

CFR 47 FCC PART 15 SUBPART C ISED RSS-247 ISSUE 2

CERTIFICATION TEST REPORT

For

WiFi module

MODEL NUMBER: AEH-W0G1

FCC ID: 2AGCCAEH-W0G1

IC: 20778-AEHW0G1

REPORT NUMBER: 4789533027-1

ISSUE DATE: July 23, 2020

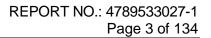
Prepared for

Hisense (Guangdong) Air Conditioning Co., Ltd. No.8 Hisense Road [,] Advanced Manufacturing Jiangsha Demonstration Park,Jiangmen City,Guangdong Province,P.R.China

Prepared by

UL Verification Services (Guangzhou) Co., Ltd, Song Shan Lake Branch

Building 10, Innovation Technology Park, No. 1, Li Bin Road, Song Shan Lake Hi-Tech Development Zone Dongguan, 523808, People's Republic of China


> Tel: +86 769 22038881 Fax: +86 769 33244054 Website: www.ul.com

The results reported herein have been performed in accordance with the laboratory's terms of accreditation. This report shall not be reproduced except in full without the written approval of the Laboratory. The results in this report apply to the test sample(s) mentioned above at the time of the testing period only and are not to be used to indicate applicability to other similar products. This report does not imply that the product(s) has met the criteria for certification.

Revision History

Rev.	Issue Date	Revisions	Revised By
V0	07/23/2020	Initial Issue	

Summary of Test Results							
Clause	lause Test Items FCC/ISED Rules						
1	6dB Bandwidth and 99% Occupied Bandwidth	FCC Part 15.247 (a) (2) RSS-247 Clause 5.2 (a) ISED RSS-Gen Clause 6.7	Pass				
2	Conducted Output Power	FCC Part 15.247 (b) (3) RSS-247 Clause 5.4 (d)	Pass				
3	Power Spectral Density	FCC Part 15.247 (e) RSS-247 Clause 5.2 (b)	Pass				
4	Conducted Bandedge and Spurious Emission	FCC Part 15.247 (d) RSS-247 Clause 5.5	Pass				
5	Radiated Bandedge and Spurious Emission	FCC Part 15.247 (d) FCC Part 15.209 FCC Part 15.205 RSS-247 Clause 5.5 RSS-GEN Clause 8.9	Pass				
6	Conducted Emission Test for AC Power Port	FCC Part 15.207 RSS-GEN Clause 8.8	Pass				
7	Antenna Requirement FCC Part 15.203 RSS-GEN Clause 6.8		Pass				

purpose in China.

2. The measurement result for the sample received is <Pass> according to < CFR 47 FCC PART 15 SUBPART C >< ISED RSS-247 > when <Accuracy Method> decision rule is applied.

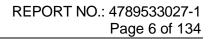


TABLE OF CONTENTS

1.	ATT	ESTATION OF TEST RESULTS	6
2.	TES	T METHODOLOGY	7
3.	FAC	ILITIES AND ACCREDITATION	7
4.	CAL	IBRATION AND UNCERTAINTY	8
4	l.1.	MEASURING INSTRUMENT CALIBRATION	8
4	4.2.	MEASUREMENT UNCERTAINTY	8
5.	EQL	JIPMENT UNDER TEST	9
5	5.1.	DESCRIPTION OF EUT	9
5	5.2.	CHANNEL LIST	9
5	5.3.	MAXIMUM OUTPUT POWER	9
5	5.4.	TEST CHANNEL CONFIGURATION1	0
5	5.5.	THE WORSE CASE POWER SETTING PARAMETER1	0
5	5.6.	THE WORSE CASE CONFIGURATIONS1	1
5	5.7.	DESCRIPTION OF AVAILABLE ANTENNAS	2
5	5.8.	DESCRIPTION OF TEST SETUP1	3
6.	MFA	SURING INSTRUMENT AND SOFTWARE USED	4
0.			-
о. 7.		ENNA PORT TEST RESULTS	
7.			6
7 .	ANT 7.1.	ENNA PORT TEST RESULTS1	6
7 . 7	ANT 7.1. 7.2.	ENNA PORT TEST RESULTS	6 6 9
7. 7 7 7	ANT 7.1. 7.2. 7.3.	ENNA PORT TEST RESULTS 1 ON TIME AND DUTY CYCLE 1 6 dB DTS BANDWIDTH AND 99% OCCUPIED BANDWIDTH 1	6 9
7. 7 7 7 7	ANT 7.1. 7.2. 7.3. 7.4.	TENNA PORT TEST RESULTS 1 ON TIME AND DUTY CYCLE 1 6 dB DTS BANDWIDTH AND 99% OCCUPIED BANDWIDTH 1 CONDUCTED OUTPUT POWER 2	6 6 9 1 2
7. 7 7 7 7	ANT 7.1. 7.2. 7.3. 7.4. 7.5.	TENNA PORT TEST RESULTS 1 ON TIME AND DUTY CYCLE 1 6 dB DTS BANDWIDTH AND 99% OCCUPIED BANDWIDTH 1 CONDUCTED OUTPUT POWER 2 POWER SPECTRAL DENSITY 2	6 9 1 2 4
7. 7 7 7 7 7 7 8.	ANT 7.1. 7.2. 7.3. 7.4. 7.5. RAE 8.1.	ENNA PORT TEST RESULTS 1 ON TIME AND DUTY CYCLE 1 6 dB DTS BANDWIDTH AND 99% OCCUPIED BANDWIDTH 1 CONDUCTED OUTPUT POWER 2 POWER SPECTRAL DENSITY 2 CONDUCTED BANDEDGE AND SPURIOUS EMISSIONS 2 DIATED TEST RESULTS 2 RESTRICTED BANDEDGE 3	6 9 1 2 4 6 2
7. 7 7 7 7 7 7 8.	ANT 7.1. 7.2. 7.3. 7.4. 7.5. RAE 8.1. 8.1.	TENNA PORT TEST RESULTS 1 ON TIME AND DUTY CYCLE 1 6 dB DTS BANDWIDTH AND 99% OCCUPIED BANDWIDTH 1 CONDUCTED OUTPUT POWER 2 POWER SPECTRAL DENSITY 2 CONDUCTED BANDEDGE AND SPURIOUS EMISSIONS 2 DIATED TEST RESULTS 2 RESTRICTED BANDEDGE 3 1 802.11b MODE	6 9 1 2 4 6 2 2
7. 7 7 7 7 7 7 8.	ANT 7.1. 7.2. 7.3. 7.4. 7.5. RAE 8.1.	TENNA PORT TEST RESULTS 1 ON TIME AND DUTY CYCLE 1 6 dB DTS BANDWIDTH AND 99% OCCUPIED BANDWIDTH 1 CONDUCTED OUTPUT POWER 2 POWER SPECTRAL DENSITY 2 CONDUCTED BANDEDGE AND SPURIOUS EMISSIONS 2 DIATED TEST RESULTS 2 RESTRICTED BANDEDGE 3 1 802.11b MODE 3 2 802.11g MODE 3	6 6 9 1 2 4 6 2 2 6 2 2 6 2 2 6 2 2 6 2 2 6 6 9 1 2 2 6 6 9 1 2 2 6 6 9 1 2 2 6 6 6 9 1 1 2 6 6 1 1 1 1 1 1 1 1
7. 7 7 7 7 7 7 8.	ANT 7.1. 7.2. 7.3. 7.4. 7.5. 8.1.7 8.1.7 8.1.2 8.1.3 8.1.4	TENNA PORT TEST RESULTS1ON TIME AND DUTY CYCLE16 dB DTS BANDWIDTH AND 99% OCCUPIED BANDWIDTH1CONDUCTED OUTPUT POWER2POWER SPECTRAL DENSITY2CONDUCTED BANDEDGE AND SPURIOUS EMISSIONS2DATED TEST RESULTS2RESTRICTED BANDEDGE31. 802.11b MODE32. 802.11g MODE33. 802.11n HT20 MODE44. 802.11n HT40 MODE4	6 6 9 1 2 4 6 2 2 6 0 4
7. 7 7 7 7 7 7 7 8. 8.	ANT 7.1. 7.2. 7.3. 7.4. 7.5. 8.1.7 8.1.7 8.1.2 8.1.3 8.1.4	FENNA PORT TEST RESULTS 1ON TIME AND DUTY CYCLE16 dB DTS BANDWIDTH AND 99% OCCUPIED BANDWIDTH1CONDUCTED OUTPUT POWER2POWER SPECTRAL DENSITY2CONDUCTED BANDEDGE AND SPURIOUS EMISSIONS2 DIATED TEST RESULTS 2RESTRICTED BANDEDGE31< 802.11b MODE	6 6 9 1 2 4 6 2 2 6 0 4 8
7. 7 7 7 7 7 7 7 8. 8. 8. 8.	ANT 7.1. 7.2. 7.3. 7.4. 7.5. 8.1.2 8.1.2 8.1.2 8.1.2 8.1.2 8.1.2 8.1.2 8.1.2 8.1.2 8.1.2 8.1.2 8.2.2 8.2.2 8.2.2	ENNA PORT TEST RESULTS 1 ON TIME AND DUTY CYCLE 1 6 dB DTS BANDWIDTH AND 99% OCCUPIED BANDWIDTH 1 CONDUCTED OUTPUT POWER 2 POWER SPECTRAL DENSITY 2 CONDUCTED BANDEDGE AND SPURIOUS EMISSIONS 2 DIATED TEST RESULTS 2 RESTRICTED BANDEDGE 3 1 802.11b MODE 3 2 802.11g MODE 3 3 802.11n HT20 MODE 4 4 802.11n HT40 MODE 4 SPURIOUS EMISSIONS (1GHz ~ 3GHz) 4 1 802.11b MODE 4 SPURIOUS EMISSIONS (3GHz ~ 18GHz) 5	6 6 9 1 2 4 6 2 2 6 0 4 8 8 4
7. 7 7 7 7 7 7 7 8. 8. 8. 8.	ANT 7.1. 7.2. 7.3. 7.4. 7.5. 8.1.2 8.3 8.3	TENNA PORT TEST RESULTS 1 ON TIME AND DUTY CYCLE 1 6 dB DTS BANDWIDTH AND 99% OCCUPIED BANDWIDTH 1 CONDUCTED OUTPUT POWER 2 POWER SPECTRAL DENSITY 2 CONDUCTED BANDEDGE AND SPURIOUS EMISSIONS 2 DIATED TEST RESULTS 2 RESTRICTED BANDEDGE 3 1. 802.11b MODE 3 2. 802.11g MODE 3 3. 802.11n HT20 MODE 4 4. 802.11n HT40 MODE 4 SPURIOUS EMISSIONS (1GHz ~ 3GHz) 4 1. 802.11b MODE 4 SPURIOUS EMISSIONS (3GHz ~ 18GHz) 5 1. 802.11b MODE 5	6 6 9 1 2 4 6 22604 88 44
7. 7 7 7 7 7 7 7 8. 8. 8. 8.	ANT 7.1. 7.2. 7.3. 7.4. 7.5. 8.1.2 8.1.2 8.1.2 8.1.2 8.1.2 8.1.2 8.1.2 8.1.2 8.1.2 8.1.2 8.1.2 8.2.2 8.2.2 8.2.2	TENNA PORT TEST RESULTS 1 ON TIME AND DUTY CYCLE 1 6 dB DTS BANDWIDTH AND 99% OCCUPIED BANDWIDTH 1 CONDUCTED OUTPUT POWER 2 POWER SPECTRAL DENSITY 2 CONDUCTED BANDEDGE AND SPURIOUS EMISSIONS 2 DIATED TEST RESULTS 2 RESTRICTED BANDEDGE 3 1. 802.11b MODE 3 2. 802.11g MODE 4 4. 802.11n HT20 MODE 4 5 802.11b MODE 4 5 802.11b MODE 4 6 SPURIOUS EMISSIONS (1GHz ~ 3GHz) 4 6 SPURIOUS EMISSIONS (3GHz ~ 18GHz) 5 1. 802.11b MODE 5 5 2. 802.11g MODE 5 5 3. 802.11b MODE 5 5	6 6 9 1 2 4 6 22604 88 440

8	8.5. SP0 8.5.1.	URIOUS EMISSIONS (18GHz ~ 26GHz) 802.11n HT20 MODE	
8	8.6. SP	URIOUS EMISSIONS (30MHz ~ 1 GHz) 802.11n HT20 MODE	80
ε		PURIOUS EMISSIONS BELOW 30MHz 802.11n HT20 MODE	82
9.	AC POV	WER LINE CONDUCTED EMISSIONS	
g	0.1. 802	2.11n HT20 STBC MIMO MODE	86
10.	ANTE	ENNA REQUIREMENTS	88
11.	Арре	endix A: DTS Bandwidth	89
	11.1.1. 11.1.2.		
1	<i>1.2.</i> A 11.2.1. 11.2.2.		
1	<i>1.3. A</i> 11.3.1.	Appendix C: Maximum conducted output power Test Result	
1	1 <i>.4. A</i> 11.4.1. 11.4.2.		
1	1.5. A 11.5.1. 11.5.2.		
1	11.6.1.	Appendix F: Conducted Spurious Emission Test Result Test Graphs	116

1. ATTESTATION OF TEST RESULTS

Applicant Information

Hisense (Guangdong) Air Conditioning Co., Ltd. No.8 Hisense Road [,] Advanced Manufacturing Jiangsha Demonstration Park,Jiangmen City,Guangdong Province,P.R.China
Hisense (Guangdong) Air Conditioning Co., Ltd.
No.8 Hisense Road , Advanced Manufacturing Jiangsha
Demonstration Park, Jiangmen City, Guangdong
Province,P.R.China
WiFi module
AEH-W0G1
July 9, 2020
Normal
3181780
July 9~16, 2020

APPLICABLE STANDARDS					
STANDARD TEST RESUL					
CFR 47 FCC PART 15 SUBPART C	PASS				
ISED RSS-247 Issue 2	PASS				
ISED RSS-GEN Issue 5	PASS				

Prepared By:

Kebo. zhun

Kebo Zhang Project Engineer

Approved By:

Serlientus

Stephen Guo Laboratory Manager Checked By:

les hem

Shawn Wen Laboratory Leader

2. TEST METHODOLOGY

The tests documented in this report were performed in accordance with KDB 558074 D01 15.247 Meas Guidance v05r02, KDB 414788 D01 Radiated Test Site v01r01, CFR 47 FCC Part 2, CFR 47 FCC Part 15, ANSI C63.10-2013, ISED RSS-247 Issue 2 and ISED RSS-GEN Issue 5.

3. FACILITIES AND ACCREDITATION

 A2LA (Certificate No.: 4102.01) UL Verification Services (Guangzhou) Co., Ltd. Song Shan Lake Branch. has been assessed and proved to be in compliance with A2LA. FCC (FCC Designation No.: CN1187) UL Verification Services (Guangzhou) Co., Ltd. Song Shan Lake Branch. Has been recognized to perform compliance testing on equipment subject to the Commission's Delcaration of Conformity (DoC) and Certification rules ISED (Company No.: 21320) UL Verification Services (Guangzhou) Co., Ltd. Song Shan Lake Branch. has been registered and fully described in a report filed with ISED. The Company Number is 21320. VCCI (Registration No.: G-20019, R-20004, C-20012 and T-20011) UL Verification Services (Guangzhou) Co., Ltd. Song Shan Lake Branch. has been assessed and proved to be in compliance with VCCI, the Membership No. is 3793. Facility Name:
1

Note 1: All tests measurement facilities use to collect the measurement data are located at Building 10, Innovation Technology Park, Song Shan Lake Hi tech Development Zone, Dongguan, 523808, China

Note 2: The test anechoic chamber in UL Verification Services (Guangzhou) Co., Ltd. Song Shan Lake Branch had been calibrated and compared to the open field sites and the test anechoic chamber is shown to be equivalent to or worst case from the open field site.

Note 3: For below 30MHz, lab had performed measurements at test anechoic chamber and comparing to measurements obtained on an open field site. And these measurements below 30MHz had been correlated to measurements performed on an OFS.

4. CALIBRATION AND UNCERTAINTY

4.1. MEASURING INSTRUMENT CALIBRATION

The measuring equipment utilized to perform the tests documented in this report has been calibrated in accordance with the manufacturer's recommendations and is traceable to recognize national standards.

4.2. MEASUREMENT UNCERTAINTY

Where relevant, the following measurement uncertainty levels have been estimated for tests performed on the apparatus:

Test Item	Uncertainty			
Conduction emission	3.62dB			
Radiated Emission (Included Fundamental Emission) (9kHz ~ 30MHz)	2.2dB			
Radiated Emission (Included Fundamental Emission) (30MHz ~ 1GHz)	4.00dB			
Radiated Emission	5.78dB (1GHz ~ 18GHz)			
(Included Fundamental Emission) (1GHz to 26GHz)	5.23dB (18GHz ~ 26GHz)			
Note: This uncertainty represents an expanded uncertainty expressed at approximately the 95% confidence level using a coverage factor of k=2.				

5. EQUIPMENT UNDER TEST

5.1. DESCRIPTION OF EUT

EUT Name	WiFi module
Model	AEH-W0G1
Radio Technology	WLAN (IEEE 802.11b/g/n HT20/n HT40)
Operation frequency	IEEE 802.11b: 2412MHz ~ 2462MHz IEEE 802.11g: 2412MHz ~ 2462MHz IEEE 802.11n HT20: 2412MHz ~ 2462MHz IEEE 802.11n HT40: 2422MHz ~ 2452MHz
Modulation	IEEE 802.11b: DSSS (CCK, DQPSK, DBPSK) IEEE 802.11g: OFDM (64QAM, 16QAM, QPSK, BPSK) IEEE 802.11n HT20: OFDM (64QAM, 16QAM, QPSK, BPSK) IEEE 802.11n HT40: OFDM (64QAM, 16QAM, QPSK, BPSK)
Rated Input	3.3Vdc

5.2. CHANNEL LIST

	Channel List for 802.11b/g/n (20 MHz)							
Channel Frequency (MHz) Channel Frequency (MHz) Channel (MHz)		Channel	Frequency (MHz)	Channel	Frequency (MHz)			
1	2412	4	2427	7	2442	10	2457	
2	2417	5	2432	8	2447	11	2462	
3	2422	6	2437	9	2452	/	/	

	Channel List for 802.11n (40 MHz)							
Channel	Frequency (MHz)	Channel	Frequency (MHz)	Channel	Frequency (MHz)	Channel	Frequency (MHz)	
3	2422	5	2432	7	2442	9	2452	
4	2427	6	2437	8	2447	/	/	

5.3. MAXIMUM OUTPUT POWER

IEEE Std. 802.11	Frequency (MHz)	Channel Number	Maximum Conducted AVG Output Power (dBm)
b	2412 ~ 2462	1-11[11]	12.86
g	2412 ~ 2462	1-11[11]	10.96
n HT20	2412 ~ 2462	1-11[11]	9.89
n HT40	2422 ~ 2452	3-9[7]	10.31

UL Verification Services (Guangzhou) Co., Ltd, Song Shan Lake Branch This report shall not be reproduced except in full, without the written approval of UL Verification Services (Guangzhou) Co., Ltd, Song Shan Lake Branch.

5.4. TEST CHANNEL CONFIGURATION

IEEE Std. 802.11	Test Channel Number	Frequency
b	CH 1, CH 6, CH 11/ Low, Middle, High	2412MHz, 2437MHz, 2462MHz
g	CH 1, CH 6, CH 11/ Low, Middle, High	2412MHz, 2437MHz, 2462MHz
n HT20	CH 1, CH 6, CH 11/ Low, Middle, High	2412MHz, 2437MHz, 2462MHz
n HT40	CH 3, CH 6, CH 9/ Low, Middle, High	2422MHz, 2437MHz, 2452MHz

5.5. THE WORSE CASE POWER SETTING PARAMETER

The W	/orse Case	e Power Se	tting Param	neter under 2	2400 ~ 2483	.5MHz Band	k
Test Softw	vare		UI _mptool				
Mashalatian	Transmit	Test Software setting value					
Modulation Mode	Antenna	١	NCB: 20MH	lz	Ν	NCB: 40MHz	:
Widde	Number	CH 1	CH 6	CH 11	CH 3	CH 6	CH 9
802.11b	1	32	30	30			
802.11g	1	default	default	default		/	
802.11n HT20	1	default	default	default			
802.11n HT40	1		/		default	default	default

5.6. THE WORSE CASE CONFIGURATIONS

The EUT was tested in the following configuration(s):

Controlled in test mode using a software application on the EUT supplied by customer. The application was used to enable a continuous transmission and to select the mode, test channels, bandwidth, data rates as required.

