

Hisense (Guangdong) Air Conditioning Co., Ltd.

200601191GZU-001

[REVISED DATE]

22 September 2020 [-----]

ISSUE DATE

PAGES 92

DOCUMENT CONTROL NUMBER FCC WIFI-d © 2017 INTERTEK

Room 02, & 101/E201/E301/ E401/E501/E601/E701/E801 of Room 01 1-8/F., No. 7-2. Caipin Road, Science City, GETDD, Guangzhou, Guangdong, China Telephone: +86 20 8213 9688 Facsimile: +86 20 3205 7538 www.intertek.com.cn

Applicant Name & Address	:	Hisense (Guangdong) Air Conditioning Co., Ltd. No.8 Hisense Road, Advanced Manufacturing Jiangsha
Address		
		Demonstration Park, Jiangmen City, Guangdong Province, P. R. China
Manufacturing Site	:	Same as applicant
Intertek Report No:	:	200601191GZU-001
FCC ID:		2AGCCAEH-W4G1

Test standards

47 CFR PART 15 Subpart C: 2019 section 15.247

Sample Description

Product	: WIFI Module
Model No.	: AEH-W4G1
Electrical Rating	: 5Vdc, 0.45A
Serial No.	: Not Labeled
Date Received	: 01 June 2020
Date Test	: 01 June 2020 to 10 September 2020
Conducted	

Prepared and Checked By

Paul Pang

Sr. Project Engineer

Approved By:

Helen

Helen Ma Team Leader

This report is for the exclusive use of Intertek's Client and is provided pursuant to the agreement between Intertek and its Client. Intertek's responsibility and liability are limited to the terms and conditions of the agreement. Intertek assumes no liability to any party, other than to the Client in accordance with the agreement, for any loss, expense or damage occasioned by the use of this report. Only the Client is authorized to permit copying or distribution of this report and then only in its entirety. Any use of the Intertek name or one of its marks for the sale or advertisement of the tested material, product or service must first be approved in writing by Intertek. The observations and test results in this report are relevant only to the sample tested. This report by itself does not imply that the material, product, or service is or has ever been under an Intertek certification program.

Intertek Testing Services Shenzhen Ltd. Guangzhou Branch

Room 02, & 101/E201/E301/E401/E501/E601/E701/E801 of Room 01 1-8/F., No. 7-2. Caipin Road, Science City, GETDD, Guangzhou,

Guangdong, China

Version: 10 June 2019

Page 2 of 92

FCC WIFI-d

TEST REPORT

CONTENT

TEST RE	PORT1
CONTE	ENT3
1.0	TEST RESULT SUMMARY4
2.0	GENERAL DESCRIPTION
2.1 2.2 2.3 2.4	PRODUCT DESCRIPTION
3.0	SYSTEM TEST CONFIGURATION
3.1 3.2 3.3 3.4 3.5 3.6 4.0	JUSTIFICATION6EUT EXERCISING SOFTWARE7SPECIAL ACCESSORIES8MEASUREMENT UNCERTAINTY8EQUIPMENT MODIFICATION8SUPPORT EQUIPMENT LIST AND DESCRIPTION9MEASUREMENT RESULTS10
4.1	ANTENNA REQUIREMENT
4.1 4.2 4.3 4.4 4.5 4.6 4.7 4.8 4.9	ANTENNA REQUREMENT106 DB BANDWIDTH (DTS BANDWIDTH)11MAXIMUM PEAK CONDUCTED OUTPUT POWER19PEAK POWER SPECTRAL DENSITY27OUT OF BAND CONDUCTED EMISSIONS35OUT OF BAND RADIATED EMISSIONS45RADIATED EMISSIONS IN RESTRICTED BANDS45BAND EDGES REQUIREMENT83CONDUCTED EMISSION TEST89
5.0	TEST EQUIPMENT LIST

TEST RESULT SUMMARY 1.0

Test Item	Test Requirement	Test Method	Result
Antenna Requirement	FCC PART 15 C section 15.247 (c) and Section 15.203	FCC PART 15 C section 15.247 (c) and Section 15.203	PASS
6 dB Bandwidth (DTS bandwidth)	FCC PART 15 C section 15.247 (a)(2)	ANSI C63.10: Clause 11.8	PASS
Maximum Peak Conducted Output Power	FCC PART 15 C section 15.247(b)(3)	ANSI C63.10: Clause 11.9.1.2	PASS
Peak Power Spectral Density	FCC PART 15 C section 15.247(e)	ANSI C63.10: Clause 11.10.2	PASS
Out of Band Conducted Emissions	FCC PART 15 C section 15.209 &15.247(d)	ANSI C63.10: Clause 11.11	PASS
Out of Band Radiated Emission	FCC PART 15 C section 15.209 &15.247(d)	ANSI C63.10: Clause 11.11, 6.4, 6.5 and 6.6	N/A
Radiated Emissions in Restricted Bands	FCC PART 15 C section 15.209 &15.247(d)	ANSI C63.10: Clause 11.12.1, 6.4, 6.5 and 6.6	PASS
Band Edges Measurement	FCC PART 15 C section 15.247 (d) &15.205	ANSI C63.10: Clause 11.11 and 11.13	PASS
Conducted Emissions at Mains Terminals	FCC PART 15 C section 15.207	ANSI C63.10: Clause 6.2	PASS
Remark:			

N/A: not applicable. Refer to the relative section for the details. EUT: In this whole report EUT means Equipment Under Test.

Tx: In this whole report Tx (or tx) means Transmitter.

Rx: In this whole report Rx (or rx) means Receiver.

RF: In this whole report **RF** means Radio Frequency.

ANSI C63.10: the detail version is ANSI C63.10:2013 in the whole report

TEST REPORT

2.0 General Description

2.1 Product Description

Operating Frequency:	2412 MHz to 2462 MHz for 802.11b/g/n(HT20) 2422 MHz to 2452 MHz for 802.11n(HT40)
Type of Modulation:	802.11b: DSSS(CCK/QPSK/BPSK)
	802.11g: OFDM(BPSK/QPSK/16QAM/64QAM)
	802.11n: OFDM (BPSK/QPSK/16QAM/64QAM)
Transmit Data Rate:	802.11b :1/2/5.5/11 Mbps
	802.11g :6/9/12/18/24/36/48/54 Mbps
	802.11n(HT20): 6.5/13/19.5/26/39/52/58.5/65 Mbps/72.2Mbps
	802.11n(HT40): 150Mbps
Number of Channels	11 Channels for 802.11b/g/n(HT20)
	7 Channels for 802.11n(HT40)
Channel Separation:	5 MHz
Antenna Type	Internal Printed ANT
Function:	WIFI Module
EUT Power Supply:	DC 5.0V
Power cord:	N/A

EUT channels and frequencies list:

For 802.11b/g/n(HT20): test frequencies are lowest channel 1: 2412 MHz, middle channel 6: 2437 MHz and highest channel 11: 2462 MHz.

For 802.11n(HT40): test frequencies are lowest channel 3: 2422 MHz, middle channel 6: 2437 MHz and highest channel 9: 2452 MHz.

Channel	Frequency (MHz)	Channel	Frequency (MHz)
1	2412	7	2442
2	2417	8	2447
3	2422	9	2452
4	2427	10	2457
5	2432	11	2462
6	2437	/	

TEST REPORT

2.2 Related Submittal(s) Grants

This is an application for certification of: DTS- Part 15 Digital Transmission Systems (WIFI transmitter portion)

Remaining portions are subject to the following procedures: 1. Receiver portion of WIFI: exempt from technical requirement of this Part.

2.3 Test Methodology

Both AC mains line-conducted and radiated emission measurements were performed according to the procedures in ANSI C63.10. Radiated emission measurement was performed in semi-anechoic chamber and conducted emission measurement was performed in shield room. For radiated emission measurement, preliminary scans and final tests were performed in the semi-anechoic chamber to determine the worst case modes. All radiated tests were performed at an antenna to EUT distance of 3 meters, unless stated otherwise.

2.4 Test Facility

All tests were performed at: Intertek Testing Services Shenzhen Ltd. Guangzhou Branch Room102/104, No 203, KeZhu Road, Science City, GETDD Guangzhou, China Except Conducted Emissions was performed at: Room 02, & 101/E201/E301/E401/E501/E601/E701/E801 of Room 01 1-8/F., No. 7-2. Caipin Road, Science City, GETDD, Guangzhou, Guangdong, China

A2LA Certificate Number 0078.10

Intertek Testing Services Shenzhen Ltd. Guangzhou Branch is accredited by A2LA and Listed in FCC website. FCC accredited test labs may perform both Certification testing under Parts 15 and 18 and Declaration of Conformity testing.

3.0 System Test Configuration

3.1 Justification

For emissions testing, the equipment under test (EUT) setup to transmit continuously to simplify the measurement methodology. Care was taken to ensure proper power supply voltages during testing. During testing, DC power line was manipulated to produce worst case emissions. It was powered by DC 5V supply.

The signal is maximized through rotation and placement in the three orthogonal axes. The antenna height and polarization are varied during the search for maximum signal level. The antenna height is varied from 1 to 4 meters. Radiated emissions are taken at three meters

unless the signal level is too low for measurement at that distance. If necessary, a pre-amplifier is used and/or the test is conducted at a closer distance.

All readings are extrapolated back to the equivalent three meter reading using inverse scaling with distance. The spurious emissions more than 20 dB below the permissible value are not reported.

For an intentional radiator, the spectrum shall be investigated from the lowest radio frequency signal generated in the device, without going below 9 kHz, up to at least the frequency shown in the following table:

Frequency range of radiated emission measurements

Lowest frequency generated in the device	Upper frequency range of measurement	
9 kHz to below 10 GHz	10th harmonic of highest fundamental frequency or to	
5 KHZ to below 10 GHZ	40 GHz, whichever is lower	
At or above 10 GHz to below	5th harmonic of highest fundamental frequency or to	
30 GHz	100 GHz, whichever is lower	
	5th harmonic of highest fundamental frequency or to	
At or above 30 GHz	200 GHz, whichever is lower, unless otherwise	
	specified	

Number of fundamental frequencies to be tested in EUT transmit band

Frequency range in which device	Number of	Location in frequency
operates	frequencies	range of operation
1 MHz or less	1	Middle
1 MHz to 10 MHz	2	1 near top and 1 near bottom
More than 10 MHz	3	1 near top, 1 near middle and 1 near bottom

3.2 EUT Exercising Software

Description	Manufacturer	Model No.	SN/Version	Supplied by
For fixing frequency	Realtek	UI_mptool_1V16	1.16	Hisense

3.3 Special Accessories

No special accessories used.

3.4 Measurement Uncertainty

No.	Item	Measurement Uncertainty	
	20 dB Bandwidth		
1	6dB Bandwidth	2.3%	
	99% Bandwidth		
2	Carrier Frequencies Separated	2.3%	
3	Dwell Time	1.2%	
4	Maximum Peak Conducted Output Power	1.5dB	
5	Peak Power Spectral Density	1.5dB	
6	Out of Band Conducted Emissions	1.5dB	
7	Band edges measurement	1.5dB	
		4.7 dB (25 MHz-1 GHz)	
8	Radiated Emissions	4.8 dB (1 GHz-18 GHz)	
0		5.21dB (18GZH-26GHz)	
9	Conducted Emissions at Mains Terminals	2.58dB	
10	Temperature	0.5 °C	
11	Humidity	0.4 %	
12	Time	1.2%	

The measurement uncertainty describes the overall uncertainty of the given measured value during the operation of the EUT.

Measurement uncertainty is calculated in accordance with ETSI TR 100 028-2001.

The measurement uncertainty is given with a confidence of 95%, k=2.

When determining of the test conclusion, the Measurement Uncertainty of test has been considered.

Uncertainty and Compliance – Unless the standard specifically states that measured values are to be extended by the measurement uncertainty in determining compliance, all compliance determinations are based on the actual measured value

3.5 Equipment Modification

Any modifications installed previous to testing by Hisense (Guangdong) Air Conditioning Co., Ltd. will be incorporated in each production model sold / leased in the United States.

TEST REPORT

No modifications were installed by Intertek Testing Services Shenzhen Ltd. Guangzhou Branch.

3.6 Support Equipment List and Description

This product was tested with corresponding support equipment as below:

Support Equipment

Description	Manufacturer	Model No.	SN/Version	Supplied by
NoteBook	LENOVO	T430		Intertek
Adapter	Kwong Ming Electrical MFY.	KMUD-060- 00600-41GS		Intertek

Cable

Description	Model No.	Connector type	Cable length/type	Supplied by
Antenna cable	RF-01	SMA	0.2 m(shielded)	Intertek
USB extension cord	USB-01	USB	1.0 m(shielded)	Hisense

TEST REPORT

4.0 Measurement Results

4.1 Antenna Requirement

Standard requirement:

15.203 requirement:

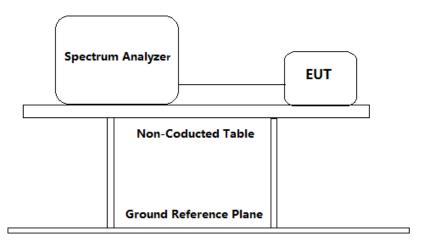
For intentional device. According to 15.203 an intentional radiator shall be designed to Ensure that no antenna other than that furnished by the responsible party shall be used with the device.

15.247(c) (1)(i) requirement:

(i) Systems operating in the 2400-2483.5 MHz bands that are used exclusively for fixed. Point-to-point operations may employ transmitting antennas with directional gain greater than 6 dBi provided the maximum conducted output power of the intentional radiator is reduced by 1 dB for every 3 dB that the directional gain of the antenna exceeds 6 dBi.

EUT Antenna

The antenna is an integral antenna and no consideration of replacement. The best case gain of the antenna is 1 dBi.



4.2 6 dB Bandwidth (DTS bandwidth)

Test Requirement:FCC Part 15 C section 15.247
(a)(2)Systems using digital modulation techniques may
operate in the 902-928 MHz, 2400-2483.5MHz, and 5725-
5850 MHz bands. The minimum 6 dB bandwidth shall be at
least 500 kHz.Test Method:ANSI C63.10: Clause 11.8Test Status:Pre-Scan has been conducted to determine the worst-case
mode from all possible combinations between available
modulations, data rates and antenna ports (if EUT with
antenna diversity architecture). Following channel(s) was
(were) selected for the final test as listed below.

Test Configuration:

Test Procedure:

- 1. Remove the antenna from the EUT and then connect a low attention attenuation RF cable (cable loss =0.5 dB) from the antenna port to the spectrum.
- 2. Set the spectrum analyzer:
 - a) Set RBW = 100 kHz
 - b) Set the VBW \geq [3 × RBW]
 - c) Detector = peak.
 - d) Trace mode = max hold.
 - e) Sweep = auto couple
 - f) Allow the trace to stabilize.

g) Measure the maximum width of the emission that is constrained by the frequencies associated with the two outermost amplitude points (upper and lower frequencies) that are attenuated by 6 dB relative to the maximum level measured in the fundamental emission.

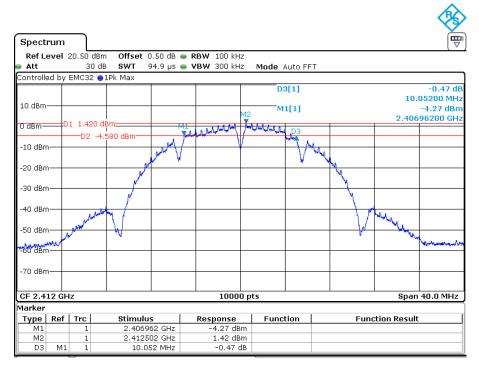
- h) Span=2*BW~5*BW
- 3. Repeat until all the test status is investigated.
- 4. Report the worst case.

Used Test Equipment List

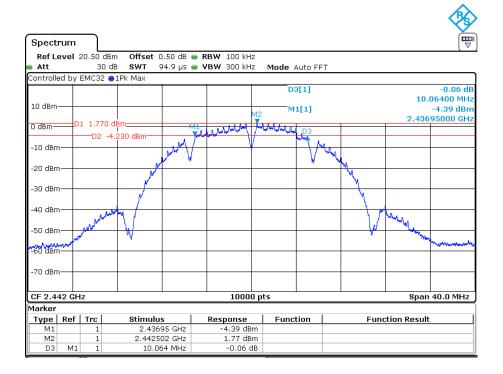
Spectrum Analyzer. Refer to Clause 5 Test Equipment List for details.

Channel No.	Frequency (MHz)	Mode	Data Rate	Measured 6dB bandwidth	Limit	Result
				(MHz)		
1	2412		11 Mbps	10.052		Pass
6	2437	802.11b	11 Mbps	10.064		Pass
11	2462		11 Mbps	10.056		Pass
1	2412		54 Mbps	16.492		Pass
6	2437	802.11g	54 Mbps	16.400		Pass
11	2462		54 Mbps	16.452		Pass
1	2412	802.11n	72.2 Mbps	17.660	≥500KHz	Pass
6	2437	(HT20)	72.2 Mbps	17.612		Pass
11	2462		72.2 Mbps	17.680		Pass
3	2422	802.11n	150 Mbps	36.000	1	Pass
6	2437	(HT40)	150 Mbps	36.060		Pass
9	2452		150 Mbps	36.036		Pass

Test result: The unit does meet the FCC requirements.



