

UL INTERNATIONAL GERMANY GMBH Hedelfinger Str. 61 70327 Stuttgart, Germany STU.CTECHLab@ul.com

ISSUE DATE: 16 NOVEMBER 2022

This page has been left intentionally blank.

# **Table of Contents**

| 1. Customer Information                               | 4  |
|-------------------------------------------------------|----|
| 1.1. Applicant Information                            | 4  |
| 1.2. Manufacturer Information                         | 4  |
| 2 Summary of Testing                                  | 5  |
| 2.1 General Information                               | 5  |
| Location                                              | 5  |
| Date information                                      | 5  |
| 2.2 Summary of Test Results                           | 6  |
| 2.3. Methods and Procedures                           | 6  |
| 2.4. Deviations from the Test Specification           | 6  |
| 3 Equipment Under Test (FUT)                          | 7  |
| 3.1 Identification of Equipment Under Test (EUT)      | 7  |
| 3.2. Description of EUT                               | 7  |
| 3.3. Modifications Incorporated in the EUT            | 7  |
| 3.4. Additional Information Related to Testing        | 8  |
| 3.5. Description of Available Antenna                 | 8  |
| 3.6. Support Equipment                                | 8  |
| A. Support Equipment (In-house)                       | 8  |
| B. Support Equipment (Manufacturer supplied)          | 8  |
| 4. Operation and Monitoring of the EUT during Testing | 9  |
| 4.1. Operating Modes                                  | 9  |
| 4.2. Configuration and Peripherals                    | 9  |
| 5. Measurements, Examinations and Derived Results     | 10 |
| 5.1. General Comments                                 | 10 |
| 5.2. Test Results                                     | 11 |
| 5.2.1. Transmitter Maximum (Peak) Output Power        | 11 |
| 5.2.2. Transmitter Radiated Output Power              | 13 |
| 6. Measurement Uncertainty                            | 15 |
| 7. Used equipment                                     | 16 |
| 8. Report Revision History                            | 17 |



## **<u>1. Customer Information</u>**

## **1.1.Applicant Information**

| Company Name:           | Signify (China) Investment Co, Ltd                |  |
|-------------------------|---------------------------------------------------|--|
| Company Address:        | Building 9, No.888, Tianlin Road, 200233 Shanghai |  |
| Contact Person:         | Mr. Tim Su                                        |  |
| Contact E-Mail Address: | : Tim.su@signify.com                              |  |
| Contact Phone No.:      | +86 13482810669                                   |  |

# **1.2.Manufacturer Information**

| Company Name:           | Signify (China) Investment Co, Ltd                |  |
|-------------------------|---------------------------------------------------|--|
| Company Address:        | Building 9, No.888, Tianlin Road, 200233 Shanghai |  |
| Contact Person:         | Mr. Tim Su                                        |  |
| Contact E-Mail Address: | Tim.su@signify.com                                |  |
| Contact Phone No.:      | +86 13482810669                                   |  |



# 2. Summary of Testing

## 2.1. General Information

### Applied Standards

| Specification Reference: | 47CFR15.247                                                                                                                |
|--------------------------|----------------------------------------------------------------------------------------------------------------------------|
| Specification Title:     | Code of Federal Regulations Volume 47 (Telecommunications):<br>Part 15 Subpart C (Intentional Radiators) – Sections 15.247 |

### **Location**

| Location of Testing:    | UL International Germany GmbH<br>Hedelfinger Str. 61<br>70327 Stuttgart |
|-------------------------|-------------------------------------------------------------------------|
|                         | Germany                                                                 |
| Test Firm Registration: | 399704                                                                  |

### Date information

| Order Date:   | 20 January 2022                     |  |
|---------------|-------------------------------------|--|
| EUT arrived:  | 14 September 2022                   |  |
| Test Dates:   | 22 September 2022 & 28 October 2022 |  |
| EUT returned: | -/-                                 |  |



### 2.2. Summary of Test Results

| Clause                                     | Measurement             |
|--------------------------------------------|-------------------------|
| Part 15.247(b)(3) /<br>ANSI C63.10 Annex G | Antenna Gain Masurement |

#### Results:

| Frequency<br>(MHz) | Condcuted<br>Output Power<br>(dBm) | Radiated<br>Output Power<br>(dBm) | Antenna Gain<br>(dBi) |
|--------------------|------------------------------------|-----------------------------------|-----------------------|
| 2405               | 6.32                               | 6.87                              | 0.55                  |
| 2480               | 6.25                               | 6.23                              | -0.02                 |

#### Notes:

1. Anenna Gain in dBd was calculated in accordance with ANSI C63.10 G.3:

 $G\tau = ERP/EIRP - P\tau + Lc$ 

ERP/EIRP = PT + GT - Lc

Lc is ignored since there is no cable connected between transmitter and antenna.