Worst-case data rates as provided by the client were:

802.11b mode: 1 Mbps 802.11g mode: 6 Mbps 802.11n HT20 mode: MCS0 802.11n HT40 mode: MCS0

The measured additional path loss was included in any path loss calculations for all RF cable used during tested.

5.7. DESCRIPTION OF AVAILABLE ANTENNAS

Antenna	Frequency (MHz)	Antenna Type	MAX Antenna Gain (dBi)
1	2412-2462	integral antenna	1

IEEE 802.11 Protocol	Transmit and Receive Mode	Description
IEEE 802.11b	⊠1TX, 1RX	ANT 1 and ANT 2 can be used as transmitting antenna.
IEEE 802.11g	⊠1TX, 1RX	ANT 1 and ANT 2 can be used as transmitting antenna.
IEEE 802.11n HT20	⊠1TX, 1RX	ANT 1 and ANT 2 can be used as transmitting antenna.
IEEE 802.11n HT40	⊠1TX, 1RX	ANT 1 and ANT 2 can be used as transmitting antenna.

Note: The value of the antenna gain was declared by customer.

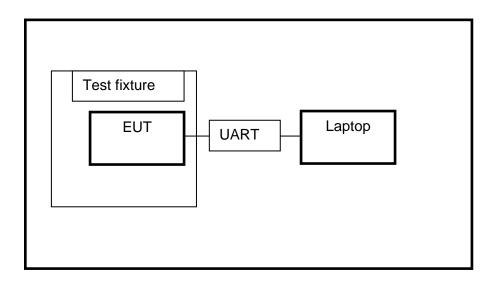
5.8. DESCRIPTION OF TEST SETUP

SUPPORT EQUIPMENT

Item	Equipment	Brand Name	Model Name	Remarks
1	Laptop	ThinkPad	X230i	/
2	USB TO UART	/	/	/
3	Test fixture	/	/	/

I/O CABLES

Item	Port	Connector Type	Cable Type	Cable Length(m)	Remarks
1	USB	NA	NA	1	/


ACCESSORIES

Item	Accessory	Brand Name	Model Name	Description
1	/	/	/	/

TEST SETUP

The EUT can work in engineering mode with a software through a Laptop.

SETUP DIAGRAM FOR TESTS

UL Verification Services (Guangzhou) Co., Ltd, Song Shan Lake Branch This report shall not be reproduced except in full, without the written approval of UL Verification Services (Guangzhou) Co., Ltd, Song Shan Lake Branch.

6. MEASURING INSTRUMENT AND SOFTWARE USED

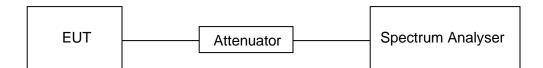
			Conduct	ed Emiss	ions			
			Ins	strument				
Used	Equipment	Manufacturer	Mode	el No.	Seria	l No.	Last Cal.	Next Cal.
	EMI Test Receiver	R&S	ES	SR3	1019	961	Dec.05,2019	Dec.05,2020
	Two-Line V- Network	R&S	EN	/216	1019	983	Dec.05,2019	Dec.05,2020
			So	oftware	1			
Used		Description			Manufa	acturer	Name	Version
\checkmark	Test Softwa	re for Conduct	ed disturk	oance	Far	ad	EZ-EMC	Ver. UL-3A1
			Radiate	d Emissio	ons			
			Ins	strument			1	
Used	Equipment	Manufacturer	Mode	el No.	Seria	l No.	Last Cal.	Next Cal.
V	MXE EMI Receiver	KESIGHT	N90)38A	MY564	00036	Dec.06,2019	Dec.05,2020
V	Hybrid Log Periodic Antenna	TDK	HLP-:	3003C	1309	960	Sep.17,2018	Sep.17,2021
\checkmark	Preamplifier	HP	844	47D	2944A	09099	Dec.05,2019	Dec.05,2020
V	EMI Measurement Receiver	R&S	ES	R26	101:	377	Dec.05,2019	Dec.05,2020
\checkmark	Horn Antenna	TDK	HRN	-0118	1309	939	Sep.17,2018	Sep.17,2021
V	High Gain Horn Antenna	Schwarzbeck	BBHA	\-9170	69	1	Aug.11,2018	Aug.11,2021
	Preamplifier	TDK	PA-02	2-0118	TRS- 000	67	Dec.05,2019	Dec.05,2020
V	Preamplifier	TDK	PA-	02-2	TRS- 000		Dec.05,2019	Dec.05,2020
\checkmark	Loop antenna	Schwarzbeck		19B	000	80	Jan.07,2019	Jan.07,2022
	Band Reject Filter	Wainwright	2400-2	/8-2350- 2483.5- 5-40SS	4		Dec.05,2019	Dec.05,2020
V	High Pass Filter	Wi	30	10-2700- 00-)-40SS	23	3	Dec.05,2019	Dec.05,2020
			So	oftware				
Used	De	escription		Manufad	cturer		Name	Version
V	Test Software fo	r Radiated dis	turbance	Fara	ıd	E	Z-EMC	Ver. UL-3A1

UL Verification Services (Guangzhou) Co., Ltd, Song Shan Lake Branch This report shall not be reproduced except in full, without the written approval of UL Verification Services (Guangzhou) Co., Ltd, Song Shan Lake Branch.

		Ot	ther instrur	nents		
Used	Equipment	Manufacturer	Model No.	Serial No.	Last Cal.	Next Cal.
\checkmark	Spectrum Analyzer	Keysight	N9030A	MY55410512	Dec.06,2019	Dec.05,2020
V	Power sensor, Power Meter	R&S	OSP120	100921	Dec.06,2019	Dec.06,2020

7. ANTENNA PORT TEST RESULTS

7.1. ON TIME AND DUTY CYCLE


<u>LIMITS</u>

None; for reporting purposes only

PROCEDURE

Refer to ANSI C63.10-2013 clause 11.6 Zero – Span Spectrum Analyzer method.

TEST SETUP

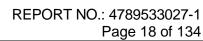
TEST ENVIRONMENT

Temperature	25.7°C	Relative Humidity	60.8%
Atmosphere Pressure	101kPa	Test Voltage	DC 3.3V

RESULTS

Mode	On Time (msec)	Period (msec)	Duty Cycle x (Linear)	Duty Cycle (%)	Duty Cycle Correction Factor (dB)	1/T Minimum VBW (kHz)	Final setting For VBW (kHz)
11b	100	100	1.00	100%	0	0.01	0.01
11g	100	100	1.00	100%	0	0.01	0.01
11n HT20	100	100	1.00	100%	0	0.01	0.01
11n HT40	100	100	1.00	100%	0	0.01	0.01

Note:


Duty Cycle Correction Factor=10log (1/x). Where: x is Duty Cycle (Linear) Where: T is On Time If that calculated VBW is not available on the analyzer then the next higher value should be used.

UL Verification Services (Guangzhou) Co., Ltd, Song Shan Lake Branch This report shall not be reproduced except in full, without the written approval of UL Verification Services (Guangzhou) Co., Ltd, Song Shan Lake Branch.

REPORT NO.: 4789533027-1 Page 17 of 134

	11B_Ant	1_2437		
	Α			- 0 ×
Center Freq 2.4370000	C SENSE:INT OO GHZ PNO: East ++ Trig: Free Run	ALIGN AUTO 03:29: #Avg Type: RMS	TYPE WAAAAAAAA	Frequency
Ref Offset 19.79	IFGain:Low #Atten: 40 dB	ΔMkr3	100.1 ms 1.47 dB	Auto Tune
10 dB/div Ref 35.00 dBr	n		1.47 dB	Center Freq
15.0				2.437000000 GHz
-5.00				Start Freq 2.437000000 GHz
-25.0 -35.0 -45.0				Stop Freq
-55.0				2.437000000 GHz
Center 2.437000000 GHz Res BW 8 MHz	#VBW 50 MHz	Sweep 130.0 m		CF Step 8.000000 MHz Auto Man
MKR MODE TRC SCL 1 $\Delta 2$ 1 t (Δ)	X Y FUN 100.1 ms (Δ) 1.47 dB	CTION FUNCTION WDTH FUN	VCTION VALUE	
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	20.93 ms 15.66 dBm 100.1 ms (Δ) 1.47 dB 20.93 ms 15.66 dBm		в	Freq Offset 0 Hz
7 8 9				Scale Type
10 11	11		-	Log <u>Lin</u>
 MSG		STATUS		
	11G_Ant	1_2437		
Keysight Spectrum Analyzer - Swept Si RL RF S0 Ω Di Center Freq 2.4370000	SENSE:INT		03 PM Jul 16, 2020 TRACE 1 2 3 4 5 6	Frequency
Center Freq 2.4370000			DET P P P P P P	Auto Tune
10 dB/div Ref Offset 19.79 Ref 35.00 dBr	dB n		100.1 ms -0.48 dB	
25.0 15.0		3∆4		Center Freq 2.437000000 GHz
-5.00				Start Freq
-15.0				2.437000000 GHz
-25.0 -36.0 -45.0				2.437000000 GHz Stop Freq 2.437000000 GHz
-25.0 -36.0 -45.0 -56.0 Center 2,437000000 GHz		Sween 120.0 m	Span 0 Hz	Stop Freq 2.437000000 GHz CF Step
Center 2.437000000 GHz Res BW 8 MHz	#VBW 50 MHz × Y FUN 100.1 ms (Δ) -0.48 dB	Sweep 130.0 m	is (1001 pts)	Stop Freq 2.43700000 GHz
Center 2.437000000 GHz Res BW 8 MHz	#VBW 50 MHz		is (1001 pts)	Stop Freq 2.437000000 GHz CF Step 8.000000 MHz
250	#VBW 50 MHz X Y F0X 100.1 ms (Δ) -0.48 dB 5.590 ms 19.76 dBm 100.1 ms (Δ) -0.48 dB		IS (1001 pts)	Stop Freq 2.43700000 GHz 8.00000 MHz 8.00000 MHz 8.00000 MHz Man Freq Offset 0 Hz Scale Type
350 350 450 450 650 450 650 1000 760 1000 760 1000 760 1000 760 1000 760 1000 760 1000 760 1000 760 1000 760 1000 760 1000 760 1000 760 1000 760 1000 760 1000 760 1000 770 1000 780 1000 780 1000 780 1000 780 1000 780 1000 780 1000 780 1000 780 1000 780 1000 780 1000 780 1000 780 1000 780 1000	#VBW 50 MHz X Y F0X 100.1 ms (Δ) -0.48 dB 5.590 ms 19.76 dBm 100.1 ms (Δ) -0.48 dB		IS (1001 pts)	Stop Freq 2.43700000 GHz CF Step 8.000000 MHz Auto Man Freq Offset 0 Hz

	11N20_An	t1 2437	
🔤 Keysight Spectrum Analyzer			- 2 💌
💭 RL RF 5	0 Q DC SENSE:INT	ALIGN AUTO 03:23:57 PM Jul 16 #Avg Type: RMS TRACE 1 2	.2020
Center Freq 2.437	NEE PNO: Fast Trig: Free Run	#Avg Type: RMS TRACE 1 2 TYPE WW DET P P	3 4 3 0
		ΔMkr3 100.1	Auto Tuno
Ref Offset 10 dB/div Ref 35.0	: 19.79 dB 0 dBm	-2.76	
25.0			Our test
15.0 Material And Maria	the super-constant and a first and advantage of a first on a the first of a f		Center Freq 2.43700000 GHz
5.00			2.457000000 0112
-5.00			
-15.0			Start Freq 2.437000000 GHz
-25.0			2.437000000 GH2
-35.0			
-45.0			2.437000000 GHz
-55.0			2.437000000 GHZ
Center 2.43700000	0 GH7	Span	0 Hz CF Step
Res BW 8 MHz	#VBW 50 MHz	Sweep 130.0 ms (1001	pts) 8.000000 MHz
MKR MODE TRC SCL	X Y FUNC	TION FUNCTION WDTH FUNCTION VAL	Auto Man
1 Δ2 1 t (Δ) 2 F 1 t	100.1 ms (Δ) -2.76 dB 14.95 ms 16.92 dBm 100.1 ms (Δ) -2.76 dB		
3 Δ4 1 t (Δ) 4 F 1 t	100.1 ms (Δ) -2.76 dB 14.95 ms 16.92 dBm		Freq Offset 0 Hz
5	14.00 110 10.02 42.00		=
7			Scale Type
9			
10 11			- Log Lin
	m	STATUS	•
MSG			
	11N40_An	t1_2437	
Keysight Spectrum Analyzer	Swept SA 0 Ω DC	ALIGN AUTO 03:25:32 PM Jul 16	2020
Center Freq 2.437	000000 GHz	#Avg Type: RMS TRACE 1 2 TYPE WW	3 4 5 6 Frequency
	NFE PNO: Fast +++ Trig: Free Run IFGain:Low #Atten: 40 dB	DET P P	PPPP
Ref Offset	19.79 dB	ΔMkr3 100.1	
10 dB/div Ref 35.0	0 dBm	-1.47	' dB
25.0			Center Freq
15.0	and the second		2.437000000 GHz
5.00			
-5.00			Start Freq
-15.0			2.437000000 GHz
-25.0			
-35.0			Stop Freq
-45.0			2.437000000 GHz
-55.0			
Center 2.43700000		Span	0 Hz CF Step
Center 2.43700000 Res BW 8 MHz	#VBW 50 MHz	Sweep 130.0 ms (1001	pts) 8.000000 MHz
Center 2.43700000 Res BW 8 MHz	#VBW 50 MHz	Span Sweep 130.0 ms (1001 TION FUNCTION WIDTH FUNCTION VAL	pts) 8.000000 MHz
Center 2.43700000 Res BW 8 MHz 1 Δ2 1 t (Δ) 2 F 1 t (Δ)	#VBW 50 MHz X Y FUNC 100.1 ms (Δ) -1.47 dB 13.78 ms 13.74 dBm	Sweep 130.0 ms (1001	Pts) 8.000000 MHz Auto Man
Center 2.43700000 Res BW 8 MHz Δ2 t (Δ) 2 F 1 t (Δ) 4 F 1 t (Δ)	#VBW 50 MHz X Y FUNC 100.1 ms (Δ) -1.47 dB	Sweep 130.0 ms (1001	pts) 8.000000 MHz
Center 2.43700000 Res BW 8 MHz 1 Δ2 t t (Δ) 2 F t t (Δ)	#VBW 50 MHz X Y FUN 100.1 ms (Δ) -1.47 dB 13.78 ms 13.74 dBm 100.1 ms (Δ) -1.47 dB	Sweep 130.0 ms (1001	B.000000 MHz Auto Man
Center 2.43700000 Res BW 8 MHz Στος τους τους τους στο 2 F 1 t (Δ) 2 F 1 t (Δ) 4 F 1 t (Δ) 5 F 1 t	#VBW 50 MHz X Y FUN 100.1 ms (Δ) -1.47 dB 13.78 ms 13.74 dBm 100.1 ms (Δ) -1.47 dB	Sweep 130.0 ms (1001	B.000000 MHz Auto Man
Center 2.4.3700000 Res BW 8 MHz	#VBW 50 MHz X Y FUN 100.1 ms (Δ) -1.47 dB 13.78 ms 13.74 dBm 100.1 ms (Δ) -1.47 dB	Sweep 130.0 ms (1001	beside the second secon
$\begin{array}{c} \text{Center } 2.43700000\\ \text{Res BW 8 MHz}\\ \hline 1 & \Delta 2 & 1 & (\Delta)\\ 2 & F & t & (\Delta)\\ 2 & F & t & (\Delta)\\ 4 & F & t & (\Delta)\\ 4 & F & t & (\Delta)\\ 6 & 7 & 8\\ 9 & 9 & \end{array}$	#VBW 50 MHz X Y FUN 100.1 ms (Δ) -1.47 dB 13.78 ms 13.74 dBm 100.1 ms (Δ) -1.47 dB	Sweep 130.0 ms (1001	B.000000 MHz Auto Man Freq Offset 0 Hz
Center 2.4.3700000 Res BW 8 MHz 1 Δ2 F 1 t Δ 2 F 1 t Δ 4 F 1 t Δ 5 F 1 t 5 F 1 t 6 F 1 t 7 F 1 t Δ 9 9	#VBW 50 MHz X Y FUN 100.1 ms (Δ) -1.47 dB 13.78 ms 13.74 dBm 100.1 ms (Δ) -1.47 dB	Sweep 130.0 ms (1001	beside the second secon

7.2. 6 dB DTS BANDWIDTH AND 99% OCCUPIED BANDWIDTH

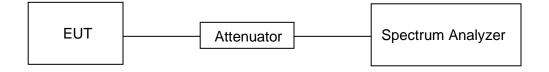
<u>LIMITS</u>

CFR 47 FCC Part15 (15.247) Subpart C ISED RSS-247 ISSUE 2				
Section Test Item Limit Frequency Range (MHz)				
CFR 47 FCC 15.247(a)(2) ISED RSS-247 5.2 (a)	6 dB Bandwidth	≥ 500KHz	2400-2483.5	
ISED RSS-Gen Clause 6.7	99% Occupied Bandwidth	For reporting purposes only.	2400-2483.5	

TEST PROCEDURE

Refer to ANSI C63.10-2013 clause 11.8 for DTS bandwidth and clause 6.9 for Occupied Bandwidth.

Center Frequency	The center frequency of the channel under test
Frequency Span	Between 1.5 times and 5.0 times the OBW
Detector	Peak
RBW	For 6 dB Bandwidth: 100kHz For 99% Occupied Bandwidth: 1% to 5% of the occupied bandwidth
VBW	For 6dB Bandwidth: ≥3 × RBW For 99% Occupied Bandwidth: ≥3 × RBW
Trace	Max hold
Sweep	Auto couple


Connect the EUT to the spectrum analyser and use the following settings:

a) Use the 99% power bandwidth function of the instrument, allow the trace to stabilize and report the measured bandwidth.

b) Allow the trace to stabilize and measure the maximum width of the emission that is constrained by the frequencies associated with the two outermost amplitude points (upper and lower frequencies) that are attenuated by 6 dB relative to the maximum level measured in the fundamental emission.

TEST SETUP

TEST ENVIRONMENT

Temperature	25.7°C	Relative Humidity	60.8%
Atmosphere Pressure	101kPa	Test Voltage	DC 3.3V

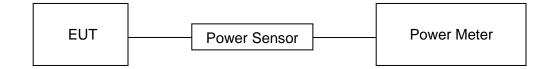
RESULTS

Please refer to appendix A & B.

7.3. CONDUCTED OUTPUT POWER

<u>LIMITS</u>

CFR 47 FCC Part15 (15.247) Subpart C ISED RSS-247 ISSUE 2				
Section	Test Item	Limit	Frequency Range (MHz)	
CFR 47 FCC 15.247(b)(3) ISED RSS-247 5.4 (d)	AVG Output Power	1 watt or 30dBm	2400-2483.5	


TEST PROCEDURE

Refer to ANSI C63.10-2013 clause 11.9.

Connect the EUT to a low loss RF cable from the antenna port to the power sensor (video bandwidth is greater than the occupied bandwidth).

Measure peak emission level, the indicated level is the AVG output power, after any corrections for external attenuators and cables.

TEST SETUP

TEST ENVIRONMENT

Temperature	25.7°C	Relative Humidity	60.8%
Atmosphere Pressure	101kPa	Test Voltage	DC 3.3V

RESULTS

Please refer to appendix C.

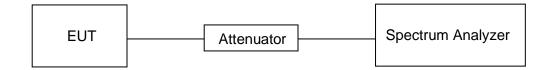
7.4. POWER SPECTRAL DENSITY

<u>LIMITS</u>

CFR 47 FCC Part15 (15.247) Subpart C ISED RSS-247 ISSUE 2			
Section	Test Item	Limit	Frequency Range (MHz)
CFR 47 FCC §15.247 (e) ISED RSS-247 5.2 (b)	Power Spectral Density	8 dBm/3 kHz	2400-2483.5

TEST PROCEDURE

Refer to ANSI C63.10-2013 clause 11.10.