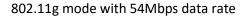
TEST REPORT

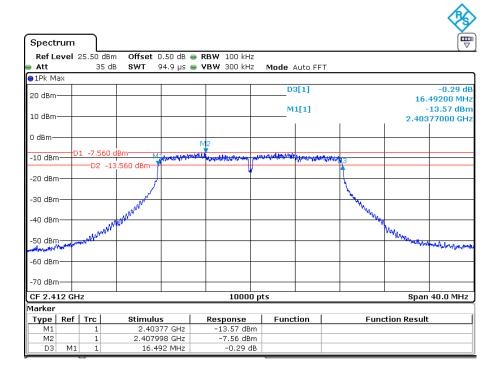

Result plot as follows:

802.11b mode with 11Mbps data rate

Channel 1: 2.412GHz

Channel 6: 2.437GHz:

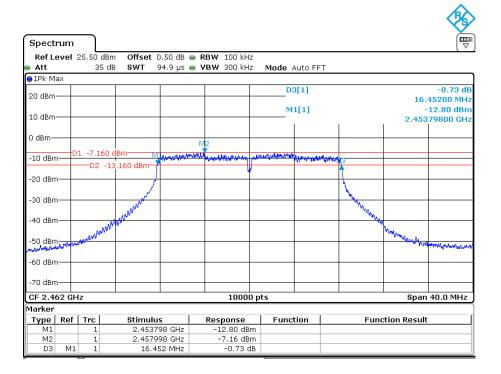



TEST REPORT

Channel 11: 2.462GHz:

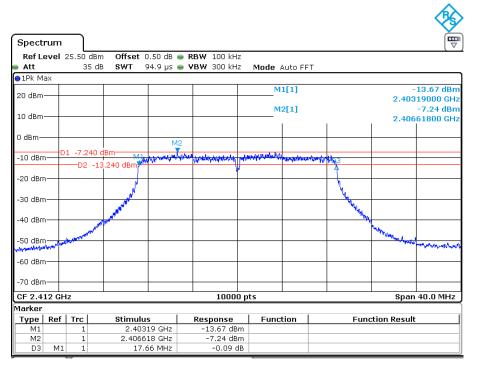
Spect	rum									
Ref Le	evel	20.50	dBm Offset ().50 dB 🍕	• RBW 100 kHz					
🔵 Att		30	dB SWT	94.9μs 🧉	VBW 300 kHz	Mode /	Auto FFT			
Controlle	ed by	EMC32	●1Pk Max							
						D	3[1]			-0.49 dB
10.40									10	.05600 MHz
10 dBm·					N		1[1]			-4.10 dBm
0 dBm-	D	1 1.76	0 dBm	N					2.456	595400 GHz
U UBIII-	_		-4.240 dBm		all all and and all of	u da da da da	D3			
-10 dBm		02	-4.240 ubin	MI	r v		the ba			
-10 UBI				July V			1 miles			
-20 dBm			M	r "			W 1	N		
-20 UBI			M					M		
-30 dBm			N N					Y		
-30 ubii	'		1					N N		
-40 dBm										
-10 001	'	, N	Malana /					1 1 1	Maryle.	
-50 dBm		and a start							The second second	
			γ.					v v		
-60 dBm	4mm									March and a straight and and a straight of the
-70 dBm										
CF 2.40					10000	nte			0	40.0 MU
	oz GH	12			10000	prs			spar	140.0 MHz
Marker	D -6		<u> </u>	- 1	D	1		F		
Type M1	Ref	1rc 1	2,4569		Response -4.10 dBn	Func	tion	Fund	tion Result	C
M1 M2		1	2.4509		-4.10 dBn 1.76 dBn					
D3	M1	1		56 MHz	-0.49 dB					
			10.0.	50 1112	0,19 00	<u> </u>				

Channel 1: 2.412GHz:

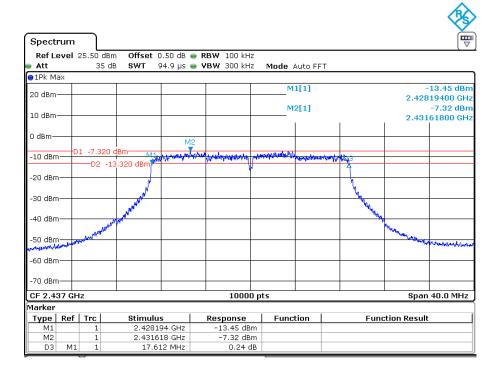


TEST REPORT

Channel 6: 2.437GHz:


Specti	rum									
RefLe	evel				 RBW 100 kHz VBW 300 kHz 		Auto FF	т		
😑 1Pk Ma	ах				-					
20 dBm-						D;	3[1]		16.4	-0.86 dB 0000 MHz
10 dBm-						M	1[1]			2.56 dBm 1000 GHz
0 dBm—					M2					
-10 dBm			60 dBm 0	the state of the s	Will was the second	www.apaparata	<u> </u>	Norway 3		
-20 dBm										
-30 dBm	-		- WWWW					A A A A A A A A A A A A A A A A A A A		
-40 dBm	ו		MMMMMMM ^M					· · · · ·	hours.	
-50 dBm	m	NUV NUM							Mary Mary Mary	mannahum
-60 dBm	<u>+</u>									
-70 dBm	-									
CF 2.43	37 GH	lz			10000	pts			Span 4	10.0 MHz
Marker	D -(ot ! !		D	1 5		-	- t' t'-]
Type M1	Ref	Trc 1	2,428		Response -12.56 dBr	Func	tion	Fund	ction Result	
M2 D3	М1	1	2.43299		-7.26 dBr -0.86 d	n				

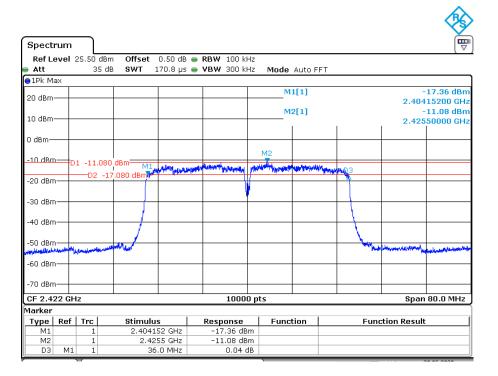
Channel 11: 2.462GHz:



802.11n(HT20) mode with 72.2Mbps data rate Channel 1: 2.412GHz:

Channel 6: 2.437GHz:

~


TEST REPORT

Channel 11: 2.462GHz:

Spectrum											
Ref Level	25.50	dBm Offset 0.1	50 dB 😑	RBW 100 kH	z						
Att 🛛	35	5 dB SWT 94	4.9 μs 👄	VBW 300 kH	z N	/lode /	Auto FF	т			
∋1Pk Max											
00 d0						M	1[1]				-13.06 dBm
20 dBm										2.45	319800 GHz
10 dBm						M:	2[1]				-7.09 dBm
10 dBm										2.45	662200 GHz
0 dBm											
0 UBIII			M2								
-10 dBm	01 -7.09	90 dBm <u>M1, u</u>	menter	w for a long to the state		ARMONT A	- www.joleinale				
-10 abiii	D2	-13.090 dBm	1	Mr. and Long and and			. Mading to the second	<u>ארן או דייי</u>	3		
-20 dBm											
20 0011									ι.		
-30 dBm		^							<u> </u>		
SO GDIII									When a		
-40 dBm									"Nig		
10 0.0.11		Manna Pr								March 1	
-50 dBm	and the second									"White	her horal promonents and all
-50 dBm											all all a second and a second and a second as a se
-60 dBm											
-70 dBm											
CF 2.462 GI	1-			1000	0 mts					0	n 40.0 MHz
	72			1000	o prs					spa	n 40.0 MHZ
Marker	1 - 1			-	-	_					•
Type Ref M1	Trc 1	2.453198		Response -13.06 dB	-	Func	tion		Fund	tion Resu	π
M1 M2	1	2.453198		-13.06 dB -7.09 dB							
D3 M1		2.450022		-7.09 08							
20 113	20	11.00		0.12 0							20.06.2020
	Л					Mea	suring			LX1	20.06.2020

802.11n(HT40) mode with 150Mbps data rate

Channel 3: 2.422GHz:

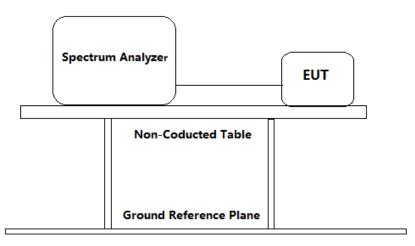
TEST REPORT

Channel 6: 2.437GHz:

Spectrum					
Ref Level 25.50 dBm	Offset 0.50 dB	🔵 RBW 100 kHz			(~)
Att 35 dB	6 SWT 170.8 μs	👄 VBW 300 kHz	Mode Auto FF	т	
●1Pk Max					
20 dBm			M1[1]		-17.40 dBm
			M2[1]		2.41909200 GHz -11.03 dBm
10 dBm			m2[1]		2.44050800 GHz
			1		
0 dBm					
			M2		
-10.dBm-D1 -11.030	dBm M1	water interesting water in the	and interpretenting and the production	He-101 D 2	
-20 dBm D2 -17	.030 dBm		- Minana an Island	4	
-20 0011					
-30 dBm					
				1 1	
-40 dBm					
-50 dBm	where a			Service and the service of the servi	www.ll.warman.andra.andra
And the state of t					No.
-60 dBm					
-70 dBm					
CF 2.437 GHz		10000 pt	(S		Span 80.0 MHz
Marker Type Ref Trc	Stimulus	Bosnonso	Function	Func	tion Result
Type Ref Trc M1 1	2.419092 GHz	-17.40 dBm	Function	Func	
M2 1	2.440508 GHz	-11.03 dBm			
D3 M1 1	36.06 MHz	0.12 dB			

Channel 9: 2.452GHz:

														<u>v</u>
Spectru	m	٦												
Ref Lev	el 2	25.50	dBm	Offset	0.50 dB	•	RBW 100 ki	Ηz						
Att		3	5 dB	SWT 1	.70.8 µs		VBW 300 ki	Ηz	Mode	Auto F	FT			
●1Pk Max														
20 dBm—									M	1[1]				16.59 dBm
20 00111														11600 GHz
10 dBm									M	2[1]				-11.03 dBm /25200 GHz
									1		1		2.447	23200 GH2
0 dBm	_													
							M2							
-10 dBm—		L -11.	.090	dBm m					u alla an					
	_		-17	dBm .090 dBm	per an	n ha ha	Convert Williamson	ritun			N WHAT	MD3		
-20 dBm—	+	02						1				1		
							1							
-30 dBm—	-		_											
10 -10				1										
-40 dBm—														
-50 dBm—				1										
-JU UBII			hereite									March Mar	his property and	and the for dealest
-60 dBm—														
-00 00111														
-70 dBm—														
CF 2.452		-					1000	1.01					Pnar	80.0 MHz
Marker	an	2					1000	o pu					əpui	100.0 Mili2
	ef	Trc		Stimulu	- I		Response	- 1	Funct	tion		Euro	tion Result	. 1
M1	<u>cı</u>	1		2.4341			-16.59 dB	m	Func			Fun	LION RESUL	<u> </u>
M2		1		2.4472			-11.03 dB							
	M1	1			36 MHz		-0.63 (
	-	-						-	\		_			



TEST REPORT

4.3 Maximum Peak Conducted Output Power

FCC Part 15 C section 15.247 **Test Requirement:** (b)(3) For systems using digital modulation in the 902-928 MHz, 2400-2483.5 MHz, and 5725-5850 MHz bands: 1 Watt. Except as shown in paragraph (c) of this section, if transmitting antennas of directional gain greater than 6 dBi are used, the conducted output power from the intentional radiator shall be reduced below the stated values in paragraphs (b) (1), (b) (2), and (b) (3) of this section, as appropriate, by the amount in dB that the directional gain of the antenna exceeds 6 dBi. Test Method: ANSI C63.10: Clause 11.9.1.2(Integrated band power method) Test Status: Pre-Scan has been conducted to determine the worst-case mode from all possible combinations between available modulations, data rates and antenna ports (if EUT with antenna diversity architecture). Following channel(s) was (were) selected for the final test as listed below.

Test Configuration:

Test Procedure:

- 1. Remove the antenna from the EUT and then connect a low attention attenuation RF cable (cable loss =0.5 dB) from the antenna port to the spectrum.
- 2. Set the spectrum analyzer:
 - a) Set the RBW = 1 MHz.
 - b) Set the VBW \geq [3 × RBW].
 - c) Set the span≥[1.5 × DTS bandwidth].
 - d) Detector = peak.
 - e) Sweep time = auto couple.
 - f) Trace mode = max hold.
 - g) Allow trace to fully stabilize.

```
h) Use the instrument's band/channel power measurement function with the band limits set equal to the DTS bandwidth edges.
```

- 3. Repeat until all the test status is investigated.
- 4. Report the worst case.

TEST REPORT

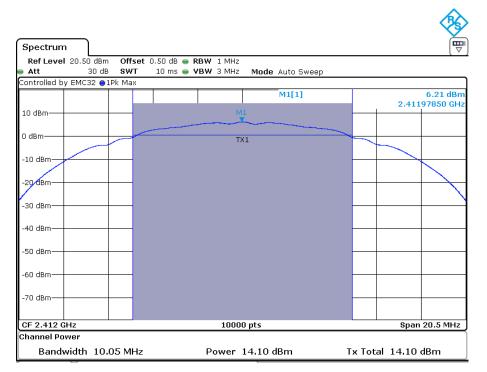
Used Test Equipment List

Spectrum Analyzer. Refer to Clause 5 Test Equipment List for details.

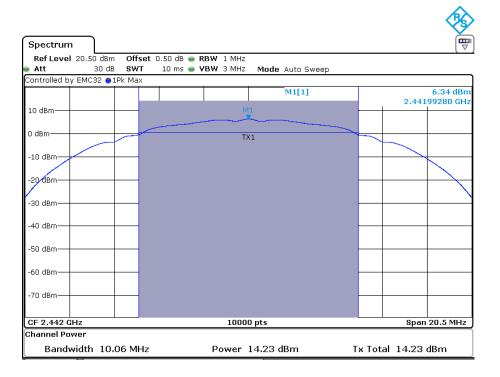
Test result:						
Channel No.	Frequency (MHz)	Mode	Data Rate	Measured Channel Power (dBm)	Limit	Result
1	2412		11 Mbps	14.10		Pass
6	2437	802.11b	11 Mbps	14.23		Pass
11	2462		11 Mbps	14.19		Pass
1	2412		54 Mbps	13.77		Pass
6	2437	802.11g	54 Mbps	14.11	1)4/	Pass
11	2462		54 Mbps	14.28	1W (20dBm)	Pass
1	2412	802.11n	72.2 Mbps	13.98	(30dBm)	Pass
6	2437	(HT20)	72.2 Mbps	14.29		Pass
11	2462	. ,	72.2 Mbps	14.45		Pass
3	2422	802.11n	150 Mbps	13.17		Pass
6	2437	(HT40)	150 Mbps	13.31		Pass
9	2452		150 Mbps	13.43		Pass

Remark: Level = Read Level + Cable Loss

The unit does meet the FCC requirements.

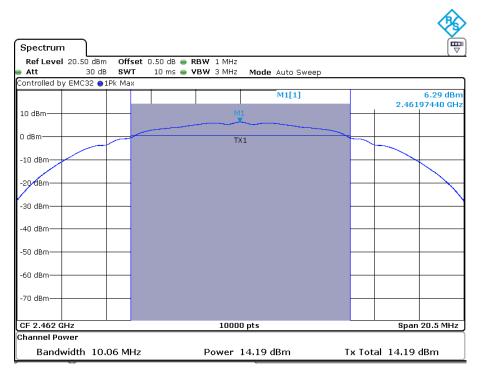


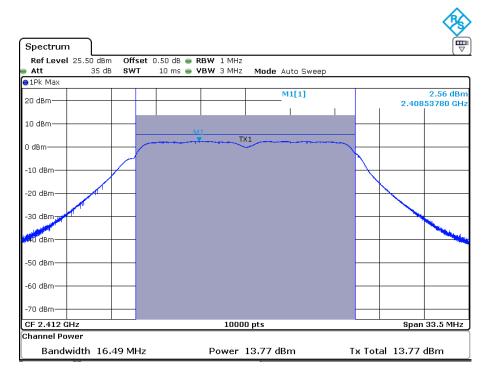
TEST REPORT


Result plot as follows:

802.11b mode with 11Mbps data rate

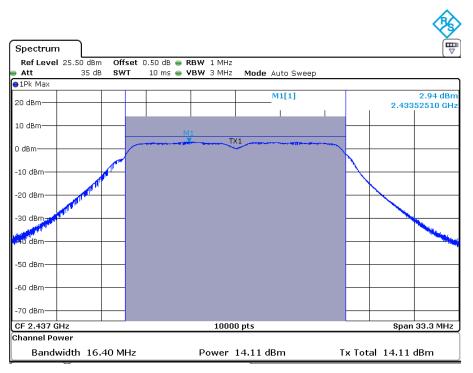
Channel 1: 2.412GHz:

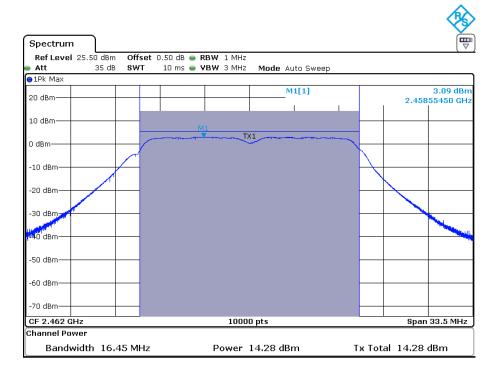

Channel 6: 2.437GHz:



TEST REPORT

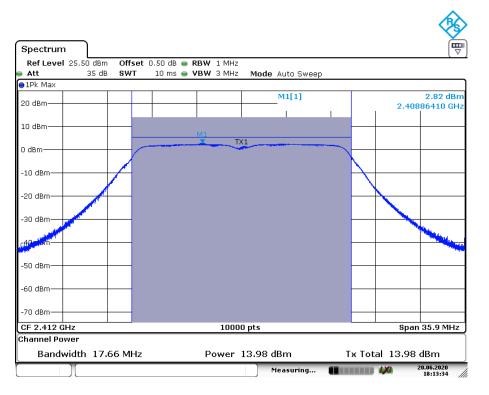
Channel 11: 2.462GHz:

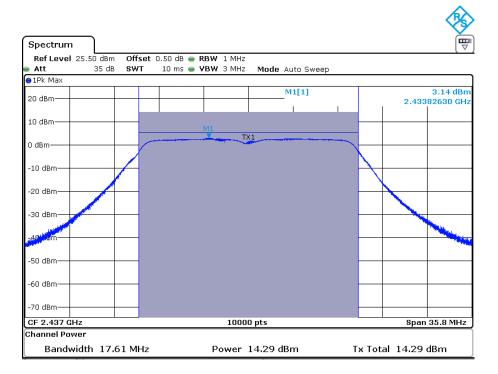

802.11g mode with 54Mbps data rate Channel 1: 2.412GHz:



TEST REPORT

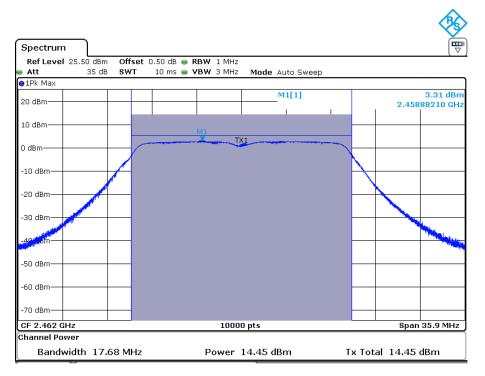
Channel 6: 2.437GHz:

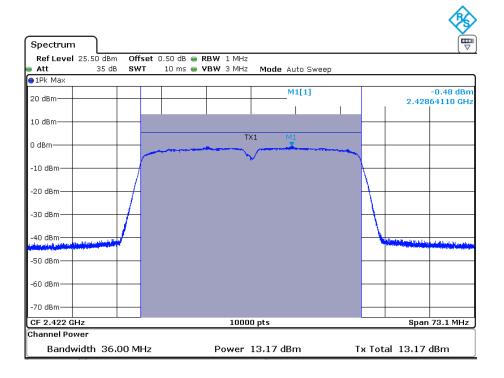

Channel 11: 2.462GHz:



TEST REPORT

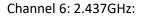
802.11n(HT20) mode with 72.2Mbps data rate Channel 1: 2.412GHz:

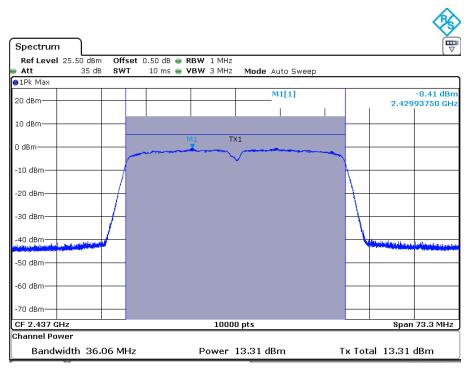

Channel 6: 2.437GHz:

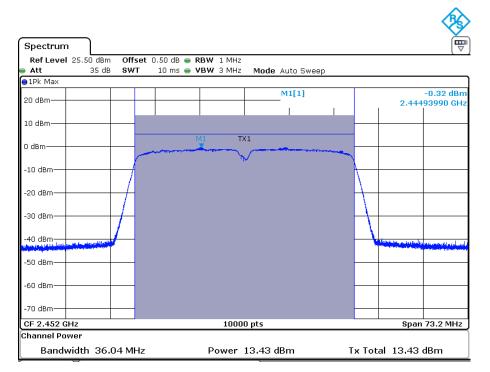


TEST REPORT

Channel 11: 2.462GHz:



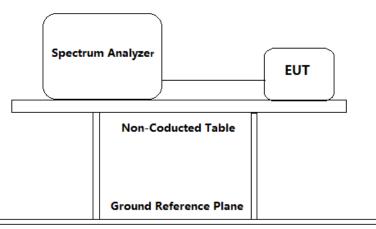

802.11n(HT40) mode with 150Mbps data rate Channel 3: 2.422GHz:



TEST REPORT

Channel 9: 2.452GHz:

Test result: The unit does meet the FCC requirements.



TEST REPORT

4.4 Peak Power Spectral Density

Test Requirement:	FCC Part 15 C section 15.247 (e) For digitally modulated systems, the power spectral density conducted from the intentional radiator to the antenna shall not be greater than 8 dBm in any 3 kHz band during any time interval of continuous transmission. This power spectral density shall be determined in accordance with
Test Method:	the provisions of paragraph (b) of this section. The same method of determining the conducted output power shall be used to determine the power spectral density. ANSI C63.10: Clause 11.10.2
Test Status:	Pre-Scan has been conducted to determine the worst-case mode from all possible combinations between available modulations, data rates and antenna ports (if EUT with antenna diversity architecture). Following channel(s) was (were) selected for the final test as listed below.

Test Configuration:

Test Procedure:

- 1. Remove the antenna from the EUT and then connect a low attention attenuation RF cable(cable loss =0.5dB) from the antenna port to the spectrum analyzer or power meter.
- 2. Set the spectrum analyzer:
 - a) Set analyzer center frequency to DTS channel center frequency.
 - b) Set the span= 1.5 × DTS bandwidth.
 - c) Set the RBW to 3 kHz \leq RBW \leq 100 kHz.
 - d) Set the VBW \geq [3 × RBW].
 - e) Detector = peak.
 - f) Sweep time = auto couple.
 - g) Trace mode = max hold.
 - h) Allow trace to fully stabilize.
 - i) Use the peak marker function to determine the maximum amplitude level within

TEST REPORT

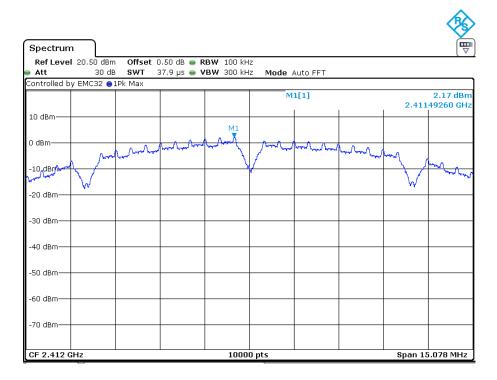
the RBW.

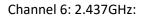
- j) If measured value exceeds requirement, then reduce RBW (but no less than 3 kHz) and repeat.
- 3. Measure the Power Spectral Density of the test frequency with special test status.
- 4. Repeat until all the test status is investigated.
- 5. Report the worst case.

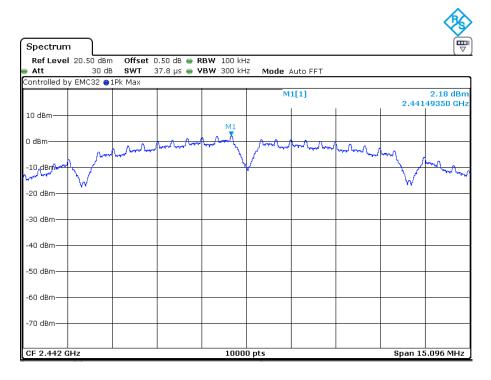
Used Test Equipment List

Spectrum Analyzer. Refer to Clause 5 Test Equipment List for details.

Test	resu	lt:
------	------	-----

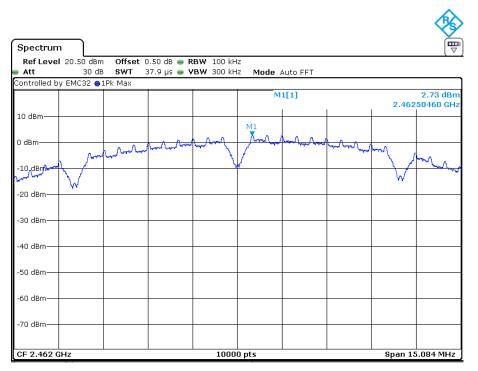

Channel No.	Frequency (MHz)	Mode	Data Rate	Measured Peak Power Spectral Density (dBm/100kHz)	Limit	Result
1	2412		11 Mbps	2.17		Pass
6	2437	802.11b	11 Mbps	2.18		Pass
11	2462		11 Mbps	2.73		Pass
1	2412		54 Mbps	-7.04		Pass
6	2437	802.11g	54 Mbps	-7.24		Pass
11	2462		54 Mbps	-6.81	8dBm/	Pass
1	2412	802.11n	72.2 Mbps	-7.21	3 KHz	Pass
6	2437	(HT20)	72.2 Mbps	-7.10		Pass
11	2462	(1120)	72.2 Mbps	-6.87		Pass
3	2422	802.11n	150 Mbps	-11.44		Pass
6	2437	(HT40)	150 Mbps	-11.45		Pass
9	2452	(11140)	150 Mbps	-10.47		Pass

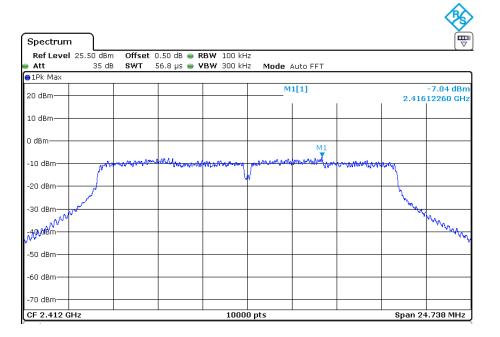



TEST REPORT

Result plot as follows:

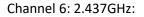
802.11b mode with 11Mbps data rate Channel 1: 2.412GHz:



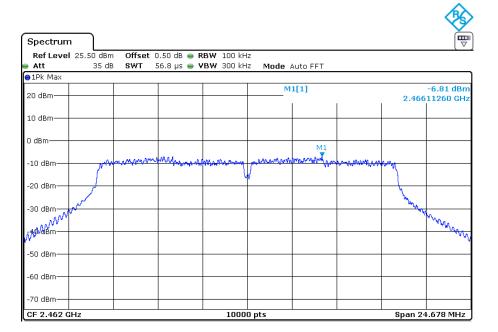


TEST REPORT

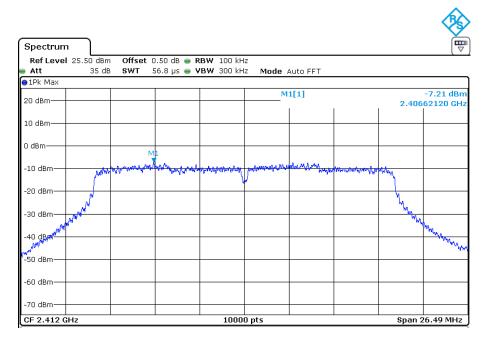
Channel 11: 2.462GHz:



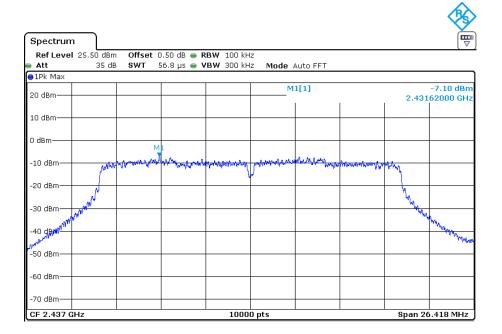
802.11g mode with 54Mbps data rate Channel 1: 2.412GHz:



TEST REPORT


Spectrum	n								
Ref Level Att	25.50 dBm 35 dB			BW 100 kH BW 300 kH		Auto FFT			
⊖1Pk Max									
20 dBm					M	1[1]		2.432	-7.24 dBm 86840 GHz
10 dBm									
0 dBm			M1						
-10 dBm	pm	~~ ~~~~~	Maderowski	Webston and	- and a second and a	ann water from	ale working the state of the	ll linear	
-20 dBm								h	
-30 dBm -49/dBm	~							"The second	www.www.
-50 dBm									
-60 dBm									
-70 dBm CF 2.437 G	GHz			1000	D pts			Span	24.6 MHz

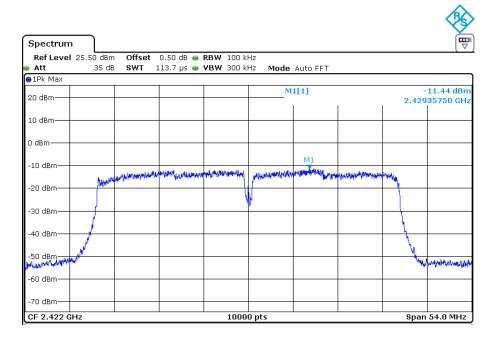
Channel 11: 2.462GHz:



802.11n(HT20) mode with 72.2Mbps data rate Channel 1: 2.412GHz:

Channel 6: 2.437GHz:

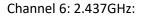
~

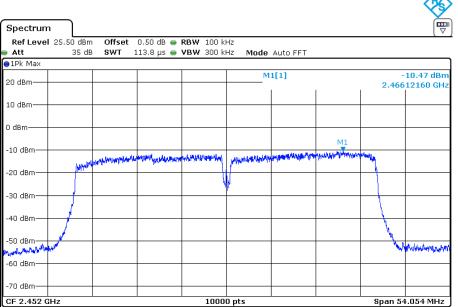

TEST REPORT

Channel 11: 2.462GHz:

Spectrum	ī								v ⊽
Ref Level Att	l 25.50 dBm 35 dB			BW 100 kH 'BW 300 kH		Auto FFT			
⊖1Pk Max			1						
20 dBm					M	1[1]	1	2.456	-6.87 dBm 61780 GHz
10 dBm									
0 dBm		M	1						
-10 dBm—	White		₩ ₩₩₩₩₩₩₩ ₩₩	and the second sec	- Andrewall and a second	nhutulitan jangta	han the second	Adwy 1	
-20 dBm	and a							hun	
-40 dBm	N ^{W/W}							ww.	well ward and a second
-50 dBm-									. March
-60 dBm									
-70 dBm CF 2.462 G	GHz			1000	0 pts			Span 2	26.52 MHz

802.11n(HT40) mode with 150Mbps data rate


Channel 3: 2.422GHz:

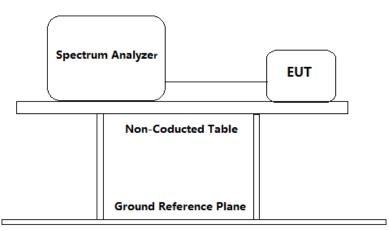

~

TEST REPORT

Spectrum	·								
Ref Level Att	25.50 dBm 35 dB		0.50 dB 👄 113.7 µs 👄			Auto FFT			
● 1Pk Max	35 UD	3991	по.7 ръ 💻	YDW 300 KI	nz Moue	AULU FFT			
20 dBm					M	1[1]			11.45 dBm 11080 GHz
10 dBm									
0 dBm									
-10 dBm	الملمان	vieren franker vielen ^{ka} k	and and the property of	general and the	phonetering	M1	al work and the second	n multa	
-20 dBm					/				
-30 dBm	1								
-40 dBm	1								
-50 dBm	w.							M	d.M. Mayneshik
-60 dBm									
-70 dBm									
CF 2.437 G	Hz			1000	0 pts			Span S	54.09 MHz

Channel 9: 2.452GHz:

TEST REPORT


4.5 Out of Band Conducted Emissions

Test Requirement:	FCC Part 15 C section 15.247

(d) In any 100 kHz bandwidth outside the frequency band in which the spread spectrum or digitally modulated intentional radiator is operating. The radio frequency power that is produced by the intentional radiator shall be at least 20 dB below that in the 100 kHz bandwidth within the band that contains the highest level of the desired power. Based on either an RF conducted or a radiated measurement. Provided the transmitter demonstrates compliance with the peak conducted power limits.

- Test Method: ANSI C63.10: Clause 11.11
- Test Status: Pre-Scan has been conducted to determine the worst-case mode from all possible combinations between available modulations, data rates and antenna ports (if EUT with antenna diversity architecture). Following channel(s) was (were) selected for the final test as listed below.

Test Configuration:

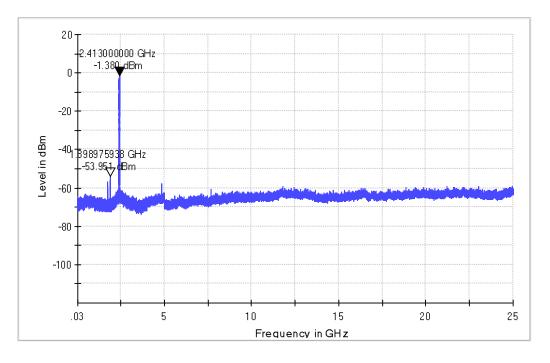
Test Procedure:

- 1. Remove the antenna from the EUT and then connect a low RF cable (cable loss =0.5dB) from the antenna port to the spectrum analyzer or power meter.
- 2. Establish a reference level by using the following procedure:
 - a) Set instrument center frequency to DTS channel center frequency.
 - b) Set the span to \geq 1.5 imes DTS bandwidth.
 - c) Set the RBW = 100 kHz.
 - d) Set the VBW \geq [3 × RBW].
 - e) Detector = peak.
 - f) Sweep time = auto couple.
 - g) Trace mode = max hold.
 - h) Allow trace to fully stabilize.
 - i) Use the peak marker function to determine the maximum PSD level.

