

FCC Part 27 Measurement and Test Report

For

JACS Solutions, LLC

8808 Centre Park Drive, Suite 305, Columbia, MD 21045, USA

FCC ID: 2AGCD-JACS800V

FCC Rules:	FCC Part 27			
Product Description:	<u>Tablets</u>			
Tested Model:	<u>TT800V</u>			
Report No.:	STR17068003I-1			
Tested Date:	2017-06-12 to 2017-06-28			
Issued Date:	<u>2017-06-29</u>			
Tested By:	Iven Guo / Engineer	Then Guo		
Reviewed By:	<u>Silin Chen / EMC Manager</u>	Iven Guo Silim chen Jumlyso		
Approved & Authorized By:	Jandy So / PSQ Manager	Jundyso		
Prepared By:				
Shenzhen SEM.Test Technology Co., Ltd.				
1/F, Building A, Hongwei Industrial Park, Liuxian 2nd Road,				
Bao'an District, Shenzhen, P.R.C. (518101)				
Tel.: +86-755-33663308 F	ax.: +86-755-33663309 Website	: www.semtest.com.cn		

Note: This test report is limited to the above client company and the product model only. It may not be duplicated without prior permitted by Shenzhen SEM. Test Technology Co., Ltd.

TABLE OF CONTENTS

1. GENERAL INFORMATION	
1.1 PRODUCT DESCRIPTION FOR EQUIPMENT UNDER TEST (EUT)	
1.2 Test Standards 1.3 Test Methodology	
1.4 Test Facility	
1.5 EUT SETUP AND TEST MODE	
1.6 Measurement Uncertainty	
1.7 Test Equipment List and Details	7
2. SUMMARY OF TEST RESULTS	8
3. RF EXPOSURE	9
3.1 Standard Applicable	9
3.2 TEST RESULT	9
4. RF OUTPUT POWER	
4.1 Standard Applicable	
4.2 Test Procedure	
4.3 Environmental Conditions 4.4 Summary of Test Results/Plots	
5. PEAK-TO-AVERAGE RATIO (PAR) OF TRANSMITTER	
5.1 STANDARD APPLICABLE	
5.2 Test Procedure 5.3 Environmental Conditions	
5.4 Summary of Test Results	
6. EMISSION BANDWIDTH	
6.1 STANDARD APPLICABLE	
6.2 TEST PROCEDURE	
6.3 Environmental Conditions	
6.4 SUMMARY OF TEST RESULTS/PLOTS	
7. OUT OF BAND EMISSIONS AT ANTENNA TERMINAL	
7.1 Standard Applicable	
7.2 Test Procedure	
7.3 Environmental Conditions	
7.4 SUMMARY OF TEST RESULTS/PLOTS	
8. SPURIOUS RADIATED EMISSIONS	
8.1 STANDARD APPLICABLE	
8.2 Test Procedure	
8.5 Environmental conditions 8.4 Summary of Test Results/Plots	
9. FREQUENCY STABILITY	
9.1 STANDARD APPLICABLE	
9.1 STANDARD APPLICABLE 9.2 TEST PROCEDURE	
9.3 Environmental Conditions	
9.4 SUMMARY OF TEST RESULTS/PLOTS	

1. GENERAL INFORMATION

1.1 Product Description for Equipment Under Test (EUT)

Client Information	
Applicant:	JACS Solutions, LLC
Address of applicant:	8808 Centre Park Drive, Suite 305, Columbia, MD 21045, USA
Manufacturer:	Xiamen Candour Co., Ltd
Address of manufacturer:	19F C&D International Building 1669 Huandao East Road,
	Xiamen, Fujian, CN

General Description of EUT:		
Product Name:	Tablets	
Brand Name:	JACS SOLUTION	
Model No.:	TT800V	
Adding Model(s):	M81F, TT800W, TT8OOW, TT8OOV	
	AC Power Adaptor:	
	Model:JML-0500250-LW	
	Input:100V-240V, 50/60Hz,0.6A ; Output:5V,2.5A	
Power Adapter:	Car charging Adaptor:	
	Model:KCDDC-001	
	Input:12V-24VDC,1.2 A ; Output:5V,3.5A	
Software version:	1	
Hardware version:	/	
Rated Voltage:	DC 3.7V Li-ion Battery	
Battery capacity:	6200mAh	
Device Category:	Portable Device	

The EUT Main board support LTE Band 4/13 function. It is intended for speech, Multimedia Message Service (MMS) transmission. It is equipped with GPS, FM, NFC, Bluetooth and Wi-Fi functions. For more information see the following datasheet

Note: The test data is gathered from a production sample provided by the manufacturer. The appearance of others models listed in the report is different from main-test model TT800V, but the circuit and the electronic construction do not change, declared by the manufacturer.