Connect the EUT to the spectrum analyser and use the following settings:

Center Frequency	The center frequency of the channel under test
Detector	Peak
RBW	3 kHz ≤ RBW ≤ 100 kHz
VBW	≥3 × RBW
Span	1.5 x DTS bandwidth
Trace	Max hold
Sweep time	Auto couple

Allow trace to fully stabilize and use the peak marker function to determine the maximum amplitude level within the RBW.

If measured value exceeds limit, reduce RBW (no less than 3 kHz) and repeat.

TEST SETUP

TEST ENVIRONMENT

Temperature	25.7°C	Relative Humidity	60.8%
Atmosphere Pressure	101kPa	Test Voltage	DC 3.3V

UL Verification Services (Guangzhou) Co., Ltd, Song Shan Lake Branch This report shall not be reproduced except in full, without the written approval of UL Verification Services (Guangzhou) Co., Ltd, Song Shan Lake Branch.

Please refer to appendix D.

7.5. CONDUCTED BANDEDGE AND SPURIOUS EMISSIONS

<u>LIMITS</u>

CFR 47 FCC Part15 (15.247) Subpart C ISED RSS-247 ISSUE 2			
Section Test Item Limit			
CFR 47 FCC §15.247 (d) ISED RSS-247 5.5	Conducted Bandedge and Spurious Emissions	at least 30 dB below that in the 100 kHz bandwidth within the band that contains the highest level of the desired power	

TEST PROCEDURE

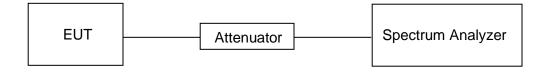
Refer to ANSI C63.10-2013 clause 11.11 and 11.13.

Connect the EUT to the spectrum analyser and use the following settings for reference level measurement:

Center Frequency	The center frequency of the channel under test
Detector	Peak
RBW	100kHz
VBW	≥3 × RBW
Span	1.5 x DTS bandwidth
Trace	Max hold
Sweep time	Auto couple.

Allow trace to fully stabilize and use the peak marker function to determine the maximum PSD level.

Change the settings for emission level measurement:


5040	Set the center frequency and span to encompass frequency range to be measured
Detector	Peak
RBW	100kHz
VBW	≥3 × RBW
measurement points	≥span/RBW
Trace	Max hold
Sweep time	Auto couple.

Allow trace to fully stabilize and use the peak marker function to determine the maximum PSD level. Ensure that the amplitude of all unwanted emissions outside of the authorized frequency band (excluding restricted frequency bands) is attenuated by at least the minimum requirements specified in 11.11.

UL Verification Services (Guangzhou) Co., Ltd, Song Shan Lake Branch This report shall not be reproduced except in full, without the written approval of UL Verification Services (Guangzhou) Co., Ltd, Song Shan Lake Branch.

TEST SETUP

TEST ENVIRONMENT

Temperature	25.7°C	Relative Humidity	60.8%
Atmosphere Pressure	101kPa	Test Voltage	DC 3.3V

RESULTS

Please refer to appendix E & F.

8. RADIATED TEST RESULTS

<u>LIMITS</u>

Please refer to CFR 47 FCC §15.205 and §15.209.

Please refer to ISED RSS-GEN Clause 8.9 and Clause 8.10.

Radiation Disturbance Test Limit for FCC (Class B) (9kHz-1GHz)

Emissions radiated outside of the specified frequency bands above 30MHz					
Frequency Range (MHz)	Field Strength Limit (uV/m) at 3 m (dBuV/m) a		Field Strength Limit		•
		Quasi-Peak			
30 - 88	100	40			
88 - 216	150	43.5			
216 - 960	200	46			
Above 960	500	54			
Above 1000	500	Peak	Average		
	500	74	54		

FCC Emissions radiated outside of the specified frequency bands below 30MHz						
Frequency (MHz) Field strength (microvolts/meter) Measurement distance (meters)						
0.009-0.490	2400/F(kHz)	300				
0.490-1.705	24000/F(kHz)	30				
1.705-30.0 30 30						

ISED General field strength limits at frequencies below 30 MHz

Table 6 – General field strength limits at frequencies below 30 MHz						
Frequency Magnetic field strength (H-Field) (μA/m) Measurement distance (m)						
9 - 490 kHz ^{Note 1}	6.37/F (F in kHz)	300				
490 - 1705 kHz	63.7/F (F in kHz)	30				
1.705 - 30 MHz	0.08	30				

Note 1: The emission limits for the ranges 9-90 kHz and 110-490 kHz are based on measurements employing a linear average detector.

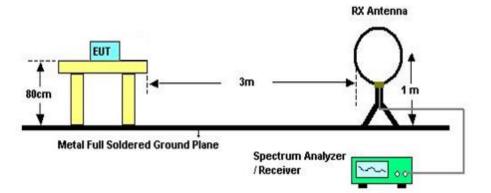
ISED Restricted bands please refer to ISED RSS-GEN Clause 8.10

	Table 7 – Restricted frequency bands	Note 1
MHz	MHz	GHz
0.090 - 0.110	149.9 - 150.05	9.0 - 9.2
0.495 - 0.505	158.52475 - 158.52525	9.3 - 9.5
2.1735 - 2.1905	156.7 - 156.9	10.6 - 12.7
3.020 - 3.028	162.0125 - 167.17	13.25 - 13.4
4.125 - 4.128	167.72 - 173.2	14.47 - 14.5
4.17725 - 4.17775	240 - 285	15.35 - 18.2
4.20725 - 4.20775	322 - 335.4	17.7 - 21.4
5.677 - 5.683	399.9 - 410	22.01 - 23.12
6.215 - 6.218	608 - 614	23.6 - 24.0
6.26775 - 6.26825	960 - 1427	31.2 - 31.8
8.31175 - 8.31225	1435 - 1626.5	36.43 - 36.5
8.291 - 8.294	1645.5 - 1646.5	Above 38.6
8.382 - 8.388	1660 - 1710	
8.37625 - 8.38675	1718.8 - 1722.2	
8.41425 - 8.41475	2200 - 2300	
12.29 - 12.293	2310 - 2390	
12.51975 - 12.52025	2483.5 - 2500	
12.57675 - 12.57725	2855 - 2900	
13.36 - 13.41	3280 - 3287	
16.42 - 16.423	3332 - 3339	
16.69475 - 16.69525	3345.8 - 3358	
16.80425 - 16.80475	3500 - 4400	
25.5 - 25.67	4500 - 5150	
37.5 - 38.25	5350 - 5460	
73 - 74.6	7250 - 7750	
74.8 - 75.2	8025 - 8500	
108 - 138		

Note 1: Certain frequency bands listed in table 7 and in bands above 38.6 GHz are designated for licence-exempt applications. These frequency bands and the requirements that apply to related devices are set out in the 200 and 300 series of RSSs.

FCC Restricted bands of operation refer to FCC §15.205 (a):

MHz	MHz	MHz	GHz
0.090-0.110	16.42-16.423	399.9-410	4.5-5.15
¹ 0.495-0.505	16.69475-16.69525	608-614	5.35-5.46
2.1735-2.1905	16.80425-16.80475	960-1240	7.25-7.75
4.125-4.128	25.5-25.67	1300-1427	8.025-8.5
4.17725-4.17775	37.5-38.25	1435-1626.5	9.0-9.2
4.20725-4.20775	73-74.6	1645.5-1646.5	9.3-9.5
6.215-6.218	74.8-75.2	1660-1710	10.6-12.7
6.26775-6.26825	108-121.94	1718.8-1722.2	13.25-13.4
6.31175-6.31225	123-138	2200-2300	14.47-14.5
8.291-8.294	149.9-150.05	2310-2390	15.35-16.2
8.362-8.366	156.52475-156.52525	2483.5-2500	17.7-21.4
8.37625-8.38675	156.7-156.9	2690-2900	22.01-23.12
8.41425-8.41475	162.0125-167.17	3260-3267	23.6-24.0
12.29-12.293	167.72-173.2	3332-3339	31.2-31.8
12.51975-12.52025	240-285	3345.8-3358	36.43-36.5
12.57675-12.57725	322-335.4	3600-4400	(²)
13.36-13.41			


Note: ¹Until February 1, 1999, this restricted band shall be 0.490-0.510 MHz. ²Above 38.6c

UL Verification Services (Guangzhou) Co., Ltd, Song Shan Lake Branch This report shall not be reproduced except in full, without the written approval of UL Verification Services (Guangzhou) Co., Ltd, Song Shan Lake Branch.

TEST SETUP AND PROCEDURE

Below 30MHz

The setting of the spectrum analyser

RBW	200Hz (From 9kHz to 0.15MHz)/ 9kHz (From 0.15MHz to 30MHz)
VBW	200Hz (From 9kHz to 0.15MHz)/ 9kHz (From 0.15MHz to 30MHz)
Sweep	Auto
Trace	Max hold

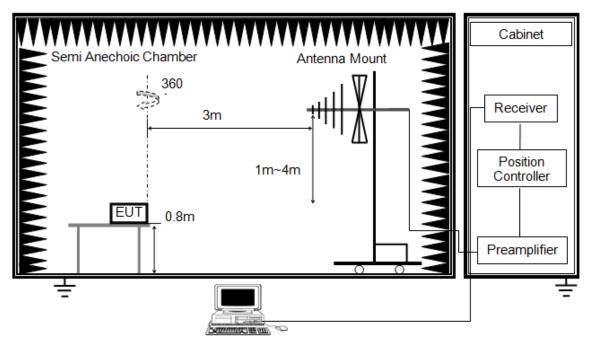
1. The testing follows the guidelines in ANSI C63.10-2013 clause 11.11.

2. The EUT was arranged to its worst case and then turntable (from 0 degree to 360 degrees) to find the maximum reading. A pre-amp and a high pass filter are used for the test in order to get better signal level. Both Horizontal, Face-on and Face-off polarizations of the antenna are set to make the measurement.

3. The EUT was placed on a turntable with 80cm above ground.

4. The EUT was set 3 meters from the interference receiving antenna, which was mounted on the top of a variable height antenna tower.

5. The radiated emission limits are based on measurements employing a CISPR quasi-peak detector except for the frequency bands 9-90 kHz, 110-490 kHz and above 1000 MHz. Radiated emission limits in these three bands are based on measurements employing an average detector.


6. For measurement below 1GHz, the initial step in collecting conducted emission data is a spectrum analyzer peak detector mode pre-scanning the measurement frequency range. Significant peaks are then marked and then Quasi Peak and average detector mode remeasured. If the emission level of the EUT measured by the peak detector is 3 dB lower than the applicable limit, the peak emission level will be reported. Otherwise, the emission measurement will be repeated using the quasi-peak and average detector and reported.

7. Although these tests were performed other than open field site, adequate comparison measurements were confirmed against 30m open field site. Therefore sufficient tests were made to demonstrate that the alternative site produces results that correlate with the ones of tests made in an open field site based on KDB 414788.

UL Verification Services (Guangzhou) Co., Ltd, Song Shan Lake Branch This report shall not be reproduced except in full, without the written approval of UL Verification Services (Guangzhou) Co., Ltd, Song Shan Lake Branch.

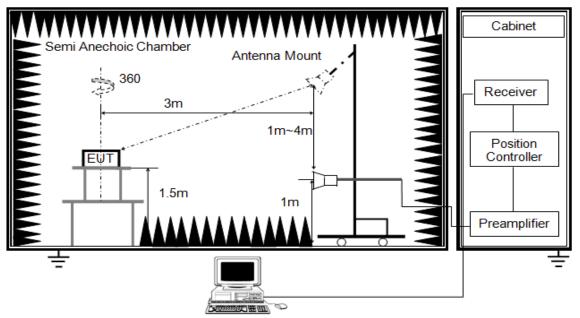
Below 1GHz and above 30MHz

The setting of the spectrum analyser

RBW	120kHz
VBW	300kHz
Sweep	Auto
Detector	Peak/QP
Trace	Max hold

1. The testing follows the guidelines in ANSI C63.10-2013 clause 11.11.

2. The EUT was arranged to its worst case and then tune the antenna tower (from 1 m to 4 m) and turntable (from 0 degree to 360 degrees) to find the maximum reading. A pre-amp and a high pass filter are used for the test in order to get better signal level. Both horizontal and vertical polarizations of the antenna are set to make the measurement.


3. The EUT was placed on a turntable with 80cm above ground.

4. The EUT was set 3 meters from the interference receiving antenna, which was mounted on the top of a variable height antenna tower.

5. For measurement below 1GHz, the initial step in collecting conducted emission data is a spectrum analyzer peak detector mode pre-scanning the measurement frequency range. Significant peaks are then marked and then Quasi Peak detector mode re-measured. If the emission level of the EUT measured by the peak detector is 3 dB lower than the applicable limit, the peak emission level will be reported. Otherwise, the emission measurement will be repeated using the quasi-peak detector and reported.

Above 1GHz

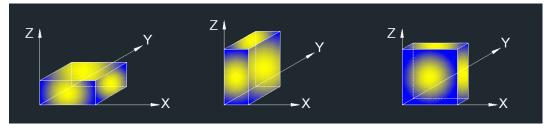
The setting of the spectrum analyser

RBW	1MHz
IVBW	PEAK: 3MHz AVG: see note 6
Sweep	Auto
Detector	Peak
Trace	Max hold

1. The testing follows the guidelines in ANSI C63.10-2013 clause 11.11 and 11.12.

2. The EUT was arranged to its worst case and then tune the antenna tower (1.5 m) and turntable (from 0 degree to 360 degrees) to find the maximum reading. A pre-amp and a high pass filter are used for the test in order to get better signal level. Both horizontal and vertical polarizations of the antenna are set to make the measurement.

3. The EUT was placed on a turntable with 1.5m above ground.

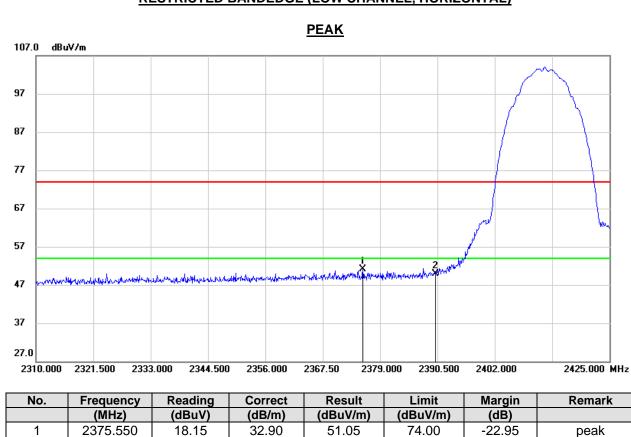

4. The EUT was set 3 meters from the interference receiving antenna, which was mounted on the top of a variable height antenna tower.

5. For measurement above 1GHz, the emission measurement will be measured by the peak detector. This peak level, once corrected, must comply with the limit specified in Section 15.209.

6. For measurements above 1 GHz the resolution bandwidth is set to 1 MHz, then the video bandwidth is set to 3 MHz for peak measurements and 1 MHz resolution bandwidth with 1/T video bandwidth with peak detector for average measurements. For the Duty Cycle please refer to clause 7.1.ON TIME AND DUTY CYCLE.

X axis, Y axis, Z axis positions:

Note 1: For all radiated test, EUT in each of three orthogonal axis emissions had been tested, but only the worst case (X axis) data recorded in the report.


TEST ENVIRONMENT

Temperature	22.7°C	Relative Humidity	60%
Atmosphere Pressure	101kPa	Test Voltage	DC 3.3V

RESULTS

8.1. RESTRICTED BANDEDGE

8.1.1. 802.11b MODE

RESTRICTED BANDEDGE (LOW CHANNEL, HORIZONTAL)

Note: 1. Measurement = Reading Level + Correct Factor.

16.98

2. If Peak Result complies with AV limit, AV Result is deemed to comply with AV limit.

49.92

74.00

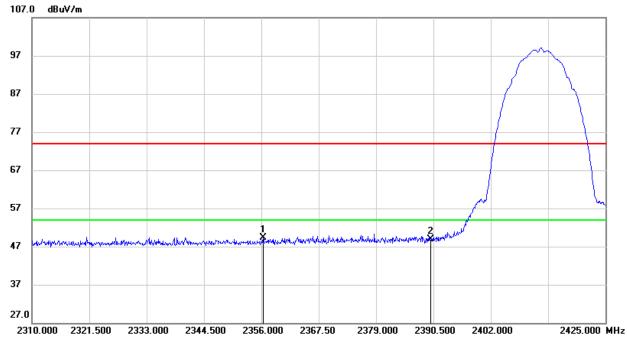
-24.08

peak

3. Peak: Peak detector.

2390.000

2


4. Only the worst data was recorded, if it complies with the limit, the other emissions deemed to comply with the limit.

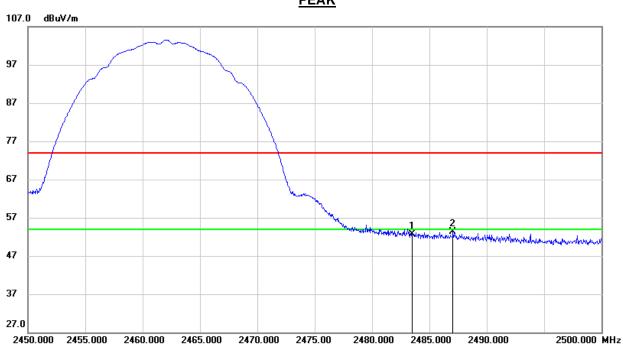
32.94

RESTRICTED BANDEDGE (LOW CHANNEL, VERTICAL)

<u>PEAK</u>

No.	Frequency	Reading	Correct	Result	Limit	Margin	Remark
	(MHz)	(dBuV)	(dB/m)	(dBuV/m)	(dBuV/m)	(dB)	
1	2356.345	16.57	32.83	49.40	74.00	-24.60	peak
2	2390.000	16.02	32.94	48.96	74.00	-25.04	peak

Note: 1. Measurement = Reading Level + Correct Factor.


2. If Peak Result complies with AV limit, AV Result is deemed to comply with AV limit.

3. Peak: Peak detector.

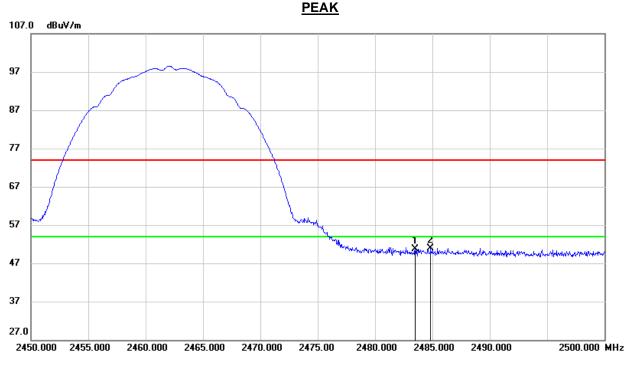
4. Only the worst data was recorded, if it complies with the limit, the other emissions deemed to comply with the limit.

RESTRICTED BANDEDGE (HIGH CHANNEL, HORIZONTAL)

No.	Frequency	Reading	Correct	Result	Limit	Margin	Remark
	(MHz)	(dBuV)	(dB/m)	(dBuV/m)	(dBuV/m)	(dB)	
1	2483.500	19.10	33.58	52.68	74.00	-21.32	peak
2	2487.050	19.61	33.61	53.22	74.00	-20.78	peak

Note: 1. Measurement = Reading Level + Correct Factor.

2. If Peak Result complies with AV limit, AV Result is deemed to comply with AV limit.


3. Peak: Peak detector.

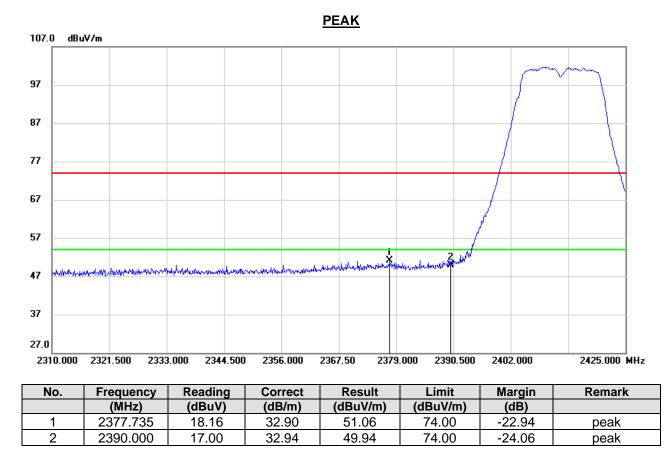
4. Only the worst data was recorded, if it complies with the limit, the other emissions deemed to comply with the limit.

