

 Project No:
 TM-2305000465P
 FCC ID:
 2A

 Report No.:
 TMWK2305001704KR
 FCC ID:
 2A

FCC ID: 2AGBW9290035625X

Page: 1 / 47 Rev.: 03

RADIO TEST REPORT FCC 47 CFR PART 15 SUBPART C

Test Standard	FCC Part 15.247
Product name	Digital Device
Brand Name	Philips
Model	9290035625, 9290035626
Test Result	Pass
Statements of Conformity	Determination of compliance is based on the results of the compliance measurement, not taking into account measurement instrumentation uncertainty.

The test Result was tested by Compliance Certification Services Inc. The test data, data evaluation, test procedures, and equipment configurations shown in this report were given in ANSI C63.10: 2013 and compliance standards.

The test results of this report relate only to the tested sample (EUT) identified in this report.

The test Report of full or partial shall not copy. Without written approval of Compliance Certification Services Inc.(Wugu Laboratory)

Approved by:

mili

Shawn Wu Supervisor

Unless otherwise stated the results shown in this test report refer only to the sample(s) tested and such sample(s) are retained for 90 days only.

除非另有說明,此報告結果僅對測試之樣品負責,同時此樣品僅保留90天。本報告未經本公司書面許可,不可部份複製。

No.11, Wugong 6th Rd., Wugu Dist., New Taipei City , Taiwan /新北市五股區五工六路 11 號 t:(886-2) 2299-9720 f:(886-2) 2299-9721 www.sgs.com.tw

This document is issued by the Company subject to its General Conditions of Service printed overleaf, available on request or accessible at http://www.sgs.com.tw/Terms-and-Conditions and, for electronic format documents, subject to Terms and Conditions for Electronic Documents at http://www.sgs.com.tw/Terms-and-Conditions and, for electronic format documents, subject to Terms and Conditions for Electronic Documents at http://www.sgs.com.tw/Terms-and-Conditions and, for electronic format documents, subject to Terms and Conditions for Electronic Documents at http://www.sgs.com.tw/Terms-and-Conditions Attention is drawn to the limitation of liability, indemnification and jurisdiction issues defined therein. Any holder of this document is advised that information contained hereon reflects the Company's findings at the time of its intervention only and within the limits of client's instruction, if any. The Company's sole responsibility is to its Client and this document does not exonerate parties to a transaction form exercising all their rights and obligations under the transaction documents. This document cannot be reproduced, except in full, without prior written approval of the Company. Any unauthorized alteration, forgery or falsification of the content or appearance of this document is unlawful and offenders may be prosecuted to the fullest extent of the law.

Page: 2 / 47 Rev.: 03

Revision History

Rev.	Issue Date	Revisions	Effect Page	Revised By
00	August 2, 2023	Initial Issue	ALL	Doris Chu
01	August 14, 2023	See the following Note Rev. (01)	P.5, P.8, P.17-18, P.12, P.4	Doris Chu
02	August 17, 2023	See the following Note Rev. (02)	P.4	Doris Chu
03	August 18, 2023	See the following Note Rev. (03)	P.4	Doris Chu

Rev. (01)

1. Modify antenna type to Monopole in section 1.3.

2. Modify 966D Equipment to EXA Signal Analyzer in section 1.6.

3. Add 240V Conduction data in section 4.1.4.

4. Modify test mode in section 3.2.

5. Add Serial Number and modify Model Discrepancy in section 1.1.

Rev. (02)

1. Modify Serial Number in section 1.1.

Rev. (03)

1. Remove HW Version in section 1.1.

Page: 3 / 47 Rev.: 03

Table of contents

1.	GENERAL INFORMATION 4
1.1	EUT INFORMATION
1.2	EUT CHANNEL INFORMATION
1.3	ANTENNA INFORMATION
1.4	MEASUREMENT UNCERTAINTY6
1.5	FACILITIES AND TEST LOCATION7
1.6	INSTRUMENT CALIBRATION
1.7	SUPPORT AND EUT ACCESSORIES EQUIPMENT
1.8	TEST METHODOLOGY AND APPLIED STANDARDS9
2.	TEST SUMMERY 10
3.	DESCRIPTION OF TEST MODES11
3.1	THE WORST MODE OF OPERATING CONDITION 11
3.2	THE WORST MODE OF MEASUREMENT 12
3.3	EUT DUTY CYCLE
4.	TEST RESULT 14
4.1	AC POWER LINE CONDUCTED EMISSION
4.2	6DB BANDWIDTH AND OCCUPIED BANDWIDTH (99%) 19
4.3	OUTPUT POWER MEASUREMENT
4.4	POWER SPECTRAL DENSITY
4.5	CONDUCTED BANDEDGE AND SPURIOUS EMISSION
4.6	RADIATION BANDEDGE AND SPURIOUS EMISSION
APPE	NDIX 1 - PHOTOGRAPHS OF EUT

1. GENERAL INFORMATION

1.1 EUT INFORMATION

Applicant		Investment Co., Ltd. Lane 888, Tianlin Road, Minhang District, Shanghai,					
Manufacturer		Signify (China) Investment Co., Ltd. Building no.9, Lane 888, Tianlin Road, Minhang District, Shanghai,					
Equipment	Digital Device						
Model No.	9290035625, 92	290035626					
	Model	Difference					
Model Discrepancy	9290035625	 1.without Battery components 2. without level shift IC 3. Zigbee Antenna model: RFFPA203007IMAB402 WiFi Antenna model: RFFPA203006IMLB403 					
	9290035626	 with Battery components with level shift IC Zigbee Antenna model: RFFPA203007IMAB401 WiFi Antenna model: RFFPA203006IMLB402 					
Trade Name	Philips						
Received Date	June 2, 2023	· ·					
Date of Test	June 12 ~ August 8, 2023						
Power Supply	 Power from Power Adapter. I/P: 100-240VAC, 0.6A, 50-60Hz O/P: 12.0VDC, 2.0A, 24.0W Power from Battery. (DC 3.7V) (for 9290035626) 						
SW Version	V1.0.02R25						
Serial Number	Radiated: 9290035625: E53080 9290035626: 0DF5C2 Conducted 9290035625: FB2287 Conduction						
Pomorki	9290035626: 74F6BF						

Remark:

1. For more details, please refer to the User's manual of the EUT.

2. Disclaimer: Antenna information is provided by the applicant, test results of this report are applicable to the sample EUT received.

3. Disclaimer: The variant model numbers / trademarks are assessed as identical in hardware and software to each other, hence all variants are fully covered by the test results in this test report without further verification test.

Page: 5 / 47 Rev.: 03

1.2 EUT CHANNEL INFORMATION

Frequency Range	Zigbee: 2405~2480MHz
Modulation Type	Zigbee: OQPSK (Offset Quadrature Phase Shift Keyed)
Number of channels	Zigbee: 16 Channels

Remark:

Refer as ANSI C63.10: 2013 clause 5.6.1 Table 4 for test channels

Number of frequencies to be tested				
Frequency range inNumber ofLocation in frequencywhich device operatesfrequenciesrange of operation				
☐ 1 MHz or less	1	Middle		
1 MHz to 10 MHz	2	1 near top and 1 near bottom		
🖾 More than 10 MHz	3	1 near top, 1 near middle, and 1 near bottom		

1.3 ANTENNA INFORMATION

Antenna Type	Monopole PCB Dipole Coils
Antenna Gain	9290035625: Gain: 1.3 dBi 9290035626: Gain: 1.1 dBi
Antenna connector	I-PEX

Notes:

1. The antenna(s) of the EUT are permanently attached and there are no provisions for connection to an external antenna. So the EUT complies with the requirements of §15.203.

Page: 6 / 47 Rev.: 03

1.4 MEASUREMENT UNCERTAINTY

PARAMETER	UNCERTAINTY
AC Powerline Conducted Emission	± 2.213 dB
Channel Bandwidth	± 2.7 %
RF output power (Power Meter + Power sensor)	± 0.243 dB
Power Spectral density	± 2.739 dB
Conducted Bandedge	± 2.739 dB
Conducted Spurious Emission	± 2.742 dB
Radiated Emission_9kHz-30MHz	± 3.115 dB
Radiated Emission_30MHz-200MHz	± 4.071 dB
Radiated Emission_200MHz-1GHz	± 4.419 dB
Radiated Emission_1GHz-6GHz	± 5.023 dB
Radiated Emission_6GHz-18GHz	± 5.068 dB
Radiated Emission_18GHz-26GHz	± 3.349 dB
Radiated Emission_26GHz-40GHz	± 3.229 dB

Remark:

1. This uncertainty represents an expanded uncertainty expressed at approximately the 95% confidence level using a coverage factor of k=2

2. ISO/IEC 17025 requires that an estimate of the measurement uncertainties associated with the emissions test results be included in the report.