Technical Characteristics of EUT: Main board				
4G				
Support Networks:	FDD-LTE			
Support Band:	FDD-LTE Band 4,13			
	FDD-LTE Band 4: Tx: 1710-1755MHz,			
Uplink Frequency:	FDD-LTE Band 13: Tx: 777-787MHz,			
Downlink Fraguanay:	FDD-LTE Band 4: Rx: 2110-2155MHz,			
Downlink Frequency:	FDD-LTE Band 13: Rx: 746-756MHz,			
	FDD-LTE Band 4: 24.89dBm,			
RF Output Power:	FDD-LTE Band 13: 24.02dBm,			
Type of Emission:	FDD-LTE Band 4: 17M9G7D, 17M9W7D			
Type of Emission:	FDD-LTE Band 13: 8M98G7D, 8M97W7D			
Type of Modulation:	QPSK, 16QAM			
Antenna Type:	Integral Antenna			
Antenna Gain:	FDD-LTE Band 4: 1.34dBi,			
	FDD-LTE Band 13: 1.12dBi,			

1.2 Test Standards

The following report is prepared on behalf of the JACS Solutions, LLC in accordance with FCC Part 22 subpart H, FCC Part 24 subpart E and FCC Part 27 of the Federal Communication Commissions rules.

The objective is to determine compliance with FCC Part 22 subpart H, FCC Part 24 subpart E and FCC Part 27 of the Federal Communication Commissions rules.

Maintenance of compliance is the responsibility of the manufacturer. Any modification of the product, which result in lowering the emission, should be checked to ensure compliance has been maintained.

1.3 Test Methodology

All measurements contained in this report were conducted with ANSI/TIA-603-D: 2010 and ANSI C63.4-2014, American National Standard for Methods of Measurement of Radio-Noise Emissions from Low-Voltage Electrical and Electronic Equipment in the range of 9 kHz to 40 GHz. The measurement guide KDB 971168 D01 Power Meas License Digital Systems v02r02 shall be performed also.

1.4 Test Facility

• FCC – Registration No.: 934118

Shenzhen SEM.Test Technology Co., Ltd. EMC Laboratory has been registered and fully described in a report filed with the (FCC) Federal Communications Commission. The acceptance letter from the FCC is maintained in our files and the Registration is 934118.

• Industry Canada (IC) Registration No.: 11464A

The 3m Semi-anechoic chamber of Shenzhen SEM.Test Technology Co., Ltd. has been registered by Certification and Engineering Bureau of Industry Canada for radio equipment testing with Registration No.: 11464A.

• CNAS Registration No.: L4062

Shenzhen SEM.Test Technology Co., Ltd. is a testing organization accredited by China National Accreditation Service for Conformity Assessment (CNAS) according to ISO/IEC 17025. The accreditation certificate number is L4062. All measurement facilities used to collect the measurement data are located at 1/F, Building A, Hongwei Industrial Park, Liuxian 2nd Road, Bao'an District, Shenzhen, P.R.C (518101)

1.5 EUT Setup and Test Mode

The EUT was operated in the engineering mode to fix the Tx frequency that was for the purpose of the measurements. All testing shall be performed under maximum output power condition, and to measure its highest possible emissions level, more detailed description as follows:

Test Mode List			
Test Mode	Description	Remark	
TM1	FDD-LTE Band 4	Low, Middle, High Channels	
TM2	FDD-LTE Band 13	Low, Middle, High Channels	

EUT Cable List and Details

Cable Description	Length (M)	Shielded/Unshielded	With Core/Without Core	
Car charging Cable	4.0	Unshielded	Without Core	
USB Cable	1.0	Shielded	Without Core	

