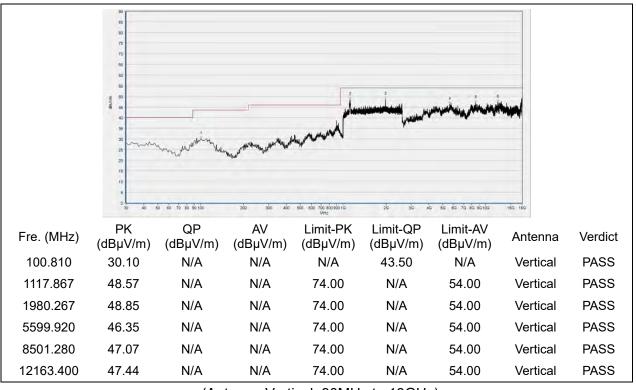
802.11g Mode

(Antenna Horizontal, 30MHz to 18GHz)

(Antenna Vertical, 30MHz to 18GHz)


Shenzhen Morlab Communications Technology Co., Ltd. FL1-3, Building A, FeiYang Science Park, No.8 LongChang Road, Block67, BaoAn District, ShenZhen , GuangDong Province, P. R. China Tel: 86-755-36698555

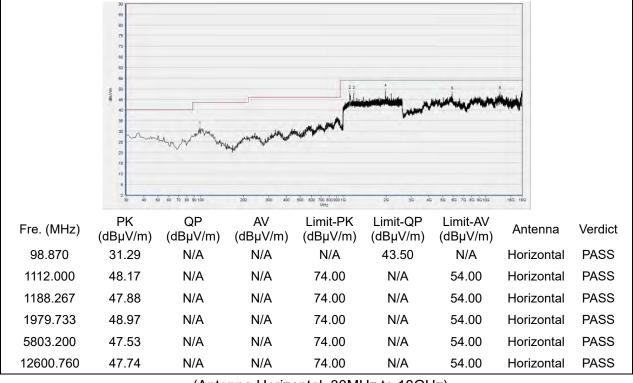
Fax: 86-755-36698525


Http://www.morlab.cn

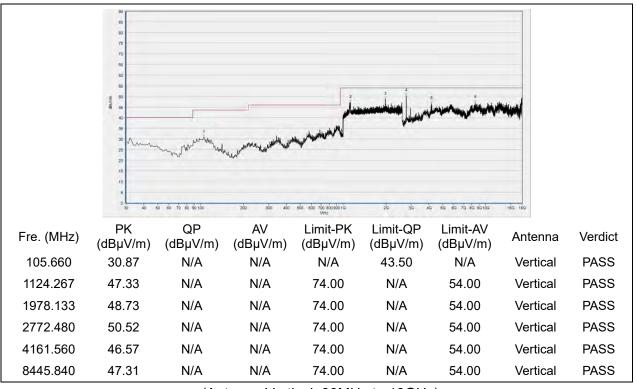
Plot for Channel 7

(Antenna Horizontal, 30MHz to 18GHz)

(Antenna Vertical, 30MHz to 18GHz)


Shenzhen Morlab Communications Technology Co., Ltd. FL1-3, Building A, FeiYang Science Park, No.8 LongChang Road, Block67, BaoAn District, ShenZhen , GuangDong Province, P. R. China Tel: 86-755-36698555