Page: 7 / 47 Rev.: 03

1.5 FACILITIES AND TEST LOCATION

All measurement facilities used to collect the measurement data are located at

AC Powerline Conducted Emission and Conducted:

No.11, Wugong 6th Rd., Wugu Dist., New Taipei City, Taiwan.

Radiated emission 9kHz to 40GHz:

No.11, Wugong 6th Rd., Wugu Dist., New Taipei City, Taiwan.

No. 12, Ln. 116, Wugong 3rd Rd., Wugu Dist., New Taipei City, Taiwan 24803

CAB identifier: TW1309

Test site	Test Engineer	Remark
AC Conduction Room	Tony Chao	-
Radiation	Czerny Lin	-
RF Conducted	Allen Shen	-

Remark: The lab has been recognized as the FCC accredited lab. under the KDB 974614 D01 and is listed in the FCC pubic Access Link (PAL) database, FCC Registration No. :444940, the FCC Designation No.:TW1309

1.6 INSTRUMENT CALIBRATION

RF Conducted Test Site						
Name of Equipment	Manufacturer	Model	Serial Number	Calibration Date	Calibration Due	
Power Sensor	Anritsu	MA2411B	1911386	2022-08-08	2023-08-07	
Power Sensor	Anritsu	MA2411B	1911387	2022-08-08	2023-08-07	
EXA Signal Analyzer	KEYSIGHT	N9010A	MY54200716	2022-10-13	2023-10-12	
Power Meter	Anritsu	ML2496A	2136002	2022-11-24	2023-11-23	
Software	Radio Test Software Ver. 21 & E3-Ver: 6.11-20180413 LTE Measurement_Power-Ver.21					

Wugu 966 Chamber D						
Name of Equipment	Manufacturer	Model	Serial Number	Calibration Date	Calibration Due	
Antenna	SHWARZBECK	VULB 9168	1277	2023-01-13	2024-01-12	
Pre-Amplifier	EMCI	EMC118A4 5SE	980820	2022-12-23	2023-12-22	
Pre-Amplifier	EMCI	EMC330N	980853	2022-12-23	2023-12-22	
Coaxial Cable	EMC	EMC101G- KM-KM-900 0	220407+21122 8+230205	2023-03-21	2024-03-20	
EXA Signal Analyzer	Agilent	N9010A	MY52220817	2023-03-09	2024-03-08	
Coaxial Cable	EMC	EMCCFD4 00	211212+211222 +211020	2023-03-21	2024-03-20	
High Pass Filter	TITAN	T04H30001 800070S01	211215-7-1	2023-02-02	2024-02-01	
Thermo-Hygro Meter	EDSDS	EDS-A49	966D1	2023-05-11	2024-05-10	
Pre-Amplifier	EMCI	EMC18404 5SE	980872	2023-01-03	2024-01-02	
Horn Antenna	RF SPIN	DRH18-E	210301A18ES	2023-02-03	2024-02-02	
Horn Antenna	SHWARZBECK	BBHA 9170	1134	2022-12-30	2023-12-29	
Loop Antenna	SCHWARZBEC K	FMZB 1513-60	1513-60-028	2022-12-27	2023-12-26	
Software	e3 V9-210616c					

AC Conducted Emissions Test Site						
Equipment	Manufacturer	Model	S/N	Cal Date	Cal Due	
EMI Test Receiver	R&S	ESCI	100064	2023-06-07	2024-06-06	
LISN	TESEQ	LN2-16N	22012	2023-03-08	2024-03-07	
Cable	EMCI	CFD300-NL	CERF	2022-06-27	2023-06-26	
Cable	EIVICI	CFD300-NL	CERF	2023-06-27	2024-06-26	
Software	EZ-EMC(CCS-3A1-CE-WUGU)					

Remark:

Each piece of equipment is scheduled for calibration once a year.
 N.C.R. = No Calibration Required.

Page: 9 / 47 Rev.: 03

1.7 SUPPORT AND EUT ACCESSORIES EQUIPMENT

EUT Accessories Equipment						
No.	Equipment Brand Model Series No. FCC ID					
	N/A					

Support Equipment						
No.	No. Equipment Brand Model Series No. FCC ID					
1	NB(E)	Lenovo	T460	N/A	N/A	

1.8 TEST METHODOLOGY AND APPLIED STANDARDS

The test methodology, setups and results comply with all requirements in accordance with ANSI C63.10:2013, FCC Part 2, FCC Part 15.247.

Page: 10 / 47 Rev.: 03

2. TEST SUMMERY

FCC Standard Section	Chapter	Test Item	Result
15.203	1.3	Antenna Requirement	Pass
15.207	4.1	AC Conducted Emission	Pass
15.247(a)(2)	4.2	6 dB Bandwidth	Pass
-	4.2	Occupied Bandwidth (99%)	Pass
15.247(b)	4.3	Output Power Measurement	Pass
15.247(e)	4.4	Power Spectral Density	Pass
15.247(d)	4.5	Conducted Band Edge	Pass
15.247(d)	4.5	Conducted Emission	Pass
15.247(d)	4.6	Radiation Band Edge	Pass
15.247(d)	4.6	Radiation Spurious Emission	Pass

Page: 11 / 47 Rev.: 03

3. DESCRIPTION OF TEST MODES

3.1 THE WORST MODE OF OPERATING CONDITION

Operation mode	Zigbee
	Zigbee: 1. Lowest Channel : 2405MHz 2. Middle Channel : 2440MHz 3. Highest Channel : 2480MHz

Page: 12 / 47 Rev.: 03

3.2 THE WORST MODE OF MEASUREMENT

	AC Power Line Conducted Emission					
Test Condition	AC Power line conducted emission for line and neutral					
Power supply	Mode 1: EUT (Model: 9290035626) Power by Adapter-1.5m(S024CSM1200200) Mode 2: EUT (Model: 9290035625) Power by Adapter-1.5m(S024CSM1200200)					
Worst Mode	Mode 1 🗌 Mode 2 🗌 Mode 3 🗌 Mode 4					

Radiated Emission Measurement Above 1G					
Test Condition	Radiated Emission Above 1G				
	Mode 1: EUT (Model: 9290035626) Power by				
Power supply	Adapter-1.5m(S024CSM1200200)				
Mode	Mode 2: EUT (Model: 9290035625) Power by				
	Adapter-1.5m(S024CSM1200200)				
Worst Mode	🖾 Mode 1 🗌 Mode 2 🗌 Mode 3 🗌 Mode 4				
	Placed in fixed position.				
Waret Desition	Placed in fixed position at X-Plane (E2-Plane)				
Worst Position	Placed in fixed position at Y-Plane (E1-Plane)				
	Placed in fixed position at Z-Plane (H-Plane)				

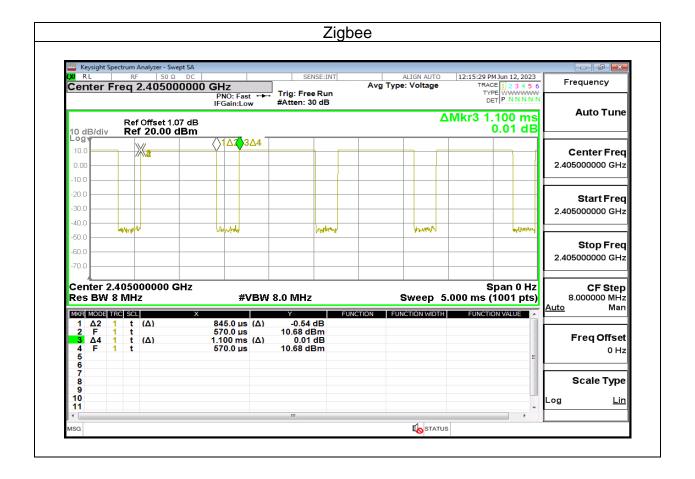
Radiated Emission Measurement Below 1G					
Test Condition	Radiated Emission Below 1G				
Power supply Mode	Mode 1: EUT (Model: 9290035626) Power by Adapter-1.5m(S024CSM1200200) Mode 2: EUT (Model: 9290035625) Power by Adapter-1.5m(S024CSM1200200)				
Worst Mode	☐ Mode 1 ⊠ Mode 2 ☐ Mode 3 ☐ Mode 4				

Remark:

1. The worst mode was record in this test report.

2. EUT pre-scanned in three axis ,X,Y, Z and two polarity, for radiated measurement. The worst case(X-Plane) were recorded in this report

3. AC power line conducted emission and for below 1G radiation emission were performed the EUT transmit at the highest output power channel as worse case.