Note that the channel found to contain the maximum PSD level can be used to

TEST REPORT

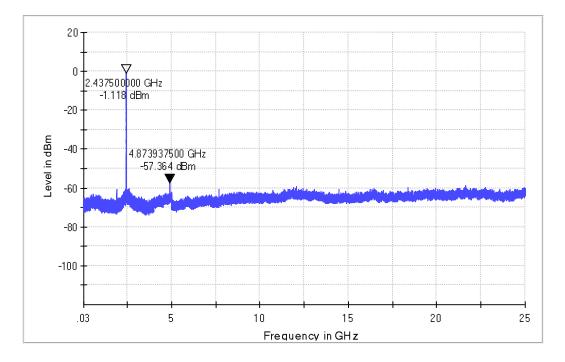
establish the reference level


- 3. Emission level measurement
 - a) Set the center frequency and span to encompass frequency range to be measured.
 - b) Set the RBW = 100 kHz.
 - c) Set the VBW \geq [3 × RBW].
 - d) Detector = peak.
 - e) Sweep time = auto couple.
 - f) Trace mode = max hold.
 - g) Allow trace to fully stabilize.
 - h) Use the peak marker function to determine the maximum amplitude level.
- 4. Measure the Conducted unwanted Emissions of the test frequency with special test status.
- 5. Repeat until all the test status is investigated.
- 6. Report the worst case.

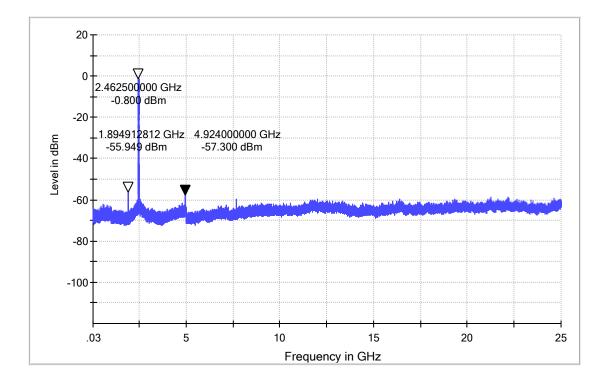
Used Test Equipment List

Spectrum Analyzer. Refer to Clause 5 Test Equipment List for details.

Result plot as follows:


802.11b mode with 11Mbps data rate Channel 1: 2.412GHz:

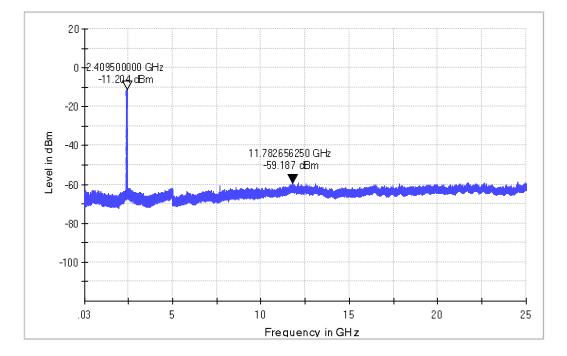
In any 100kHz bandwidth, the Conducted Spurious Emissions from 30 MHz to 25 GHz were greater than 20dB below the peak emission within the band that contains the highest level of the desired power.



Channel 6: 2.437GHz:

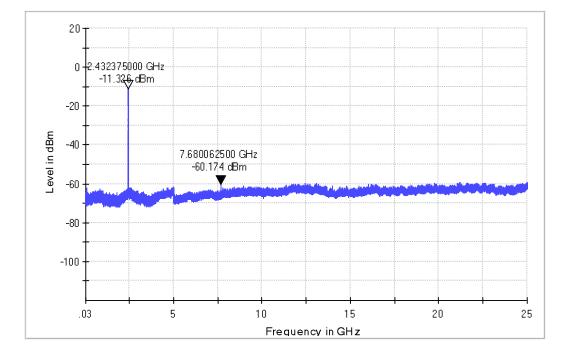
In any 100kHz bandwidth, the Conducted Spurious Emissions from 30 MHz to 25 GHz were greater than 20dB below the peak emission within the band that contains the highest level of the desired power.

Channel 11:2.462 GHz:

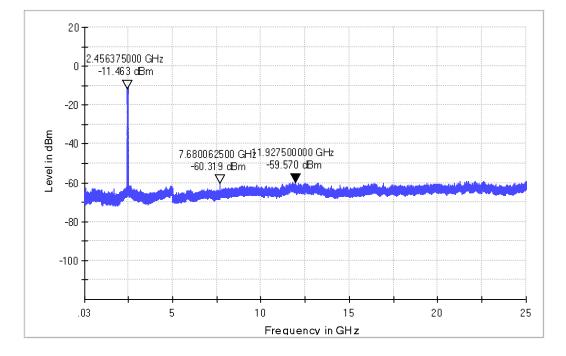


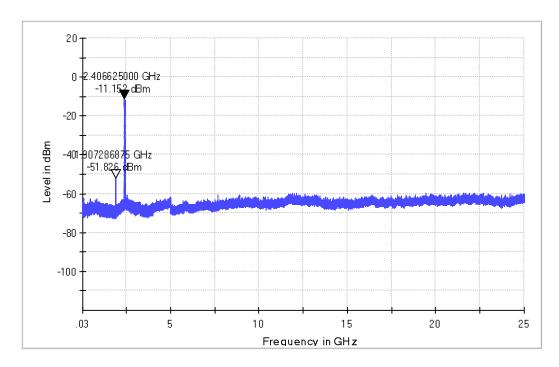
TEST REPORT

In any 100kHz bandwidth, the Conducted Spurious Emissions from 30 MHz to 25 GHz were greater than 20dB below the peak emission within the band that contains the highest level of the desired power.


802.11g mode with 54Mbps data rate

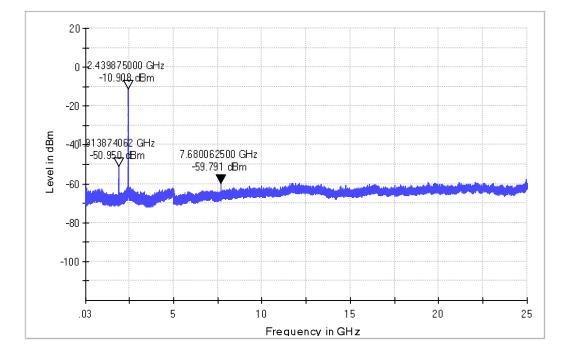
Channel 1: 2.412GHz:


Channel 6: 2.437GHz:

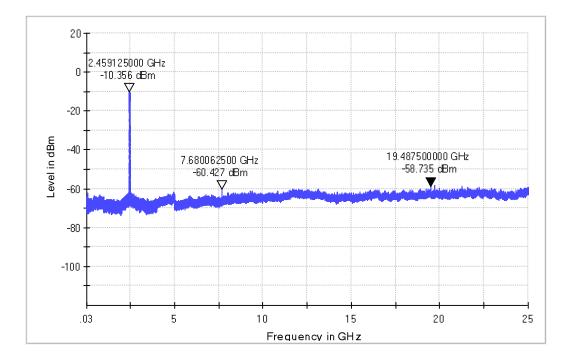


TEST REPORT

Channel 11: 2.462 GHz:



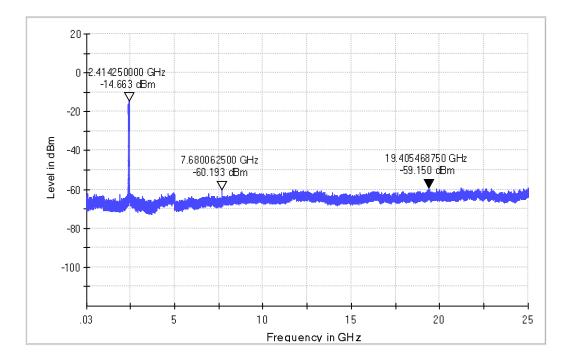
802.11n(HT20) mode with 72.2Mbps data rate Channel 1: 2.412GHz:


TEST REPORT

Channel 6: 2.437GHz:

In any 100kHz bandwidth, the Conducted Spurious Emissions from 30 MHz to 25 GHz were greater than 20dB below the peak emission within the band that contains the highest level of the desired power.

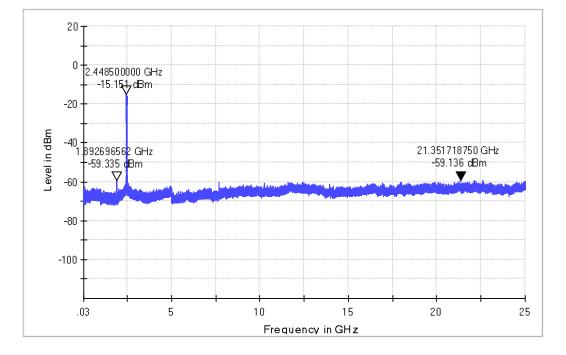
Channel 11:2.462 GHz:



TEST REPORT

In any 100kHz bandwidth, the Conducted Spurious Emissions from 30 MHz to 25 GHz were greater than 20dB below the peak emission within the band that contains the highest level of the desired power.

802.11n(HT40) mode with 150Mbps data rate Channel 3: 2.422GHz:



Channel 6: 2.437GHz:

Channel 9: 2.452 GHz:

In any 100kHz bandwidth, the Conducted Spurious Emissions from 30 MHz to 25 GHz were greater than 20dB below the peak emission within the band that contains the highest level of the desired power.

4.6 Out of Band Radiated Emissions

For out of band radiated emissions into Non-Restricted Frequency Bands were performed at a 3m separation distance to determine whether these emissions complied with the 20dB attenuation requirement.

- [×] Not required, since all emissions are more than 20dB below fundamental
- [] See attached data sheet

4.7 Radiated Emissions in Restricted Bands

Test Requirement:	FCC Part 15 C section 15.247	
	(d) In addition, radiated emissions which f bands, as defined in Section 15.205(a), mu radiated emission limits specified in Sectio Section 15.205(c)).	ist also comply with the
Test Method:	ANSI C63.10: Clause 11.12.1, 6.4, 6.5 and 6	5.6
Version: 10 June 2019	Page 45 of 92	FCC WIFI-d

TEST REPORT

Test site: Measurement Distance: 3m (Semi-Anechoic Cham	
Limit: 40.0 dBµV/m between 30MHz & 88MHz;	
43.5 dBμV/m between 88MHz & 216MHz;	
46.0 dBμV/m between 216MHz & 960MHz;	
54.0 dBµV/m above 960MHz.	
Detector: For Peak and Quasi-Peak value: RBW =	
1 MHz for $f \ge 1$ GHz,	
200 Hz for 9 kHz to 150 kHz	
9 kHz for 150 kHz to 30 MHz 120 kHz for 30 MHz to 1GHz	
VBW ≥ RBW	
Sweep = auto	
Detector function = peak for $f \ge 1$ GHz, QP for $f < 1$. GHz
Trace = max hold	
For AV value:	
RBW = 1 MHz for $f \ge 1$ GHz, 100 kHz for $f < 1$ GHz	
VBW=10 Hz Sweep = auto	
Trace = max hold	
Field Strength Calculation:	
The field strength is calculated by adding the readi Spectrum Analyzer to the factors associated with p any), antennas, cables, pulse desensitization and a (when specified limit is in average and measureme with peak detectors). A sample calculation is includ FS = RA + AF + CF - AG + PD + AV FS = RA + Correct Factor + AV	oreamplifiers (if overage factors ents are made
Where: $FS = Field Strength in dB\mu V/m$	
RA = Receiver Amplitude (including preamplifier) i AF = Antenna Factor in dB	n dBµV
CF = Cable Attenuation Factor in dB	
AG = Amplifier Gain in dB	
PD = Pulse Desensitization in dB	
AV = Average Factor in –dB Correct Factor = AF + CF – AG + PD	
In the radiated emission table which follows, the re on the data table may reflect the preamplifier gain of the calculations, where the reading does not ref preamplifier gain, follows:	n. An example

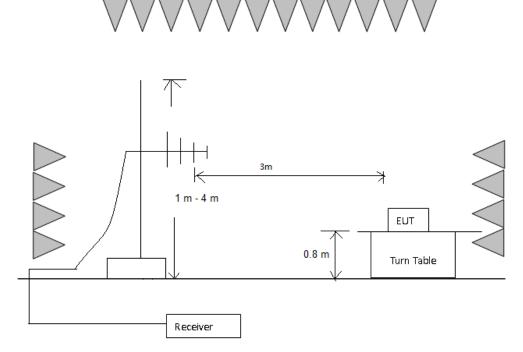
TEST REPORT

FS = RA + AF + CF - AG + PD + AV

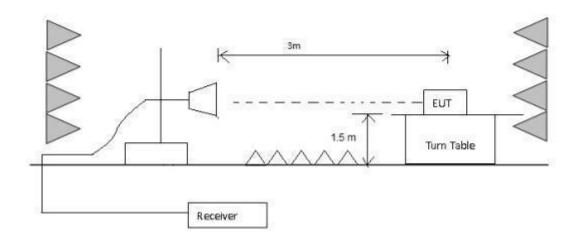
Assume a receiver reading of 62.0 dB μ V is obtained. The antenna factor of 7.4 dB and cable factor of 1.6 dB is added. The amplifier gain of 29 dB is subtracted. The pulse desensitization factor of the spectrum analyzer was 0 dB, and the resultant average factor was -10 dB. The net field strength for comparison to the appropriate emission limit is 32 dB μ V/m. RA = 62.0 dB μ V AF = 7.4 dB CF = 1.6 dB AG = 29.0 dB PD = 0 dB AV = -10 dB Correct Factor = 7.4 + 1.6 - 29.0 + 0 = -20 dB FS = 62 + (-20) + (-10) = 32 dB μ V/m

Section 15.205 Restricted bands of operation.

(a) Except as shown in paragraph (d) of this section. Only spurious emissions are permitted in any of the frequency bands listed below:


MHz	MHz MHz		GHz
$\begin{array}{c} 0.090 - 0.110 \\ 10.495 - 0.505 \\ 2.1735 - 2.1905 \\ 4.125 - 4.128 \\ 4.17725 - 4.17775 \\ 4.20725 - 4.20775 \\ 6.215 - 6.218 \\ 6.26775 - 6.26825 \\ 6.31175 - 6.31225 \\ 8.291 - 8.294 \\ 8.362 - 8.366 \\ 8.37625 - 8.38675 \\ 8.41425 - 8.41475 \\ 12.29 - 12.293 \\ 12.51975 - 12.52025 \\ 12.57675 - 12.57725 \\ 13.36 - 13.41 \\ \end{array}$	$\begin{array}{c} 16.42 - 16.423 \\ 16.69475 - 16.69525 \\ 16.80425 - 16.80475 \\ 25.5 - 25.67 \\ 37.5 - 38.25 \\ 73 - 74.6 \\ 74.8 - 75.2 \\ 108 - 121.94 \\ 123 - 138 \\ 149.9 - 150.05 \\ 156.52475 - \\ 156.52525 \\ 156.7 - 156.9 \\ 162.0125 - 167.17 \\ 167.72 - 173.2 \\ 240 - 285 \\ 322 - 335.4 \end{array}$	399.9 - 410 608 - 614 960 - 1240 1300 - 1427 1435 - 1626.5 1645.5 - 1646.5 1660 - 1710 1718.8 - 1722.2 2200 - 2300 2310 - 2390 2483.5 - 2500 2655 - 2900 3260 - 3267 3332 - 3339 3345.8 - 3358 3600 - 4400	$\begin{array}{c} 4.5 - 5.15 \\ 5.35 - 5.46 \\ 7.25 - 7.75 \\ 8.025 - 8.5 \\ 9.0 - 9.2 \\ 9.3 - 9.5 \\ 10.6 - 12.7 \\ 13.25 - 13.4 \\ 14.47 - 14.5 \\ 15.35 - 16.2 \\ 17.7 - 21.4 \\ 22.01 - 23.12 \\ 23.6 - 24.0 \\ 31.2 - 31.8 \\ 36.43 - 36.5 \end{array}$

TEST REPORT


Test Configuration:

1) 30 MHz to 1 GHz emissions:

2) 1 GHz to 40 GHz emissions:

TEST REPORT

Test Procedure:

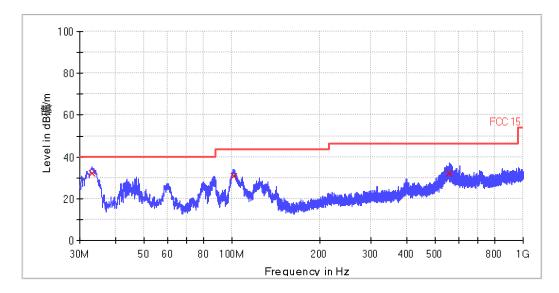
Test site with RF absorbing material covering the ground plane that met the site validation criterion called out in CISPR 16-1-4:2010 was used to perform radiated emission test above 1 GHz.

The receiver was scanned from 9 kHz to 25 GHz. When an emission was found, the table was rotated to produce the maximum signal strength. An initial pre-scan was performed for in peak detection mode using the receiver. The EUT was measured for both the Horizontal and Vertical polarities and performed a pre-test three orthogonal planes. For intentional radiators, measurements of the variation of the input power or the radiated signal level of the fundamental frequency component of the emission, as appropriate, shall be performed with the supply voltage varied between 85% and 115% of the nominal rated supply voltage. The worst case emissions were reported.