PEAK

RESTRICTED BANDEDGE (HIGH CHANNEL, VERTICAL)

No.	Frequency	Reading	Correct	Result	Limit	Margin	Remark
	(MHz)	(dBuV)	(dB/m)	(dBuV/m)	(dBuV/m)	(dB)	
1	2483.500	17.18	33.58	50.76	74.00	-23.24	peak
2	2484.850	17.31	33.59	50.90	74.00	-23.10	peak

Note: 1. Measurement = Reading Level + Correct Factor.


2. If Peak Result complies with AV limit, AV Result is deemed to comply with AV limit.

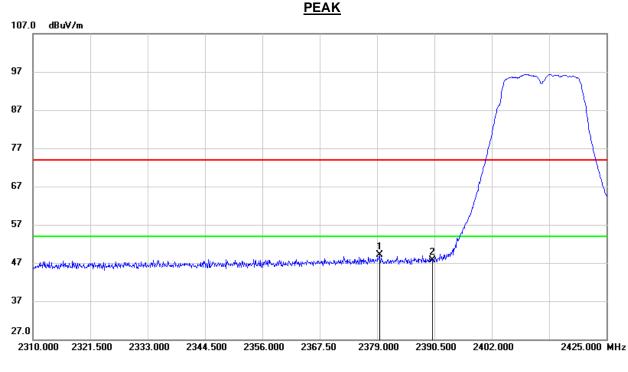
3. Peak: Peak detector.

4. Only the worst data was recorded, if it complies with the limit, the other emissions deemed to comply with the limit.

8.1.2. 802.11g MODE

RESTRICTED BANDEDGE (LOW CHANNEL, HORIZONTAL)

Note: 1. Measurement = Reading Level + Correct Factor.

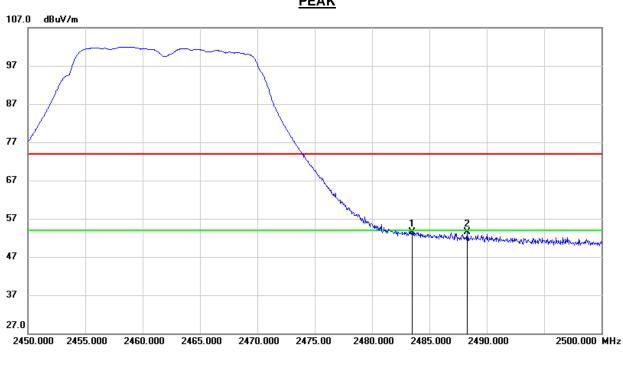

2. If Peak Result complies with AV limit, AV Result is deemed to comply with AV limit.

3. Peak: Peak detector.

4. Only the worst data was recorded, if it complies with the limit, the other emissions deemed to comply with the limit.

RESTRICTED BANDEDGE (LOW CHANNEL, VERTICAL)

No.	Frequency	Reading	Correct	Result	Limit	Margin	Remark
	(MHz)	(dBuV)	(dB/m)	(dBuV/m)	(dBuV/m)	(dB)	
1	2379.460	16.21	32.91	49.12	74.00	-24.88	peak
2	2390.000	14.81	32.94	47.75	74.00	-26.25	peak


Note: 1. Measurement = Reading Level + Correct Factor.

2. If Peak Result complies with AV limit, AV Result is deemed to comply with AV limit.

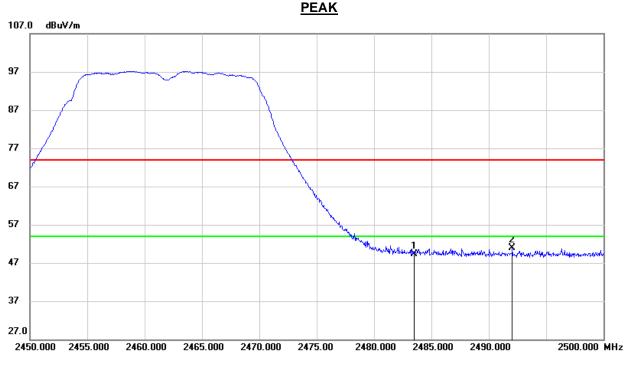
3. Peak: Peak detector.

RESTRICTED BANDEDGE (HIGH CHANNEL, HORIZONTAL)

No.	Frequency	Reading	Correct	Result	Limit	Margin	Remark
	(MHz)	(dBuV)	(dB/m)	(dBuV/m)	(dBuV/m)	(dB)	
1	2483.500	19.89	33.58	53.47	74.00	-20.53	peak
2	2488.300	19.95	33.62	53.57	74.00	-20.43	peak

Note: 1. Measurement = Reading Level + Correct Factor.

2. If Peak Result complies with AV limit, AV Result is deemed to comply with AV limit.


3. Peak: Peak detector.

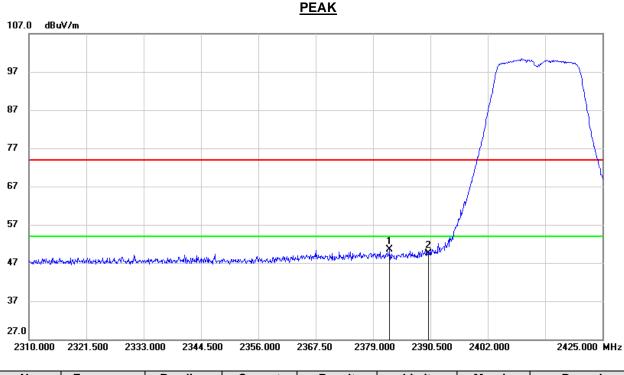
4. Only the worst data was recorded, if it complies with the limit, the other emissions deemed to comply with the limit.

<u>PEAK</u>

RESTRICTED BANDEDGE (HIGH CHANNEL, VERTICAL)

No.	Frequency	Reading	Correct	Result	Limit	Margin	Remark
	(MHz)	(dBuV)	(dB/m)	(dBuV/m)	(dBuV/m)	(dB)	
1	2483.500	15.82	33.58	49.40	74.00	-24.60	peak
2	2492.050	17.25	33.65	50.90	74.00	-23.10	peak

Note: 1. Measurement = Reading Level + Correct Factor.


2. If Peak Result complies with AV limit, AV Result is deemed to comply with AV limit.

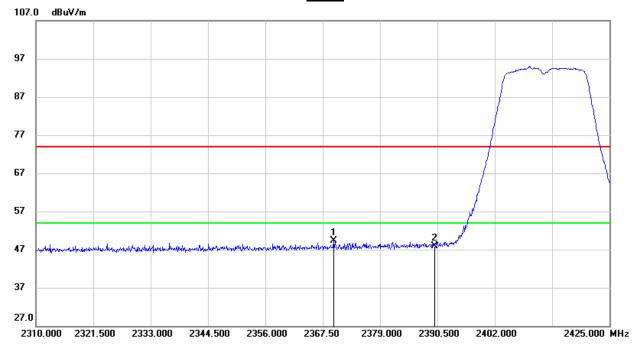
3. Peak: Peak detector.

8.1.3. 802.11n HT20 MODE

RESTRICTED BANDEDGE (LOW CHANNEL, HORIZONTAL)

No.	Frequency	Reading	Correct	Result	Limit	Margin	Remark
	(MHz)	(dBuV)	(dB/m)	(dBuV/m)	(dBuV/m)	(dB)	
1	2382.335	17.53	32.92	50.45	74.00	-23.55	peak
2	2390.000	16.59	32.94	49.53	74.00	-24.47	peak

Note: 1. Measurement = Reading Level + Correct Factor.

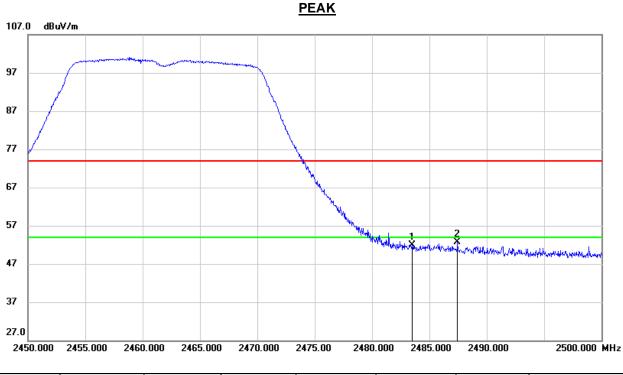

2. If Peak Result complies with AV limit, AV Result is deemed to comply with AV limit.

3. Peak: Peak detector.

RESTRICTED BANDEDGE (LOW CHANNEL, VERTICAL)

PEAK

No.	Frequency	Reading	Correct	Result	Limit	Margin	Remark
	(MHz)	(dBuV)	(dB/m)	(dBuV/m)	(dBuV/m)	(dB)	
1	2369.685	16.37	32.88	49.25	74.00	-24.75	peak
2	2390.000	14.99	32.94	47.93	74.00	-26.07	peak

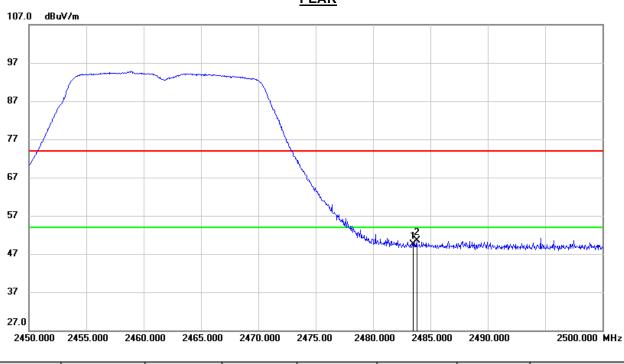

Note: 1. Measurement = Reading Level + Correct Factor.

2. If Peak Result complies with AV limit, AV Result is deemed to comply with AV limit.

3. Peak: Peak detector.

RESTRICTED BANDEDGE (HIGH CHANNEL, HORIZONTAL)

No.	Frequency	Reading	Correct	Result	Limit	Margin	Remark
	(MHz)	(dBuV)	(dB/m)	(dBuV/m)	(dBuV/m)	(dB)	
1	2483.500	18.37	33.58	51.95	74.00	-22.05	peak
2	2487.450	19.10	33.61	52.71	74.00	-21.29	peak


Note: 1. Measurement = Reading Level + Correct Factor.

2. If Peak Result complies with AV limit, AV Result is deemed to comply with AV limit.

3. Peak: Peak detector.

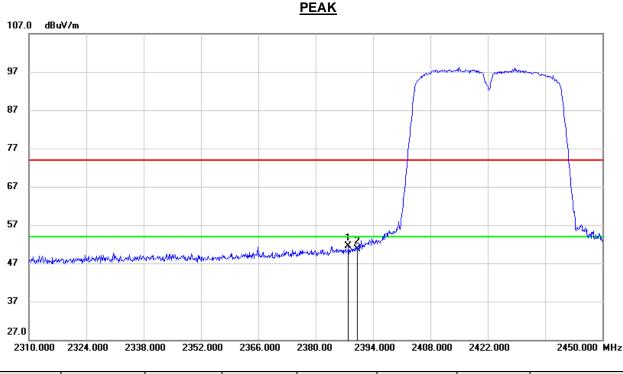
RESTRICTED BANDEDGE (HIGH CHANNEL, VERTICAL)

No.	Frequency	Reading	Correct	Result	Limit	Margin	Remark
	(MHz)	(dBuV)	(dB/m)	(dBuV/m)	(dBuV/m)	(dB)	
1	2483.500	15.97	33.58	49.55	74.00	-24.45	peak
2	2483.800	16.83	33.58	50.41	74.00	-23.59	peak

Note: 1. Measurement = Reading Level + Correct Factor.

2. If Peak Result complies with AV limit, AV Result is deemed to comply with AV limit.

3. Peak: Peak detector.


4. Only the worst data was recorded, if it complies with the limit, the other emissions deemed to comply with the limit.

PEAK

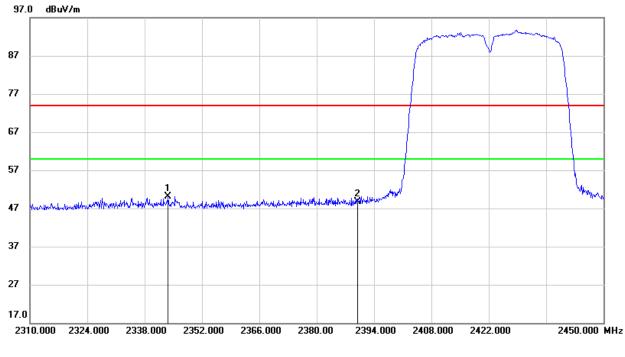
8.1.4. 802.11n HT40 MODE

RESTRICTED BANDEDGE (LOW CHANNEL, HORIZONTAL)

No.	Frequency	Reading	Correct	Result	Limit	Margin	Remark
	(MHz)	(dBuV)	(dB/m)	(dBuV/m)	(dBuV/m)	(dB)	
1	2387.980	18.54	32.94	51.48	74.00	-22.52	peak
2	2390.000	17.85	32.94	50.79	74.00	-23.21	peak

Note: 1. Measurement = Reading Level + Correct Factor.

2. If Peak Result complies with AV limit, AV Result is deemed to comply with AV limit.


3. AVG: VBW=1/Ton, where: Ton is the transmitting duration.

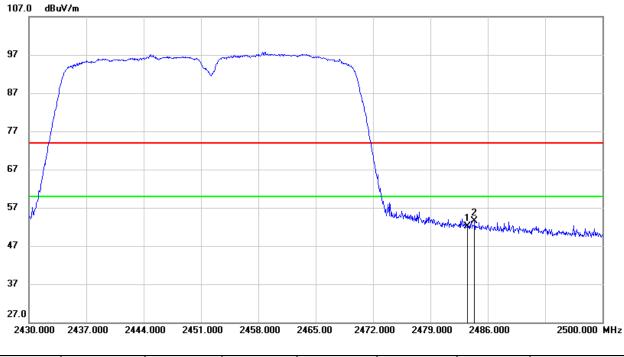
4. For the transmitting duration, please refer to clause 7.1.

RESTRICTED BANDEDGE (LOW CHANNEL, VERTICAL)

PEAK

No.	Frequency	Reading	Correct	Result	Limit	Margin	Remark
	(MHz)	(dBuV)	(dB/m)	(dBuV/m)	(dBuV/m)	(dB)	
1	2343.740	17.36	32.79	50.15	74.00	-23.85	peak
2	2390.000	15.75	32.94	48.69	74.00	-25.31	peak

Note: 1. Measurement = Reading Level + Correct Factor.

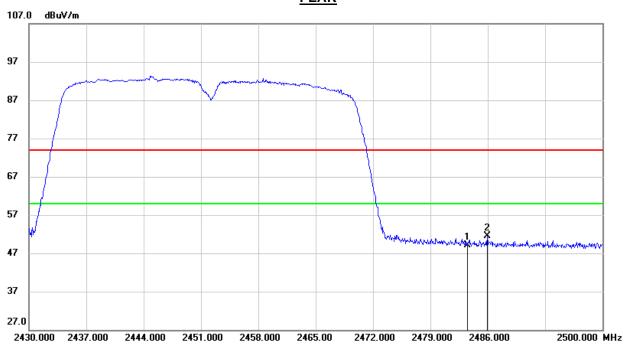

2. If Peak Result complies with AV limit, AV Result is deemed to comply with AV limit.

3. Peak: Peak detector.

RESTRICTED BANDEDGE (HIGH CHANNEL, HORIZONTAL)

PEAK

No.	Frequency	Reading	Correct	Result	Limit	Margin	Remark
	(MHz)	(dBuV)	(dB/m)	(dBuV/m)	(dBuV/m)	(dB)	
1	2483.500	18.55	33.58	52.13	74.00	-21.87	peak
2	2484.390	19.83	33.59	53.42	74.00	-20.58	peak


Note: 1. Measurement = Reading Level + Correct Factor.

2. If Peak Result complies with AV limit, AV Result is deemed to comply with AV limit.

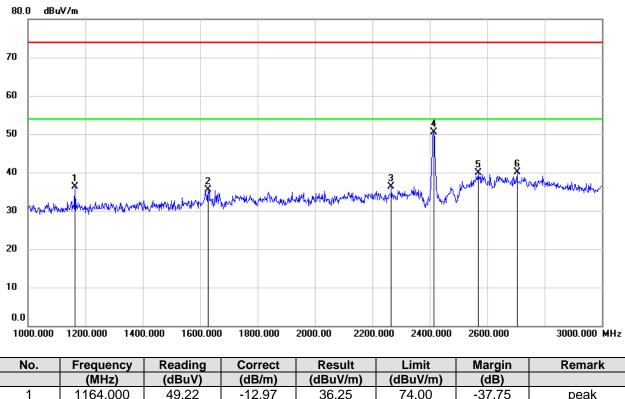
3. Peak: Peak detector.

RESTRICTED BANDEDGE (HIGH CHANNEL, VERTICAL)

No.	Frequency	Reading	Correct	Result	Limit	Margin	Remark
	(MHz)	(dBuV)	(dB/m)	(dBuV/m)	(dBuV/m)	(dB)	
1	2483.500	15.50	33.58	49.08	74.00	-24.92	peak
2	2485.930	18.00	33.59	51.59	74.00	-22.41	peak

Note: 1. Measurement = Reading Level + Correct Factor.

2. If Peak Result complies with AV limit, AV Result is deemed to comply with AV limit.


3. Peak: Peak detector.

4. Only the worst data was recorded, if it complies with the limit, the other emissions deemed to comply with the limit.

PEAK

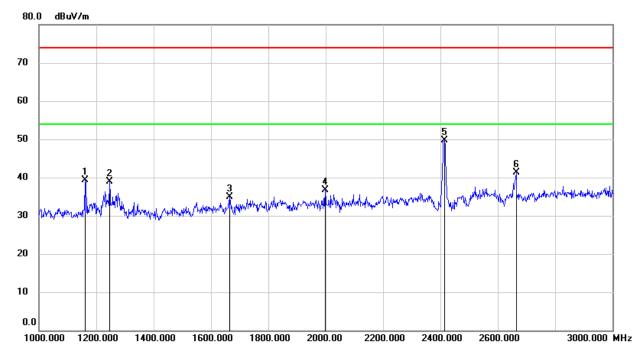
8.2. SPURIOUS EMISSIONS (1GHz ~ 3GHz)

8.2.1. 802.11b MODE

HARMONICS AND SPURIOUS EMISSIONS (LOW CHANNEL, HORIZONTAL)

No.	Frequency	Reading	Correct	Result	Limit	Margin	Remark
	(MHz)	(dBuV)	(dB/m)	(dBuV/m)	(dBuV/m)	(dB)	
1	1164.000	49.22	-12.97	36.25	74.00	-37.75	peak
2	1628.000	46.78	-11.25	35.53	74.00	-38.47	peak
3	2266.000	44.75	-8.35	36.40	74.00	-37.60	peak
4	2412.000	58.31	-7.76	50.55	/	/	fundamental
5	2568.000	47.39	-7.54	39.85	74.00	-34.15	peak
6	2704.000	47.24	-7.09	40.15	74.00	-33.85	peak

Note: 1. Measurement = Reading Level + Correct Factor.


2. If Peak Result complies with AV limit, AV Result is deemed to comply with AV limit.

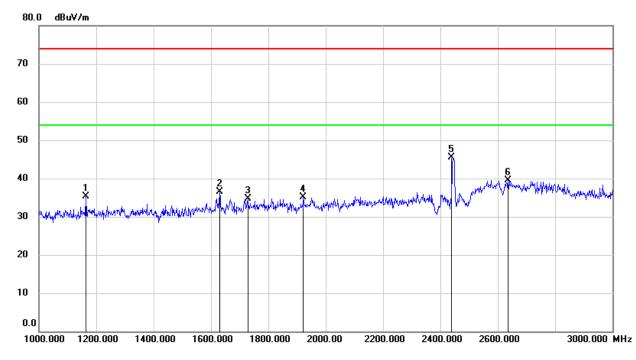
3. Peak: Peak detector.

4. Filter losses were only considered in the spurious frequency bands and the authorized band was not corrected for Band reject filter losses.