Auxiliary Equipment List and Details

Description	Manufacturer	Model	Serial Number
Notebook	Lenovo	E10	LR-63C8R

Special Cable List and Details

Cable Description	Length (M)	Shielded/Unshielded	With Core/Without Core
/	/	/	/

1.6 Measurement Uncertainty

Measurement uncertainty				
Parameter	Conditions	Uncertainty		
RF Output Power	Conducted	± 0.42 dB		
Occupied Bandwidth	Conducted	$\pm 1.5\%$		
Frequency Stability	Conducted	2.3%		
Transmitter Spurious Emissions	Radiated	± 5.1 dB		
Transmitter Spurious Emissions	Conducted	± 0.42 dB		

1.7 Test Equipment List and Details

No.	Description	Manufacturer	Model	Serial No.	Cal Date	Due. Date
SEMT-1075	Communication Tester	Rohde &	CMW500	148650	2017-06-12	2018-06-11
SEIVI1-1075	Communication Tester	Schwarz	CIVI W 500	148030	2017-00-12	2018-00-11
SEMT-1034	GSM Tester	Rohde &	CMU200	104036	2017-06-12	2018-06-11
SENTI-1054	USIM Tester	Schwarz	CIVI0200	104030	2017-00-12	2018-00-11
SEMT-1072	Spectrum Analyzer	Agilent	E4407B	MY41440400	2017-06-12	2018-06-11
SEMT-1079	Spectrum Analyzer	Agilent	N9020A	US47140102	2017-06-12	2018-06-11
SEMT-1080	Signal Generator	Agilent	83752A	3610A01453	2017-06-12	2018-06-11
SEMT-1081	Vector Signal	Agilant	N5182A	MY47070202	2017-06-12	2018-06-11
SEIVI1-1081	Generator	Agilent	N3182A	NI I 47070202	2017-00-12	2018-00-11
SEMT-1028	Power Divider	Weinschel	1506A	PM204	2017-06-12	2018-06-11
SEMT-1082	Power Divider	RF-Lambda	RFLT4W5M18G	14110400027	2017-06-12	2018-06-11
SEMT-1031	Spectrum Analyzer	Rohde &	FSP30	836079/035	2017-06-12	2018-06-11
SENTI-1051	Spectrum Analyzer	Schwarz	1.51.50	830079/033	2017-00-12	2018-00-11
SEMT-1007	EMI Test Receiver	Rohde &	ESVB	825471/005	2017-06-12	2018-06-11
SENTI-1007	EIMI Test Receiver	Schwarz	LSVD	825471/005	2017-00-12	2018-00-11
SEMT-1008	Amplifier	Agilent	8447F	3113A06717	2017-06-12	2018-06-11
SEMT-1043	Amplifier	C&D	PAP-1G18	2002	2017-06-12	2018-06-11
SEMT-1069	Loop Antenna	Schwarz beck	FMZB 1516	9773	2017-06-12	2018-06-11
SEMT-1068	Broadband Antenna	Schwarz beck	VULB9163	9163-333	2017-06-12	2018-06-11
SEMT-1042	Horn Antenna	ETS	3117	00086197	2017-06-12	2018-06-11
SEMT-1121	Horn Antenna	ETS	3116B	00088203	2017-06-12	2018-06-11

2. SUMMARY OF TEST RESULTS

FCC Rules	Description of Test Item	Result
§ 1.1307, § 2.1093	RF Exposure	Compliant
§ §27.50	RF Output Power	Compliant
§ 27.50	Peak-to-average Ratio (PAR) of Transmitter	Compliant
§ 27.53	Emission Bandwidth	Compliant
§ 27.53	Spurious Emissions at Antenna Terminal	
§ 27.53	Spurious Radiation Emissions	Compliant
§ 27.53	Out of Band Emissions	Compliant
§ 27.54	Frequency Stability	Compliant

3. RF Exposure

3.1 Standard Applicable

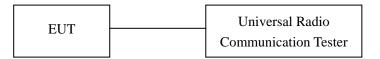
According to § 1.1307 and § 2.1093, the portable transmitter must comply the RF exposure requirements.

3.2 Test Result

This product complied with the requirement of the RF exposure, please see the SAR report.

4. RF Output Power

4.1 Standard Applicable


According to §24.232 (c), Mobile and portable stations are limited to 2 watts EIRP and the equipment must employ a means for limiting power to the minimum necessary for successful communications.

According to §27.50(d)(4), Fixed, mobile, and portable (hand-held) stations operating in the 1710-1755 MHz band and mobile and portable stations operating in the 1695-1710 MHz and 1755-1780 MHz bands are limited to 1 watt EIRP.