Fax: 86-755-36698525

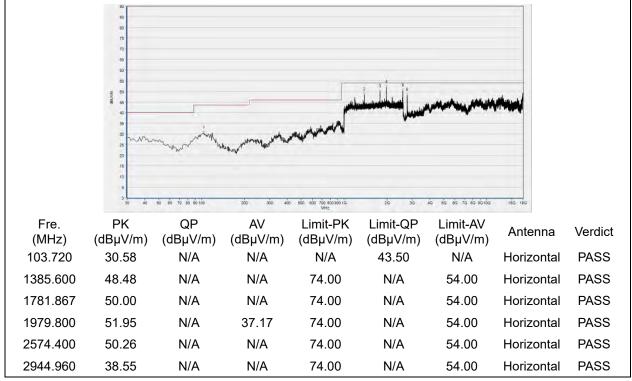

Http://www.morlab.cn

Plot for Channel 13

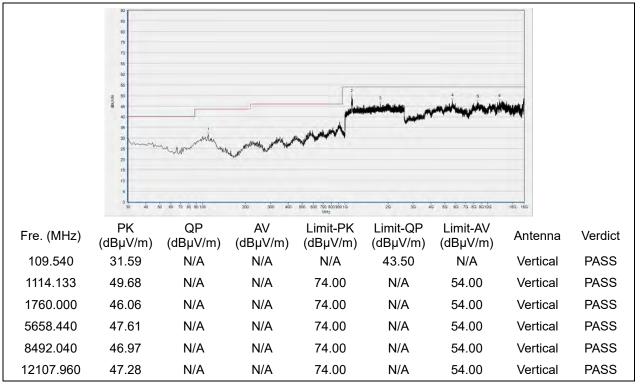
(Antenna Horizontal, 30MHz to 18GHz)

(Antenna Vertical, 30MHz to 18GHz)

Shenzhen Morlab Communications Technology Co., Ltd. FL1-3, Building A, FeiYang Science Park, No.8 LongChang Road, Block67, BaoAn District, ShenZhen , GuangDong Province, P. R. China Tel: 86-755-36698555


Fax: 86-755-36698525

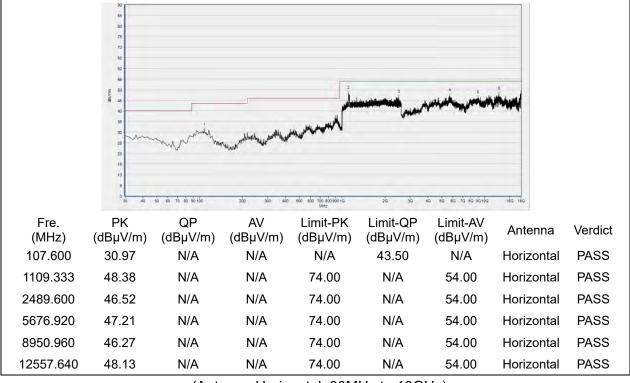
Http://www.morlab.cn



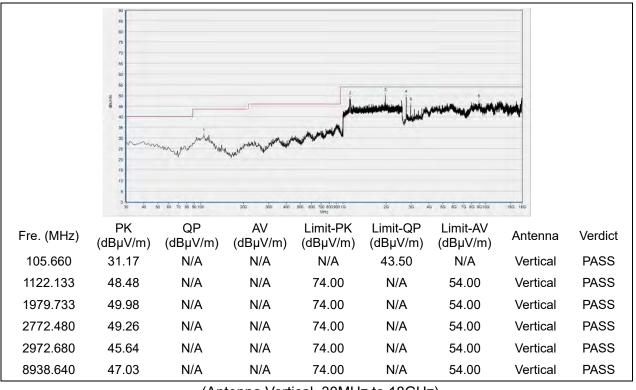
802.11n (HT20) Mode

(Antenna Horizontal, 30MHz to 18GHz)

(Antenna Vertical, 30MHz to 18GHz)


Shenzhen Morlab Communications Technology Co., Ltd. FL1-3, Building A, FeiYang Science Park, No.8 LongChang Road, Block67, BaoAn District, ShenZhen , GuangDong Province, P. R. China Tel: 86-755-36698555