Page: 13 / 47 Rev.: 03

3.3 EUT DUTY CYCLE

Temperature:	23.2 ~ 25.4 ℃	Test date:	June 12 ~ 15, 2023
Humidity:	57 ~ 60% RH	Tested by:	Allen Shen

Duty Cycle							
Configuration	Duty Cycle (%) = Ton / (Ton+Toff)	Duty Factor (dB) =10*log(1/Duty Cycle)	1/T (kHz)	VBW setting (kHz)			
Zigbee	76.82	1.15	1.18	2.00			

Page: 14 / 47 Rev.: 03

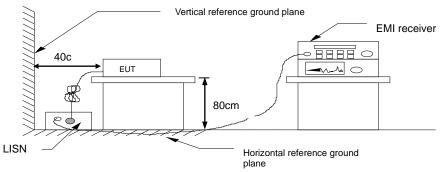
4. TEST RESULT

4.1 AC POWER LINE CONDUCTED EMISSION

4.1.1 Test Limit

According to §15.207(a)(2),

Limits(dBµV)		
Quasi-peak	Average	
66 to 56*	56 to 46*	
56	46	
60	50	
	Quasi-peak 66 to 56* 56	

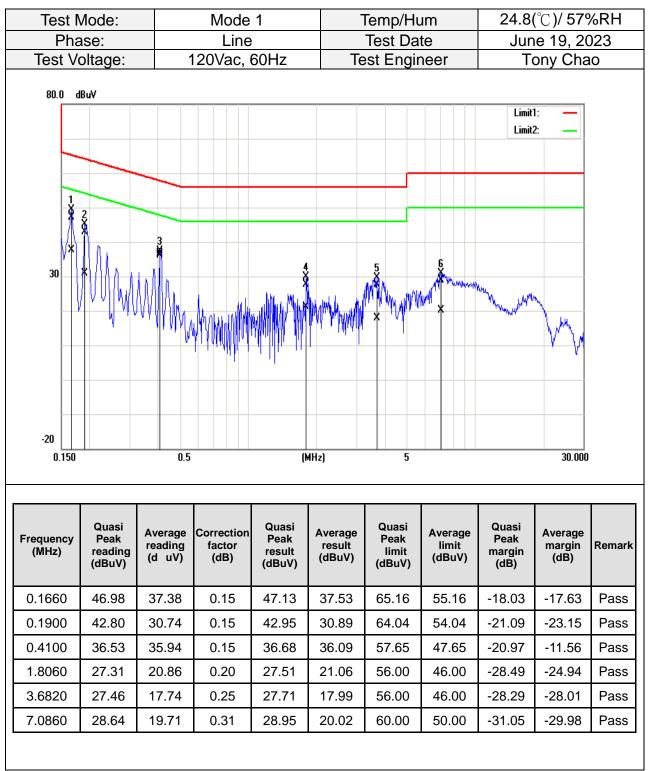

* Decreases with the logarithm of the frequency.

4.1.2 Test Procedure

Test method Refer as ANSI C63.10: 2013 clause 6.2,

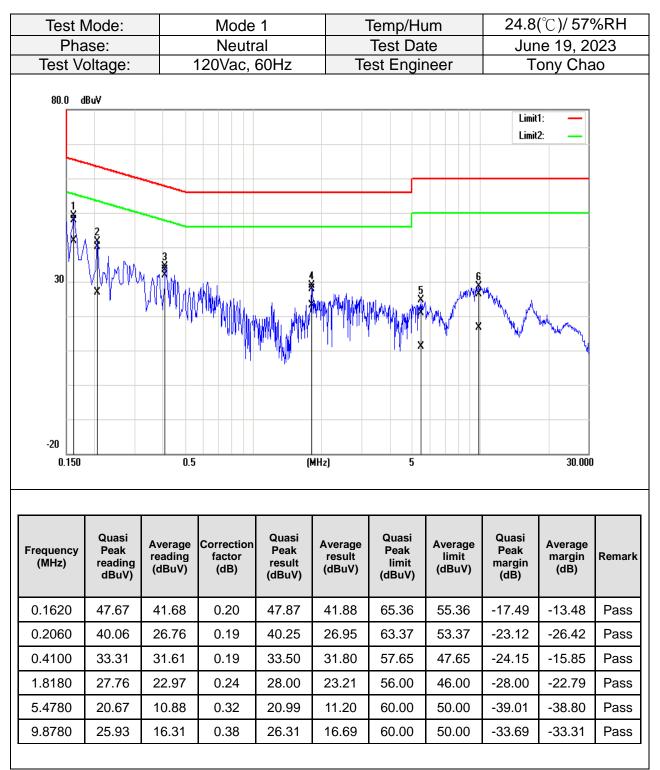
- 1. The EUT was placed on a non-conducted table, which is 0.8m above horizontal ground plane and 0.4m above vertical ground plane.
- 2. EUT connected to the line impedance stabilization network (LISN)
- 3. Receiver set RBW of 9kHz and Detector Peak, and note as quasi-peak and average.
- 4. Maximum procedure was performed on the six highest emissions to ensure EUT compliance.
- 5. Recorded Line for Neutral and Line.

4.1.3 Test Setup

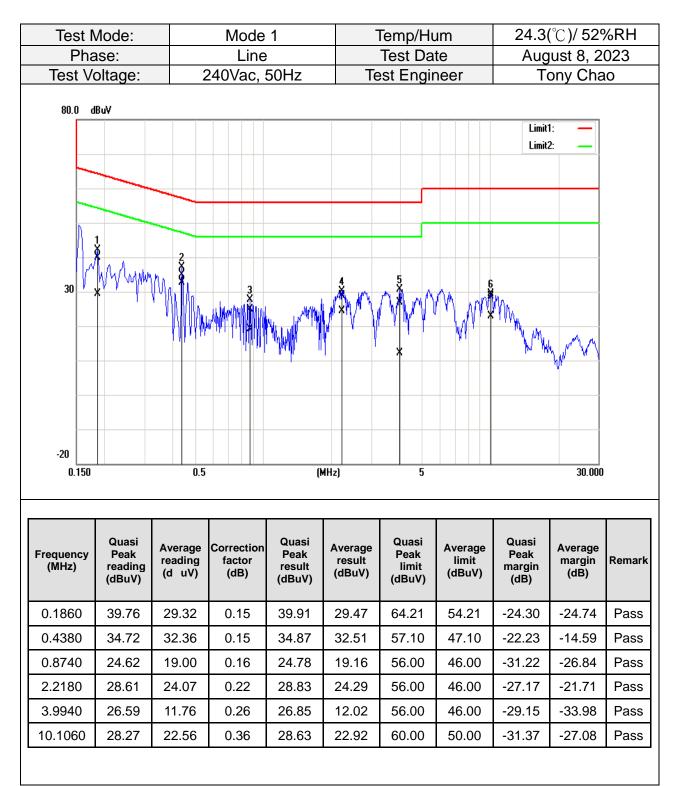


4.1.4 Test Result

<u>Pass.</u>


<u>Test Data</u>

Note: 1. Correction factor = LISN loss + Cable loss.


Page: 16 / 47 Rev.: 03

Note: 1. Correction factor = LISN loss + Cable loss.

Page: 17 / 47 Rev.: 03

Note: 1. Correction factor = LISN loss + Cable loss.