Used Test Equipment List:

3m Semi-Anechoic Chamber, EMI Test Receiver (9 kHz~7 GHz), Signal and Spectrum Analyzer (10 Hz~40 GHz), Loop antenna (9 kHz-30 MHz). TRILOG Super Broadband test Antenna(30 MHz-3 GHz) (RX), Bouble-Ridged Waveguide Horn Antenna (800 MHz-18 GHz)(RX) and High Frequency Antenna & preamplifier(18 GHz~26.5 GHz) (RX). Refer to Clause 5 Test Equipment List for details.

802.11b mode with 11Mbps data rate


9 kHz~30 MHz Field Strength of Unwanted Emissions. Quasi-Peak Measurement The measurements with active loop antenna were greater than 20dB below the limit, so the test data were not recorded in the test report.

Test at Channel 1 (2.412 GHz) in transmitting status

30 MHz~1 GHz Spurious Emissions .Quasi-Peak Measurement

Vertical:

Frequency (MHz)	Quasi Peak (dBµV/ m)	Bandwidth (kHz)	Pol	Corr. (dB)	Margin - QPK (dB)	Limit - QPK (dBµV/m)
33.120000	32.1	120.000	V	10.9	7.9	40.0
101.280000	30.9	120.000	V	12.3	12.6	43.5
557.400000	31.9	120.000	۷	21.0	14.1	46.0

Remark:

- 1. Corr. (dB) = Antenna Factor (dB) + Cable Loss (dB)
- 2. Quasi Peak ($dB\mu V/m$) = Corr. (dB) + Read Level ($dB\mu V$)
- 3. Margin (dB) = Limit QPK (dBµV/m) –Quasi Peak (dBµV/m)

Horizontal:

100 -80 Level in dB礦/m 60 FCC 15 40 20 0 80 100M 200 400 500 30M 50 60 300 800 1G Frequency in Hz

All emission levels are more than 6 dB below the limit.

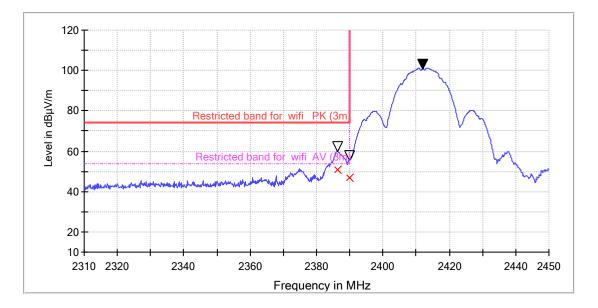
Remark:

- 1. Corr. (dB) = Antenna Factor (dB) + Cable Loss (dB)
- 2. Quasi Peak (dBµV/m) = Corr. (dB) + Read Level (dBµV)
- 3. Margin (dB) = Limit QPK (dB μ V/m) –Quasi Peak (dB μ V/m)

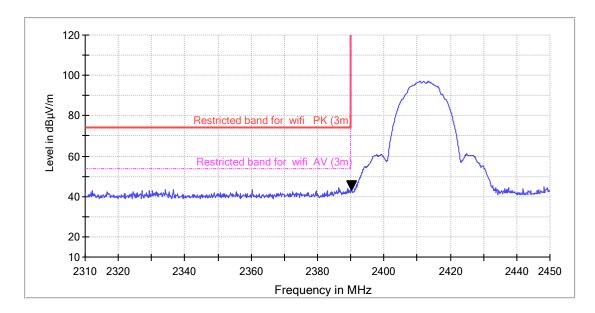
1~25 GHz Radiated Emissions.

PK Measurement:

Frequency	PK Reading	Correction	PK Emission	PK Limit	Antenna				
	Level	factors	Level		polarization				
(MHz)	(dBµV)	(dB)	(dBµV/m)	(dBµV/m)					
1440.4063	47.8	-12.3	35.544	74	Н				
2409.9375	45.3	-8.1	37.190	74	Н				
2734.0000	44.3	-6.9	37.459	74	Н				
4823.9375	53.3	-1.1	52.188	74	Н				
1439.8750	48.6	-12.3	36.336	74	V				
2413.1250	48.4	-8.1	40.290	74	V				
4823.9375	52.1	-1.1	51.038	74	V				


AV Measurement:

Frequency	PK Reading Level	Correction factors	PK Emission Level	AV Limit	Antenna polarization
(MHz)	(dBµV)	(dB)	(dBµV/m)	(dBµV/m)	
1440.4063		-12.3		54	Н
2409.9375		-8.1		54	Н
2734.0000		-6.9		54	Н
4823.9375		-1.1		54	Н
1439.8750		-12.3		54	V
2413.1250		-8.1		54	V
4823.9375		-1.1		54	V


Remark: When Peak emission level was below AV limit, the AV emission level did not be recorded.

Restricted Bands Measurement

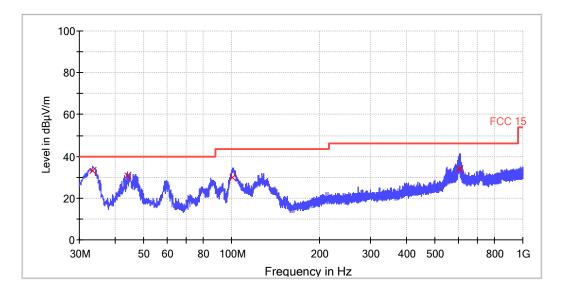
Horizontal

PK Measurement:

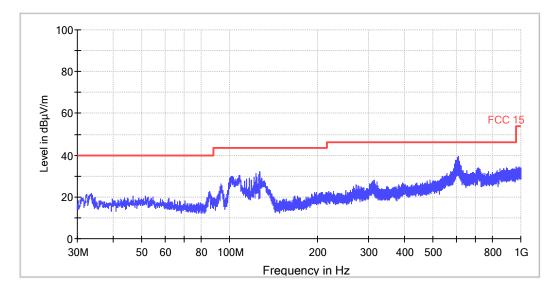
Frequency	PK Reading Level	Correction factors	PK Emission Level	PK Limit	Antenna polarization
(MHz)	(dBuV)	(dB)	(dBuV/m)	(dBuV/m)	
2386.44	68.5	-8.2	60.320	74	Н
2389.22	51.8	-8.2	43.588	74	V

AV Measurement:

Frequency	PK Reading Level	Correction factors	PK Emission Level	AV Limit	Antenna polarization
(MHz)	(dBuV)	(dB)	(dBuV/m)	(dBuV/m)	
2386.44	59.2	-8.2	51	54	Н
2389.22		-8.2		54	V


Remark: When Peak emission level was below AV limit, the AV emission level did not be recorded.

TEST REPORT


Test at Channel 6 (2.437 GHz) in transmitting status 30 MHz~1 GHz Radiated Emissions .Quasi-Peak Measurement

Vertical:

Frequency (MHz)	QuasiPeak (dBµV/m)	Meas. Time (ms)	Bandwidth (kHz)	Height (cm)	Pol	Azimuth (deg)	Corr. (dB)	Margin - QPK (dB)	Limit - QPK (dBµV/m)
33.320000	33.0	1000.0	120.000	100.0	V	1.0	11.0	7.0	40.0
43.800000	30.7	1000.0	120.000	100.0	V	1.0	13.4	9.3	40.0
101.080000	29.8	1000.0	120.000	100.0	V	1.0	12.3	13.7	43.5
605.240000	34.0	1000.0	120.000	100.0	V	1.0	22.0	12.0	46.0

Horizontal:

All emission levels are more than 6 dB below the limit.

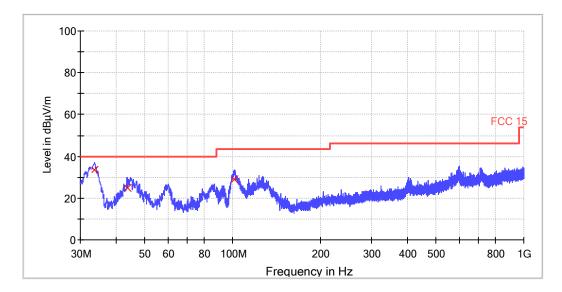
1~25 GHz Radiated Emissions.

PK Measurement:

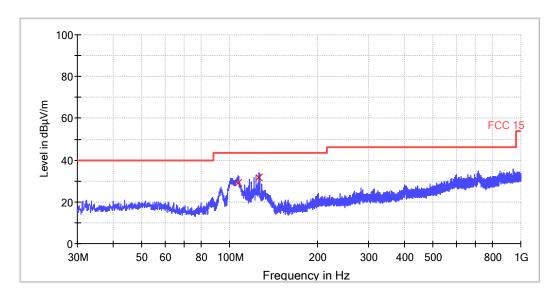
Frequency	PK Reading	Correction	PK Emission	PK Limit	Antenna
	Level	factors	Level		polarization
(MHz)	(dBuV)	(dB)	(dBuV/m)	(dBuV/m)	
1452.0938	49.3	-12.2	37.062	74	Н
2440.750	56.9	-8.0	48.908	74	Н
4883.9688	52.6	-1.0	51.609	74	Н
1428.1875	49.3	-12.3	36.947	74	V
2440.2188	47.5	-8.0	39.487	74	V
4883.9688	50.2	-1.0	49.220	74	V

AV Measurement:

Frequency	PK Reading	Correction	PK Emission	AV Limit	Antenna
Frequency	Level	factors	Level		polarization
(MHz)	(dBuV)	(dB)	(dBuV/m)	(dBuV/m)	
1452.0938		-12.2		54	Н
2440.7500		-8.0		54	Н
4883.9688		-1.0		54	Н
1428.1875		-12.3		54	V
2440.2188		-8.0		54	V
4883.9688		-1.0		54	V


Remark: When Peak emission level was below AV limit, the AV emission level did not be recorded

TEST REPORT


Test at Channel 11 (2.462 GHz) in transmitting status 30 MHz~1 GHz Radiated Emissions .Quasi-Peak Measurement

Vertical:

Frequency (MHz)	QuasiPeak (dBµV/m)	Meas. Time (ms)	Bandwidth (kHz)	Height (cm)	Pol	Azimuth (deg)	Corr. (dB)	Margin - QPK (dB)	Limit - QPK (dBµV/m)
33.640000	33.6	1000.0	120.000	100.0	v	359.0	11.1	6.4	40.0
43.440000	24.9	1000.0	120.000	100.0	V	359.0	13.4	15.1	40.0
101.800000	29.0	1000.0	120.000	100.0	V	359.0	12.3	14.5	43.5

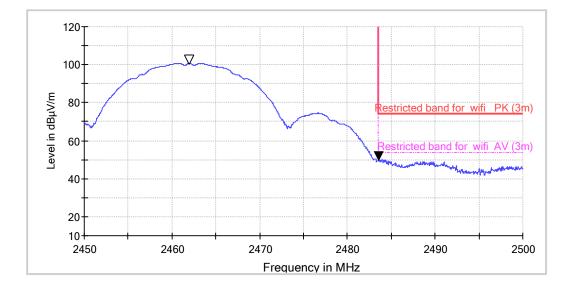
Horizontal:

Frequency (MHz)	QuasiPeak (dBµV/m)	Meas. Time (ms)	Bandwidth (kHz)	Height (cm)	Pol	Azimuth (deg)	Corr. (dB)	Margin - QPK (dB)	Limit - QPK (dBµV/m)
107.200000	28.9	1000.0	120.000	100.0	Н	359.0	12.2	14.6	43.5
125.840000	31.8	1000.0	120.000	100.0	Н	359.0	10.4	11.7	43.5

1~25 GHz Radiated Emissions. Peak & Average Measurement

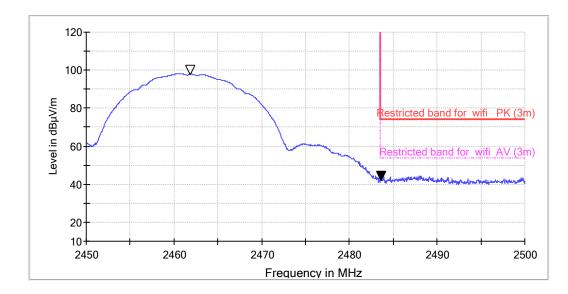
PK Measurement:

Frequency	PK Reading Level	Correction factors	PK Emission Level	PK Limit	Antenna polarization
(MHz)	(dBuV)	(dB)	(dBuV/m)	(dBuV/m)	
1428.1875	48.9	-12.3	36.588	74	Н
2470.5000	55.4	-7.9	47.526	74	Н
4944.0000	53.6	-0.9	52.640	74	Н
1427.6563	48.5	-12.3	36.221	74	V
2473.1563	46.1	-7.9	38.256	74	V
4944.0000	53.7	-0.9	52.746	74	V


AV Measurement:

Frequency	PK Reading	Correction	PK Emission	AV Limit	Antenna
Frequency	Level	Level factors			polarization
(MHz)	(dBuV)	(dB)	(dBuV/m)	(dBuV/m)	
1428.1875		-12.3		54	Н
2470.5000		-7.9		54	Н
4944.0000		-0.9		54	Н
1427.6563		-12.3		54	V
2473.1563		-7.9		54	V
4944.0000		-0.9		54	V

Remark: When Peak emission level was below AV limit, the AV emission level did not be recorded.


Restricted Bands Measurement

Horizontal

Vertical

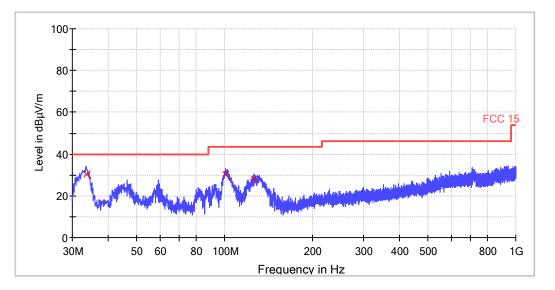
PK Measurement:

Frequency	PK Reading Level	Correction factors	PK Emission Level	PK Limit	Antenna polarization
(MHz)	(dBuV)	(dB)	(dBuV/m)	(dBuV/m)	
2483.65	57.4	-7.8	49.579	74	Н
2483.65	50.2	-7.8	42.342	74	V

AV Measurement:

	PK Reading	Correction	PK Emission		Antenna
Frequency	Level	factors	Level	AV Limit	polarization
(MHz)	(dBuV)	(dB)	(dBuV/m)	(dBuV/m)	
2483.65		-7.8		54	Н
2483.65		-7.8		54	V

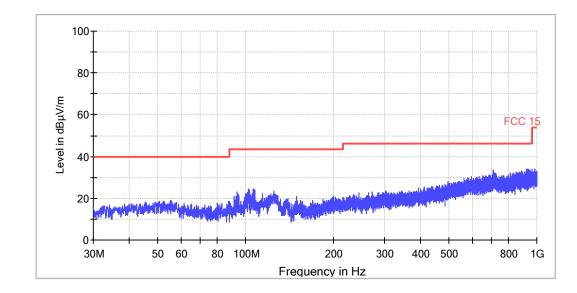
Remark: When Peak emission level was below AV limit, the AV emission level did not be recorded.


TEST REPORT

802.11g mode with 54Mbps data rate 9 kHz~30 MHz Field Strength of Unwanted Emissions. Quasi-Peak Measurement

The measurements with active loop antenna were greater than 20dB below the limit, so the test data were not recorded in the test report.

Test at Channel 1 (2.412 GHz) in transmitting status 30 MHz~1 Radiated Emissions .Quasi-Peak Measurement


Vertical:

Frequency (MHz)	Quasi Peak (dBµV/ m)	Bandwidth (kHz)	Pol	Corr. (dB)	Margin - QPK (dB)	Limit - QPK (dBµV/m)
33.440000	30.4	120.000	v	11.0	9.6	40.0
100.440000	30.4	120.000	V	12.3	13.1	43.5
126.400000	27.8	120.000	V	10.4	15.7	43.5

Horizontal:

All emission levels are more than 6 dB below the limit.

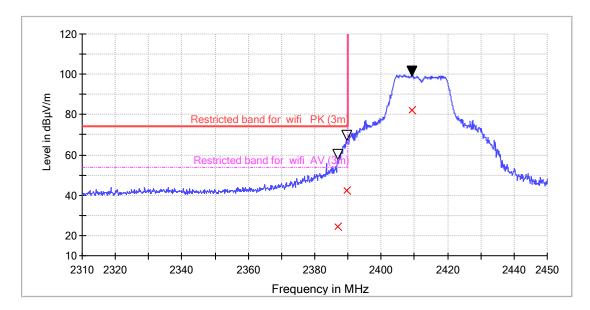
1~25 GHz Radiated Emissions. Peak & Average Measurement

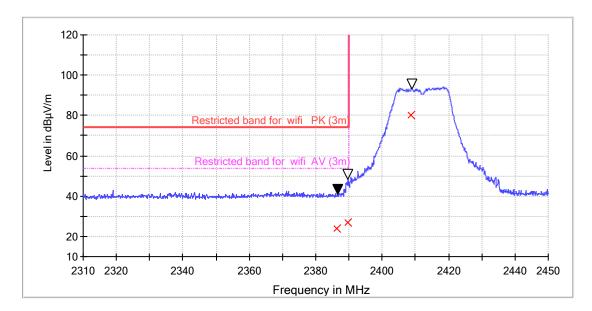
PK Measurement:

Frequency	PK Reading Level	Correction factors	PK Emission Level	PK Limit	Antenna polarization		
(MHz)	(dBuV)	(dB)	(dBuV/m)	(dBuV/m)	P		
1403.750	50.8	-12.5	38.339	74	Н		
2429.063	52.9	-8.0	44.882	74	Н		
4848.375	46.8	-1.1	45.749	74	Н		
1451.563	47.7	-12.2	35.475	74	V		
2425.344	45.2	-8.1	37.091	74	V		
4840.938	43.7	-1.1	42.630	74	V		

AV Measurement:

Frequency	PK Reading Level	Correction factors	PK Emission Level	AV Limit	Antenna polarization
(MHz)	(dBuV)	(dB)	(dBuV/m)	(dBuV/m)	poralization
1403.750		-12.5		54	Н
2429.063		-8.0		54	Н
4848.375		-1.1		54	Н
1451.563		-12.2		54	Н
2425.344		-8.1		54	V
4840.938		-1.1		54	V


Remark: When Peak emission level was below AV limit, the AV emission level did not be recorded.