According to \$27.50(c)(10), Portable stations (hand-held devices) in the 698-746 MHz band are limited to 3 watts ERP.

4.2 Test Procedure

Conducted output power test method:

Radiated power test method:

1. The setup of EUT is according with per ANSI/TIA Standard 603D and ANSI C63.4-2014 measurement procedure.

- 2. The measurement antenna was placed at a distance of 3 meters from the EUT. During the tests, the antenna height and polarization as well as EUT azimuth were varied in order to identify the maximum level of emissions from the EUT. The test was performed by placing the EUT on 3-orthogonal axis.
- 3. The frequency range up to tenth harmonic of the fundamental frequency was investigated.
- 4. Remove the EUT and replace it with substitution antenna. A signal generator was connected to the substitution antenna by a non-radiating cable. The absolute levels of the spurious emissions were measured by the substitution.

4.3 Environmental Conditions

Temperature:	24 °C
Relative Humidity:	54%
ATM Pressure:	1011 mbar

4.4 Summary of Test Results/Plots

Max. Radiated Power:

FDD-LTE Band 4

	Chann	el Bandwidth: 1.4 MHz	
Modulation	Channel	E.i.r.p [dBm]	Verdict
	LCH	20.74	PASS
QPSK	MCH	19.45	PASS
	НСН	19.86	PASS
	LCH	19.19	PASS
16QAM	MCH	20.32	PASS
	НСН	20.13	PASS
	Chan	nel Bandwidth: 3 MHz	-
Modulation	Channel	E.i.r.p [dBm]	Verdict
	LCH	19.33	PASS
QPSK	МСН	20.33	PASS
	НСН	19.79	PASS
	LCH	20.93	PASS
16QAM	МСН	20.45	PASS
	НСН	PASS	
	Chan	nel Bandwidth: 5 MHz	_
Modulation	Channel	E.i.r.p [dBm]	Verdict
	LCH	19.29	PASS
QPSK	MCH	19.59	PASS
	НСН	20.28	PASS
	LCH	19.93	PASS
16QAM	MCH	20.34	PASS
	НСН	20.67	PASS
	Chanr	nel Bandwidth: 10 MHz	
Modulation	Channel	E.i.r.p [dBm]	Verdict
	LCH	20.74	PASS
QPSK	MCH	20.81	PASS
	НСН	20.15	PASS
	LCH	19.62	PASS
16QAM	MCH	20.16	PASS
	НСН	20.04	PASS
	Chanr	nel Bandwidth: 15 MHz	
Modulation	Channel	E.i.r.p [dBm]	Verdict

	LCH	20.91	PASS				
QPSK	MCH	20.09	PASS				
	НСН	20.59	PASS				
	LCH	20.55	PASS				
16QAM	MCH	20.85	PASS				
	НСН	HCH 20.36					
	Channel Bandwidth: 20 MHz						
Modulation	Channel	E.i.r.p [dBm]	Verdict				
	LCH	20.09	PASS				
QPSK	MCH	20.49	PASS				
	НСН	20.7	PASS				
	LCH	19.75	PASS				
16QAM	МСН	19.37	PASS				
	НСН	19.97	PASS				

FDD-LTE Band 13

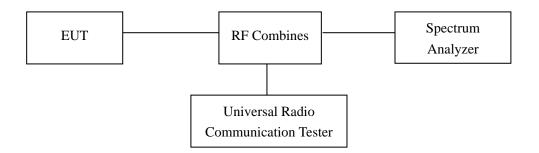
Channel Bandwidth: 5 MHz						
Modulation	Channel	Verdict				
	LCH	19.11	PASS			
QPSK	MCH	19.62	PASS			
	НСН	19.75	PASS			
	LCH	19.89	PASS			
16QAM	MCH	19.15	PASS			
	HCH 19.99		PASS			
	Chann	el Bandwidth: 10 MHz				
Modulation	Channel	E.r.p [dBm]	Verdict			
	LCH	19.92	PASS			
QPSK	MCH	20.68	PASS			
	НСН	20.97	PASS			
	LCH	20.49	PASS			
16QAM	MCH	19.58	PASS			
	HCH	20.09	PASS			

Max. Conducted Output Power

Please refer to Appendix A: Average Power Output Data

5. Peak-to-average Ratio (PAR) of Transmitter

5.1 Standard Applicable


According to \$24.232(d), Power measurements for transmissions by stations authorized under this section may be made either in accordance with a Commission-approved average power technique or in compliance with paragraph (e) of this section. In both instances, equipment employed must be authorized in accordance with the provisions of \$24.51. In measuring transmissions in this band using an average power technique, the peak-to-average ratio (PAR) of the transmission may not exceed 13 dB.