Page: 18 / 47 Rev.: 03

Iest I	Node:		Mode	1	-	Temp/Hu	JM	24.3	(°C)/ 529	%RH
Phase:			Neutra	al	Test Date Augus		gust 8, 2			
Test Vo	oltage:	2	240Vac, \$	50Hz	Te	est Engir	neer	Tony Chao		10
80.0 d	Bu¥							Limit		
-20	hymyllin							YMM MANA MANA		
					MHz)	5			30.000	
0.150		0.5		, t	MIIZJ	5			30.000	
0.150 Frequency (MHz)	Quasi Peak reading dBuV)	0.5 Average reading (dBuV)	Correction factor (dB)	Quasi Peak result (dBuV)	Average result (dBuV)	Quasi Peak limit (dBuV)	Average limit (dBuV)	Quasi Peak margin (dB)	Average margin (dB)	Remark
Frequency	Peak reading	Average reading	factor	Quasi Peak result	Average result	Quasi Peak limit	limit	Peak margin	Average margin	
Frequency (MHz)	Peak reading dBuV)	Average reading (dBuV)	factor (dB)	Quasi Peak result (dBuV)	Average result (dBuV)	Quasi Peak limit (dBuV)	limit (dBuV)	Peak margin (dB)	Average margin (dB)	Remark Pass
Frequency (MHz) 0.1700	Peak reading dBuV) 42.81	Average reading (dBuV) 28.27	factor (dB) 0.19	Quasi Peak result (dBuV) 43.00	Average result (dBuV) 28.46	Quasi Peak limit (dBuV) 64.96	limit (dBuV) 54.96	Peak margin (dB) -21.96	Average margin (dB) -26.50	Remarl Pass Pass
Frequency (MHz) 0.1700 0.4380	Peak reading dBuV) 42.81 36.22	Average reading (dBuV) 28.27 33.98	factor (dB) 0.19 0.19	Quasi Peak result (dBuV) 43.00 36.41	Average result (dBuV) 28.46 34.17	Quasi Peak limit (dBuV) 64.96 57.10	limit (dBuV) 54.96 47.10	Peak margin (dB) -21.96 -20.69	Average margin (dB) -26.50 -12.93	Remarl Pass Pass Pass
Frequency (MHz) 0.1700 0.4380 1.0260	Peak reading dBuV) 42.81 36.22 24.47	Average reading (dBuV) 28.27 33.98 18.06	factor (dB) 0.19 0.19 0.21	Quasi Peak result (dBuV) 43.00 36.41 24.68	Average result (dBuV) 28.46 34.17 18.27	Quasi Peak limit (dBuV) 64.96 57.10 56.00	limit (dBuV) 54.96 47.10 46.00	Peak margin (dB) -21.96 -20.69 -31.32	Average margin (dB) -26.50 -12.93 -27.73	Remark

Note: 1. Correction factor = LISN loss + Cable loss.

Page: 19 / 47 Rev.: 03

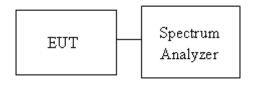
4.26dB BANDWIDTH AND OCCUPIED BANDWIDTH (99%)

4.2.1 Test Limit

According to \$15.247(a)(2)

6 dB Bandwidth :

Limit	Shall be at least 500kHz


Occupied Bandwidth(99%) : For reporting purposes only.

4.2.2 Test Procedure

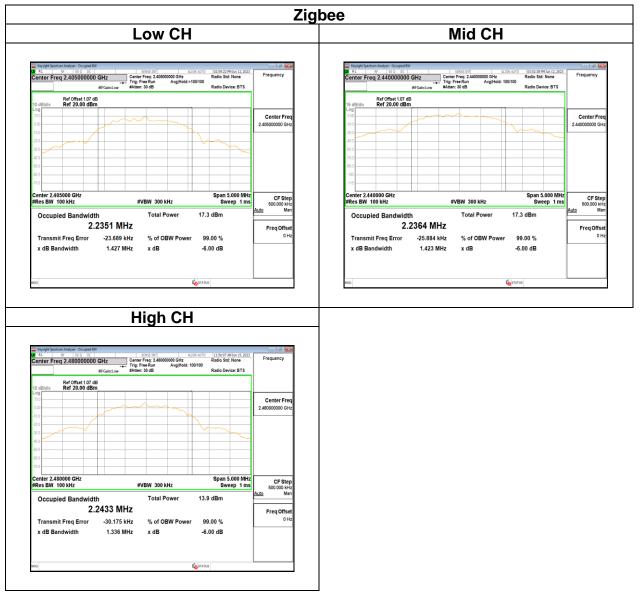
Test method Refer as ANSI C63.10: 2013 clause 6.9.2,

- 1. The EUT RF output connected to the spectrum analyzer by RF cable.
- 2. Setting maximum power transmit of EUT
- 3. SA set RBW = 100kHz, VBW = 300kHz and Detector = Peak, to measurement 6 dB Bandwidth.
- 4. SA set RBW = 1% ~ 5% OBW, VBW = three times the RBW and Detector = Peak, to measurement 99% Bandwidth
- 5. Measure and record the result of 6 dB Bandwidth and 99% Bandwidth in the test report.

4.2.3 Test Setup

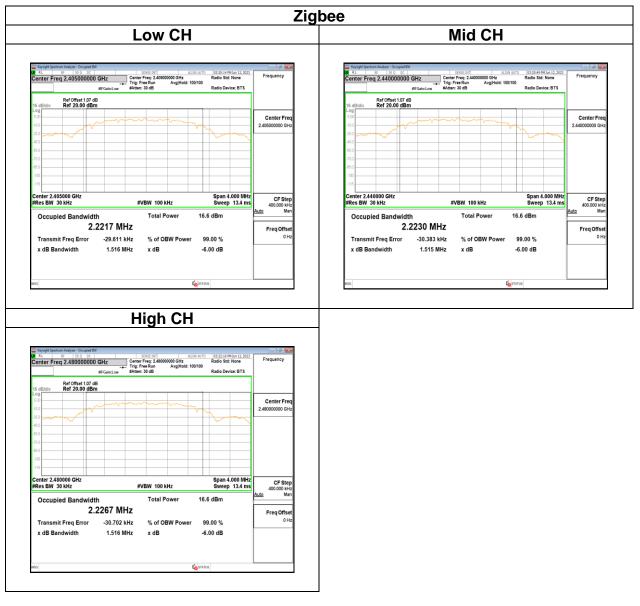
Page: 20 / 47 Rev.: 03

4.2.4 Test Result


Temperature:	23.2 ~ 25.4 ℃	Test date:	June 12 ~ 15, 2023
Humidity:	57 ~ 60% RH	Tested by:	Allen Shen

Test mode: Zigbee / 2405-2480 MHz						
ChannelFrequency (MHz)OBW (99%) (MHz)6dB BW (MHz)6dB limit (kHz)						
Low	2405	2.2217	1.427			
Mid	2440	2.2230	1.423	≥500		
High	2480	2.2267	1.336			

Page: 21 / 47 Rev.: 03


Test Data 6dB BANDWIDTH

Page: 22 / 47 Rev.: 03

Test Data BANDWIDTH (99%)

Page: 23 / 47 Rev.: 03

Report No.: TMWK2305001704KR

4.3 OUTPUT POWER MEASUREMENT

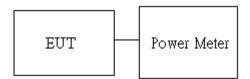
4.3.1 Test Limit

According to §15.247(b),

Peak output power :

For systems using digital modulation in the 2400-2483.5 MHz, and 5725-5850 MHz bands: 1 Watt(30 dBm), base on the use of antennas with directional gain not exceed 6 dBi If transmitting antennas of directional gain greater than 6dBi are used the peak output power the conducted output power from the intentional radiator shall be reduced by the amount in dB that the directional gain of the antenna exceeds 6 dBi. In case of point-to-point operation, the limit has to be reduced by 1dB for every 3 dB that the directional gain of the antenna exceeds 6 dBi.

	Antenna not exceed 6 dBi : 30dBm
Limit	Antenna with DG greater than 6 dBi :
	[Limit = 30 – (DG – 6)]
	Point-to-point operation :


Average output power : For reporting purposes only.

4.3.2 Test Procedure

Test method Refer as ANSI C63.10:2013.

- 1. The EUT RF output connected to the power meter by RF cable.
- 2. Setting maximum power transmit of EUT.
- 3. The path loss was compensated to the results for each measurement.
- 4. Measure and record the result of Peak output power and Average output power in the test report.