2. The calculated Antenna Gain is in dBi, since the correction factors used in the measurement of Radiated ouput power were also calculated by considering the Antenna dBi values.

#### 2.3. Methods and Procedures

| Reference: | ANSI C63.10-2013                                                                                                                                                                               |
|------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| Title:     | American National Standard of Procedures for Compliance Testing of<br>Unlicensed Wireless Devices                                                                                              |
| Reference: | KDB 558074 D01 DTS Meas Guidance v05r02 April 2, 2019                                                                                                                                          |
| Title:     | Guidance for compliance measurements on Digital Transmission System,<br>Frequency Hopping Spread Spectrum System, and Hybrid System Devices<br>Operating Under Section 15.247 of the FCC rules |

### 2.4. Deviations from the Test Specification

For the measurements contained within this test report, there were no deviations from, additions to, or exclusions from the test specification identified above.

# 3. Equipment Under Test (EUT)

### 3.1. Identification of Equipment Under Test (EUT)

| Brand Name:                | Philips                                      |
|----------------------------|----------------------------------------------|
| Model Name or Number:      | 9290030171A with integral Inverted F antenna |
| Test sample Serial Number: | DUT 3 (Radiated Test sample)                 |
| Hardware Version:          | 73405200                                     |
| Software Version:          | 73781400                                     |
| FCC ID:                    | 2AGBW9290030171AX                            |

| Brand Name:                | Philips                                      |
|----------------------------|----------------------------------------------|
| Model Name or Number:      | 9290030171A with integral Inverted F antenna |
| Test sample Serial Number: | DUT 11 (Radiated Test sample)                |
| Hardware Version:          | 73405200                                     |
| Software Version:          | 73781400                                     |
| FCC ID:                    | 2AGBW9290030171AX                            |

| Brand Name:                | Philips                                          |
|----------------------------|--------------------------------------------------|
| Model Name or Number:      | 9290030171A                                      |
| Test sample Serial Number: | DUT 1 (Conducted Test sample with SMA connector) |
| Hardware Version:          | 73405200                                         |
| Software Version:          | 73781400                                         |
| FCC ID:                    | 2AGBW9290030171AX                                |

| Brand Name:                | Philips                                           |
|----------------------------|---------------------------------------------------|
| Model Name or Number:      | 9290030171A                                       |
| Test sample Serial Number: | DUT 10 (Conducted Test sample with SMA connector) |
| Hardware Version:          | 73405200                                          |
| Software Version:          | 73781400                                          |
| FCC ID:                    | 2AGBW9290030171AX                                 |

## 3.2. Description of EUT

The equipment under test was a lightning control module with Model No. 9290030171A with integral Inverted F antenna, supporting ZigBee (IEEE 802.15.4) operations in 2.4 - 2.4835 GHz ISM band.

## 3.3. Modifications Incorporated in the EUT

No modifications were applied to the EUT during testing.

### 3.4. Additional Information Related to Testing

| Technology Tested:           | ZigBee (IEEE 802.15.4) /<br>(Digital Transmission System) |                                   |                    |  |
|------------------------------|-----------------------------------------------------------|-----------------------------------|--------------------|--|
| Equipment Classification:    | Digital Transmiss                                         | Digital Transmission System (DTS) |                    |  |
| Type of Unit:                | Transceiver                                               |                                   |                    |  |
| Operating Frequency Range:   | 2405 MHz to 2480 MHz                                      |                                   |                    |  |
| Transmit Channels Tested:    | Channel ID                                                | RF Channel<br>Number              | Frequency<br>(MHz) |  |
|                              | Bottom                                                    | 11                                | 2405               |  |
|                              | Тор                                                       | 26                                | 2480               |  |
| Power Supply Requirement(s): | 3 V DC via Interr<br>Or via External p                    | al battery<br>ower supply         |                    |  |