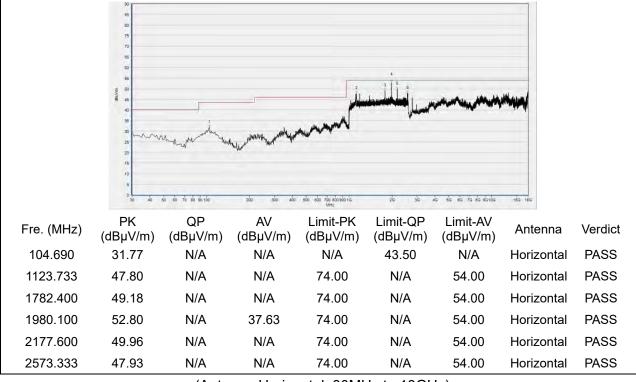
Fax: 86-755-36698525


Http://www.morlab.cn

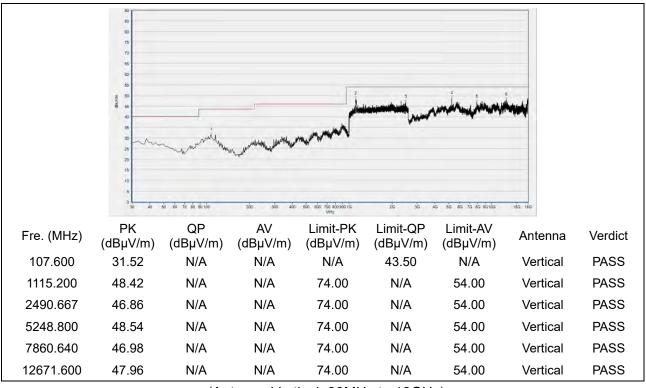
Plot for Channel 7

(Antenna Horizontal, 30MHz to 18GHz)

(Antenna Vertical, 30MHz to 18GHz)


Shenzhen Morlab Communications Technology Co., Ltd. FL1-3, Building A, FeiYang Science Park, No.8 LongChang Road, Block67, BaoAn District, ShenZhen , GuangDong Province, P. R. China Tel: 86-755-36698555

Fax: 86-755-36698525


Http://www.morlab.cn

Plot for Channel 13

(Antenna Horizontal, 30MHz to 18GHz)

(Antenna Vertical, 30MHz to 18GHz)

Shenzhen Morlab Communications Technology Co., Ltd. FL1-3, Building A, FeiYang Science Park, No.8 LongChang Road, Block67, BaoAn District, ShenZhen , GuangDong Province, P. R. China Tel: 86-755-36698555

Fax: 86-755-36698525

Http://www.morlab.cn

Annex A Test Uncertainty

Where relevant, the following measurement uncertainty levels have been estimated for test performed on the EUT as specified in CISPR 16-1-2:

Test Items	Uncertainty
Peak Output Power	±2.22dB
Power Spectral Density	±2.22dB
Bandwidth	±5%
Conducted Spurious Emission	±2.77dB
Restricted Frequency Bands	±5%
Radiated Emission	±2.95dB
Conducted Emission	±2.44dB

This uncertainty represent an expanded uncertainty expressed at approximately the 95% confidence level using a coverage factor of k=2.

Annex B Testing Laboratory Information

1. Identification of the Responsible Testing Laboratory

Laboratory Name:	Shenzhen Morlab Communications Technology Co., Ltd.		
	FL.3, Building A, FeiYang Science Park, No.8 LongChang		
Laboratory Address:	Road, Block 67, BaoAn District, ShenZhen, GuangDong		
	Province, P. R. China		
Telephone:	+86 755 36698555		
Facsimile:	+86 755 36698525		

2. Identification of the Responsible Testing Location

Name: Shenzhen Morlab Communications Technology Co., Ltd			
	FL.3, Building A, FeiYang Science Park, No.8 LongChang		
Address:	Road, Block 67, BaoAn District, ShenZhen, GuangDong		
	Province, P. R. China		

3. Facilities and Accreditations

All measurement facilities used to collect the measurement data are located at FL.3, Building A, FeiYang Science Park, Block 67, BaoAn District, Shenzhen, 518101 P. R. China. The test site is constructed in conformance with the requirements of ANSI C63.10-2013 and CISPR Publication 22; the FCC designation number is CN1192, the test firm registration number is 226174.