4.3.3 Test Setup

Page: 24 / 47 Rev.: 03

4.3.4 Test Result

Temperature:	23.2 ~ 25.4 ℃	Test date:	June 12 ~ 15, 2023
Humidity:	57 ~ 60% RH	Tested by:	Allen Shen

Peak output power :

Zigbee mode:

СН	Frequency (MHz)	Power set	Peak Output Power (dBm)	Required Limit (dBm)
Low	2405	10	10.21	30
Mid	2440	10	10.51	30
High	2480	8	7.09	30

Average output power :

Zigbee mode:

СН	Frequency (MHz)	Power set	Avg. Output Power (dBm)	Required Limit (dBm)
Low	2405	10	10.20	30
Mid	2440	10	10.50	30
High	2480	8	7.02	30

Page: 25 / 47 Rev.: 03

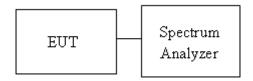
4.4 POWER SPECTRAL DENSITY

4.4.1 Test Limit

According to §15.247(e),

For digitally modulated systems, the power spectral density conducted from the intentional radiator to the antenna shall not be greater than 8 dBm in any 3 kHz band during any time interval of continuous transmission.

Limit


Antenna not exceed 6 dBi : 8dBm
 Antenna with DG greater than 6 dBi
 [Limit = 8 - (DG - 6)]
 Point-to-point operation :

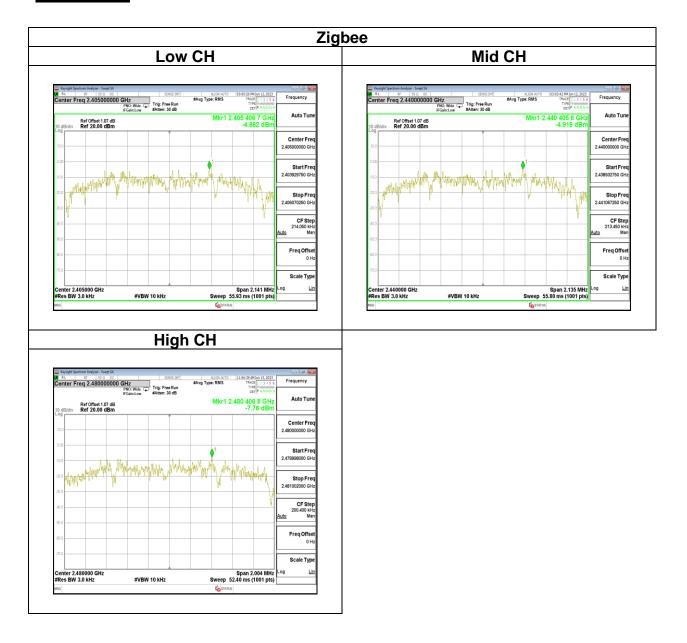
4.4.2 Test Procedure

Test method Refer as ANSI C63.10:2013

- 1. The EUT RF output connected to the spectrum analyzer by RF cable.
- 2. Setting maximum power transmit of EUT
- 3. SA set RBW = 3kHz, VBW = 30kHz, Span = 1.5 times DTS Bandwidth (6 dB BW), Detector = Peak, Sweep Time = Auto and Trace = Max hold.
- 4. The path loss and Duty Factor were compensated to the results for each measurement by SA.
- 5. Mark the maximum level.
- 6. Measure and record the result of power spectral density. in the test report.

4.4.3 Test Setup

Page: 26 / 47 Rev.: 03


4.4.4 Test Result

Temperature:	23.2 ~ 25.4 ℃	Test date:	June 12 ~ 15, 2023
Humidity:	57 ~ 60% RH	Tested by:	Allen Shen

Test mode: Zigbee				
Channel Frequency PPSD (MHz) (dBm)		Limit (dBm)		
Low	2405	-4.862		
Mid	2440	-4.919	8	
High	2480	-7.760		

<u>Test Data</u>

Page: 27 / 47 Rev.: 03

Page: 28 / 47 Rev.: 03

4.5 CONDUCTED BANDEDGE AND SPURIOUS EMISSION

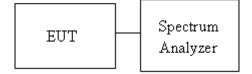
4.5.1 Test Limit

According to §15.247(d),

In any 100 kHz bandwidth outside the authorized frequency band,

Non-restricted bands shall be attenuated at least 20 dB/30 dB relative to the maximum PSD level in 100 kHz by RF conducted or a radiated measurement which fall in the restricted bands, as defined in §15.205(a), must also comply with the radiated emission limits specified in §15.209(a).

4.5.2 Test Procedure

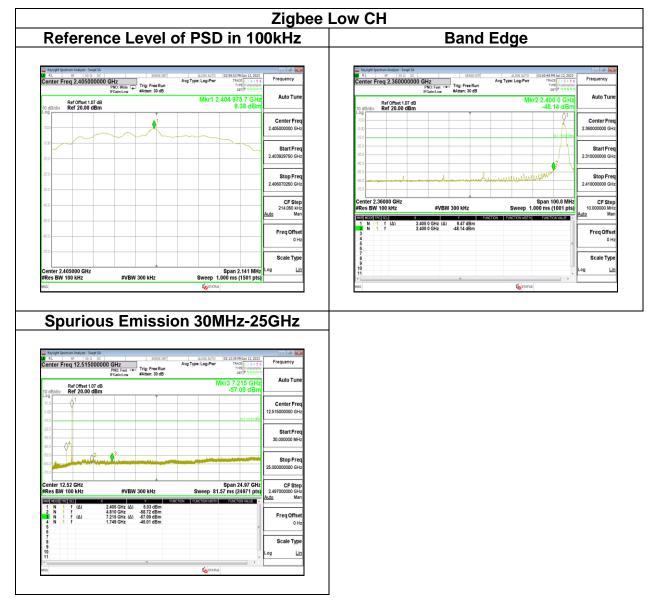

Test method Refer as ANSI C63.10:2013.

1. EUT RF output port connected to the SA by RF cable, and the path loss was compensated to result.

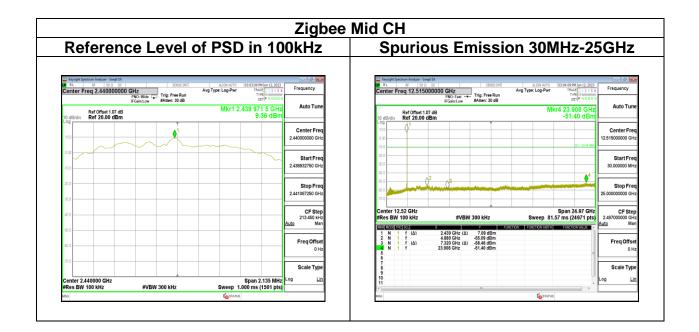
2. SA setting, RBW=100kHz, VBW=300kHz, Detector=Peak, Trace mode = max hold, SWT = Auto.

3. In any 100 kHz bandwidth outside the authorized frequency band, shall be attenuated at least 20 dB relative to the maximum in-band peak PSD level in 100 kHz when conducted power procedure is used. f the transmitter complies with the conducted power limits based on the use of RMS averaging over a time interval, the attenuation required under this paragraph shall be 30 dB instead of 20 dB.

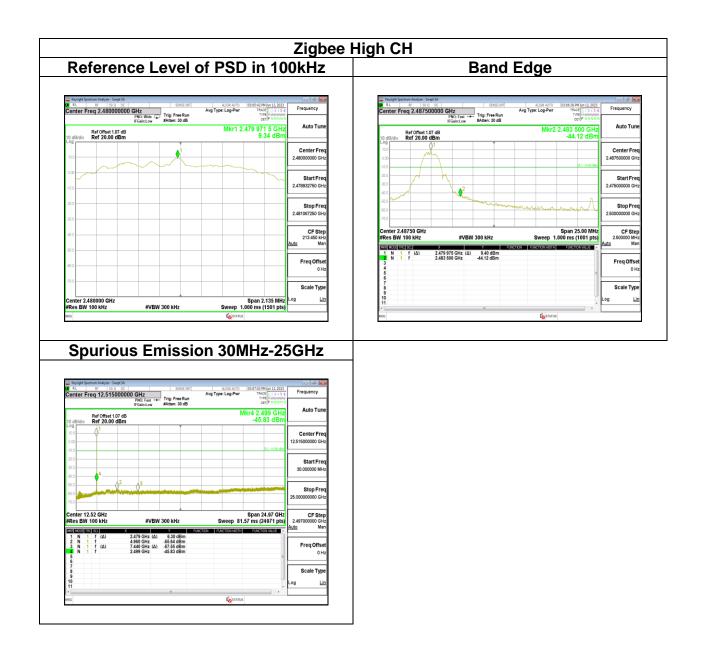
4.5.3 Test Setup



Page: 29 / 47 Rev.: 03


4.5.4 Test Result

Temperature:	23.2 ~ 25.4 ℃	Test date:	June 12 ~ 15, 2023
Humidity:	57 ~ 60% RH	Tested by:	Allen Shen


Test Data

Page: 32 / 47 Rev.: 03

4.6 RADIATION BANDEDGE AND SPURIOUS EMISSION

4.6.1 Test Limit

FCC according to §15.247(d), §15.209 and §15.205

In any 100 kHz bandwidth outside the authorized frequency band, all harmonic and spurious must be least 20 dB below the highest emission level with the authorized frequency band. Radiation emission which fall in the restricted bands must also follow the FCC section 15.209 as below limit in table.