TEST REPORT

Restricted Bands Measurement

Horizontal

Vertical

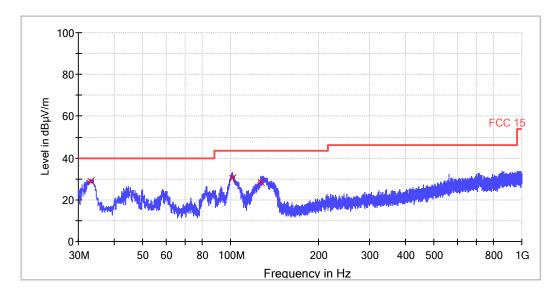
PK Measurement:

Frequency	PK Reading Level	Correction factors	PK Emission Level	PK Limit	Antenna polarization
(MHz)	(dBuV)	(dB)	(dBuV/m)	(dBuV/m)	
2386.86	66.4	-8.2	58.226	74	Н
2389.80	76.1	-8.2	67.867	74	Н

Version: 10 June 2019

TEST REPORT

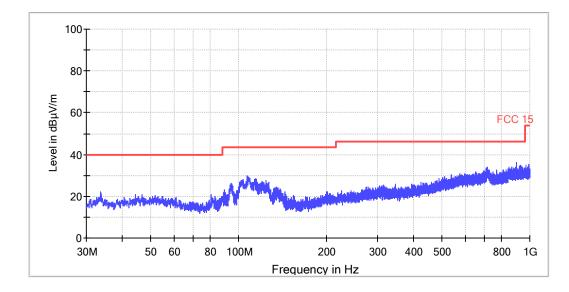
2386.58	49.6	-8.2	41.441	74	V
2389.80	57.0	-8.2	48.798	74	V


AV Measurement:

Frequency	PK Reading Level	Correction factors	PK Emission Level	AV Limit	Antenna polarization
пециенсу	LEVEI	Tactors	LEVEI	AVLIIIII	polarization
(MHz)	(dBuV)	(dB)	(dBuV/m)	(dBuV/m)	
2386.86	32.5	-8.2	24.3	54	Н
2389.80	50.6	-8.2	42.4	54	Н
2386.58	32.4	-8.2	24.2	54	V
2389.80	35.0	-8.2	26.8	54	V

Remark: When Peak emission level was below AV limit, the AV emission level did not be recorded.

Test at Channel 6 (2.437GHz) in transmitting status 30 MHz~1 GHz Radiated Emissions .Quasi-Peak Measurement


Vertical:

Frequency (MHz)	Quasi Peak (dBµV/ m)	Bandwidth (kHz)	Pol	Corr. (dB)	Margin - QPK (dB)	Limit - QPK (dBµV/m)
33.040000	29.0	120.000	v	10.9	11.0	40.0
101.560000	30.4	120.000	v	12.3	13.1	43.5
127.120000	28.5	120.000	۷	10.3	15.0	43.5

Horizontal:

All emission levels are more than 6 dB below the limit.

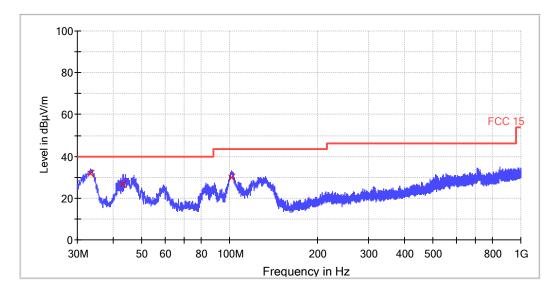
1~25 GHz Radiated Emissions. Peak & Average Measurement

PK Measurement:

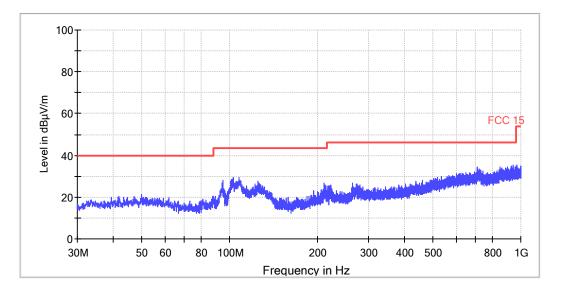
Frequency	PK Reading Level	Correction factors	PK Emission Level	PK Limit	Antenna polarization
(MHz)	(dBuV)	(dB)	(dBuV/m)	(dBuV/m)	
1463.781	48.8	-12.2	36.584	74	Н
2447.656	51.9	-8.0	43.917	74	Н
4879.188	44.4	-1.0	43.431	74	Н
1323.531	47.3	-12.9	34.441	74	V
2449.250	44.3	-8.0	36.316	74	V
5366.875	42.1	-0.2	41.940	74	V

AV Measurement:

Frequency	PK Reading Level	Correction factors	PK Emission Level	AV Limit	Antenna polarization
(MHz)	(dBuV)	(dB)	(dBuV/m)	(dBuV/m)	•
1463.781		-12.2		54	Н
2447.656		-8.0		54	Н
4879.188		-1.0		54	Н
1323.531		-12.9		54	V
2449.250		-8.0		54	V
5366.875		-0.2		54	V


Remark: When Peak emission level was below AV limit, the AV emission level did not be recorded.

TEST REPORT


Test at Channel 11 (2.462 GHz) in transmitting status 30 MHz~1 GHz Radiated Emissions .Quasi-Peak Measurement

Vertical:

Frequency (MHz)	Quasi Peak (dBµV/ m)	Bandwidth (kHz)	Pol	Corr. (dB)	Margin - QPK (dB)	Limit - QPK (dBµV/m)
33.320000	31.5	120.000	v	11.0	8.5	40.0
43.080000	26.8	120.000	V	13.4	13.2	40.0
101.280000	30.0	120.000	V	12.3	13.5	43.5

Horizontal:

All emission levels are more than 6 dB below the limit.

1~25 GHz Radiated Emissions. Peak & Average Measurement

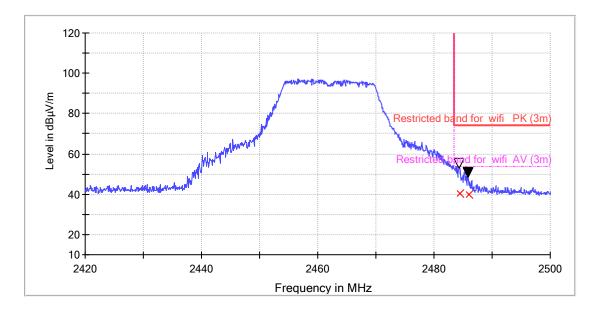
PK Measurement:

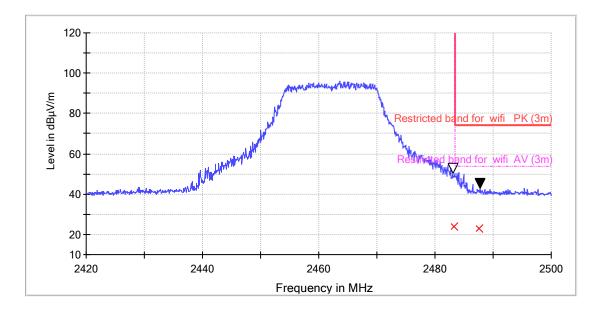
Version: 10 June 2019

Frequency	PK Reading Level	Correction factors	PK Emission Level	PK Limit	Antenna polarization
(MHz)	(dBuV)	(dB)	(dBuV/m)	(dBuV/m)	
1463.781	48.8	-12.2	36.630	74	Н
2465.188	51.9	-7.9	43.981	74	Н
2877.438	48.5	-6.4	42.067	74	Н
2476.875	43.9	-7.9	36.006	74	V
4963.125	42.7	-0.9	41.772	74	V
8017.281	41.0	4.0	44.957	74	V

AV Measurement:

Frequency	PK Reading Level	Correction factors	PK Emission Level	AV Limit	Antenna polarization
(MHz)	(dBuV)	(dB)	(dBuV/m)	(dBuV/m)	·
1463.781		-12.2		54	Н
2465.188		-7.9		54	Н
2877.438		-6.4		54	Н
2476.875		-7.9		54	V
4963.125		-0.9		54	V
8017.281		4.0		54	V


Remark: When Peak emission level was below AV limit, the AV emission level did not be recorded.


TEST REPORT

Restricted Bands Measurement

Horizontal

Vertical

PK Measurement:

Frequency	PK Reading Level	Correction factors	PK Emission Level	PK Limit	Antenna polarization
(MHz)	(dBuV)	(dB)	(dBuV/m)	(dBuV/m)	
2484.24	61.1	-7.8	53.256	74	Н
2485.92	56.7	-7.8	48.827	74	Н

Version: 10 June 2019

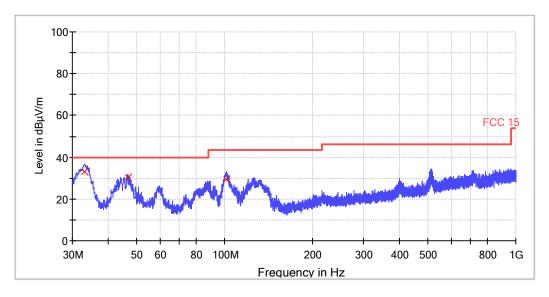
2483.04	58.7	-7.8	50.836	74	V
2487.76	51.4	-7.8	43.538	74	V

AV Measurement:

Frequency	PK Reading Level	Correction factors	PK Emission Level	AV Limit	Antenna polarization
	LEVEI	Tactors	LEVEI	_	polarization
(MHz)	(dBuV)	(dB)	(dBuV/m)	(dBuV/m)	
2484.24	48.2	-7.8	40.4	54	Н
2485.92	47.7	-7.8	39.9	54	Н
2483.04	31.6	-7.8	23.8	54	V
2487.76	30.8	-7.8	23.8	54	V

Remark: When Peak emission level was below AV limit, the AV emission level did not be recorded.

802.11n (HT20) mode with 72.2Mbps data rate

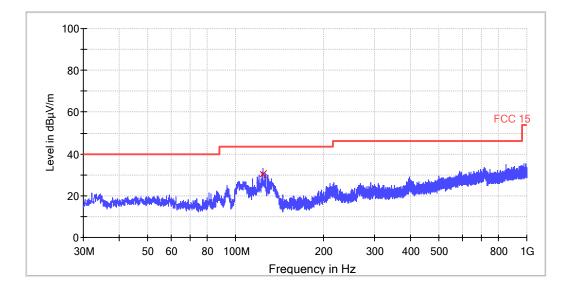

9 kHz~30 MHz Field Strength of Unwanted Emissions. Quasi-Peak Measurement

The measurements with active loop antenna were greater than 20dB below the limit, so the test data were not recorded in the test report.

Test at Channel 1 (2.412 GHz) in transmitting status

30 MHz~1 GHz Radiated Emissions .Quasi-Peak Measurement

Vertical:



Frequency (MHz)	Quasi Peak (dBµV/ m)	Bandwidth (kHz)	Pol	Corr. (dB)	Margin - QPK (dB)	Limit - QPK (dBµV/m)
33.080000	33.1	120.000	v	10.9	6.9	40.0
46.480000	30.4	120.000	v	13.7	9.6	40.0
101.160000	29.4	120.000	V	12.3	14.1	43.5

TEST REPORT

Horizontal:

Frequency (MHz)	Quasi Peak (dBµV/ m)	Bandwidth (kHz)	Pol	Corr. (dB)	Margin - QPK (dB)	Limit - QPK (dBµV/m)
124.400000	30.4	120.000	Н	10.6	13.1	43.5

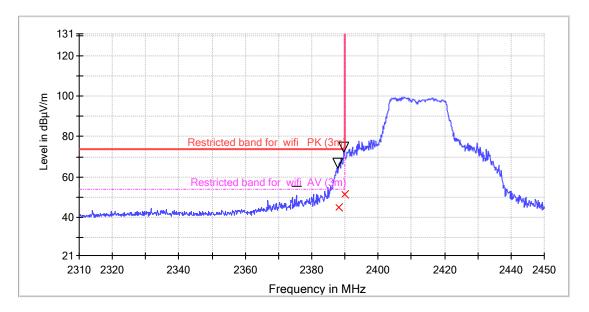
1~25 GHz Radiated Emissions. Peak & Average Measurement

PK Measurement:

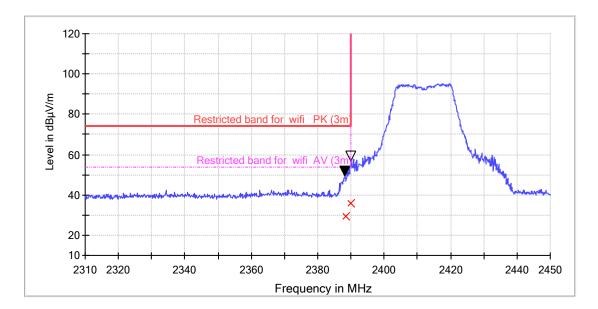
Frequency	PK Reading	Correction	PK Emission	PK Limit	Antenna
rrequericy	Level	factors	Level		polarization
(MHz)	(dBuV)	(dB)	(dBuV/m)	(dBuV/m)	
1403.219	48.1	-12.5	35.641	74	Н
2418.969	52.3	-8.1	44.216	74	Н
4843.063	44.5	-1.1	43.424	74	Н
2416.313	43.2	-8.1	35.126	74	V
4717.156	42.2	-1.3	40.878	74	V
8438.031	42.0	4.3	46.281	74	V

AV Measurement:

Frequency	PK Reading Level	Correction factors	PK Emission Level	AV Limit	Antenna polarization
(MHz)	(dBuV)	(dB)	(dBuV/m)	(dBuV/m)	
1403.219		-12.5		54	Н
2418.969		-8.1		54	Н
4843.063		-1.1		54	Н
2416.313		-8.1		54	Н
4717.156		-1.3		54	V
8438.031		4.3		54	V



TEST REPORT


Remark: When Peak emission level was below AV limit, the AV emission level did not be recorded.

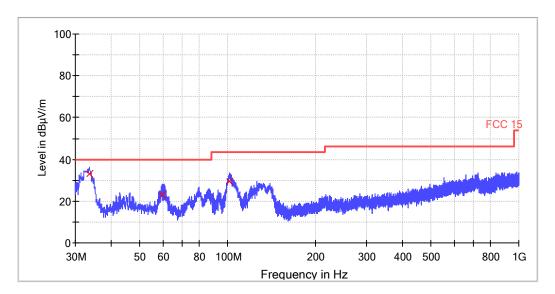
Restricted Bands Measurement

Horizontal

Vertical

PK Measurement:

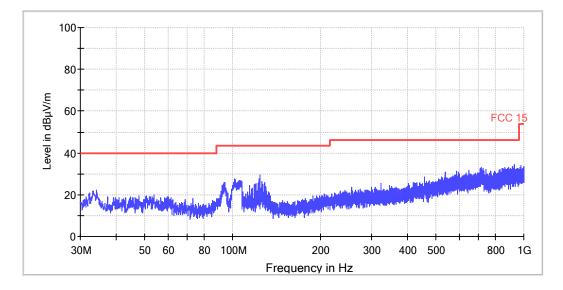
Frequency	PK Reading Level	Correction factors	PK Emission Level	PK Limit	Antenna polarization
(MHz)	(dBuV)	(dB)	(dBuV/m)	(dBuV/m)	
2387.84	72.9	-8.2	64.66	74	Н
2389.66	81.2	-8.2	72.977	74	Н
2388.26	58.0	-8.2	49.821	74	V
2389.98	65.5	-8.2	57.294	74	V


AV Measurement:

Frequency	PK Reading Level	Correction factors	PK Emission Level	AV Limit	Antenna polarization
(MHz)	(dBuV)	(dB)	(dBuV/m)	(dBuV/m)	
2387.84	53.2	-8.2	45	54	Н
2389.66	59.5	-8.2	51.3	54	Н
2388.26	37.5	-8.2	29.3	54	V
2389.98	44.0	-8.2	35.8	54	V

Remark: When Peak emission level was below AV limit, the AV emission level did not be recorded.

Test at Channel 6 (2.437 GHz) in transmitting status 30 MHz~1 GHz Radiated Emissions .Quasi-Peak Measurement


Vertical:

Frequency (MHz)	Quasi Peak (dBµV/ m)	Bandwidth (kHz)	Pol	Corr. (dB)	Margin - QPK (dB)	Limit - QPK (dBµV/m)
33.520000	33.1	120.000	V	11.1	6.9	40.0
59.600000	23.1	120.000	V	13.2	16.9	40.0
101.280000	29.5	120.000	V	12.3	14.0	43.5

Horizontal:

All emission levels are more than 6 dB below the limit.