4. Test Equipments Utilized

4.1 Conducted Test Equipments

Equipment Name	Serial No.	Туре	Manufacturer	Cal. Date	Due Date
Attenuator 1	(N/A.)	10dB	Resent	N/A	N/A
EXA Signal	MXE2470020		Acilont	2022.03.01	2023.02.28
Analyzer	MY53470836	N9010A	Agilent	2022.03.01	
USB Wideband	MY54210011	U2021XA	Agilopt	2022.03.01	2023.02.28
Power Sensor	IVE 100 FT	UZUZ IAA	Agilent	2022.03.01	2023.02.20
RF Cable	0004		Maylah	N1/A	N1/A
(30MHz-26GHz)	CB01	RF01	Morlab	N/A	N/A
Coaxial Cable	CB02	RF02	Morlab	N/A	N/A
SMA Connector	CN01	RF03	HUBER-SUHNER	N/A	N/A
Computer	T430i	Think Pad	Lenovo	N/A	N/A

4.2 Conducted Emission Test Equipments

Equipment Name	Serial No.	Туре	Manufacturer	Cal. Date	Due Date
Receiver	MY56400093	N9038A	KEYSIGHT	2022.03.03	2023.03.02
LISN	940744	NSLK	Sobworzhook	2022.03.03	2023.03.02
LISIN	812744	8127	Schwarzbeck	2022.03.03	2023.03.02
Pulse Limiter	VTSD 9561	VTSD	Sobworzhook	2022.07.06	2023.07.05
(10dB)	F-B #206	9561-F	Schwarzbeck	2022.07.00	2023.07.03
Coaxial					
Cable(BNC)	CB01	EMC01	Morlab	N/A	N/A
(30MHz-26GHz)					

4.3 List of Software Used

Description	Manufacturer	Software Version
Test System	Tonscend	V2.5.77.0418
Morlab EMCR V1.2	Morlab	V1.0
TS+ -[JS32-CE]	Tonscend	V2.5.0.0

4.4 Radiated Test Equipments

Equipment Name	Serial No.	Туре	Manufacturer	Cal. Date	Due Date
Receiver	MY54130016	N9038A	Agilent	2022.07.06	2023.07.05
Test Antenna - Bi-Log	9163-519	VULB 9163	Schwarzbeck	2022.05.25	2025.05.24
Test Antenna - Loop	1519-022	FMZB1519	Schwarzbeck	2022.02.11	2025.02.10
Test Antenna – Horn	01774	BBHA 9120D	Schwarzbeck	2022.07.13	2025.07.12
Test Antenna – Horn	BBHA9170 #774	BBHA9170	Schwarzbeck	2022.07.14	2025.07.13
Coaxial Cable (N male) (9KHz-30MHz)	CB04	EMC04	Morlab	N/A	N/A
Coaxial Cable (N male) (30MHz-26GHz)	CB02	EMC02	Morlab	N/A	N/A
Coaxial Cable (N male) (30MHz-26GHz)	CB03	EMC03	Morlab	N/A	N/A
Coaxial Cable (N male) (30MHz-40GHz)	CB05	EMC05	Morlab	N/A	N/A
1-18GHz pre-Amplifier	61171/61172	S020180L32 03	Tonscend	2022.07.08	2023.07.07
18-26.5GHz pre-Amplifier	46732	S10M100L38 02	Tonscend	2022.07.08	2023.07.07
26-40GHz pre-Amplifier	56774	S40M400L40 02	Tonscend	2022.07.08	2023.07.07
Notch Filter	N/A	WRCG-2400- 2483.5-60SS	Wainwright	2022.07.08	2023.07.07
Anechoic Chamber	N/A	9m*6m*6m	CRT	2020.01.06	2023.01.05

_____ END OF REPORT ____

Fax: 86-755-36698525