Below 30 MHz

Frequency	Field Strength (microvolts/m)	Magnetic H-Field (microamperes/m)	Measurement Distance (metres)
9-490 kHz	2,400/F (F in kHz)	2,400/F (F in kHz)	300
490-1,705 kHz	24,000/F (F in kHz)	24,000/F (F in kHz)	30
1.705-30 MHz	30	N/A	30

Above 30 MHz

Frequency	Field Strength microvolts/m at 3 metres (watts, e.i.r.p.)	
(MHz)	Transmitters	Receivers
30-88	100 (3 nW)	100 (3 nW)
88-216	150 (6.8 nW)	150 (6.8 nW)
216-960	200 (12 nW)	200 (12 nW)
Above 960	500 (75 nW)	500 (75 nW)

Remark:

Although these tests were performed other than open area test site, adequate comparison measurements were confirmed against 30 m open are test site. Therefore sufficient tests were made to demonstrate that the alternative site produces results that correlate with the ones of tests made in an open field.

Page: 33 / 47 Rev.: 03

4.6.2 Test Procedure

Test method Refer as ANSI C63.10:2013.

1. The EUT is placed on a turntable, Above 1 GHz is 1.5m and below 1 GHz is 0.8m above ground plane. The EUT Configured un accordance with ANSI C63.10: 2013, and the EUT set in a continuous mode.

2. The turntable shall be rotated for 360 degrees to determine the position of maximum emission level. And EUT is set 3m away from the receiving antenna, which is scanned from 1m to 4m above the ground plane to find out the highest emissions. Measurement are made polarized in both the vertical and the horizontal positions with antenna.

3. Span shall wide enough to full capture the emission measured. The SA from 30MHz to 26.5GHz set to the low, Mid and High channels with the EUT transmit.

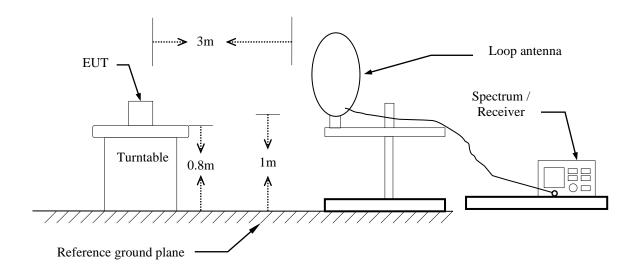
Remark:

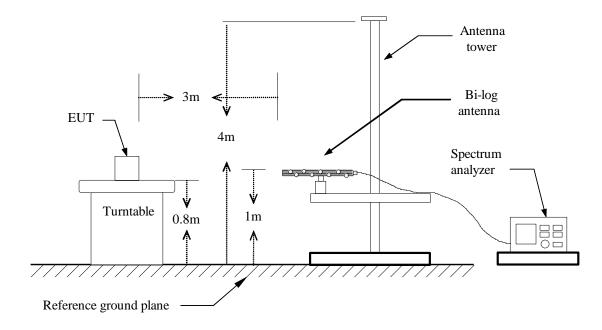
1. Although these tests were performed other than open area test site, adequate comparison measurements were confirmed against 30 m open are test site. Therefore sufficient tests were made to demonstrate that the alternative site produces results that correlate with the ones of tests made in an open field based on KDB 414788.

2. No emission found between lowest internal used/generated frequency to 30MHz (9kHz~30MHz).

- 4. The SA setting following :
 - (1) Below 1G : RBW = 100kHz, VBW ≥ 3 RBW, Sweep = Auto, Detector = Peak, Trace = Max hold.
 - (2) Above 1G :
 - (2.1) For Peak measurement : RBW = 1MHz, VBW ≥ 3 RBW, Sweep = Auto, Detector = Peak, Trace = Max hold.
 - (2.2) For Average measurement : RBW = 1MHz, VBW

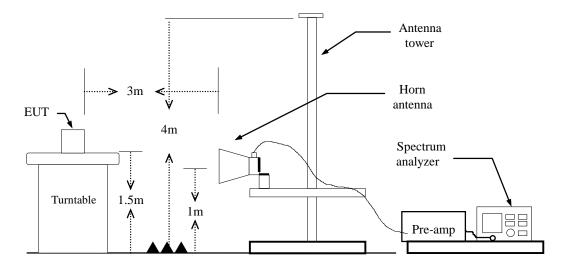
If Duty Cycle \geq 98%, VBW=10Hz.


[·]If Duty Cycle < 98%, VBW≥1/T.


Page: 34 / 47 Rev.: 03

4.6.3 Test Setup

<u>9kHz ~ 30MHz</u>


<u>30MHz ~ 1GHz</u>

Page: 35 / 47 Rev.: 03

Above 1 GHz

Page: 36 / 47 Rev.: 03

4.6.4 Test Result

Band Edge Test Data

Test Mo	de	Zigbee Low CH		Те	Temp/Hum		25.8(°C)/ 62%Rł	
Test Ite	m	Band Edge		Te	Test Date		13, 2023	
Polariz	е		Horizo	ontal	Test	t Engineer	Cze	erny Lin
Detecto	or		Peak / A	verage				
120 Lev	el (dBu)	//m)						
105.0		-			_			
90.0								
75.0								
60.0								
45.0 🟎						ukana arakan sa		
30.0								
15.0								
0 2310 Tr) ace: 1	2428	3.	2546. Freque	266 ncy (MHz		782.	2900
Freq.	Detec	tor	Spect	rum	Factor	Actual	Limit	Margin

Freq.	Detector	Spectrum	Factor	Actual	Limit	Margin
	Mode	Reading Level		FS	@3m	
(MHz)	(PK/QP/AV)	(dBµV)	(dB)	(dBµV/m)	(dBµV/m)	(dB)
2366.52	Average	34.40	4.72	39.13	54.00	-14.87
2386.03	Peak	46.35	4.80	51.15	74.00	-22.85
2405.00	Peak	99.89	4.51	104.41		
2405.00	Average	96.72	4.51	101.23		
2485.07	Average	32.38	4.60	36.97	54.00	-17.03
2494.33	Peak	43.07	4.59	47.67	74.00	-26.33

Page: 37 / 47 Rev.: 03

Test Mo	ode	Zigbee Low CH	Ter	nperature:	25.8(℃)/ 62%RF
Test Ite	em	Band Edge	Т	est Date	June	13, 2023
Polariz	ze	Horizontal	Tes	t Engineer	Cze	rny Lin
Detect	or	Peak / Average				
120 Lev	vel (dBuV/m)					
105.0						
90.0						
75.0						
60.0						
45.0		her shared a strength of the second				
30.0				-		
15.0						
0 2310 Ti	0 242 race: 1		266 Jency (MHz		782.	2900
Freq.	Detector	Spectrum	Factor	Actual	Limit	Margin
iicq.	Mode	Reading Level	1 deter	FS	@3m	margin
(MHz)	(PK/QP/AV)	(dBµV)	(dB)	(dBµV/m)	(dBµV/m)	(dB)
2366.27	Average	37.71	4.73	42.44	54.00	-11.56
2385.78	Peak	49.84	4.80	54.64	74.00	-19.36
0405.00	Peak	103.16	4.51	107.68		
2405.00		100.00	4.51	104.59		
2405.00	Average	100.08	4.51	104.00		
	Average Peak	100.08 42.62	4.55	47.17	74.00	-26.83