According to §27.50(B), the peak-to-average power ratio (PAPR) of the transmitter output power must not exceed 13 dB. The PAPR measurements should be made using either an instrument with complementary cumulative distribution function (CCDF) capabilities to determine that PAPR will not exceed 13 dB for more than 0.1 percent of the time or other Commission approved procedure. The measurement must be performed using a signal corresponding to the highest PAPR expected during periods of continuous transmission.

5.2 Test Procedure

The RF output terminal of the transmitter was connected to the input of the spectrum analyzer via a suitable attenuation. The RBW of the spectrum analyzer was set to 30kHz and the peak-to-average ratio (PAR) of the transmission was recorded. Record the maximum PAPR level associated with a probability of 0.1%.

Test Configuration for the emission bandwidth testing:

5.3 Environmental Conditions

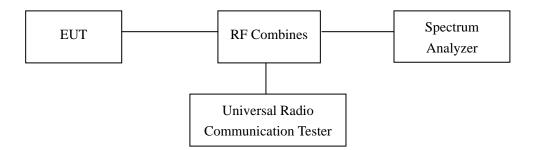
Temperature:	25 °C
Relative Humidity:	54%
ATM Pressure:	1011 mbar

5.4 Summary of Test Results

Please refer to Appendix B: Peak-to-Average Ratio

6. Emission Bandwidth

6.1 Standard Applicable


According to §24.238(b), The emission bandwidth is defined as the width of the signal between two points, one below the carrier center frequency and one above the carrier center frequency, outside of which all emissions are attenuated at least 26 dB below the transmitter power.

According to §27.53, The emission bandwidth is defined as the width of the signal between two points, one below the carrier center frequency and one above the carrier center frequency, outside of which all emissions are attenuated at least 26 dB below the transmitter power.

6.2 Test Procedure

The RF output terminal of the transmitter was connected to the input of the spectrum analyzer via a suitable attenuation. The RBW of the spectrum analyzer was set to 30kHz and the 26dB bandwidth was recorded.

Test Configuration for the emission bandwidth testing:

6.3 Environmental Conditions

Temperature:	25 °C
Relative Humidity:	54%
ATM Pressure:	1011 mbar

6.4 Summary of Test Results/Plots

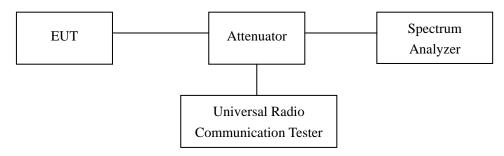
Please refer to Appendix C: 26dB Bandwidth and Occupied Bandwidth

7. Out of Band Emissions at Antenna Terminal

7.1 Standard Applicable

According to 24.238(a), The power of any emission outside of the authorized operating frequency ranges must be attenuated below the transmitting power (P) by a factor of at least $43 + 10 \log(P) dB$.

According to 27.53 (h), the power of any emission outside a licensee's frequency block shall be attenuated below the transmitter power (P) in watts by at least $43 + 10 \log 10$ (P) dB.


According to 27.53 (g) For operations in the 600 MHz band and the 698-746 MHz band, the power of any emission outside a licensee's frequency band(s) of operation shall be attenuated below the transmitter power (P) within the licensed band(s) of operation, measured in watts, by at least $43 + 10 \log (P) dB$.

According to \$27.53 (m)(4) For mobile digital stations, the attenuation factor shall be not less than $40 + 10 \log (P) dB$ on all frequencies between the channel edge and 5 megahertz from the channel edge, $43 + 10 \log (P) dB$ on all frequencies between 5 megahertz and X megahertz from the channel edge, and $55 + 10 \log (P) dB$ on all frequencies more than X megahertz from the channel edge, where X is the greater of 6 megahertz or the actual emission bandwidth as defined in paragraph (m)(6) of this section. In addition, the attenuation factor shall not be less that $43 + 10 \log (P) dB$ on all frequencies between 2490.5 MHz and 2496 MHz and $55 + 10 \log (P) dB$ at or below 2490.5 MHz.