HARMONICS AND SPURIOUS EMISSIONS (LOW CHANNEL, VERTICAL)

No.	Frequency	Reading	Correct	Result	Limit	Margin	Remark
	(MHz)	(dBuV)	(dB/m)	(dBuV/m)	(dBuV/m)	(dB)	
1	1160.000	52.28	-13.01	39.27	74.00	-34.73	peak
2	1246.000	51.39	-12.52	38.87	74.00	-35.13	peak
3	1666.000	45.88	-11.07	34.81	74.00	-39.19	peak
4	1998.000	46.63	-9.83	36.80	74.00	-37.20	peak
5	2412.000	57.50	-7.76	49.74	/	/	fundamental
6	2664.000	48.59	-7.34	41.25	74.00	-32.75	peak

Note: 1. Measurement = Reading Level + Correct Factor.


2. If Peak Result complies with AV limit, AV Result is deemed to comply with AV limit.

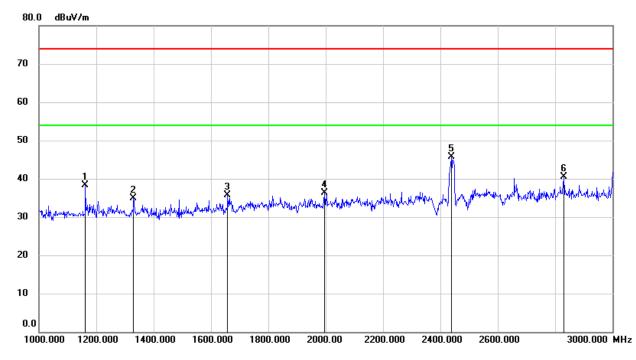
3. Peak: Peak detector.

4. Filter losses were only considered in the spurious frequency bands and the authorized band was not corrected for Band reject filter losses.

HARMONICS AND SPURIOUS EMISSIONS (MID CHANNEL, HORIZONTAL)

No.	Frequency	Reading	Correct	Result	Limit	Margin	Remark
	(MHz)	(dBuV)	(dB/m)	(dBuV/m)	(dBuV/m)	(dB)	
1	1164.000	48.19	-12.97	35.22	74.00	-38.78	peak
2	1630.000	47.74	-11.25	36.49	74.00	-37.51	peak
3	1728.000	45.31	-10.62	34.69	74.00	-39.31	peak
4	1922.000	45.01	-9.93	35.08	74.00	-38.92	peak
5	2437.000	53.16	-7.60	45.56	/	/	fundamental
6	2636.000	47.01	-7.49	39.52	74.00	-34.48	peak

Note: 1. Measurement = Reading Level + Correct Factor.


2. If Peak Result complies with AV limit, AV Result is deemed to comply with AV limit.

3. Peak: Peak detector.

4. Filter losses were only considered in the spurious frequency bands and the authorized band was not corrected for Band reject filter losses.

HARMONICS AND SPURIOUS EMISSIONS (MID CHANNEL, VERTICAL)

No.	Frequency	Reading	Correct	Result	Limit	Margin	Remark
	(MHz)	(dBuV)	(dB/m)	(dBuV/m)	(dBuV/m)	(dB)	
1	1162.000	51.27	-13.00	38.27	74.00	-35.73	peak
2	1330.000	47.21	-12.36	34.85	74.00	-39.15	peak
3	1658.000	46.83	-11.11	35.72	74.00	-38.28	peak
4	1996.000	46.14	-9.83	36.31	74.00	-37.69	peak
5	2437.000	53.25	-7.60	45.65	/	/	fundamental
6	2830.000	46.39	-5.89	40.50	74.00	-33.50	peak

Note: 1. Measurement = Reading Level + Correct Factor.

2. If Peak Result complies with AV limit, AV Result is deemed to comply with AV limit.

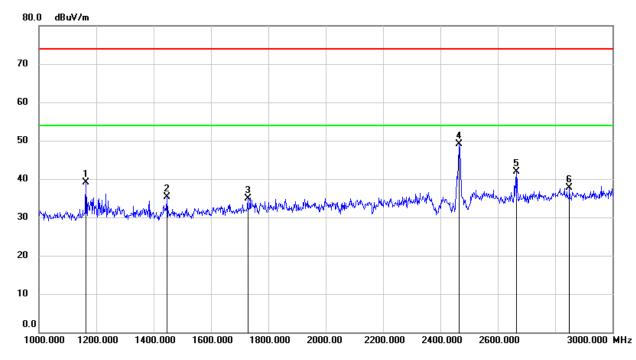
3. Peak: Peak detector.

4. Filter losses were only considered in the spurious frequency bands and the authorized band was not corrected for Band reject filter losses.

HARMONICS AND SPURIOUS EMISSIONS (HIGH CHANNEL, HORIZONTAL)

No.	Frequency	Reading	Correct	Result	Limit	Margin	Remark
	(MHz)	(dBuV)	(dB/m)	(dBuV/m)	(dBuV/m)	(dB)	
1	1162.000	48.45	-13.00	35.45	74.00	-38.55	peak
2	1630.000	47.15	-11.25	35.90	74.00	-38.10	peak
3	2138.000	44.94	-8.97	35.97	74.00	-38.03	peak
4	2462.000	57.65	-7.40	50.25	/	/	fundamental
5	2640.000	47.61	-7.48	40.13	74.00	-33.87	peak
6	2826.000	45.66	-5.92	39.74	74.00	-34.26	peak

Note: 1. Measurement = Reading Level + Correct Factor.


2. If Peak Result complies with AV limit, AV Result is deemed to comply with AV limit.

3. Peak: Peak detector.

4. Filter losses were only considered in the spurious frequency bands and the authorized band was not corrected for Band reject filter losses.

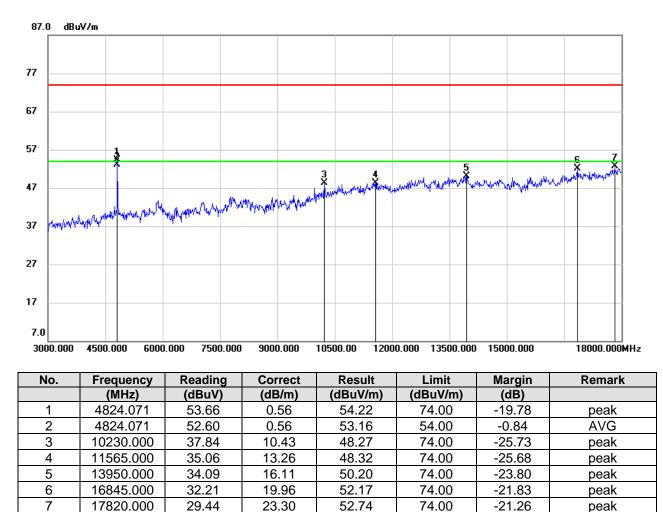
HARMONICS AND SPURIOUS EMISSIONS (HIGH CHANNEL, VERTICAL)

No.	Frequency	Reading	Correct	Result	Limit	Margin	Remark
	(MHz)	(dBuV)	(dB/m)	(dBuV/m)	(dBuV/m)	(dB)	
1	1164.000	52.05	-12.97	39.08	74.00	-34.92	peak
2	1446.000	47.56	-12.31	35.25	74.00	-38.75	peak
3	1728.000	45.51	-10.62	34.89	74.00	-39.11	peak
4	2462.000	56.42	-7.40	49.02	/	/	fundamental
5	2666.000	49.27	-7.32	41.95	74.00	-32.05	peak
6	2850.000	43.55	-5.79	37.76	74.00	-36.24	peak

Note: 1. Measurement = Reading Level + Correct Factor.

2. If Peak Result complies with AV limit, AV Result is deemed to comply with AV limit.

3. Peak: Peak detector.


4. Filter losses were only considered in the spurious frequency bands and the authorized band was not corrected for Band reject filter losses.

5. Proper operation of the transmitter prior to adding the filter to the measurement chain.

Note: All the modes had been tested, but only the worst data was recorded in the report.

8.3. SPURIOUS EMISSIONS (3GHz ~ 18GHz)

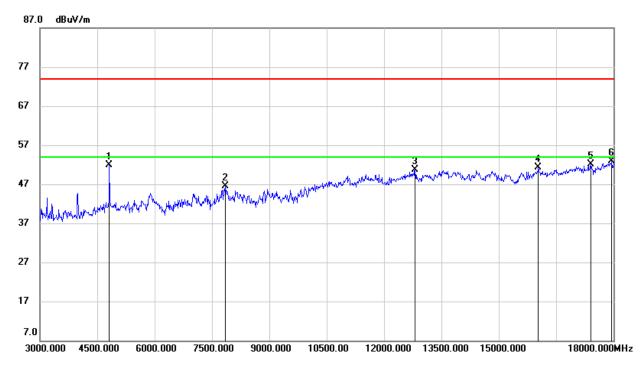
8.3.1. 802.11b MODE

HARMONICS AND SPURIOUS EMISSIONS (LOW CHANNEL, HORIZONTAL)

Note: 1. Peak Result = Reading Level + Correct Factor.

2. If Peak Result complies with AV limit, AV Result is deemed to comply with AV limit.

3. Peak: Peak detector.


4. AVG: VBW=1/Ton, where: Ton is the transmitting duration.

5. For the transmitting duration, please refer to clause 7.1.

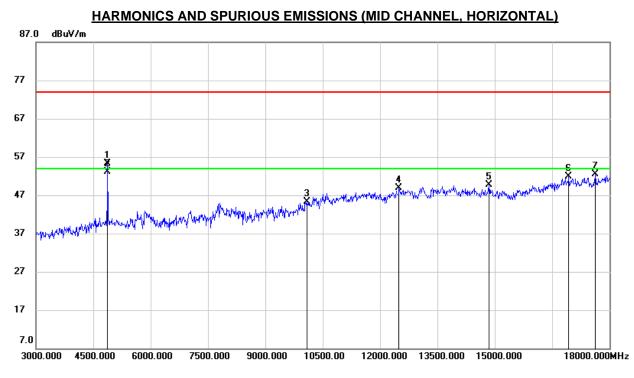
6. Filter losses were only considered in the spurious frequency bands and the authorized band was not corrected for High Pass Filter losses.

HARMONICS AND SPURIOUS EMISSIONS (LOW CHANNEL, VERTICAL)

No.	Frequency	Reading	Correct	Result	Limit	Margin	Remark
	(MHz)	(dBuV)	(dB/m)	(dBuV/m)	(dBuV/m)	(dB)	
1	4815.000	51.34	0.51	51.85	74.00	-22.15	peak
2	7845.000	38.81	7.62	46.43	74.00	-27.57	peak
3	12810.000	35.12	15.59	50.71	74.00	-23.29	peak
4	16035.000	33.43	17.85	51.28	74.00	-22.72	peak
5	17400.000	30.67	21.41	52.08	74.00	-21.92	peak
6	17955.000	29.43	23.41	52.84	74.00	-21.16	peak

Note: 1. Peak Result = Reading Level + Correct Factor.

2. If Peak Result complies with AV limit, AV Result is deemed to comply with AV limit.


3. Peak: Peak detector.

4. AVG: VBW=1/Ton, where: Ton is the transmitting duration.

5. For the transmitting duration, please refer to clause 7.1.

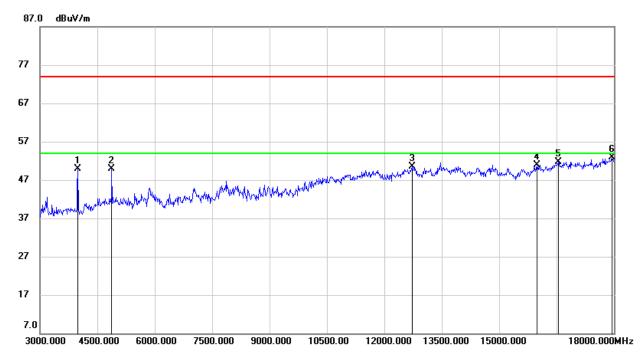
6. Filter losses were only considered in the spurious frequency bands and the authorized band was not corrected for High Pass Filter losses.

No.	Frequency	Reading	Correct	Result	Limit	Margin	Remark
	(MHz)	(dBuV)	(dB/m)	(dBuV/m)	(dBuV/m)	(dB)	
1	4874.041	54.54	0.75	55.29	74.00	-18.71	peak
2	4874.041	52.45	0.75	53.20	54.00	-0.80	AVG
3	10095.000	34.81	10.55	45.36	74.00	-28.64	peak
4	12495.000	34.36	14.54	48.90	74.00	-25.10	peak
5	14850.000	33.83	15.97	49.80	74.00	-24.20	peak
6	16935.000	31.84	20.12	51.96	74.00	-22.04	peak
7	17625.000	30.57	21.95	52.52	74.00	-21.48	peak

Note: 1. Peak Result = Reading Level + Correct Factor.

2. If Peak Result complies with AV limit, AV Result is deemed to comply with AV limit.

3. Peak: Peak detector.


4. AVG: VBW=1/Ton, where: Ton is the transmitting duration.

5. For the transmitting duration, please refer to clause 7.1.

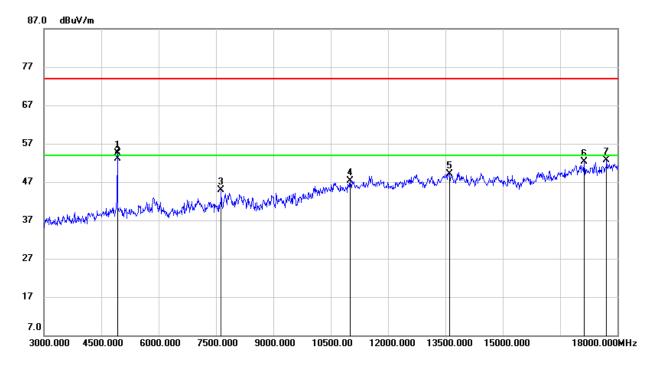
6. Filter losses were only considered in the spurious frequency bands and the authorized band was not corrected for High Pass Filter losses.

HARMONICS AND SPURIOUS EMISSIONS (MID CHANNEL, VERTICAL)

No.	Frequency	Reading	Correct	Result	Limit	Margin	Remark
	(MHz)	(dBuV)	(dB/m)	(dBuV/m)	(dBuV/m)	(dB)	
1	3990.000	52.84	-2.89	49.95	74.00	-24.05	peak
2	4875.000	49.11	0.76	49.87	74.00	-24.13	peak
3	12720.000	35.93	14.57	50.50	74.00	-23.50	peak
4	15990.000	33.24	17.68	50.92	74.00	-23.08	peak
5	16545.000	32.47	19.31	51.78	74.00	-22.22	peak
6	17940.000	29.42	23.39	52.81	74.00	-21.19	peak

Note: 1. Peak Result = Reading Level + Correct Factor.

If Peak Result complies with AV limit, AV Result is deemed to comply with AV limit.
 Peak: Peak detector.


4. AVG: VBW=1/Ton, where: Ton is the transmitting duration.

5. For the transmitting duration, please refer to clause 7.1.

6. Filter losses were only considered in the spurious frequency bands and the authorized band was not corrected for High Pass Filter losses.

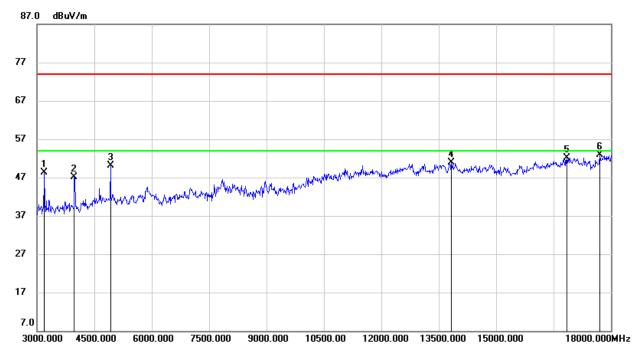
HARMONICS AND SPURIOUS EMISSIONS (HIGH CHANNEL, HORIZONTAL)

No.	Frequency	Reading	Correct	Result	Limit	Margin	Remark
	(MHz)	(dBuV)	(dB/m)	(dBuV/m)	(dBuV/m)	(dB)	
1	4923.976	53.58	0.98	54.56	74.00	-19.44	peak
2	4923.976	52.15	0.98	53.13	54.00	-0.87	AVG
3	7635.000	38.28	6.54	44.82	74.00	-29.18	peak
4	11010.000	34.73	12.63	47.36	74.00	-26.64	peak
5	13605.000	33.17	16.02	49.19	74.00	-24.81	peak
6	17130.000	31.63	20.72	52.35	74.00	-21.65	peak
7	17715.000	30.06	22.56	52.62	74.00	-21.38	peak

Note: 1. Peak Result = Reading Level + Correct Factor.

2. If Peak Result complies with AV limit, AV Result is deemed to comply with AV limit.

3. Peak: Peak detector.


4. AVG: VBW=1/Ton, where: Ton is the transmitting duration.

5. For the transmitting duration, please refer to clause 7.1.

6. Filter losses were only considered in the spurious frequency bands and the authorized band was not corrected for High Pass Filter losses.

HARMONICS AND SPURIOUS EMISSIONS (HIGH CHANNEL, VERTICAL)

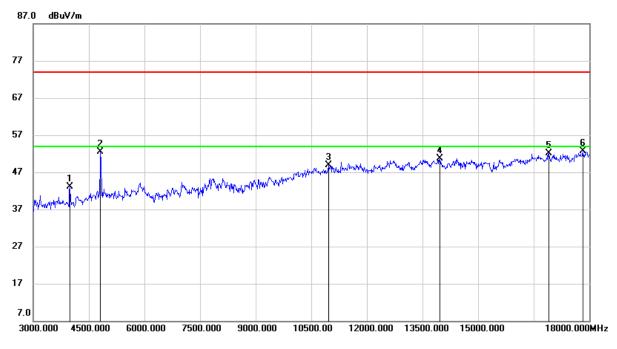
No.	Frequency	Reading	Correct	Result	Limit	Margin	Remark
	(MHz)	(dBuV)	(dB/m)	(dBuV/m)	(dBuV/m)	(dB)	
1	3195.000	52.71	-4.42	48.29	74.00	-25.71	peak
2	3975.000	50.03	-2.90	47.13	74.00	-26.87	peak
3	4920.000	49.21	0.96	50.17	74.00	-23.83	peak
4	13830.000	34.09	16.84	50.93	74.00	-23.07	peak
5	16845.000	32.24	19.96	52.20	74.00	-21.80	peak
6	17715.000	30.42	22.56	52.98	74.00	-21.02	peak

Note: 1. Peak Result = Reading Level + Correct Factor.

2. If Peak Result complies with AV limit, AV Result is deemed to comply with AV limit.

3. Peak: Peak detector.

4. AVG: VBW=1/Ton, where: Ton is the transmitting duration.


5. For the transmitting duration, please refer to clause 7.1.

6. Filter losses were only considered in the spurious frequency bands and the authorized band was not corrected for High Pass Filter losses.

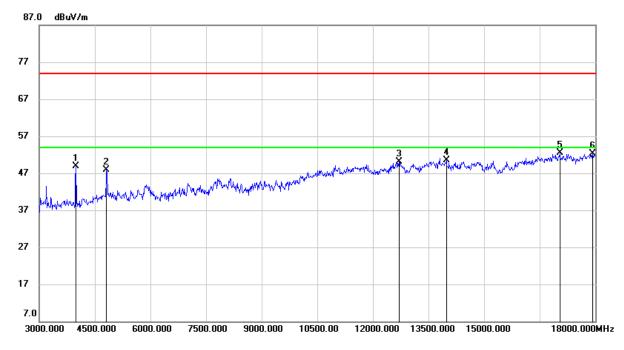
8.3.2. 802.11g MODE

No.	Frequency	Reading	Correct	Result	Limit	Margin	Remark
	(MHz)	(dBuV)	(dB/m)	(dBuV/m)	(dBuV/m)	(dB)	
1	3990.000	45.98	-2.89	43.09	74.00	-30.91	peak
2	4815.000	51.91	0.51	52.42	74.00	-21.58	peak
3	10965.000	36.51	12.32	48.83	74.00	-25.17	peak
4	13965.000	34.55	16.09	50.64	74.00	-23.36	peak
5	16905.000	32.03	19.99	52.02	74.00	-21.98	peak
6	17820.000	29.34	23.30	52.64	74.00	-21.36	peak

Note: 1. Peak Result = Reading Level + Correct Factor.

