

ELECTROMAGNETIC EMISSION COMPLIANCE REPORT FOR LOW-POWER, NON-LICENSED TRANSMITTER

Test Report No. : W167R-D018

AGR No. : A154A-171

Applicant : Hanwha Corporation Asan 1 Plant

Address : Asanvalleynam-Ro 144, Dunpo-Myun, Asan-City, Chungnam, 31409, South Korea

Manufacturer : ROHAU

Address : BMR Center, 55 Hanyangdaehak-ro, Sangnok-gu, Ansan-si Kyeonggi-do, 426-791, Korea

: Lever/Pedal Control Unit **Type of Equipment**

FCC ID. : 2AGC5DJO-ALPC-DEF

Model Name : DJO-ALPC

Serial number : N/A

Total page of Report : 6 pages (including this page)

Date of Incoming : April 28, 2015

Date of issue : July 07, 2016

SUMMARY

The equipment complies with the regulation; FCC PART 15 SUBPART C Section 15,247

This test report only contains the result of a single test of the sample supplied for the examination.

It is not a generally valid assessment of the features of the respective products of the mass-production.

ONETECH Corp.

Sung-Ik, Han/ Managing Director ONETECH Corp.

Report No.: W167R-D018

CONTENTS

4
5
5
5
5
6
6
6

Revision History

Issued Report No.	Issued Date	Revisions	Effect Section
W167R-D018	July 07, 2016	Initial Issue	All

Report No.: W167R-D018

Page 4 of 6 Report No.: W167R-D018

1. VERIFICATION OF COMPLIANCE

Applicant : Hanwha Corporation Asan 1 Plant

Address : Asanvalleynam-Ro 144, Dunpo-Myun, Asan-City, Chungnam, 31409, South Korea

Contact Person : SOYOUNG PARK / Assistant RESEARCH ENGINEER

Telephone No. : +82-41-538-7886

FCC ID : 2AGC5DJO-ALPC-DEF

Model Name : DJO-ALPC

Brand Name : -

Serial Number : N/A

Date : July 07, 2016

EQUIPMENT CLASS	DTS – DIGITAL TRNSMISSION SYSTEM		
E.U.T. DESCRIPTION	Lever/Pedal Control Unit		
THIS REPORT CONCERNS	Original Grant		
MEASUREMENT PROCEDURES	ANSI C63.10:2013		
TYPE OF EQUIPMENT TESTED	Pre-Production		
KIND OF EQUIPMENT			
AUTHORIZATION REQUESTED	Certification		
EQUIPMENT WILL BE OPERATED			
UNDER FCC RULES PART(S)	FCC PART 15 SUBPART C Section 15.247		
MODIFICATIONS ON THE EQUIPMENT	N.		
TO ACHIEVE COMPLIANCE	None		
FINAL TEST WAS CONDUCTED ON	3 m, Semi Anechoic Chamber		

^{-.} The above equipment was tested by ONETECH Corp. for compliance with the requirement set forth in the FCC Rules and Regulations. This said equipment in the configuration described in this report, shows the maximum emission levels emanating from equipment are within the compliance requirements.

Report No.: W167R-D018

2. GENERAL INFORMATION

2.1 Product Description

The Hanwha Corporation Asan 1 Plant, Model DJO-ALPC (referred to as the EUT in this report) is a Lever/Pedal Control Unit. Product specification information described herein was obtained from product data sheet or user's manual.

DEVICE TYPE	Portable Device			
FREQUENCY RANGE	2 405 MHz ~ 2 480 MHz			
NUMBER OF CHANNEL	16 Channels			
MAX. RF OUTPUT POWER	-11.69 dBm			
ANTENNA TYPE	Dipole Antenna			
ANTENNA GAIN	5.78 dBi			
MODULATION METHOD	O-QPSK			
HIGHD DE CHUD	Marker: TEXAS INSTRUMENTS			
USED RF CHIP	Model Name: CC2530F32RHA			
List of each Osc. or crystal	22.MH			
Freq.(Freq. >= 1 MHz)	32 MHz			
POWER REQUIREMENT	DC 24 V			
EXTERNAL CONNECTOR	-			

2.2 Alternative type(s)/model(s); also covered by this test report.

-. None

3. EUT MODIFICATIONS

-. None

Report No.: W167R-D018

4. RADIO FREQUENCY EXPOSURE

4.1 RF Exposure Calculation

According to the FCC rule 1.1310 table 1B, the limit for the maximum permissible RF exposure for an uncontrolled environment are f/1500 mW/cm² for the frequency range between 300 MHz and 1 500 MHz and 1.0 mW/cm² for the frequency range between 1 500 MHz and 100 000 MHz.

The electric field generated for a 1 mW/cm² exposure is calculated as follows:

$$E = \sqrt{(30 * P * G)} / d$$
, and $S = E^2 / Z = E^2 / 377$, because 1 mW/cm² = 10 W/m²

Where

S = Power density in mW/cm², Z = Impedance of free space, 377 Ω

E = Electric filed strength in V/m, G = Numeric antenna gain, and d = distance in meter

Combing equations and rearranging the terms to express the distance as a function of the remaining variable

$$d = \sqrt{(30 * P * G) / (377 * 10 S)}$$

Changing to units of mW and cm, using P(mW) = P(W) / 1000, d(cm) = 0.01 * d(m)

$$d = 0.282 * \sqrt{(P * G) / S}$$

Where

d = distance in cm, P = Power in mW, G = Numeric antenna gain, and S = Power density in mW/cm²

4.2 Calculated MPE Safe Distance

According to above equation, the following result was obtained.

Operating Freq.	Target Power W/tolerance	1		Antenna Gain		Safe Distance	Power Density (mW/cm²)	Limit (mW/
Band (MHz) Frequency	(dBm)	(dBm)	(mW)	Log	Linear	(cm)	, i	cm²)
2 405 ~ 2 480	-11.50 ± 0.5	-11.0	0.08	5.78	3.78	0.15	0.000 06	1.00

According to above table, for 2 405 ~ 2 480 MHz Band, safe distance,

$$D = 0.282 * \sqrt{(0.08 * 3.78)/1.00} = 0.15 \text{ cm}.$$

For getting power density at 20 cm separation in above table, following formula was used.

$$S = P * G / (4\pi * R^2) = 0.08 * 3.78 / (4 * 3.14 * 20^2) = 0.000 \ 06$$

Where:

S = Power Density,

P = Power input to the external antenna (Output power from the EUT antenna port (dBm) – cable loss (dB)),

G = Gain of Transmit Antenna (linear gain), R = Distance from Transmitting Antenna