Page: 38 / 47 Rev.: 03

Test Mo	bde	Zigbee High CH	Т	emp/Hum	25.8(℃)/ 62%RF
Test Ite) m	Band Edge		Fest Date	June '	13, 2023
Polariz		Horizontal	Tes	st Engineer	Czei	rny Lin
Detect	or	Peak / Average				
	vel (dBuV/m)					
105.0						
90.0						
75.0		<mark> </mark>				
60.0						
45.0		und fland was		the get option of the state of the		
30.0						
15.0						
231 T		28. 2546. Frequ	260 Jency (MH2	64. 2 z)	782.	2900
	race: 1					
Freq.	Detector	Spectrum	Factor	Actual	Limit	Margin
		Spectrum Reading Level	Factor	Actual FS	Limit @3m	Margin
	Detector	-	Factor (dB)			Margin (dB)
Freq.	Detector Mode	Reading Level		FS	@3m	
Freq. (MHz)	Detector Mode (PK/QP/AV)	Reading Level (dBµV)	(dB)	FS (dBµV/m)	@3m (dBµV/m)	(dB)
Freq. (MHz) 2347.52	Detector Mode (PK/QP/AV) Average	Reading Level (dBµV) 32.38	(dB) 4.85	FS (dBµV/m) 37.24	@3m (dBµV/m) 54.00	(dB) -16.76
Freq. (MHz) 2347.52 2358.27	Detector Mode (PK/QP/AV) Average Peak	Reading Level (dBµV) 32.38 42.57	(dB) 4.85 4.80	FS (dBµV/m) 37.24 47.37	@3m (dBµV/m) 54.00 74.00	(dB) -16.76
Freq. (MHz) 2347.52 2358.27 2480.00	Detector Mode (PK/QP/AV) Average Peak Peak	Reading Level (dBµV) 32.38 42.57 96.49	(dB) 4.85 4.80 4.65	FS (dBµV/m) 37.24 47.37 101.14	@3m (dBµV/m) 54.00 74.00	(dB) -16.76

Page: 39 / 47 Rev.: 03

Test Mo	ode	Zigbee High CH	Tei	mperature:	· ·)/ 62%RF
Test Ite		Band Edge	Т	est Date	June 1	13, 2023
Polariz	ze	Horizontal	Tes	st Engineer	Czei	rny Lin
Detect	or	Peak / Average				
120 Lev 105.0 90.0 75.0 60.0 45.0 45.0 45.0	vel (dBuV/m					
15.0						
15.0 0 2310	0 24 race: 1	28. 2546. Frequ	266 Jency (MH2		782.	2900
15.0 0 2310 Tr	race: 1	Frequ	uency (MH)	2)		
15.0 0 2310		Frequ			782. Limit @3m	2900 Margin
15.0 0 2310 Tr	Tace: 1 Detector	Freque Spectrum Reading Level	uency (MH)	z) Actual	Limit	
15.0 2310 Tr Freq. (MHz)	Detector Mode	Freque Spectrum Reading Level	Factor	z) Actual FS	Limit @3m	Margin
15.0 2310 Tr Freq.	Detector Mode (PK/QP/AV	Frequ Spectrum Reading Level (dBµV)	Factor (dB)	z) Actual FS (dBµV/m)	Limit @3m (dBµV/m)	Margin (dB)
15.0 2310 Tr Freq. (MHz) 2352.02	Detector Mode (PK/QP/AV Average	Frequencies Spectrum Reading Level (dBµV) 32.56	Factor (dB) 4.86	 Actual FS (dBµV/m) 37.42 	Limit @3m (dBμV/m) 54.00	Margin (dB) -16.58
15.0 2310 Tr Freq. (MHz) 2352.02 2385.28	Detector Mode (PK/QP/AV Average Peak Peak	Frequencies Spectrum Reading Level (dBµV) 32.56 42.76	Factor (dB) 4.86 4.80	 Actual FS (dBµV/m) 37.42 47.56 	Limit @3m (dBµV/m) 54.00 74.00	Margin (dB) -16.58 -26.44
15.0 2310 Tr Freq. (MHz) 2352.02 2385.28 2480.00	Detector Mode (PK/QP/AV Average Peak	Spectrum Reading Level (dBμV) 32.56 42.76 100.73	Factor (dB) 4.86 4.80 4.65	 Actual FS (dBµV/m) 37.42 47.56 105.38 	Limit @3m (dBµV/m) 54.00 74.00 	Margin (dB) -16.58 -26.44

Page: 40 / 47 Rev.: 03

Below 1GHz

	ode	Mode 2	Т	emp/Hum	24.5(°C	2)/ 61%RI
Test Ite	em	30MHz-1GHz		Test Date	June	17, 2023
Polariz	ze	Vertical	Те	st Engineer	Cze	erny Lin
Detect	or	Peak				
120 Lev	vel (dBuV/m)	•				
105.0						
90.0						
75.0						
60.0						
45.0						
30.0	الشير مرة		a	-		nin an
30.0 15.0	www.wrew	Male Marine	A Hardenbergerer			
15.0	~~~				206	1000
	22	4. 418. Free		12.	806.	1000
15.0	22	24. 418. Fred	61	12.	806.	1000
15.0	Detector	24. 418. Free Spectrum	61	12.	806.	1000 Margin
15.0 0 30		Free	duency (MH	12. z)		
15.0 0 30	Detector	Spectrum Reading Level	duency (MH	12. (z) Actual	Limit	
15.0 0 30	Detector Mode	Spectrum Reading Level	quency (MH	Actual FS	Limit @3m	Margin (dB)
15.0 0 30 Freq. (MHz)	Detector Mode (PK/QP/AV)	Free Spectrum Reading Level (dBµV)	Gruency (MH Factor (dB)	Actual FS (dBµV/m)	Limit @3m (dBµV/m)	Margin (dB) -13.85
15.0 30 Freq. (MHz) 86.94	Detector Mode (PK/QP/AV) Peak	Free Spectrum Reading Level (dBµV) 44.99	Factor (dB) -18.85	Actual FS (dBµV/m) 26.15	Limit @3m (dBµV/m) 40.00	Margin (dB) -13.85 -15.46
15.0 30 Freq. (MHz) 86.94 208.87	Detector Mode (PK/QP/AV) Peak Peak	Free Spectrum Reading Level (dBµV) 44.99 44.11	Factor (dB) -18.85 -16.07	Actual FS (dBµV/m) 26.15 28.04	Limit @3m (dBµV/m) 40.00 43.50	Margin (dB) -13.85 -15.46
15.0 30 Freq. (MHz) 86.94 208.87 288.02	Detector Mode (PK/QP/AV) Peak Peak Peak	Spectrum Reading Level (dBμV) 44.99 44.11 43.54	Factor (dB) -18.85 -16.07 -12.54	Actual FS (dBµV/m) 26.15 28.04 31.01	Limit @3m (dBµV/m) 40.00 43.50 46.00	Margin (dB) -13.85 -15.46 -14.99

Page: 41 / 47 Rev.: 03

Test Mo		Mode 2		Temp/Hum		2)/ 61%RI
Test Ite		30MHz-1GHz		Test Date		17, 2023
Polari		Horizontal	Т	est Engineer	Cze	erny Lin
Detect	tor	Peak				
120	vel (dBuV/m)					
105.0						
90.0						
75.0						
60.0						
45.0						
30.0			1.			
15.0	- Why Marking	and the second				
30	22	4. 418. Free	6 quency (MH	12. iz)	806.	1000
Freq.	Detector	Spectrum	Factor	Actual	Limit	Margin
Freq.	Detector Mode	Spectrum Reading Level	Factor	Actual FS	Limit @3m	Margin
Freq. (MHz)		-	Factor (dB)			Margin (dB)
	Mode	Reading Level		FS	@3m	-
(MHz)	Mode (PK/QP/AV)	Reading Level (dBµV)	(dB)	FS (dBµV/m)	@3m (dBµV/m)	(dB)
(MHz) 82.38	Mode (PK/QP/AV) Peak	Reading Level (dBµV) 44.20	(dB) -18.23	FS (dBμV/m) 25.96	@3m (dBµV/m) 40.00	(dB) -14.04
(MHz) 82.38 168.90	Mode (PK/QP/AV) Peak Peak	Reading Level (dBµV) 44.20 39.76	(dB) -18.23 -13.40	FS (dBµV/m) 25.96 26.36	@3m (dBµV/m) 40.00 43.50	(dB) -14.04 -17.14
(MHz) 82.38 168.90 208.87	Mode (PK/QP/AV) Peak Peak Peak	Reading Level (dBµV) 44.20 39.76 46.14	(dB) -18.23 -13.40 -16.07	FS (dBµV/m) 25.96 26.36 30.06	@3m (dBµV/m) 40.00 43.50 43.50	(dB) -14.04 -17.14 -13.44
(MHz) 82.38 168.90 208.87 288.02	Mode (PK/QP/AV) Peak Peak Peak Peak	Reading Level (dBµV) 44.20 39.76 46.14 51.69	(dB) -18.23 -13.40 -16.07 -12.54	FS (dBµV/m) 25.96 26.36 30.06 39.16	@3m (dBµV/m) 40.00 43.50 43.50 46.00	(dB) -14.04 -17.14 -13.44 -6.84