2. If Peak Result complies with AV limit, AV Result is deemed to comply with AV limit.

3. Peak: Peak detector.


4. AVG: VBW=1/Ton, where: Ton is the transmitting duration.

5. For the transmitting duration, please refer to clause 7.1.

6. Filter losses were only considered in the spurious frequency bands and the authorized band was not corrected for High Pass Filter losses.

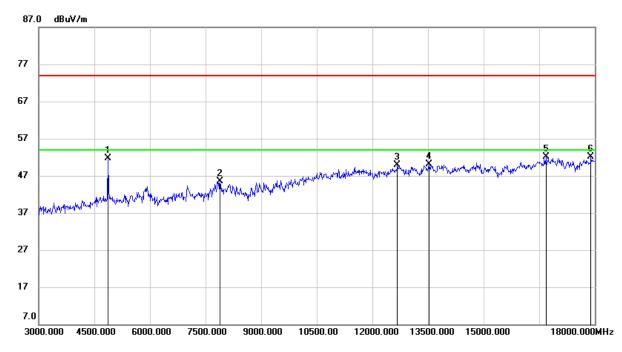
HARMONICS AND SPURIOUS EMISSIONS (LOW CHANNEL, VERTICAL)

No.	Frequency	Reading	Correct	Result	Limit	Margin	Remark
	(MHz)	(dBuV)	(dB/m)	(dBuV/m)	(dBuV/m)	(dB)	
1	3990.000	51.74	-2.89	48.85	74.00	-25.15	peak
2	4815.000	47.40	0.51	47.91	74.00	-26.09	peak
3	12705.000	35.85	14.35	50.20	74.00	-23.80	peak
4	13980.000	34.35	16.07	50.42	74.00	-23.58	peak
5	17040.000	32.01	20.49	52.50	74.00	-21.50	peak
6	17925.000	28.90	23.37	52.27	74.00	-21.73	peak

Note: 1. Peak Result = Reading Level + Correct Factor.

2. If Peak Result complies with AV limit, AV Result is deemed to comply with AV limit.

3. Peak: Peak detector.


4. AVG: VBW=1/Ton, where: Ton is the transmitting duration.

5. For the transmitting duration, please refer to clause 7.1.

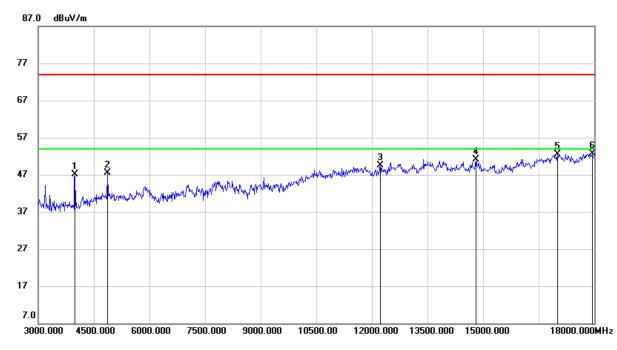
6. Filter losses were only considered in the spurious frequency bands and the authorized band was not corrected for High Pass Filter losses.

No.	Frequency	Reading	Correct	Result	Limit	Margin	Remark
	(MHz)	(dBuV)	(dB/m)	(dBuV/m)	(dBuV/m)	(dB)	
1	4860.000	50.93	0.70	51.63	74.00	-22.37	peak
2	7890.000	38.29	7.30	45.59	74.00	-28.41	peak
3	12675.000	35.68	14.21	49.89	74.00	-24.11	peak
4	13530.000	34.33	15.86	50.19	74.00	-23.81	peak
5	16680.000	32.27	19.84	52.11	74.00	-21.89	peak
6	17895.000	28.81	23.34	52.15	74.00	-21.85	peak

Note: 1. Peak Result = Reading Level + Correct Factor.

2. If Peak Result complies with AV limit, AV Result is deemed to comply with AV limit.

3. Peak: Peak detector.


4. AVG: VBW=1/Ton, where: Ton is the transmitting duration.

5. For the transmitting duration, please refer to clause 7.1.

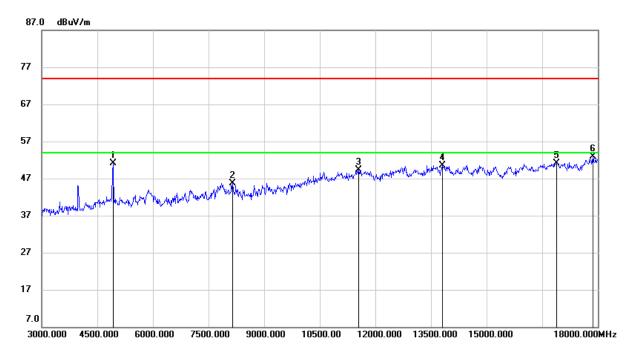
6. Filter losses were only considered in the spurious frequency bands and the authorized band was not corrected for High Pass Filter losses.

No.	Frequency	Reading	Correct	Result	Limit	Margin	Remark
	(MHz)	(dBuV)	(dB/m)	(dBuV/m)	(dBuV/m)	(dB)	
1	3990.000	49.96	-2.89	47.07	74.00	-26.93	peak
2	4875.000	46.73	0.76	47.49	74.00	-26.51	peak
3	12225.000	35.73	13.81	49.54	74.00	-24.46	peak
4	14805.000	35.18	15.92	51.10	74.00	-22.90	peak
5	17010.000	32.17	20.43	52.60	74.00	-21.40	peak
6	17940.000	29.35	23.39	52.74	74.00	-21.26	peak

Note: 1. Peak Result = Reading Level + Correct Factor.

2. If Peak Result complies with AV limit, AV Result is deemed to comply with AV limit.

3. Peak: Peak detector.


4. AVG: VBW=1/Ton, where: Ton is the transmitting duration.

5. For the transmitting duration, please refer to clause 7.1.

6. Filter losses were only considered in the spurious frequency bands and the authorized band was not corrected for High Pass Filter losses.

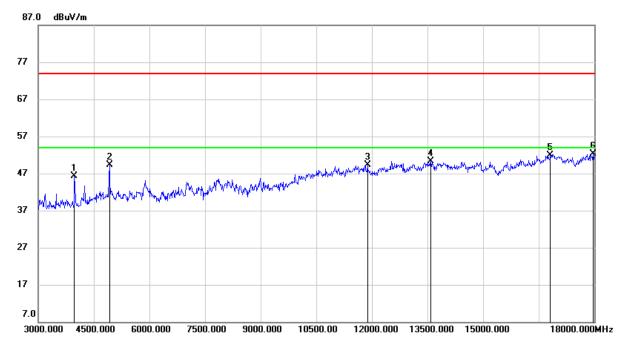
HARMONICS AND SPURIOUS EMISSIONS (HIGH CHANNEL, HORIZONTAL)

No.	Frequency	Reading	Correct	Result	Limit	Margin	Remark
	(MHz)	(dBuV)	(dB/m)	(dBuV/m)	(dBuV/m)	(dB)	
1	4920.000	50.24	0.96	51.20	74.00	-22.80	peak
2	8145.000	37.64	8.08	45.72	74.00	-28.28	peak
3	11550.000	36.00	13.30	49.30	74.00	-24.70	peak
4	13800.000	33.46	17.10	50.56	74.00	-23.44	peak
5	16890.000	31.13	19.97	51.10	74.00	-22.90	peak
6	17865.000	29.63	23.33	52.96	74.00	-21.04	peak

Note: 1. Peak Result = Reading Level + Correct Factor.

2. If Peak Result complies with AV limit, AV Result is deemed to comply with AV limit.

3. Peak: Peak detector.


4. AVG: VBW=1/Ton, where: Ton is the transmitting duration.

5. For the transmitting duration, please refer to clause 7.1.

6. Filter losses were only considered in the spurious frequency bands and the authorized band was not corrected for High Pass Filter losses.

HARMONICS AND SPURIOUS EMISSIONS (HIGH CHANNEL, VERTICAL)

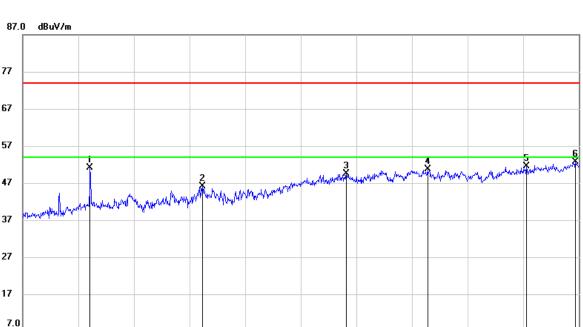
No.	Frequency	Reading	Correct	Result	Limit	Margin	Remark
	(MHz)	(dBuV)	(dB/m)	(dBuV/m)	(dBuV/m)	(dB)	
1	3975.000	49.16	-2.90	46.26	74.00	-27.74	peak
2	4920.000	48.26	0.96	49.22	74.00	-24.78	peak
3	11880.000	36.13	13.21	49.34	74.00	-24.66	peak
4	13590.000	34.33	16.00	50.33	74.00	-23.67	peak
5	16815.000	31.90	19.96	51.86	74.00	-22.14	peak
6	17970.000	28.86	23.42	52.28	74.00	-21.72	peak

Note: 1. Peak Result = Reading Level + Correct Factor.

2. If Peak Result complies with AV limit, AV Result is deemed to comply with AV limit.

3. Peak: Peak detector.

4. AVG: VBW=1/Ton, where: Ton is the transmitting duration.


5. For the transmitting duration, please refer to clause 7.1.

6. Filter losses were only considered in the spurious frequency bands and the authorized band was not corrected for High Pass Filter losses.

18000.000MHz

8.3.3. 802.11n HT20 MODE

HARMONICS AND SPURIOUS EMISSIONS (LOW CHANNEL, HORIZONTAL)

No.	Frequency	Reading	Correct	Result	Limit	Margin	Remark
	(MHz)	(dBuV)	(dB/m)	(dBuV/m)	(dBuV/m)	(dB)	
1	4815.000	50.62	0.51	51.13	74.00	-22.87	peak
2	7845.000	38.41	7.62	46.03	74.00	-27.97	peak
3	11730.000	36.50	13.02	49.52	74.00	-24.48	peak
4	13920.000	34.55	16.17	50.72	74.00	-23.28	peak
5	16590.000	32.16	19.44	51.60	74.00	-22.40	peak
6	17910.000	29.40	23.35	52.75	74.00	-21.25	peak

10500.00

12000.000 13500.000 15000.000

Note: 1. Peak Result = Reading Level + Correct Factor.

7500.000

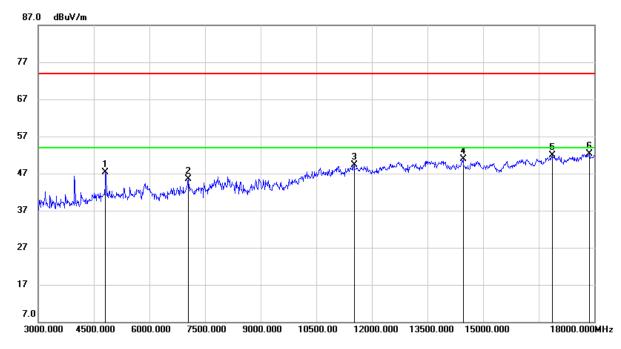
9000.000

2. If Peak Result complies with AV limit, AV Result is deemed to comply with AV limit.

3. Peak: Peak detector.

6000.000

3000.000 4500.000


4. AVG: VBW=1/Ton, where: Ton is the transmitting duration.

5. For the transmitting duration, please refer to clause 7.1.

6. Filter losses were only considered in the spurious frequency bands and the authorized band was not corrected for High Pass Filter losses.

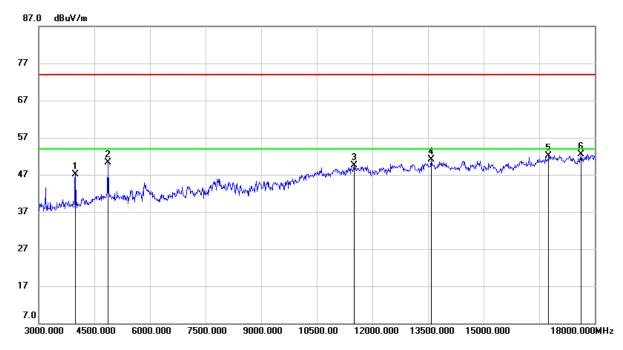
HARMONICS AND SPURIOUS EMISSIONS (LOW CHANNEL, VERTICAL)

No.	Frequency	Reading	Correct	Result	Limit	Margin	Remark
	(MHz)	(dBuV)	(dB/m)	(dBuV/m)	(dBuV/m)	(dB)	
1	4815.000	46.78	0.51	47.29	74.00	-26.71	peak
2	7050.000	39.60	5.84	45.44	74.00	-28.56	peak
3	11520.000	35.86	13.38	49.24	74.00	-24.76	peak
4	14460.000	34.63	16.36	50.99	74.00	-23.01	peak
5	16860.000	31.99	19.95	51.94	74.00	-22.06	peak
6	17865.000	29.03	23.33	52.36	74.00	-21.64	peak

Note: 1. Peak Result = Reading Level + Correct Factor.

2. If Peak Result complies with AV limit, AV Result is deemed to comply with AV limit.

3. Peak: Peak detector.


4. AVG: VBW=1/Ton, where: Ton is the transmitting duration.

5. For the transmitting duration, please refer to clause 7.1.

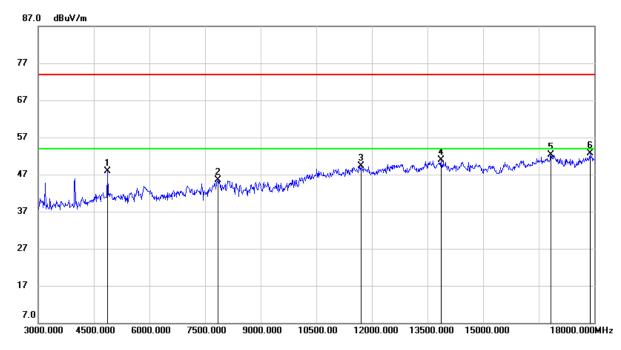
6. Filter losses were only considered in the spurious frequency bands and the authorized band was not corrected for High Pass Filter losses.

No.	Frequency	Reading	Correct	Result	Limit	Margin	Remark
	(MHz)	(dBuV)	(dB/m)	(dBuV/m)	(dBuV/m)	(dB)	
1	3990.000	49.92	-2.89	47.03	74.00	-26.97	peak
2	4860.000	49.64	0.70	50.34	74.00	-23.66	peak
3	11505.000	35.99	13.42	49.41	74.00	-24.59	peak
4	13590.000	35.01	16.00	51.01	74.00	-22.99	peak
5	16755.000	32.14	19.94	52.08	74.00	-21.92	peak
6	17625.000	30.61	21.95	52.56	74.00	-21.44	peak

Note: 1. Peak Result = Reading Level + Correct Factor.

2. If Peak Result complies with AV limit, AV Result is deemed to comply with AV limit.

3. Peak: Peak detector.


4. AVG: VBW=1/Ton, where: Ton is the transmitting duration.

5. For the transmitting duration, please refer to clause 7.1.

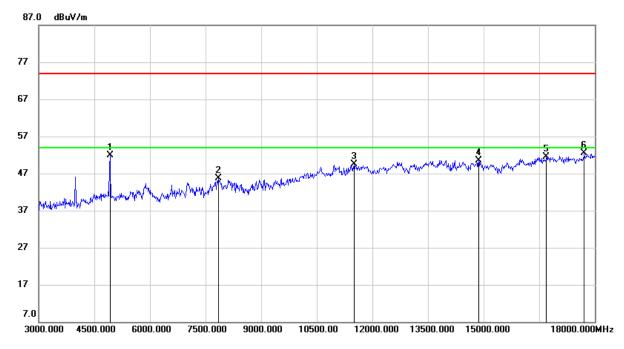
6. Filter losses were only considered in the spurious frequency bands and the authorized band was not corrected for High Pass Filter losses.

No.	Frequency	Reading	Correct	Result	Limit	Margin	Remark
	(MHz)	(dBuV)	(dB/m)	(dBuV/m)	(dBuV/m)	(dB)	
1	4875.000	47.13	0.76	47.89	74.00	-26.11	peak
2	7845.000	37.92	7.62	45.54	74.00	-28.46	peak
3	11700.000	36.35	12.95	49.30	74.00	-24.70	peak
4	13860.000	34.37	16.56	50.93	74.00	-23.07	peak
5	16830.000	32.37	19.96	52.33	74.00	-21.67	peak
6	17880.000	29.28	23.34	52.62	74.00	-21.38	peak

Note: 1. Peak Result = Reading Level + Correct Factor.

2. If Peak Result complies with AV limit, AV Result is deemed to comply with AV limit.

3. Peak: Peak detector.


4. AVG: VBW=1/Ton, where: Ton is the transmitting duration.

5. For the transmitting duration, please refer to clause 7.1.

6. Filter losses were only considered in the spurious frequency bands and the authorized band was not corrected for High Pass Filter losses.

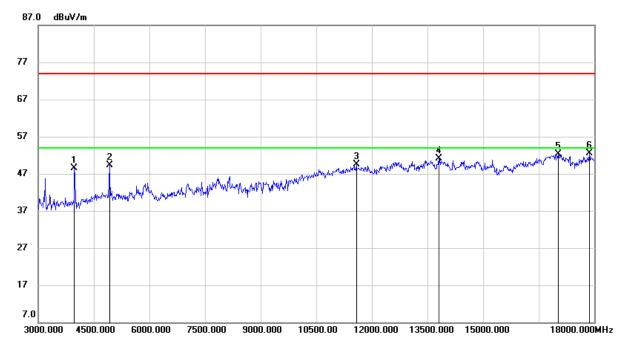
HARMONICS AND SPURIOUS EMISSIONS (HIGH CHANNEL, HORIZONTAL)

No.	Frequency	Reading	Correct	Result	Limit	Margin	Remark
	(MHz)	(dBuV)	(dB/m)	(dBuV/m)	(dBuV/m)	(dB)	
1	4920.000	50.88	0.96	51.84	74.00	-22.16	peak
2	7845.000	38.12	7.62	45.74	74.00	-28.26	peak
3	11505.000	36.00	13.42	49.42	74.00	-24.58	peak
4	14865.000	34.47	15.98	50.45	74.00	-23.55	peak
5	16695.000	31.61	19.92	51.53	74.00	-22.47	peak
6	17715.000	29.98	22.56	52.54	74.00	-21.46	peak

Note: 1. Peak Result = Reading Level + Correct Factor.

2. If Peak Result complies with AV limit, AV Result is deemed to comply with AV limit.

3. Peak: Peak detector.


4. AVG: VBW=1/Ton, where: Ton is the transmitting duration.

5. For the transmitting duration, please refer to clause 7.1.

6. Filter losses were only considered in the spurious frequency bands and the authorized band was not corrected for High Pass Filter losses.

HARMONICS AND SPURIOUS EMISSIONS (HIGH CHANNEL, VERTICAL)

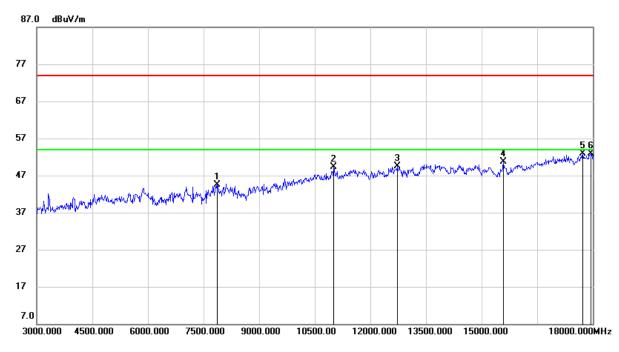
No.	Frequency	Reading	Correct	Result	Limit	Margin	Remark
	(MHz)	(dBuV)	(dB/m)	(dBuV/m)	(dBuV/m)	(dB)	
1	3975.000	51.34	-2.90	48.44	74.00	-25.56	peak
2	4920.000	48.31	0.96	49.27	74.00	-24.73	peak
3	11580.000	36.37	13.23	49.60	74.00	-24.40	peak
4	13800.000	34.00	17.10	51.10	74.00	-22.90	peak
5	17025.000	31.90	20.46	52.36	74.00	-21.64	peak
6	17865.000	29.19	23.33	52.52	74.00	-21.48	peak

Note: 1. Peak Result = Reading Level + Correct Factor.