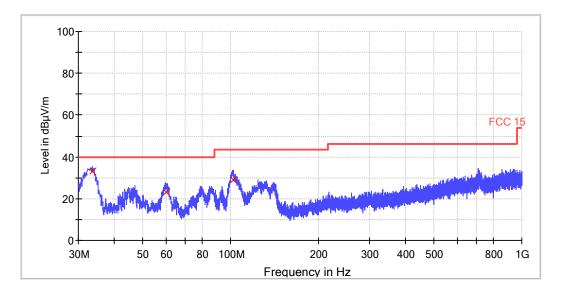
1~25 GHz Radiated Emissions. Peak & Average Measurement

PK Measurement:

Frequency	PK Reading	Correction	PK Emission	PK Limit	Antenna
equency	Level	factors	Level		polarization
(MHz)	(dBuV)	(dB)	(dBuV/m)	(dBuV/m)	
1439.875	48.5	-12.3	36.211	74	Н
2447.125	50.9	-8.0	42.883	74	Н
4879.188	43.1	-1.0	42.125	74	Н
1451.563	49.1	-12.2	36.888	74	V
2441.281	43.3	-8.0	35.307	74	V
7259.719	41.7	2.4	44.124	74	V

AV Measurement:

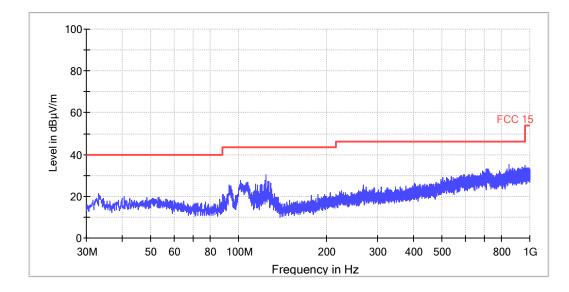
Frequency	PK Reading Level	Correction factors	PK Emission Level	AV Limit	Antenna polarization
(MHz)	(dBuV)	(dB)	(dBuV/m)	(dBuV/m)	
1439.875		-12.3		54	Н
2447.125		-8.0		54	Н
4879.188		-1.0		54	Н
1451.563		-12.2		54	V


TEST REPORT

2441.281	 -8.0	 54	V
7259.719	 2.4	 54	V

Remark: When Peak emission level was below AV limit, the AV emission level did not be record.

Test at Channel 11 (2.462 GHz) in transmitting status 30 MHz~1 GHz Radiated Emissions .Quasi-Peak Measurement


Vertical:

Frequency (MHz)	Quasi Peak (dBµV/ m)	Bandwidth (kHz)	Pol	Corr. (dB)	Margin - QPK (dB)	Limit - QPK (dBµV/m)
33.480000	33.0	120.000	v	11.1	7.0	40.0
59.960000	23.3	120.000	V	13.2	16.8	40.0
102.320000	29.2	120.000	V	12.3	14.4	43.5

Horizontal:

All emission levels are more than 6 dB below the limit.

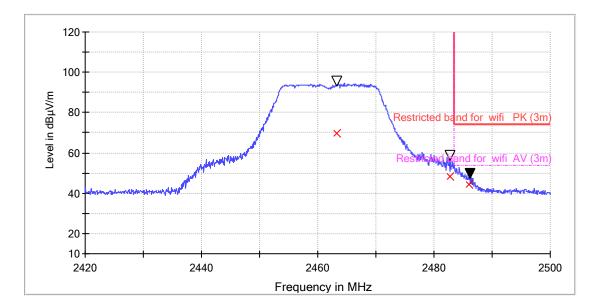
1~25 GHz Radiated Emissions. Peak & Average Measurement

PK Measurement:

Frequency	PK Reading Level	Correction factors	PK Emission Level	PK Limit	Antenna polarization
(MHz)	(dBuV)	(dB)	(dBuV/m)	(dBuV/m)	
1464.313	49.2	-12.2	36.968	74	Н
3243.469	43.8	-5	38.820	74	Н
5769.563	40.9	0.4	41.303	74	Н
1403.750	48.5	-12.5	36.016	74	V
2158.125	46.0	-9	37.026	74	V
3375.219	43.2	-4.5	38.657	74	V

AV Measurement:

Frequency	PK Reading Level	Correction factors	PK Emission Level	AV Limit	Antenna polarization
(MHz)	(dBuV)	(dB)	(dBuV/m)	(dBuV/m)	•
1464.313		-12.2		54	Н
3243.469		-5.0		54	Н
5769.563		0.4		54	Н
1403.750		-12.5		54	V
2158.125		-9.0		54	V
3375.219		-4.5		54	V


Remark: When Peak emission level was below AV limit, the AV emission level did not be record.

TEST REPORT

Restricted Bands Measurement

Horizontal

Vertical

PK Measurement:

Frequency	PK Reading Level	Correction factors	PK Emission Level	PK Limit	Antenna polarization
(MHz)	(dBuV)	(dB)	(dBuV/m)	(dBuV/m)	
2486.16	55.9	-7.8	48.035	74	Н
2483.52	69.0	-7.8	61.189	74	V

Version: 10 June 2019

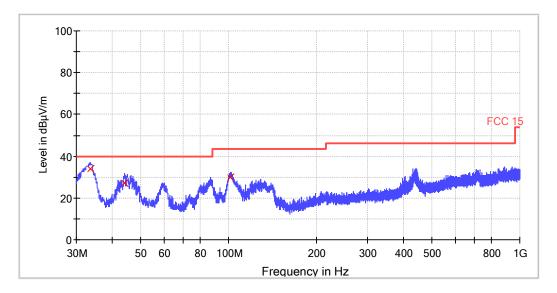
TEST REPORT

2486.16	60.4	-7.8	52.564	74	V
			1		

AV Measurement:

Frequency	PK Reading	Correction	PK Emission	A)/Linsit	Antenna
Frequency	Level	factors	Level	AV Limit	polarization
(MHz)	(dBuV)	(dB)	(dBuV/m)	(dBuV/m)	
2486.16	52.1	-7.8	44.3	54	Н
2483.52	56.4	-7.8	48.6	54	V
2486.16	54.2	-7.8	46.4	54	V

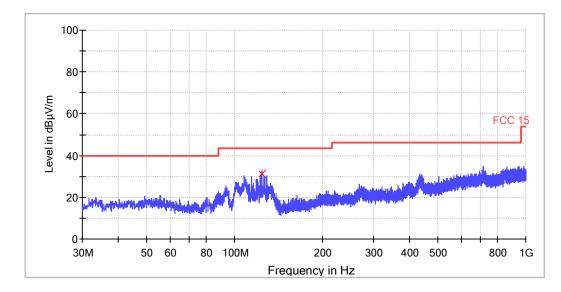
Remark: When Peak emission level was below AV limit, the AV emission level did not be recorded.


802.11n (HT40) mode with 150Mbps data rate

9 kHz~30 MHz Field Strength of Unwanted Emissions. Quasi-Peak Measurement.

The measurements with active loop antenna were greater than 20dB below the limit, so the test data were not recorded in the test report.

Test at Channel 3 (2.422 GHz) in transmitting status 30 MHz~1 GHz Radiated Emissions .Quasi-Peak Measurement


Vertical:

Frequency (MHz)	Quasi Peak (dBµV/ m)	Bandwidth (kHz)	Pol	Corr. (dB)	Margin - QPK (dB)	Limit - QPK (dBµV/m)
33.480000	33.8	120.000	v	11.1	6.2	40.0
43.920000	27.3	120.000	v	13.4	12.7	40.0
101.480000	29.9	120.000	V	12.3	13.7	43.5

Horizontal:

Frequency (MHz)	Quasi Peak (dBµV/ m)	Bandwidth (kHz)	Pol	Corr. (dB)	Margin - QPK (dB)	Limit - QPK (dBµV/m)
124.240000	31.3	120.000	н	10.6	12.2	43.5

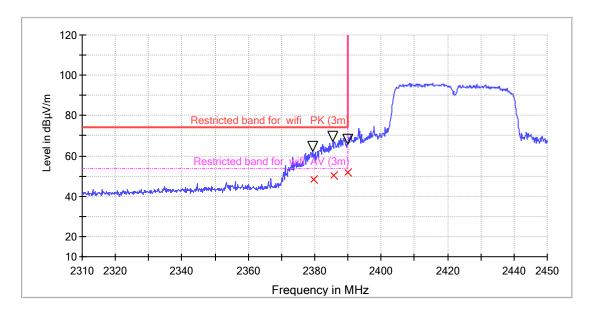
1~25 GHz Radiated Emissions. Peak & Average Measurement

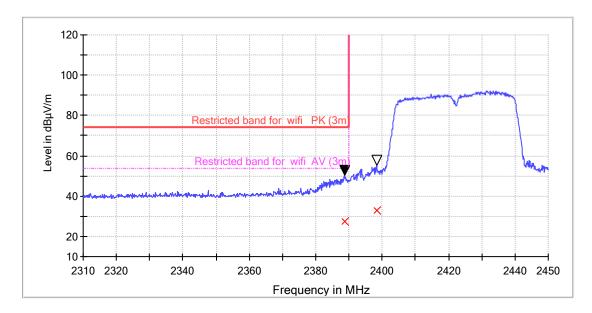
PK Measurement:

Frequency	PK Reading Level	Correction factors	PK Emission Level	PK Limit	Antenna polarization
(MHz)	(dBuV)	(dB)	(dBuV/m)	(dBuV/m)	
2418.969	50.9	-8.1	42.787	74	Н
4584.344	42.2	-1.5	40.684	74	Н
14204.220	41.4	10.0	51.424	74	Н
1451.563	48.6	-12.2	36.364	74	V
2425.344	45.5	-8.1	37.407	74	V
4831.375	42.1	-1.1	41.030	74	V

AV Measurement:

Frequency	PK Reading Level	Correction factors	PK Emission Level	AV Limit	Antenna polarization
(MHz)	(dBuV)	(dB)	(dBuV/m)	(dBuV/m)	
2418.969		-8.1		54	Н
4584.344		-1.5		54	Н
14204.22		10.0		54	Н
1451.563		-12.2		54	Н
2425.344		-8.1		54	V
4831.375		-1.1		54	V


Remark: When Peak emission level was below AV limit, the AV emission level did not be recorded.


TEST REPORT

Restricted Bands Measurement

Horizontal

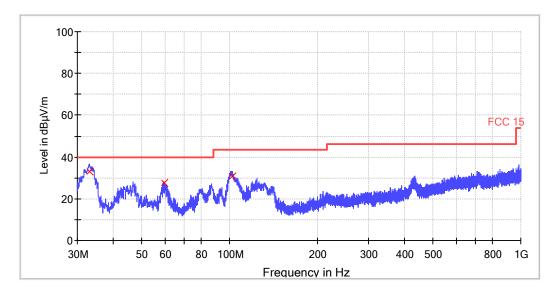
Vertical

PK Measurement:

Frequency	PK Reading Level	Correction factors	PK Emission Level	PK Limit	Antenna polarization
(MHz)	(dBuV)	(dB)	(dBuV/m)	(dBuV/m)	
2379.44	71.1	-8.2	62.909	74	Н
2385.46	75.8	-8.2	67.577	74	Н

Version: 10 June 2019

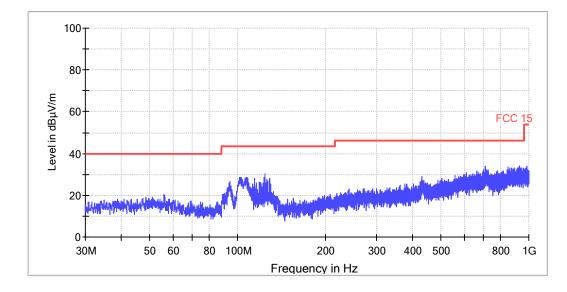
2389.94	74.4	-8.2	66.199	74	Н
2388.68	58.9	-8.2	50.675	74	V


AV Measurement:

Frequency	PK Reading Level	Correction factors	PK Emission Level	AV Limit	Antenna polarization
(MHz)	(dBuV)	(dB)	(dBuV/m)	(dBuV/m)	
2379.44	56.4	-8.2	48.2	54	Н
2385.46	58.4	-8.2	50.2	54	Н
2389.94	59.9	-8.2	51.7	54	Н
2388.68	35.6	-8.2	27.4	54	V

Remark: When Peak emission level was below AV limit, the AV emission level did not be recorded.

Test at Channel 6 (2.437 GHz) in transmitting status 30 MHz~1 GHz Radiated Emissions .Quasi-Peak Measurement


Vertical:

Frequency (MHz)	Quasi Peak (dBµV/ m)	Bandwidth (kHz)	Pol	Corr. (dB)	Margin - QPK (dB)	Limit - QPK (dBµV/m)
32.960000	32.9	120.000	v	10.9	7.2	40.0
59.720000	27.6	120.000	v	13.2	12.4	40.0
102.040000	30.9	120.000	V	12.3	12.7	43.5

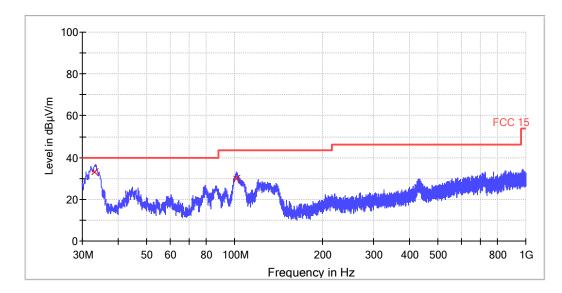
Horizontal:

All emission levels are more than 6 dB below the limit.

1~25 GHz Radiated Emissions. Peak & Average Measurement

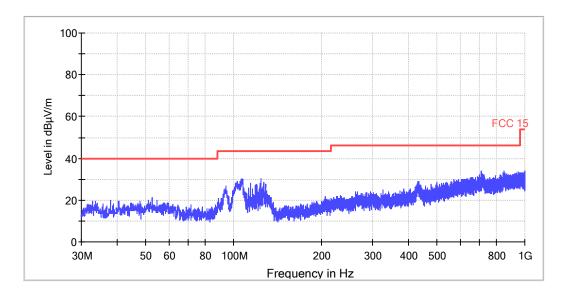
PK Measurement:

Frequency	PK Reading Level	Correction factors	PK Emission Level	PK Limit	Antenna polarization
(MHz)	(dBuV)	(dB)	(dBuV/m)	(dBuV/m)	
1275.188	52.8	-13.1	39.672	74	Н
2437.031	51.0	-8.0	43.016	74	Н
4882.906	42.9	-1.0	41.948	74	Н
1404.281	49.5	-12.5	37.015	74	V
2443.938	44.5	-8.0	36.526	74	V
4260.813	43.0	-2.2	40.803	74	V


AV Measurement:

Frequency	PK Reading	•		AV Limit	Antenna
	Level	ractors	Level		polarization
(MHz)	(dBuV)	(dB)	(dBuV/m)	(dBuV/m)	
1275.188		-13.1		54	Н
2437.031		-8.0		54	Н
4882.906		-1.0		54	Н
1404.281		-12.5		54	V
2443.938		-8.0		54	V
4260.813		-2.2		54	V

Remark: When Peak emission level was below AV limit, the AV emission level did not be record.


Test at Channel 11 (2.452 GHz) in transmitting status 30 MHz~1 GHz Radiated Emissions .Quasi-Peak Measurement

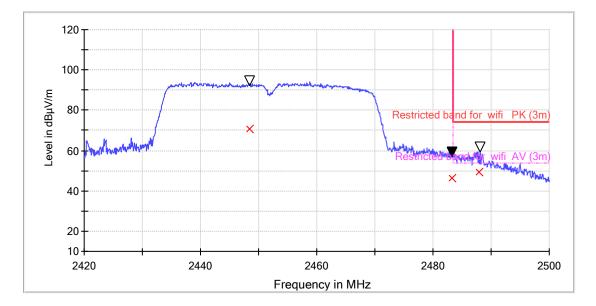
Frequency (MHz)	Quasi Peak (dBµV/ m)	Bandwidth (kHz)	Pol	Corr. (dB)	Margin - QPK (dB)	Limit - QPK (dBµV/m)
33.080000	33.0	120.000	v	10.9	7.0	40.0
101.600000	30.0	120.000	۷	12.3	13.5	43.5

Horizontal:

All emission levels are more than 6 dB below the limit.

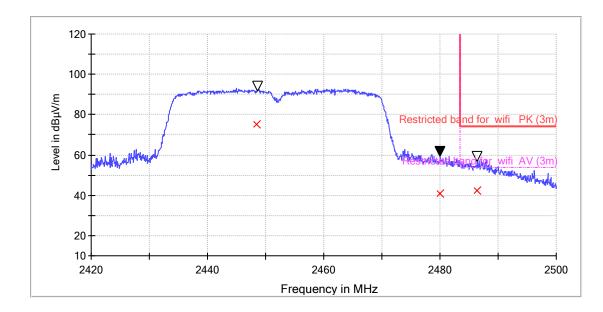
1~25 GHz Radiated Emissions. Peak & Average Measurement

PK Measurement:


Frequency	PK Reading Level	Correction factors	PK Emission Level	PK Limit	Antenna polarization
(MHz)	(dBuV)	(dB)	(dBuV/m)	(dBuV/m)	
1415.438	49.1	-12.4	36.656	74	Н
2456.688	50.9	-7.9	43.030	74	Н
5371.656	41.6	-0.2	41.374	74	Н
1463.781	48.6	-12.2	36.431	74	V
2453.500	44.5	-7.9	36.551	74	V
5172.438	42.1	-0.6	41.511	74	V

AV Measurement:

Frequency	PK Reading Level	Correction factors	PK Emission Level	AV Limit	Antenna polarization
(MHz)	(dBuV)	(dB)	(dBuV/m)	(dBuV/m)	
1415.438		-12.4		54	Н
2456.688		-7.9		54	Н
5371.656		-0.2		54	Н
1463.781		-12.2		54	V
2453.500		-7.9		54	V
5172.438		-0.6		54	V


Remark: When Peak emission level was below AV limit, the AV emission level did not be record. Restricted Bands Measurement

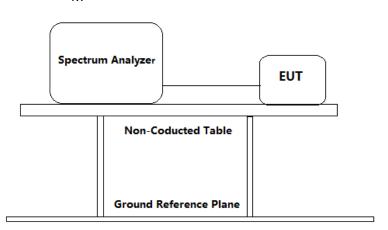
Horizontal

Vertical

PK Measurement:

Frequency	PK Reading Level	Correction factors	PK Emission Level	PK Limit	Antenna polarization
(MHz)	(dBuV)	(dB)	(dBuV/m)	(dBuV/m)	
2483.20	65.2	-7.8	57.412	74	Н
2488.16	67.4	-7.8	59.570	74	Н
2486.40	65.4	-7.8	57.520	74	V

AV Measurement:


Frequency	PK Reading Level	Correction factors	PK Emission Level	AV Limit	Antenna polarization
(MHz)	(dBuV)	(dB)	(dBuV/m)	(dBuV/m)	
2483.20	54.1	-7.8	46.3	54	Н
2488.16	57.1	-7.8	49.3	54	Н
2486.40	50.4	-7.8	42.6	54	V

Remark: When Peak emission level was below AV limit, the AV emission level did not be recorded.