7.2 Test Procedure

The RF output terminal of the transmitter was connected to the input of the spectrum analyzer via a suitable attenuation. The RBW of the spectrum analyzer was set to 100kHz and 1MHz for the scan frequency from 30MHz to 1GHz and the scan frequency from 1GHz to up to 10th harmonic.

Test Configuration for the out of band emissions testing:

7.3 Environmental Conditions

Temperature:	25 °C
Relative Humidity:	53%
ATM Pressure:	1018 mbar

7.4 Summary of Test Results/Plots

Please refer to Appendix D & E: Band Edge & Conducted Spurious Emission

8. Spurious Radiated Emissions

8.1 Standard Applicable

According to 24.238(a), The power of any emission outside of the authorized operating frequency ranges must be attenuated below the transmitting power (P) by a factor of at least $43 + 10 \log(P) dB$.

According to 27.53 (h), the power of any emission outside a licensee's frequency block shall be attenuated below the transmitter power (P) in watts by at least $43 + 10 \log 10$ (P) dB.

According to 27.53 (g) the power of any emission outside a licensee's frequency band(s) of operation shall be attenuated below the transmitter power (P) within the licensed band(s) of operation, measured in watts, by at least $43 + 10 \log (P) dB$.

8.2 Test Procedure

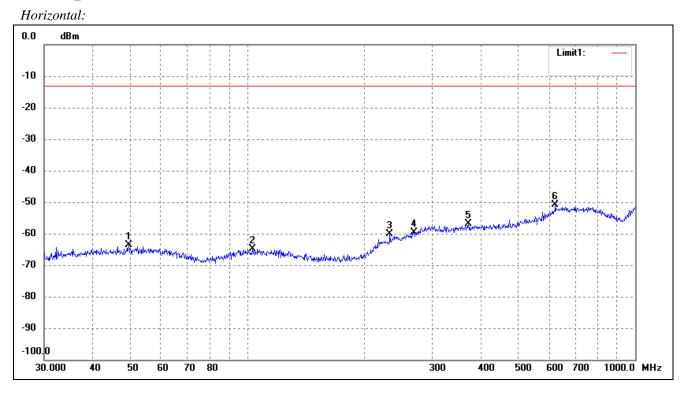
- 1. The setup of EUT is according with per ANSI/TIA-603-D: 2010 and ANSI C63.4-2014 measurement procedure.
- 2. The measurement antenna was placed at a distance of 3 meters from the EUT. During the tests, the antenna height and polarization as well as EUT azimuth were varied in order to identify the maximum level of emissions from the EUT. The test was performed by placing the EUT on 3-orthogonal axis.
- 3. The frequency range up to tenth harmonic of the fundamental frequency was investigated.
- 4. Remove the EUT and replace it with substitution antenna. A signal generator was connected to the substitution antenna by a non-radiating cable. The absolute levels of the spurious emissions were measured by the substitution.

Spurious attenuation limit in dB = $43+10 \text{ Log}_{10}$ (power out in Watts)

8.3 Environmental Conditions

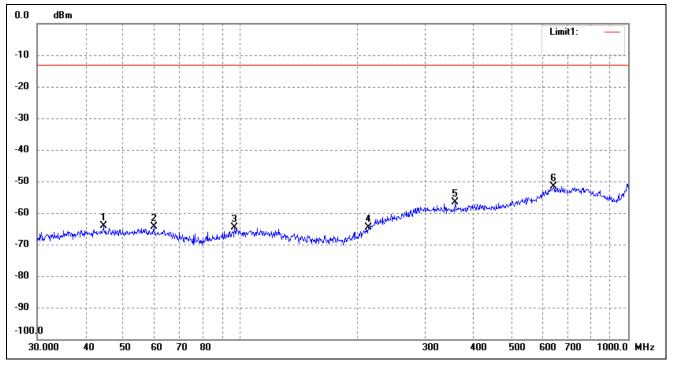
Temperature:	25 °C
Relative Humidity:	52%
ATM Pressure:	1012 mbar