2. If Peak Result complies with AV limit, AV Result is deemed to comply with AV limit.

3. Peak: Peak detector.

4. AVG: VBW=1/Ton, where: Ton is the transmitting duration.


5. For the transmitting duration, please refer to clause 7.1.

6. Filter losses were only considered in the spurious frequency bands and the authorized band was not corrected for High Pass Filter losses.

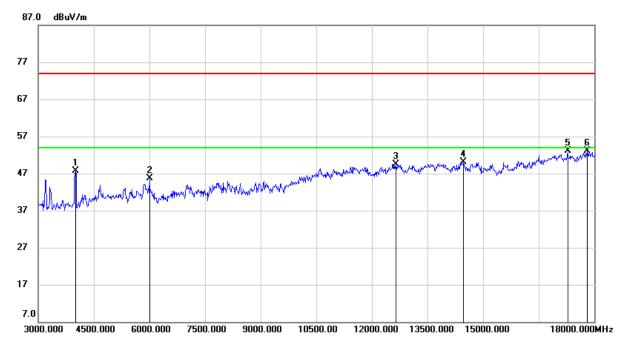
8.3.4. 802.11n HT40 MODE

No.	Frequency	Reading	Correct	Result	Limit	Margin	Remark
	(MHz)	(dBuV)	(dB/m)	(dBuV/m)	(dBuV/m)	(dB)	
1	7875.000	37.14	7.40	44.54	74.00	-29.46	peak
2	11010.000	36.64	12.63	49.27	74.00	-24.73	peak
3	12720.000	34.99	14.57	49.56	74.00	-24.44	peak
4	15585.000	33.83	16.88	50.71	74.00	-23.29	peak
5	17730.000	30.21	22.70	52.91	74.00	-21.09	peak
6	17940.000	29.56	23.39	52.95	74.00	-21.05	peak

Note: 1. Peak Result = Reading Level + Correct Factor.

2. If Peak Result complies with AV limit, AV Result is deemed to comply with AV limit.

3. Peak: Peak detector.


4. AVG: VBW=1/Ton, where: Ton is the transmitting duration.

5. For the transmitting duration, please refer to clause 7.1.

6. Filter losses were only considered in the spurious frequency bands and the authorized band was not corrected for High Pass Filter losses.

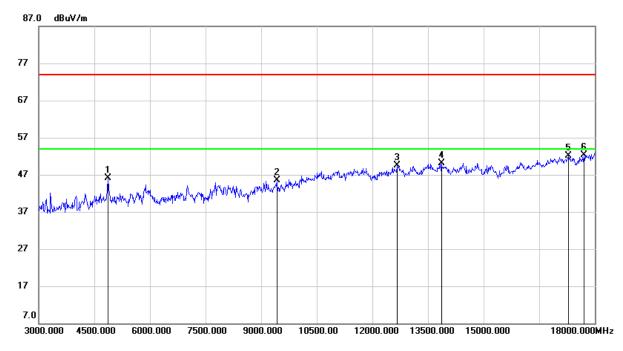
HARMONICS AND SPURIOUS EMISSIONS (LOW CHANNEL, VERTICAL)

No.	Frequency	Reading	Correct	Result	Limit	Margin	Remark
	(MHz)	(dBuV)	(dB/m)	(dBuV/m)	(dBuV/m)	(dB)	
1	4005.000	50.65	-2.89	47.76	74.00	-26.24	peak
2	6000.000	42.43	3.29	45.72	74.00	-28.28	peak
3	12645.000	35.40	14.13	49.53	74.00	-24.47	peak
4	14475.000	33.73	16.36	50.09	74.00	-23.91	peak
5	17280.000	31.48	21.59	53.07	74.00	-20.93	peak
6	17805.000	29.81	23.31	53.12	74.00	-20.88	peak

Note: 1. Peak Result = Reading Level + Correct Factor.

2. If Peak Result complies with AV limit, AV Result is deemed to comply with AV limit.

3. Peak: Peak detector.


4. AVG: VBW=1/Ton, where: Ton is the transmitting duration.

5. For the transmitting duration, please refer to clause 7.1.

6. Filter losses were only considered in the spurious frequency bands and the authorized band was not corrected for High Pass Filter losses.

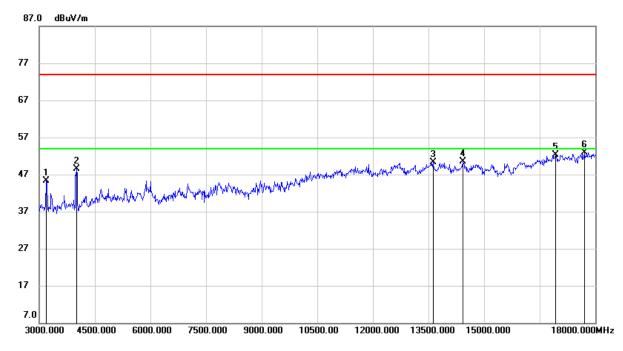
HARMONICS AND SPURIOUS EMISSIONS (MID CHANNEL, HORIZONTAL)

No.	Frequency	Reading	Correct	Result	Limit	Margin	Remark
	(MHz)	(dBuV)	(dB/m)	(dBuV/m)	(dBuV/m)	(dB)	
1	4875.000	45.36	0.76	46.12	74.00	-27.88	peak
2	9420.000	35.98	9.58	45.56	74.00	-28.44	peak
3	12660.000	35.29	14.18	49.47	74.00	-24.53	peak
4	13860.000	33.62	16.56	50.18	74.00	-23.82	peak
5	17295.000	30.47	21.71	52.18	74.00	-21.82	peak
6	17715.000	29.83	22.56	52.39	74.00	-21.61	peak

Note: 1. Peak Result = Reading Level + Correct Factor.

2. If Peak Result complies with AV limit, AV Result is deemed to comply with AV limit.

3. Peak: Peak detector.


4. AVG: VBW=1/Ton, where: Ton is the transmitting duration.

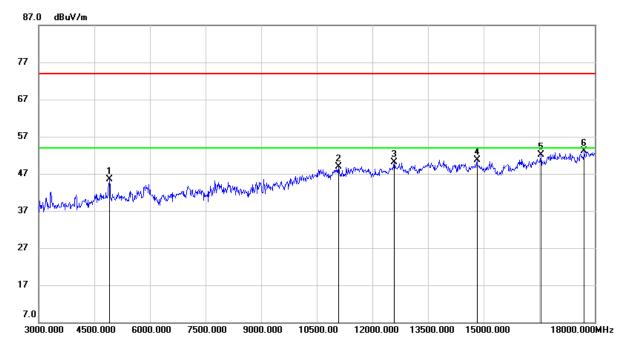
5. For the transmitting duration, please refer to clause 7.1.

6. Filter losses were only considered in the spurious frequency bands and the authorized band was not corrected for High Pass Filter losses.

HARMONICS AND SPURIOUS EMISSIONS (MID CHANNEL, VERTICAL)

No.	Frequency	Reading	Correct	Result	Limit	Margin	Remark
	(MHz)	(dBuV)	(dB/m)	(dBuV/m)	(dBuV/m)	(dB)	
1	3180.000	49.62	-4.33	45.29	74.00	-28.71	peak
2	4005.000	51.33	-2.89	48.44	74.00	-25.56	peak
3	13620.000	34.33	15.99	50.32	74.00	-23.68	peak
4	14430.000	34.14	16.35	50.49	74.00	-23.51	peak
5	16935.000	32.09	20.12	52.21	74.00	-21.79	peak
6	17700.000	30.54	22.43	52.97	74.00	-21.03	peak

Note: 1. Peak Result = Reading Level + Correct Factor.


2. If Peak Result complies with AV limit, AV Result is deemed to comply with AV limit.

3. Peak: Peak detector.

4. Filter losses were only considered in the spurious frequency bands and the authorized band was not corrected for High Pass Filter losses.

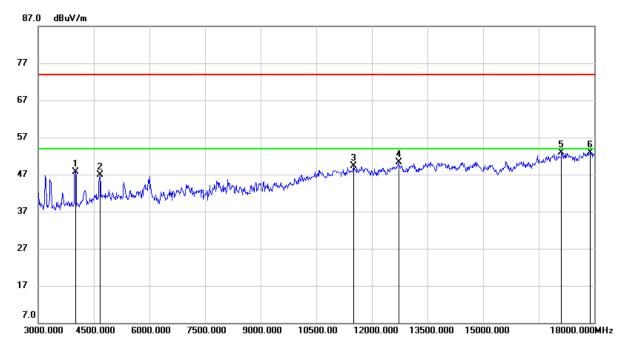
HARMONICS AND SPURIOUS EMISSIONS (HIGH CHANNEL, HORIZONTAL)

No.	Frequency	Reading	Correct	Result	Limit	Margin	Remark
	(MHz)	(dBuV)	(dB/m)	(dBuV/m)	(dBuV/m)	(dB)	
1	4905.000	44.62	0.88	45.50	74.00	-28.50	peak
2	11085.000	36.42	12.57	48.99	74.00	-25.01	peak
3	12585.000	36.03	14.08	50.11	74.00	-23.89	peak
4	14820.000	34.73	15.94	50.67	74.00	-23.33	peak
5	16545.000	32.77	19.31	52.08	74.00	-21.92	peak
6	17715.000	30.55	22.56	53.11	74.00	-20.89	peak

Note: 1. Peak Result = Reading Level + Correct Factor.

2. If Peak Result complies with AV limit, AV Result is deemed to comply with AV limit.

3. Peak: Peak detector.


4. AVG: VBW=1/Ton, where: Ton is the transmitting duration.

5. For the transmitting duration, please refer to clause 7.1.

6. Filter losses were only considered in the spurious frequency bands and the authorized band was not corrected for High Pass Filter losses.

HARMONICS AND SPURIOUS EMISSIONS (HIGH CHANNEL, VERTICAL)

No.	Frequency	Reading	Correct	Result	Limit	Margin	Remark
	(MHz)	(dBuV)	(dB/m)	(dBuV/m)	(dBuV/m)	(dB)	
1	4005.000	50.67	-2.89	47.78	74.00	-26.22	peak
2	4665.000	46.92	-0.03	46.89	74.00	-27.11	peak
3	11505.000	35.91	13.42	49.33	74.00	-24.67	peak
4	12720.000	35.78	14.57	50.35	74.00	-23.65	peak
5	17115.000	32.20	20.68	52.88	74.00	-21.12	peak
6	17880.000	29.66	23.34	53.00	74.00	-21.00	peak

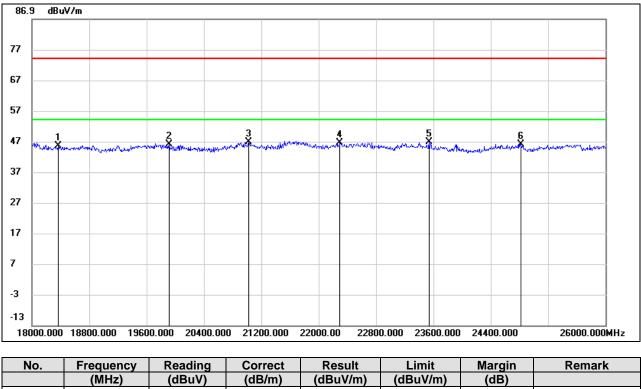
Note: 1. Peak Result = Reading Level + Correct Factor.

2. If Peak Result complies with AV limit, AV Result is deemed to comply with AV limit.

3. Peak: Peak detector.

4. AVG: VBW=1/Ton, where: Ton is the transmitting duration.

5. For the transmitting duration, please refer to clause 7.1.


6. Filter losses were only considered in the spurious frequency bands and the authorized band was not corrected for High Pass Filter losses.

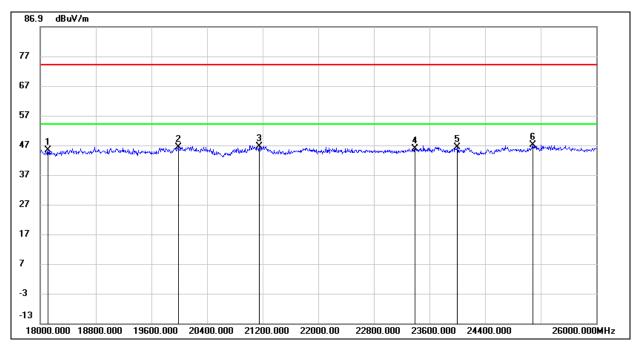
8.5. SPURIOUS EMISSIONS (18GHz ~ 26GHz)

8.5.1. 802.11n HT20 MODE

SPURIOUS EMISSIONS (LOW CHANNEL, WORST-CASE CONFIGURATION, HORIZONTAL)

NO.	Frequency	Reading	Correct	Result	Limit	Margin	Remark
	(MHz)	(dBuV)	(dB/m)	(dBuV/m)	(dBuV/m)	(dB)	
1	18368.000	50.01	-4.38	45.63	74.00	-28.37	peak
2	19912.000	50.41	-4.36	46.05	74.00	-27.95	peak
3	21024.000	52.12	-5.30	46.82	74.00	-27.18	peak
4	22296.000	52.45	-6.01	46.44	74.00	-27.56	peak
5	23536.000	51.46	-4.74	46.72	74.00	-27.28	peak
6	24824.000	47.77	-1.69	46.08	74.00	-27.92	peak

Note: 1. Measurement = Reading Level + Correct Factor.


2. If Peak Result complies with AV limit, AV Result is deemed to comply with AV limit.

3. Peak: Peak detector.

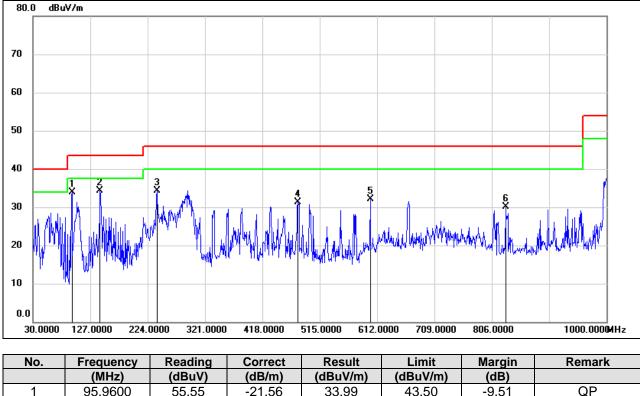
4. The preamplifier only effect to the above 18GHz signal and no filter added to the measurement chain.

SPURIOUS EMISSIONS (LOW CHANNEL, WORST-CASE CONFIGURATION, VERTICAL)

No.	Frequency	Reading	Correct	Result	Limit	Margin	Remark
	(MHz)	(dBuV)	(dB/m)	(dBuV/m)	(dBuV/m)	(dB)	
1	18112.000	49.35	-4.10	45.25	74.00	-28.75	peak
2	19992.000	50.60	-4.37	46.23	74.00	-27.77	peak
3	21152.000	52.06	-5.42	46.64	74.00	-27.36	peak
4	23392.000	50.78	-4.98	45.80	74.00	-28.20	peak
5	24000.000	50.41	-4.01	46.40	74.00	-27.60	peak
6	25088.000	48.13	-1.12	47.01	74.00	-26.99	peak

Note: 1. Measurement = Reading Level + Correct Factor.

2. If Peak Result complies with AV limit, AV Result is deemed to comply with AV limit.


3. Peak: Peak detector.

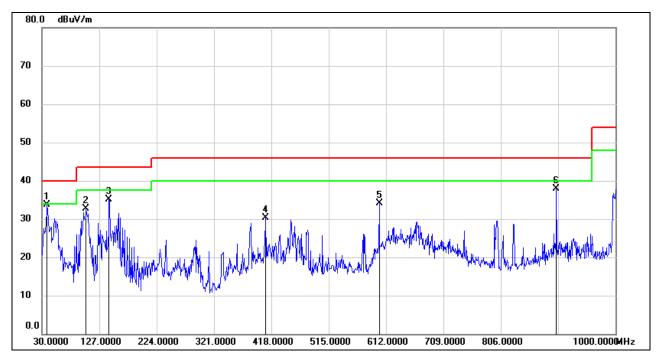
4. The preamplifier only effect to the above 18GHz signal and no filter added to the measurement chain.

8.6. SPURIOUS EMISSIONS (30MHz ~ 1 GHz)

8.6.1. 802.11n HT20 MODE

SPURIOUS EMISSIONS (LOW CHANNEL, WORST-CASE CONFIGURATION, HORIZONTAL)

	(MHz)	(dBuV)	(dB/m)	(dBuV/m)	(dBuV/m)	(dB)	
1	95.9600	55.55	-21.56	33.99	43.50	-9.51	QP
2	143.4900	53.13	-18.87	34.26	43.50	-9.24	QP
3	239.5200	53.61	-19.38	34.23	46.00	-11.77	QP
4	478.1400	43.36	-11.99	31.37	46.00	-14.63	QP
5	600.3600	42.09	-9.91	32.18	46.00	-13.82	QP
6	829.2800	37.33	-7.18	30.15	46.00	-15.85	QP


Note: 1. Result Level = Read Level + Correct Factor.

2. If Peak Result complies with QP limit, QP Result is deemed to comply with QP limit.

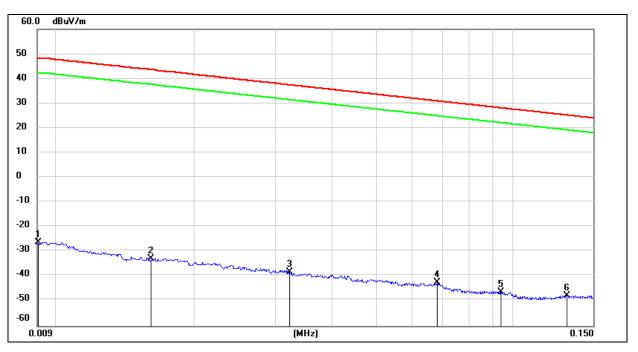
3. Test setup: RBW: 120 kHz, VBW: 300 kHz, Sweep time: auto.

SPURIOUS EMISSIONS (LOW CHANNEL, WORST-CASE CONFIGURATION, VERTICAL)

No.	Frequency	Reading	Correct	Result	Limit	Margin	Remark
	(MHz)	(dBuV)	(dB/m)	(dBuV/m)	(dBuV/m)	(dB)	
1	38.7300	53.69	-19.92	33.77	40.00	-6.23	QP
2	104.6900	53.68	-20.95	32.73	43.50	-10.77	QP
3	143.4900	53.94	-18.87	35.07	43.50	-8.43	QP
4	408.3000	43.51	-13.27	30.24	46.00	-15.76	QP
5	600.3600	43.99	-9.91	34.08	46.00	-11.92	QP
6	900.0900	43.50	-5.65	37.85	46.00	-8.15	QP

Note: 1. Result Level = Read Level + Correct Factor.

2. If Peak Result complies with QP limit, QP Result is deemed to comply with QP limit.


3. Test setup: RBW: 120 kHz, VBW: 300 kHz, Sweep time: auto

8.7. SPURIOUS EMISSIONS BELOW 30MHz

8.7.1. 802.11n HT20 MODE

<u>9kHz~ 150kHz</u>

No.	Frequency	Reading	Correct	FCC Result	FCC Limit	ISED Result	ISED Limit	Margin	Remark
	(MHz)	(dBuV)	(dB/m)	(dBuV/m)	(dBuV/m)	(dBuA/m)	(dBuA/m)	(dB)	
1	0.0091	75.08	-101.33	-26.25	48.28	-77.75	-3.22	-74.53	peak
2	0.0160	68.47	-101.37	-32.90	43.52	-84.40	-7.98	-76.42	peak
3	0.0323	63.19	-101.40	-38.21	37.42	-89.71	-14.08	-75.63	peak
4	0.0680	59.04	-101.56	-42.52	30.95	-94.02	-20.55	-73.47	peak
5	0.0942	55.33	-101.75	-46.42	28.12	-97.92	-23.38	-74.54	peak
6	0.1312	53.89	-101.70	-47.81	25.25	-99.31	-26.25	-73.06	peak

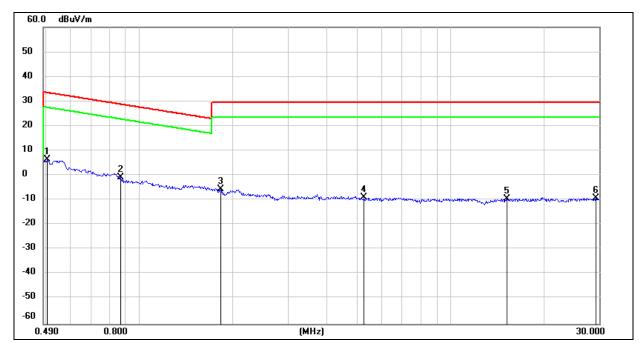
Note: 1. Measurement = Reading Level + Correct Factor ($dBuA/m = dBuV/m - 20Log10[120\pi] = dBuV/m - 51.5$).