Page: 42 / 47 Rev.: 03

Above 1 GHz

Test Mo				e Low Cl	-		mp/Hu			、 ,	62%	
Test Ite				armonic			est Dat				3, 202	
Polari				orizontal		Test	t Engir	neer		Czerr	ny Lin	
Detect	tor		Peak	/ Average	e							
120	vel (dBuV	/m)										
105.0												
90.0												
75.0											_	
60.0												
45.0												
30.0												
15.0												
0												
100	U	6100	J.	11200 Free). quency	1630 (MHz)		21	400.	-	6500	
Freq.	Detect	or	Spe	ectrum	Facto	or 🛛	Actu	al	Limit		Marg	jin
	Mode)	Read	ing Level			FS		@3m			
(MHz)	(PK/QP/	AV)	(d	IBμV)	(dB)		(dBµV	/m)	(dBµV/	m)	(dB	;)
4810.00	Peak		4	2.35	0.39	1	42.7	4	74.00		-31.2	26
4810.00	Averag	je	3	34.75	0.39	1	35.1	4	54.00		-18.8	36
7045.00	Peak		4	2.99	5.34		48.3	3	74.00		-25.6	37
7215.00							44.5	7	F 4 00		10.4	
7215.00 7215.00	Averag	je	3	6.23	5.34		41.5	1	54.00		-12.4	43

Remark:

Page: 43 / 47 Rev.: 03

Test Mo		Zigbee Low CH	1	Temp/Hum)/ 62%RF	
Test Ite		Harmonic		Test Date		June 13, 2023	
Polariz		Vertical		est Engineer	Cze	rny Lin	
Detect	or	Peak / Average)				
120 Lev	el (dBuV/m)						
105.0							
90.0							
75.0							
60.0							
45.0							
30.0							
15.0							
0 1000	0 610	0. 11200 Fred	. 16 Juency (Mi	300. 2 Hz)	1400.	26500	
Freq.	Detector Mode	Spectrum Reading Level	Factor	Actual FS	Limit @3m	Margin	
(MHz)	(PK/QP/AV)	(dBµV)	(dB)	(dBµV/m)	(dBµV/m)	(dB)	
4810.00	Peak	42.48	0.39	42.87	74.00	-31.13	
4810.00	Average	34.67	0.39	35.06	54.00	-18.94	
7215.00	Peak	49.01	5.34	54.34	74.00	-19.66	
7215.00	Average	40.60	5.34	45.94	54.00	-8.06	
N/A							
11/7							

Remark:

Page: 44 / 47 Rev.: 03

Test Mo	ode		Zigbe	e Mid Cl	4	Temp		25.8(°(C)/ 62%RH	
Test Ite				armonic		Test			June 13, 2023	
Polariz				rizontal		Test En	igineer	Cze	erny Lin	
Detect	or		Peak	/ Averag	e					
120 Lev	vel (dBuV	/m)								
105.0		-								
90.0										
75.0										
60.0										
45.0			1							
30.0							_			
15.0			_							
0 100										
100	0	6100).	1120 Fre). quency (16300. MHz)	2	1400.	26500	
F	Detect		0	4	Fasta			Limit	N A - u - u - i - u	
Freq.	Detecto	-	•	ectrum ing Level	Factor		ctual FS	@3m	Margin	
(MHz)	(PK/QP/			IBµV)	(dB)		ις βμV/m)	(dBµV/m)	(dB)	
4880.00	Peak	-	•	2.82	0.48		3.30	74.00	-30.70	
4880.00	Averag	je	3	3.40	0.48	3	3.89	54.00	-20.11	
7320.00	Peak		4	4.40	5.48	4	9.88	74.00	-24.12	
7320.00	Averag	je	3	5.36	5.48	4	0.84	54.00	-13.16	
7320.00										

Remark:

Page: 45 / 47 Rev.: 03

Test Mo		Zigbee Mid CH	1	Temp/Hum)/ 62%RF
Test Ite		Harmonic		Test Date		13, 2023
Polariz		Vertical		est Engineer	Czei	rny Lin
Detect	or	Peak / Average	9			
120	vel (dBuV/m)					
105.0						
90.0						
75.0						_
60.0						
45.0						
30.0						
15.0						
0∟ 100	0 610	00. 11200 Fred). 16 quency (Mł	300. 2 iz)	1400.	26500
Freq.	Detector Mode	Spectrum Reading Level	Factor	Actual FS	Limit @3m	Margin
(MHz)	(PK/QP/AV)	(dBµV)	(dB)	(dBµV/m)	(dBµV/m)	(dB)
4880.00	Peak	44.33	0.48	44.81	74.00	-29.19
	Average	35.69	0.48	36.17	54.00	-17.83
4880.00	Deals	46.58	5.48	52.06	74.00	-21.94
4880.00 7320.00	Peak		F 40	42.52	54.00	44.40
	Average	37.04	5.48	42.52	04.00	-11.48
7320.00		37.04	5.48	42.52		-11.48

Remark:

Page: 46 / 47 Rev.: 03

Test Mo	ode	Zigbee High Cl	-	Temp/Hum	25.8(℃)/ 62%RH
Test Ite	em	Harmonic		Test Date	June	13, 2023
Polariz	ze	Horizontal		est Engineer	Cze	rny Lin
Detect	or	Peak / Average	e			
120	/el (dBuV/m)					
105.0						
90.0						
75.0						
60.0						
45.0						
30.0						
15.0						
9	0 610	0. 11200		300. 2	1400.	26500
100	0 010	Free	quency (MH	iz)	1400.	20300
Freq.	Detector	Spectrum	Factor	Actual	Limit	Margin
	Mode	Reading Level		FS	@3m	
(MHz)	(PK/QP/AV)	(dBµV)	(dB)	(dBµV/m)	(dBµV/m)	(dB)
4960.00	Peak	42.68	0.65	43.33	74.00	-30.67
	Average	32.86	0.65	33.50	54.00	-20.50
4960.00			F F0	47.09	74.00	-26.91
4960.00 7440.00	Peak	41.53	5.56	47.09	74.00	20.01
	Peak Average	41.53 31.37	5.56	36.93	54.00	-17.07

Remark:

Page: 47 / 47 Rev.: 03

Test Mo	ode	Zigbee High Cl	H	Temp/Hum	25.8(℃)/ 62%RH	
Test Ite		Harmonic		Test Date		13, 2023	
Polariz		Vertical		est Engineer	Cze	Czerny Lin	
Detect	or	Peak / Average	e				
120 Lev	vel (dBuV/m)						
105.0							
90.0							
75.0							
60.0					_		
45.0							
30.0							
15.0							
9	0 610				1400.	26500	
		Free	quency (Mi	HZ)			
Freq.	Detector	Spectrum	Factor	Actual	Limit	Margin	
	Mode	Reading Level		FS	@3m		
(MHz)	(PK/QP/AV)	(dBµV)	(dB)	(dBµV/m)	(dBµV/m)	(dB)	
4960.00	Peak	45.56	0.65	46.21	74.00	-27.80	
4960.00	Average	37.37	0.65	38.02	54.00	-15.99	
7440.00	Peak	41.54	5.56	47.10	74.00	-26.90	
7440.00	Average	32.26	5.56	37.82	54.00	-16.18	
N/A							

Remark:

1. Measuring frequencies from 1 GHz to the 10th harmonic of highest fundamental frequency.

--End of Test Report--