8.4 Summary of Test Results/Plots

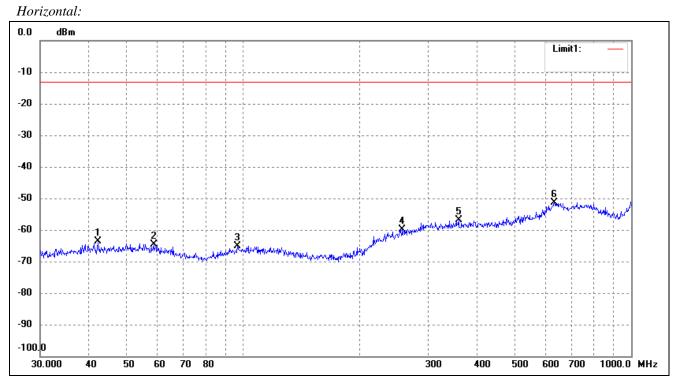

According to the data below, the FCC Part 22.917 and 24.238 standards, and had the worst margin of:

Note: 1. this EUT was tested in 3 orthogonal positions and the worst case position data was reported.

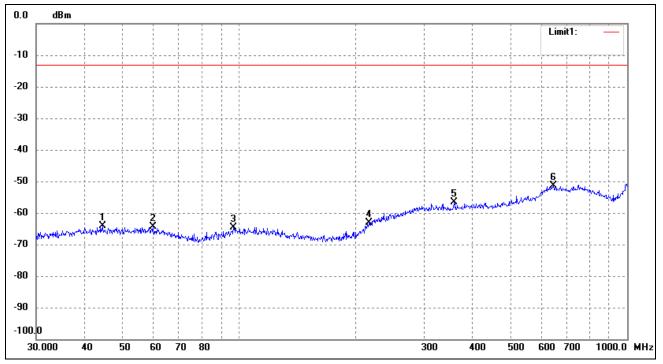
2. All test modes (different bandwidth and different modulation) are performed, but only the worst case is recorded in this report.


Spurious Emission From 30MHz to 1GHz For FDD_LTE Band 4 Mode

No.	Frequency	Reading	Correct	Result	Limit	Margin	Remark
	(MHz)	(dBm)	dB	(dBm)	(dBm)	(dB)	
1	49.5328	-68.64	4.98	-63.66	-13.00	-50.66	ERP
2	103.4421	-69.80	4.90	-64.90	-13.00	-51.90	ERP
3	233.3487	-68.71	8.51	-60.20	-13.00	-47.20	ERP
4	269.4284	-69.92	10.37	-59.55	-13.00	-46.55	ERP
5	372.0045	-68.60	11.84	-56.76	-13.00	-43.76	ERP
6	622.8900	-68.32	17.47	-50.85	-13.00	-37.85	ERP


Vertical:

No.	Frequency	Reading	Correct	Result	Limit	Margin	Remark
	(MHz)	(dBm)	dB	(dBm)	(dBm)	(dB)	
1	44.4308	-69.02	4.95	-64.07	-13.00	-51.07	ERP
2	60.0691	-69.30	5.02	-64.28	-13.00	-51.28	ERP
3	96.7749	-69.02	4.46	-64.56	-13.00	-51.56	ERP
4	213.7634	-70.87	6.34	-64.53	-13.00	-51.53	ERP
5	357.9287	-68.58	11.86	-56.72	-13.00	-43.72	ERP
6	642.8613	-69.66	18.00	-51.66	-13.00	-38.66	ERP


For FDD_LTE Band 13 Mode

No.	Frequency	Reading	Correct	Result	Limit	Margin	Remark
	(MHz)	(dBm)	dB	(dBm)	(dBm)	(dB)	
1	42.3022	-68.58	4.94	-63.64	-13.00	-50.64	ERP
2	58.8185	-69.56	5.01	-64.55	-13.00	-51.55	ERP
3	96.7749	-69.61	4.46	-65.15	-13.00	-52.15	ERP
4	257.4222	-69.37	9.59	-59.78	-13.00	-46.78	ERP
5	359.1860	-68.75	11.89	-56.86	-13.00	-43.86	ERP
6	633.9073	-69.22	17.86	-51.36	-13.00	-38.36	ERP

Vertical:

No.	Frequency	Reading	Correct	Result	Limit	Margin	Remark
	(MHz)	(dBm)	dB	(dBm)	(dBm)	(dB)	
1	44.4308	-69.02	4.95	-64.07	-13.00	-51.07	ERP
2	60.0691	-69.30	5.02	-64.28	-13.00	-51.28	ERP
3	96.7749	-69.02	4.46	-64.56	-13.00	-51.56	ERP
4	216.0240	-69.92	6.82	-63.10	-13.00	-50.10	ERP
5	357.9287	-68.58	11.86	-56.72	-13.00	-43.72	ERP
6	645.1195	-69.39	17.94	-51.45	-13.00	-38.45	ERP

Note: Margin= (Reading+ Correct)- Limit

Spurious Emissions Above 1GHz

For FDD_LTE Band 4 Mode

Frequency	Reading	Correct	Result	Limit	Margin	Polar	
(MHz)	(dBm)	dB	(dBm)	(dBm)	(dB)	H/V	
	Low Channel (1710.0MHz)						
3420.00	-38.58	9.87	-28.71	-13	-15.71	Н	
5130.00	-39.85	9.87	-29.98	-13	-16.98	Н	
3420.00	-41.01	13.02	-27.99	-13	-14.99	V	
5130.00	-43.86	13.02	-30.84	-13	-17.84	V	
	Middle Channel (1732.5MHz)						
3465.00	-37.63	9.96	-27.67	-13	-14.67	Н	
5197.50	-37.28	9.96	-27.32	-13	-14.32	Н	
3465.00	-42.05	13.32	-28.73	-13	-15.73	V	
5197.50	-41.26	13.32	-27.94	-13	-14.94	V	
	High Channel (1755.0MHz)						
3510.00	-38.65	10.03	-28.62	-13	-15.62	Н	
5265.00	-36.76	10.03	-26.73	-13	-13.73	Н	
3510.00	-41.17	14.03	-27.14	-13	-14.14	V	
5265.00	-43.25	14.03	-29.22	-13	-16.22	V	

For FDD_LTE Band 13Mode

Frequency	Reading	Correct	Result	Limit	Margin	Polar	
(MHz)	(dBm)	dB	(dBm)	(dBm)	(dB)	H/V	
	Low Channel (777MHz)						
1554.00	-39.26	4.78	-34.48	-13	-21.48	Н	
1554.00	-35.29	4.78	-30.51	-13	-17.51	Н	
2331.00	-42.06	8.31	-33.75	-13	-20.75	V	
2331.00	-40.29	8.31	-31.98	-13	-18.98	V	
Middle Channel (782MHz)							
1564.00	-37.68	4.76	-32.92	-13	-19.92	Н	
1564.00	-38.69	4.76	-33.93	-13	-20.93	Н	
2346.00	-42.68	8.02	-34.66	-13	-21.66	V	
2346.00	-44.45	8.02	-36.43	-13	-23.43	V	
	High Channel (787MHz)						
1574.00	-37.37	4.63	-32.74	-13	-19.74	Н	
1574.00	-37.66	4.63	-33.03	-13	-20.03	Н	
2361.00	-40.68	7.85	-32.83	-13	-19.83	V	
2361.00	-42.95	7.85	-35.10	-13	-22.10	V	

Note: Result=Reading+ Correct, Margin= Result- Limit

Testing is carried out with frequency rang 9kHz to 20GHz, which above 3th Harmonics are attenuated more than 20dB below the permissible limits or the field strength is too small to be measured, so the data is not display.

9. Frequency Stability

9.1 Standard Applicable

According to §24.235, The frequency stability shall be sufficient to ensure that the fundamental emission stays within the authorized frequency block.

According to §27.54 The frequency stability shall be sufficient to ensure that the fundamental emissions stay within the authorized bands of operation.

9.2 Test Procedure

According to §2.1055, the following test procedure was performed.

The Frequency Stability is measured directly with a Frequency Domain Analyzer. Frequency Deviation in ppm is calculated from the measured peak to peak value.

The Carrier Frequency Stability over Power Supply Voltage and over Temperature is measured with a Frequency Domain Analyzer in histogram mode

Temperature:	Supply Voltage		
20°C	DC 3.3-4.2V declared by manufacturer		
-30°C to +50°C	Normal		

9.3 Environmental Conditions

Temperature:	20°C
Relative Humidity:	54%
ATM Pressure:	1011 mbar

9.4 Summary of Test Results/Plots

Please refer to Appendix F: Frequency Stability

Test result: Pass

***** END OF REPORT *****