4.8 Band Edges Requirement

Tast Paquiromont:	FCC Part 15 C section 15.247
Test Requirement:	
	(d) In any 100 kHz bandwidth outside the frequency band in which the spread spectrum or digitally modulated intentional radiator is operating. The radio frequency power that is produced by the intentional radiator shall be at least 20 dB below that in the 100 kHz bandwidth within the band that contains the highest level of the desired power. Based on either an RF conducted or a radiated measurement. Provided the transmitter demonstrates compliance with the peak conducted power limits.
Frequency Band:	2400 MHz to 2483.5 MHz
Test Method:	ANSI C63.10: Clause 11.11 and 11.13
Test Status:	Pre-Scan has been conducted to determine the worst-case mode from all possible combinations between available modulations, data rates and antenna ports (if EUT with antenna diversity architecture). Following channel(s) was (were) selected for the final test as listed below.
Test Configuration:	For Band Edges Emission in Radiated mode, Please refer to clause 4.7

Test Procedure: For Band Edges Emission in Radiated mode, Please refer to clause 4.7

Remove the antenna from the EUT and then connect a low RF cable from the antenna port to the spectrum analyzer.

 a) Set instrument center frequency to the frequency of the emission to be measured (must be within 2 MHz of the authorized band edge).
 b) Set the center frequency and span to encompass frequency range to be measured.
 c) RBW = 100 kHz.
 d) VBW ≥ [3 × RBW].
 e) Detector = peak.
 f) Sweep time = auto.
 g) Trace mode = max hold.

TEST REPORT

h) Allow sweep to continue until the trace stabilizes (required measurement time may increase for low-duty-cycle applications).

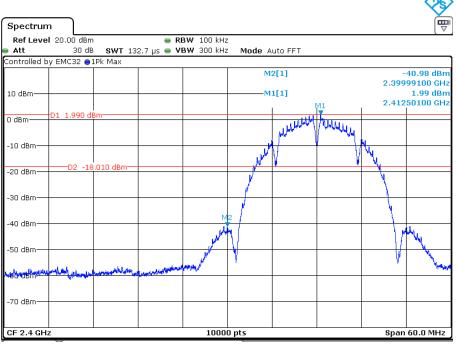
i) For radiated Band-edge emissions within a restricted band and within 2 MHz of an authorized band edge, integration method is considered.

- 2. Repeat until all the test status is investigated.
- 3. Report the worst case.

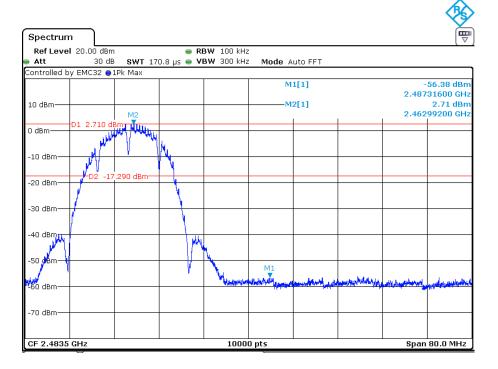
Used Test Equipment List:

3m Semi-Anechoic Chamber, EMI Test Receiver (9 kHz~7 GHz), Signal and Spectrum Analyzer (10 Hz~40 GHz), Loop antenna (9 kHz-30 MHz). TRILOG Super Broadband test Antenna(30 MHz-3 GHz) (RX), Bouble-Ridged Waveguide Horn Antenna (800 MHz-18 GHz)(RX) and High Frequency Antenna & preamplifier(18 GHz~26.5 GHz) (RX). Refer to Clause 5 Test Equipment List for details.

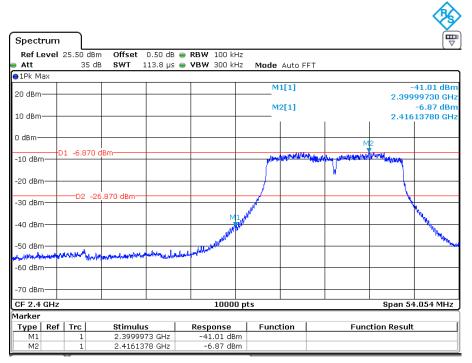
Test result with plots as follows: For conduct mode:

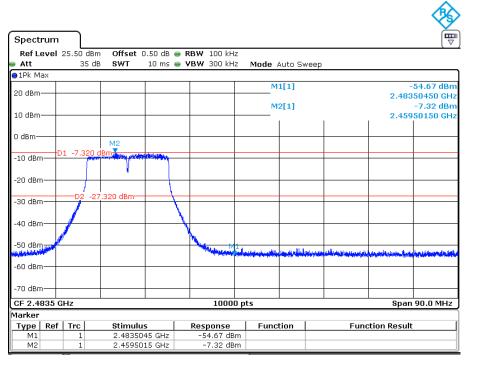

The band edges was measured and recorded Result:

The Lower Edges attenuated more than 20dB.


The Upper Edges attenuated more than 20dB.

Result plots as follows: 802.11b mode with 11 Mbps data rate Channel1: 2.412 GHz

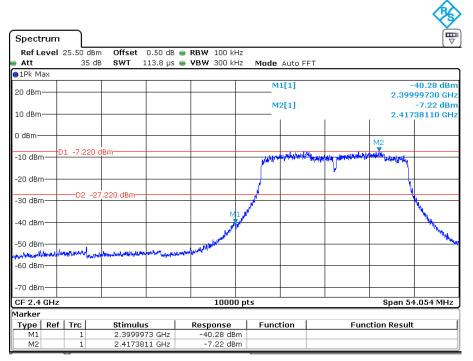

Channel 11: 2.462 GHz

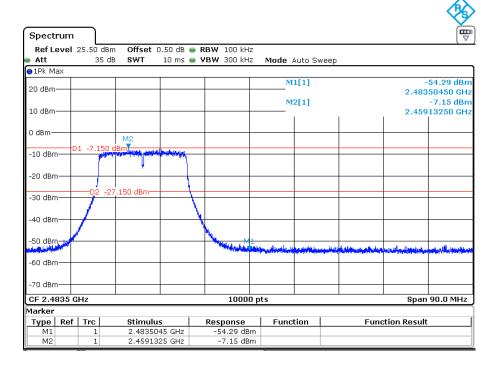


802.11g mode with 54 Mbps data rate

Channel1: 2.412 GHz

Channel 11: 2.462 GHz




TEST REPORT

802.11n(HT20) mode with 72.2Mbps data rate

Channel 1: 2.412 GHz

Channel 11: 2.462 GHz

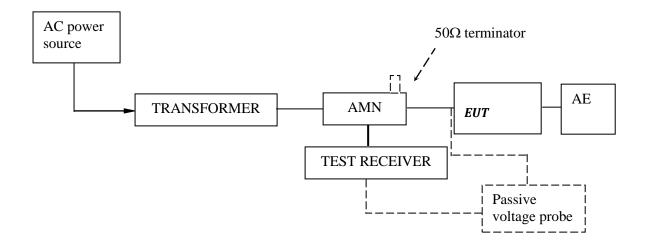
TEST REPORT

802.11n(HT40) mode with 150Mbps data rate

Channel 3: 2.422 GHz

5. 2.422										()
Spectrum Ref Level	25.50 dBr	m Offset O	.50 dB 🧉	• RBW 100 kHz	2					
Att 🛛	35 d	B SWT	10 ms 🧉	• VBW 300 kHz	: Mode	Auto Sv	veep			
●1Pk Max										
20 dBm						M1[1]				-52.46 dBm 999990 GHz
						M2[1]				-12.10 dBm
10 dBm										725750 GHz
									1	
0 dBm										
							ма			
-10 dBm	1 -12.10	D dBm						and a subset	Geological Materia	
		1			AND SHARE		di Alfandia a	alated barrena	in the standard of the states	A SAMPAGE LINE
-20 dBm								11		
-30 dBm					- (U.		
-30 UBIII	—D2 -3	2.100 dBm								
-40 dBm					1					
-+0 dbm					1					1 1
-50 dBm				M	1					
والتركيب ألبار والقار والمتلاط والمعار	-	مر في ماليد المالية بين م	والمراجع وسنيعه	والقرار والفراف والمقاعم عمادان الجعاري	×					200
-60 dBm										
-70 dBm										
CF 2.4 GHz		1		10000	pts				Spar	n 90.0 MHz
Marker										
Type Ref	Trc	Stimulus		Response		nction		Fur	nction Resul	t l
M1	1	2.399999		-52.46 dBr						
M2	1	2.417257	'5 GHz	-12.10 dBr	n					

Channel 9: 2.452 GHz


Spectrun	' L								
	25.50 dBr			🔵 RBW 100 kł					
Att	35 d	B SWT	246.5 µs	😑 VBW 300 kł	Iz Mode	Auto F	FT		
∋1Pk Max		1				1[1]			-53.69 dBm
20 dBm						1[1]			-33.09 UBH 335050 GHz
					м	2[1]			-10.33 dBm
10 dBm								2.46	561180 GH
0 dBm									
-10 dBm	D1 -10.330).dBm=====	M2						
10 0.0			A STATE OF THE REAL PROPERTY O	***					
-20 dBm 🥂				<u> </u>					
- 30 dBm-		0.330 dBm							
-40 dBm									
-50 dB0				M	1				
Handlin and the second second				hand hand the statest	المرمد معاديه المدادجة	Munich	Aline Constanting	and the second	A STATE AND A STATE OF
-60 dBm			_						
-70 dBm—		-	-						
CF 2.4835	GHz	1		1000) pts			Span	120.0 MHz
Marker									
Type Re		Stimu		Response	Func	tion	Fur	nction Resul	t
M1 M2	1	2.48	3505 GHz	-53.69 dB -10.33 dB					

TEST REPORT

4.9 Conducted Emission Test

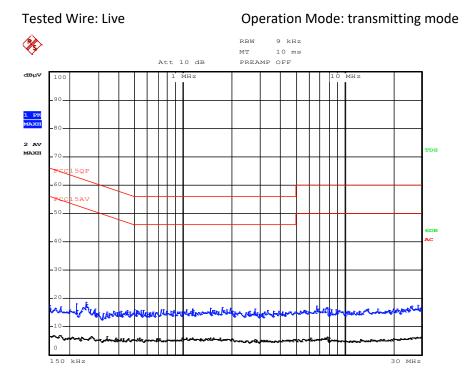
Test Configuration:

Test Setup and Procedure:

Test was performed according to ANSI C63.10 Clause 6.2. The EUT was set to achieve the maximum emission level. The mains terminal disturbance voltage was measured with the EUT in a shielded room. The EUT was connected to AC power source through an Artificial Mains Network which provides a 50Ω linear impedance Artificial hand is used if appropriate (for handheld apparatus). The load/control terminal disturbance voltage was measured with passive voltage probe if appropriate.

The table-top EUT was placed on a 0.8m high non-metallic table above earthed ground plane (Ground Reference Plane). And for floor standing EUT, was placed on a 0.1m high non-metallic supported on GRP. The EUT keeps a distance of at least 0.8m from any other of the metallic surface. The Artificial Mains Network is situated at a distance of 0.8m from the EUT.

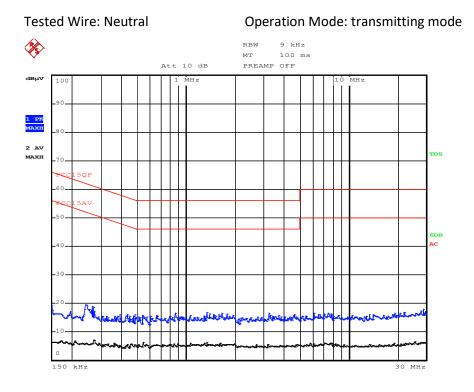
During the test, mains lead of EUT excess 0.8m was folded back and forth parallel to the lead so as to form a horizontal bundle with a length between 0.3m and 0.4m


The bandwidth of test receiver was set at 9 kHz. The frequency range from 150 kHz to 30MHz was checked.

TEST REPORT

Test Data and Curve

At main terminal: Pass



Remark:

- 1. Corr. (dB) = LISN Factor (dB) + Cable Loss (dB)
- 2. Level (dB μ V) = Corr. (dB) + Read Level (dB μ V)
- 3. Delta Limit (dB) = Level (dB μ V)-Limit (dB μ V)

TEST REPORT

Remark:

- 1. Corr. (dB) = LISN Factor (dB) + Cable Loss (dB)
- 2. Level (dB μ V) = Corr. (dB) + Read Level (dB μ V)
- 3. Delta Limit (dB) = Level (dBµV)-Limit (dBµV)

TEST REPORT

5.0 Test Equipment List

Radiated Emission/Radio

Equipment No.	Equipment	Model	Manufacturer	Cal. Due date (YYYY-MM-DD)	Calibration Interval
EM030-04	3m Semi-Anechoic Chamber	9×6×6 m ³	ETS• LINDGRE N	4/9/2021	1Y
EM031-02	EMI Test Receiver (9 kHz~7 GHz)	R&S ESR7	R&S	2/28/2021	1Y
EM031-03	Signal and Spectrum Analyzer (10 Hz~40 GHz)	R&S FSV40	R&S	9/19/2020	1Y
EM011-04	Loop antenna (9 kHz-30 MHz)	HFH2-Z2	R&S	5/14/2021	1Y
EM061-03	TRILOG Super Broadband test Antenna (30 MHz-1.5 GHz) (TX)	VULB 9161	SCHWARZBECK	5/4/2021	1 Y
EM033-01	TRILOG Super Broadband test Antenna(30 MHz-3 GHz) (RX)	VULB 9163	SCHWARZBECK	9/20/2020	1 Y
EM033-02	Bouble-Ridged Waveguide Horn Antenna (800 MHz-18 GHz)(RX)	R&S HF907	R&S	5/14/2021	1 Y
EM033-03	High Frequency Antenna & preamplifier(18 GHz~26.5 GHz) (RX)	R&S SCU-26	R&S	4/26/2021	1 Y
EM033-04	High Frequency Antenna & preamplifier (26 GHz-40 GHz)	R&S SCU-40	R&S	4/26/2021	1 Y
EM031-02-01	Coaxial cable(9 kHz-1 GHz)	N/A	R&S	4/9/2021	1Y
EM033-02-02	Coaxial cable(1 GHz-18 GHz)	N/A	R&S	4/9/2021	1Y
EM033-04-02	Coaxial cable(18 GHz~40 GHz)	N/A	R&S	4/18/2021	1Y
EM031-01	Signal Generator (9 kHz~6 GHz)	SMB100A	R&S	9/18/2020	1Y
EM085-02	Signal Generator (10MHz-40GHz)	68369B	Wiltron	9/19/2020	1Y
EM040-01	Band Reject/Notch Filter	WRHFV	Wainwright	N/A	1Y
EM040-02	Band Reject/Notch Filter	WRCGV	Wainwright	N/A	1Y
EM040-03	Band Reject/Notch Filter	WRCGV	Wainwright	N/A	1Y
EM022-03	2.45 GHz Filter	BRM50702	Micro-Tronics	5/16/2021	1Y
SA016-16	Programmable Temperature & Humidity Test Chamber	MHU-800LJ	TERCHY	10/10/2020	1Y
SA016-22	Climatic Test Chamber	C7-1500	Vötsch	11/1/2020	1Y
SA012-74	Digital Multimeter	FLUKE175	FLUKE	10/10/2020	1Y
EM010-01	Regulated DC Power supply	PAB-3003A	GUANHUA	N/A	1Y
SA040-22	Regulated DC Power supply	IT6721	ITECH	9/19/2020	1Y
EM084-06	Audio Analyzer	8903B	HP	4/18/2021	1Y
EM045-01-01	EMC32 software (RE/RS)	V10.01.00	R&S	N/A	N/A
EM045-01-09	EMC32 software (328/893)	V9.26.01	R&S	N/A	N/A
Conducted emis	sion at the mains terminals				

Equipment No.	Equipment	Model	Manufacturer	Cal. Due date	Calibration
				(YYYY-MM-DD)	Interval
EM080-05	EMI receiver	ESCI	R&S	5/18/2021	1Y
EM006-05	LISN	ENV216	R&S	5/6/2021	1Y
EM006-06	LISN	ENV216	R&S	9/19/2020	1Y
EM006-06-01	Coaxial cable	/	R&S	4/7/2021	1Y
EM004-04	EMC shield Room	8m×3m×3m	Zhongyu	1/13/2021	1Y