### 3.5. Description of Available Antenna

The radio utilizes an Integrated, inverted F antenna with maximum measured gain stated below. The measured conducted peak output power was subtracted from the measured radiated peak EIRP to obtain the antenna gain in dBi.

| Antenna Details  | Antenna Type       | Frequency<br>(MHz) | Antenna Gain<br>(dBi) |
|------------------|--------------------|--------------------|-----------------------|
| Integral Antonna | Inverted E Antonno | 2405               | 0.55                  |
| integral Antenna | Inverted F Antenna | 2480               | -0.02                 |

### 3.6. Support Equipment

The following support equipment was used to exercise the EUT during testing:

#### A. Support Equipment (In-house)

| ltem | Description                      | Brand Name | Model Name or<br>Number | Serial Number |
|------|----------------------------------|------------|-------------------------|---------------|
| 1    | Laboratory AC/DC<br>Power Supply | Aim - TTi  | CPX400S                 | 507111        |

### **B. Support Equipment (Manufacturer supplied)**

| ltem | Description | Brand Name | Model Name or<br>Number | Serial Number |
|------|-------------|------------|-------------------------|---------------|
| 1    | -/-         | -/-        | -/-                     | -/-           |



## 4. Operation and Monitoring of the EUT during Testing

### 4.1. Operating Modes

The EUT was tested in the following operating mode(s):

Zigbee Test Mode: Continuously transmitting modulated carrier with combination of

- Data Rate: 250 kbps
- Payload Type: PRBS9
- Power Settings (MAX PWR): 6 dBm
- o Channels: Bottom / Top

### 4.2. Configuration and Peripherals

The EUT was tested in the following configuration(s):

#### EUT Power Supply:

• The EUTwas powered with a 3V DC via external power supply.

#### Test Mode Activation:

• The EUT was prepared to transmit continuously with max power when powered. Each EUT was configured to a single channel.

#### **Conducted Measurements:**

 All conducted measurements were carried out by using the EUT RF sample with SMA connector. The SMA RF cable's attenuation (maximum 0.5 dB@2.4GHz) was added to as a reference level offset to each of the conducted plots.

#### **Radiated Measurements:**

- All radiated measurements were carried out by using the EUT Radiated sample.
- Before starting final radiated measurements "worst case verification" with the EUT in Standing, Laying and 45° tilting position was performed.
- The EUT with its Integral antenna in standing position was found out to be the worst-case. Therefore, this report includes relevant test results
- The radiated measurements above 30 MHz were performed with the EUT positioned on the turn table and rotating 360 degrees while the antenna height varies from 1 to 4 m over the measurement frequency range to find the maximum output power.



## 5. Measurements, Examinations and Derived Results

### 5.1. General Comments

Measurement uncertainties are evaluated in accordance with current best practice. Our reported expanded uncertainties are based on standard uncertainties, which are multiplied by an appropriate coverage factor to provide a statistical confidence level of approximately 95%. Please refer to Section 6 *Measurement Uncertainty* for details.

In accordance with DAkkS requirements all the measurement equipment is on a calibration schedule. All equipment was within the calibration period on the date of testing.



### 5.2. Test Results

### 5.2.1. Transmitter Maximum (Peak) Output Power

### Test Summary:

| Test Engineer:             | Muhammad Faiq Khan            | Test Date:           | 22 September 2022 |
|----------------------------|-------------------------------|----------------------|-------------------|
| Test Sample Serial Number: | DUT 1 and DUT 10 (Conducted T | Test samples with Sl | MA connector)     |
| Test Site Identification   | SR 9                          |                      |                   |

| FCC Reference:    | Part 15.247(b)(3)                                                           |
|-------------------|-----------------------------------------------------------------------------|
| Test Method Used: | FCC KDB 558074 Section 8.3.1.1 referencing<br>ANSI C63.10 Sections 11.9.1.1 |

#### **Environmental Conditions:**

| Temperature (°C):      | 24.3 |
|------------------------|------|
| Relative Humidity (%): | 36.1 |