2. If Peak Result complies with AV and QP limit, AV and QP Result are deemed to comply with AV limit.

3. All 3 polarizations (Horizontal, Face-on and Face-off) of the loop antenna had been tested, but only the worst data recorded in the report.

<u>150kHz ~ 490kHz</u>

No.	Frequency	Reading	Correct	FCC	FCC	ISED	ISED	Margin	Remark
				Result	Limit	Result	Limit		
	(MHz)	(dBuV)	(dB/m)	(dBuV/m)	(dBuV/m)	(dBuA/m)	(dBuA/m)	(dB)	
1	0.1554	74.27	-101.65	-27.38	23.77	-78.88	-27.73	-51.15	peak
2	0.1942	66.81	-101.70	-34.89	21.84	-86.39	-29.66	-56.73	peak
3	0.2530	62.14	-101.80	-39.66	19.54	-91.16	-31.96	-59.20	peak
4	0.3163	60.20	-101.87	-41.67	17.60	-93.17	-33.90	-59.27	peak
5	0.3850	56.81	-101.94	-45.13	15.89	-96.63	-35.61	-61.02	peak
6	0.4364	55.86	-101.99	-46.13	14.80	-97.63	-36.70	-60.93	peak


Note: 1. Measurement = Reading Level + Correct Factor (dBuA/m= dBuV/m- 20Log10[120 π] = dBuV/m- 51.5).

2. If Peak Result complies with AV and QP limit, AV and QP Result are deemed to comply with AV limit.

3. All 3 polarizations (Horizontal, Face-on and Face-off) of the loop antenna had been tested, but only the worst data recorded in the report.

<u>490kHz ~ 30MHz</u>

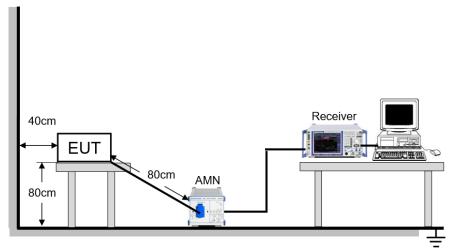
No.	Frequency	Reading	Correct	FCC Result	FCC Limit	ISED Result	ISED Limit	Margin	Remark
	(MHz)	(dBuV)	(dB/m)	(dBuV/m)	(dBuV/m)	(dBuA/m)	(dBuA/m)	(dB)	
1	0.5039	68.44	-62.07	6.37	33.56	-45.13	-17.94	-27.19	peak
2	0.8679	61.35	-62.18	-0.83	28.83	-52.33	-22.67	-29.66	peak
3	1.8205	56.45	-61.90	-5.45	29.54	-56.95	-21.96	-34.99	peak
4	5.2705	52.54	-61.45	-8.91	29.54	-60.41	-21.96	-38.45	peak
5	15.1859	51.55	-61.01	-9.46	29.54	-60.96	-21.96	-39.00	peak
6	29.3213	50.80	-60.02	-9.22	29.54	-60.72	-21.96	-38.76	peak

Note: 1. Measurement = Reading Level + Correct Factor ($dBuA/m = dBuV/m - 20Log10[120\pi] = dBuV/m - 51.5$).

2. If Peak Result complies with AV and QP limit, AV and QP Result are deemed to comply with AV limit.

3. All 3 polarizations (Horizontal, Face-on and Face-off) of the loop antenna had been tested, but only the worst data recorded in the report.

9. AC POWER LINE CONDUCTED EMISSIONS


<u>LIMITS</u>

Please refer to CFR 47 FCC §15.207 (a) and ISED RSS-Gen Clause 8.8

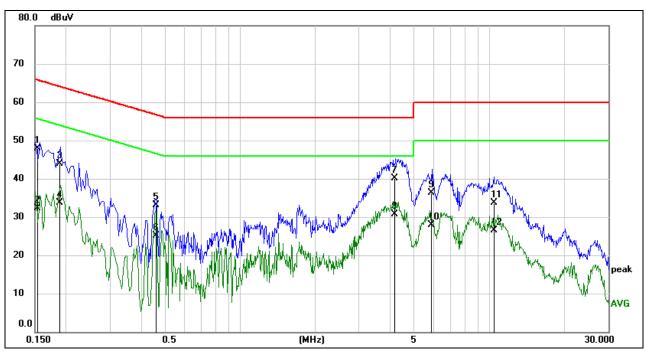
FREQUENCY (MHz)	Quasi-peak	Average	
0.15 -0.5	66 - 56 *	56 - 46 *	
0.50 -5.0	56.00	46.00	
5.0 -30.0	60.00	50.00	

TEST SETUP AND PROCEDURE

Refer to ANSI C63.10-2013 clause 6.2.

The EUT is put on a table of non-conducting material that is 80cm high. The vertical conducting wall of shielding is located 40cm to the rear of the EUT. The power line of the EUT is connected to the AC mains through a Artificial Mains Network (A.M.N.). A EMI Measurement Receiver (R&S Test Receiver ESR3) is used to test the emissions from both sides of AC line. According to the requirements in Section 6.2 of ANSI C63.10-2013.Conducted emissions from the EUT measured in the frequency range between 0.15 MHz and 30MHz using CISPR Quasi-Peak and average detector mode. The bandwidth of EMI test receiver is set at 9kHz.

The arrangement of the equipment is installed to meet the standards and operating in a manner, which tends to maximize its emission characteristics in a normal application.

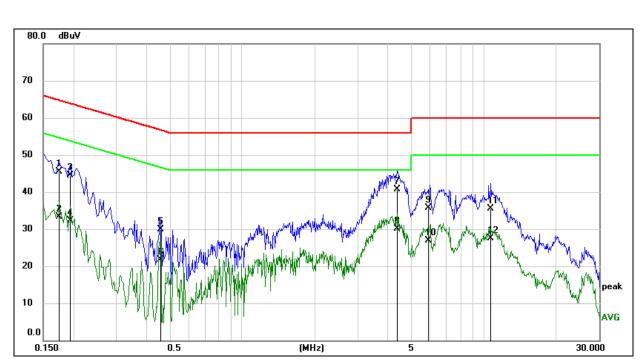

TEST ENVIRONMENT

Temperature	27.6°C	Relative Humidity	71.4%
Atmosphere Pressure	101kPa	Test Voltage	DC 3.3V

UL Verification Services (Guangzhou) Co., Ltd, Song Shan Lake Branch This report shall not be reproduced except in full, without the written approval of UL Verification Services (Guangzhou) Co., Ltd, Song Shan Lake Branch.

9.1. 802.11n HT20 MODE

LINE N RESULTS (LOW CHANNEL, WORST-CASE CONFIGURATION)


No.	Frequency	Reading	Correct	Result	Limit	Margin	Remark
	(MHz)	(dBuV)	(dB)	(dBuV)	(dBuV)	(dB)	
1	0.1536	38.38	9.60	47.98	65.80	-17.82	QP
2	0.1536	22.75	9.60	32.35	55.80	-23.45	AVG
3	0.1880	34.39	9.60	43.99	64.12	-20.13	QP
4	0.1880	24.17	9.60	33.77	54.12	-20.35	AVG
5	0.4609	23.53	9.60	33.13	56.68	-23.55	QP
6	0.4609	15.59	9.60	25.19	46.68	-21.49	AVG
7	4.1574	30.43	9.66	40.09	56.00	-15.91	QP
8	4.1574	21.10	9.66	30.76	46.00	-15.24	AVG
9	5.8163	26.65	9.70	36.35	60.00	-23.65	QP
10	5.8163	18.23	9.70	27.93	50.00	-22.07	AVG
11	10.4345	24.02	9.77	33.79	60.00	-26.21	QP
12	10.4345	16.78	9.77	26.55	50.00	-23.45	AVG

Note: 1. Result = Reading +Correct Factor.

- 2. If QP Result complies with AV limit, AV Result is deemed to comply with AV limit.
- 3. Test setup: RBW: 200 Hz (9 kHz—150 kHz), 9 kHz (150 kHz—30 MHz).
- 4. Step size: 80Hz (0.009MHz-0.15MHz), 4 kHz (0.15MHz-30MHz), Scan time: auto.

UL Verification Services (Guangzhou) Co., Ltd, Song Shan Lake Branch This report shall not be reproduced except in full, without the written approval of UL Verification Services (Guangzhou) Co., Ltd, Song Shan Lake Branch.

LINE L RESULTS (LOW CHANNEL, WORST-CASE CONFIGURATION)

No.	Frequency	Reading	Correct	Result	Limit	Margin	Remark
	(MHz)	(dBuV)	(dB)	(dBuV)	(dBuV)	(dB)	
1	0.1754	35.91	9.61	45.52	64.70	-19.18	QP
2	0.1754	23.62	9.61	33.23	54.70	-21.47	AVG
3	0.1932	34.96	9.60	44.56	63.90	-19.34	QP
4	0.1932	22.79	9.60	32.39	53.90	-21.51	AVG
5	0.4602	20.24	9.60	29.84	56.69	-26.85	QP
6	0.4602	12.04	9.60	21.64	46.69	-25.05	AVG
7	4.3758	31.05	9.66	40.71	56.00	-15.29	QP
8	4.3758	20.35	9.66	30.01	46.00	-15.99	AVG
9	5.9287	26.10	9.70	35.80	60.00	-24.20	QP
10	5.9287	17.12	9.70	26.82	50.00	-23.18	AVG
11	10.7319	25.81	9.75	35.56	60.00	-24.44	QP
12	10.7319	17.67	9.75	27.42	50.00	-22.58	AVG

Note: 1. Result = Reading +Correct Factor.

- 2. If QP Result complies with AV limit, AV Result is deemed to comply with AV limit.
- 3. Test setup: RBW: 200 Hz (9 kHz-150 kHz), 9 kHz (150 kHz-30 MHz).
- 4. Step size: 80Hz (0.009MHz-0.15MHz), 4 kHz (0.15MHz-30MHz), Scan time: auto.

10. ANTENNA REQUIREMENTS

APPLICABLE REQUIREMENTS

Please refer to FCC §15.203

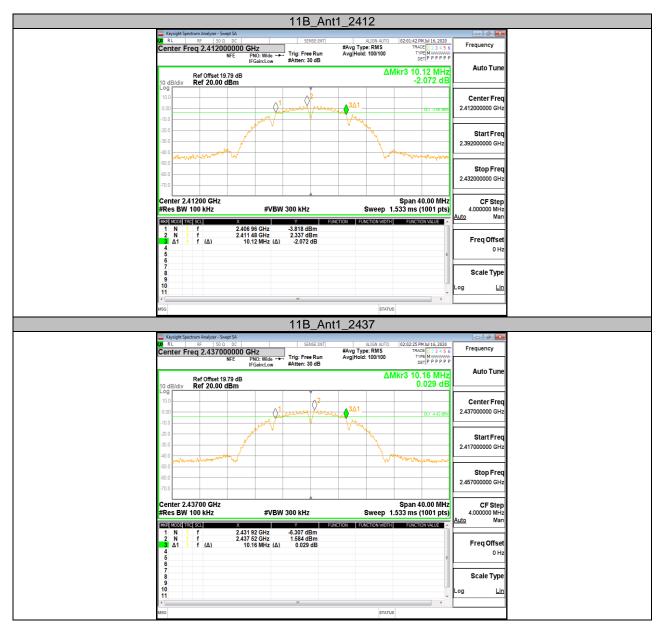
An intentional radiator shall be designed to ensure that no antenna other than that furnished by the responsible party shall be used with the device. The use of a permanently attached antenna or of an antenna that uses a unique coupling to the intentional radiator shall be considered sufficient to comply with the provisions of this section. The manufacturer may design the unit so that a broken antenna can be replaced by the user, but the use of a standard antenna jack or electrical connector is prohibited.

Please refer to FCC §15.247(b)(4)

The conducted output power limit specified in paragraph (b) of this section is based on the use of antennas with directional gains that do not exceed 6 dBi. Except as shown in paragraph (c) of this section, if transmitting antennas of directional gain greater than 6 dBi are used, the conducted output power from the intentional radiator shall be reduced below the stated values in paragraphs (b)(1), (b)(2), and (b)(3) of this section, as appropriate, by the amount in dB that the directional gain of the antenna exceeds 6 dBi.

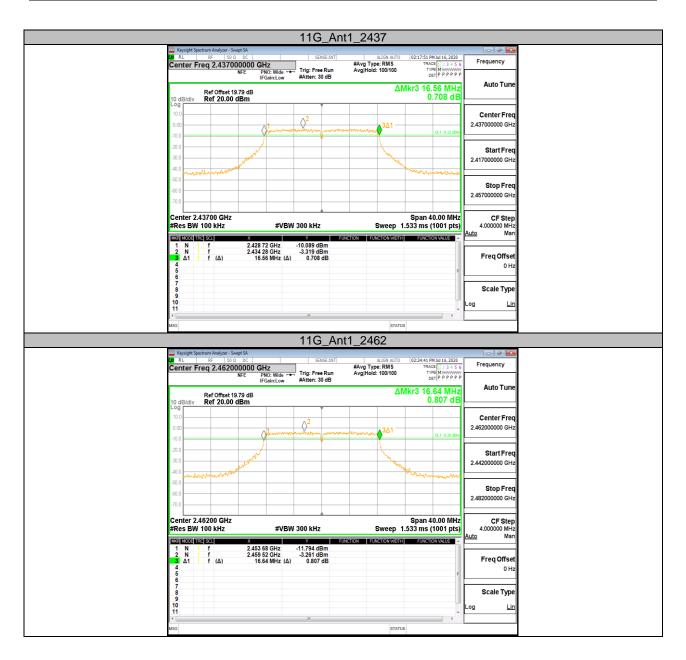
RESULTS

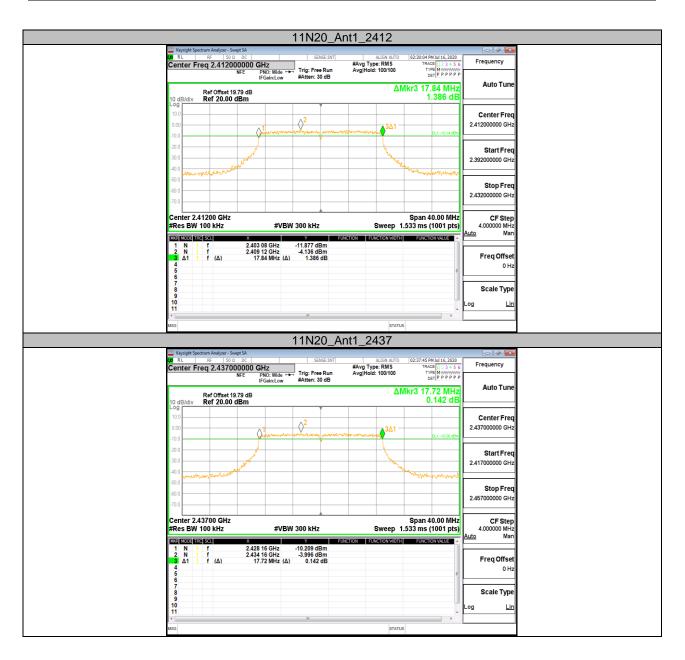
Complies

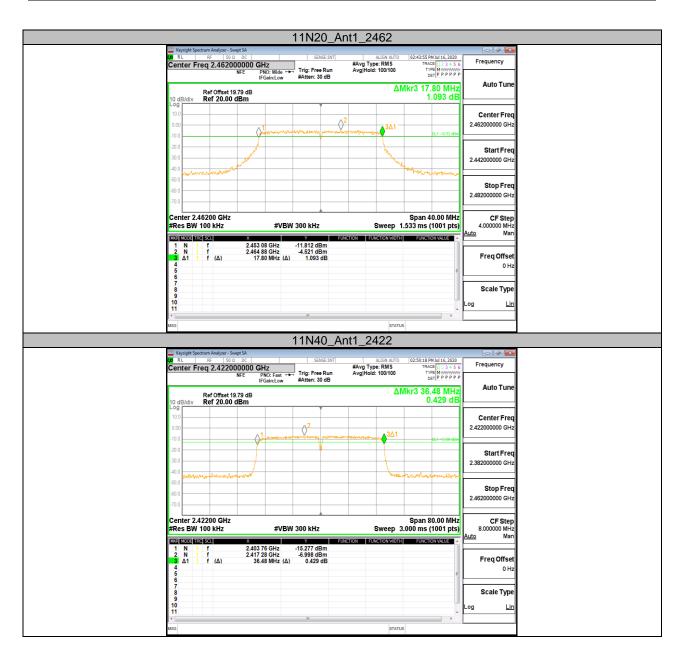

11. Appendix A: DTS Bandwidth

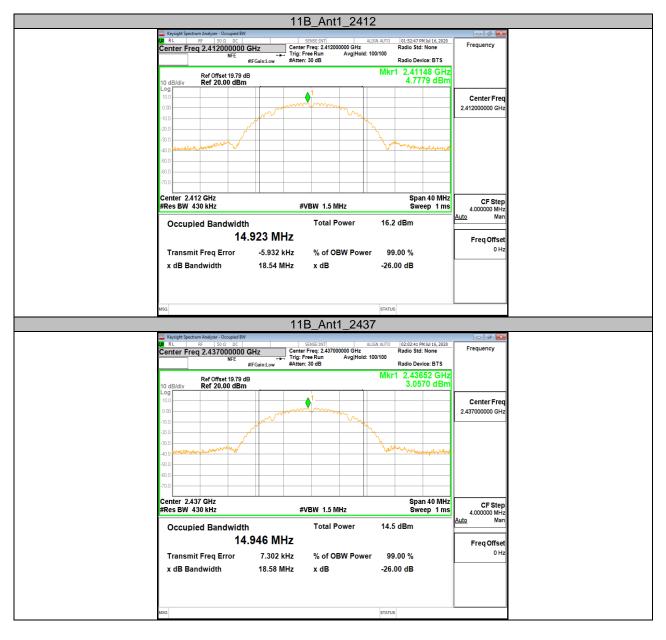
11.1.1. Test Result


Test Mode	Antenna	Channel	DTS BW [MHz]	FL[MHz]	FH[MHz]	Limit[MHz]	Verdict
		2412	10.120	2406.960	2417.080	0.5	PASS
11B	Ant1	2437	10.160	2431.920	2442.080	0.5	PASS
		2462	10.120	2456.960	2467.080	0.5	PASS
		2412	16.520	2403.760	2420.280	0.5	PASS
11G Ant1	Ant1	2437	16.560	2428.720	2445.280	0.5	PASS
		2462	16.640	2453.680	2470.320	0.5	PASS
11N20 Ant1	2412	17.840	2403.080	2420.920	0.5	PASS	
	Ant1	2437	17.720	2428.160	2445.880	0.5	PASS
		2462	17.800	2453.080	2470.880	0.5	PASS
		2422	36.480	2403.760	2440.240	0.5	PASS
11N40	Ant1	2437	36.480	2418.760	2455.240	0.5	PASS
		2452	36.480	2433.760	2470.240	0.5	PASS


11.1.2. Test Graphs







Test Mode	Antenna	Channel	OCB [MHz]	FL[MHz]	FH[MHz]	Limit[MHz]	Verdict
		2412	14.923	2404.533	2419.456		PASS
11B	11B Ant1	2437	14.946	2429.534	2444.480		PASS
		2462	14.966	2454.513	2469.479		PASS
		2412	16.986	2403.431	2420.417		PASS
11G Ant1	Ant1	2437	17.064	2428.372	2445.436		PASS
		2462	16.983	2453.435	2470.418		PASS
11N20 Ant1	2412	18.057	2402.985	2421.042		PASS	
	Ant1	2437	18.044	2427.977	2446.021		PASS
		2462	18.063	2452.960	2471.023		PASS
		2422	35.802	2404.111	2439.913		PASS
11N40	Ant1	2437	35.800	2419.114	2454.914		PASS
		2452	35.815	2434.088	2469.903		PASS

11.2. Appendix B: Occupied Channel Bandwidth 11.2.1. Test Result

11.2.2. Test Graphs