#### Notes:

- 1. The spectrum analyser resolution bandwidth was set to 3 MHz and video bandwidth of 10 MHz. A peak detector was used, sweep time was set to auto and trace mode was Max Hold. The span was set to 10 MHz. A marker was placed at the peak of the signal and the results recorded in the table below.
- 2. The RF port on the EUT was connected to the spectrum analyser using suitable attenuation and RF cable. The measured values take into consideration the external attenuation correction factors.
  - The SMA connector with RF Cable conncted to the EUT with maximum attenuation of 0.5 dB at the tested frequencies.
  - The RF cable from the EUT to Analyzer with maximum attenuation of 0.5 dB at the tested frequencies including the 10 dB attenuator at the input of Spectrum Analyzer

Therefore, total a reference level offset 11.0 dB was added to each of the at the tested frequencies conducted plots.

### Test Setup:



**TEST REPORT VERSION 1.0** 

### Transmitter Maximum (Peak) Output Power (continued)

### Results :

| Channel | Conducted Peak Power<br>(dBm) |
|---------|-------------------------------|
| Bottom  | 6.32                          |
| Тор     | 6.25                          |

### Plots :



#### **Bottom Channel**

| Spectrum                               |                                |           |            |      | Ē                           |
|----------------------------------------|--------------------------------|-----------|------------|------|-----------------------------|
| Ref Level 25.00 dBm                    | Offset 11.00 dB<br>SWT 32.1 ms | RBW 3 MHz | Mode Sween |      | ( *                         |
| 1Pk View                               |                                |           | mode encop |      |                             |
| 20 dBm                                 |                                |           | M1[1]      |      | 6.25 dBm<br>2.479380960 GHz |
| 10 dBm                                 |                                |           |            |      |                             |
| 0 dBm                                  |                                | +         |            |      |                             |
| -10 dBm                                |                                | +         |            |      |                             |
| -20 dBm                                |                                |           |            |      |                             |
| -30 dBm                                |                                | +         |            |      |                             |
| -40 dBm                                |                                |           |            |      |                             |
| -50 dBm                                |                                |           |            |      |                             |
| -60 dBm                                |                                |           |            |      |                             |
| -70 dBm                                |                                |           |            |      |                             |
| CF 2.48 GHz                            |                                | 32001 pt  | s          |      | Span 10.0 MHz               |
| Marker<br>Type Ref Trc                 | X-value                        | Y-value   | Function   | Fund | ction Result                |
|                                        | 2.47930090 302                 | 0.25 000  | Measuring  |      | 22.09.2022                  |
| 14186885<br>Date: 22.SEP.2022 15:12:31 | 1                              |           |            |      |                             |

#### **Top Channel**

#### 5.2.2. Transmitter Radiated Output Power

#### Test Summary:

| Test Engineer:             | Muhammad Faiq Khan                     | Test Date: | 28 October 2022 |
|----------------------------|----------------------------------------|------------|-----------------|
| Test Sample Serial Number: | DUT 3 and DUT11 (Radiated Test sample) |            |                 |
| Test Site Identification   | SR 1/2                                 |            |                 |

| FCC Reference:    | Part 15.247(b)(3)                                                                 |
|-------------------|-----------------------------------------------------------------------------------|
| Test Method Used: | FCC KDB 558074 Section 8.3.1.1 referencing<br>ANSI C63.10 Sections 6.5 & 11.9.1.1 |

#### **Environmental Conditions:**

| Temperature (°C):      | 22.1 |
|------------------------|------|
| Relative Humidity (%): | 56.3 |

#### Notes:

- 1. The spectrum analyser resolution bandwidth was set to 1 MHz and video bandwidth of 3 MHz. A peak detector was used, sweep time was set to auto and trace mode was Max Hold. The span was set to 10 MHz. A marker was placed at the peak of the signal and the results recorded in the table below.
- 2. Before starting final radiated measurements "worst case verification" with the EUT in Standing-position & Laying-position was performed by Lab.
- 3. The measurements are therefore done at worst-case position i.e EUT in standing position w.r.t to receiver Antenna, so as to give the maximum output power results.
- 4. The correction factors (offset) used in the measurement of Radiated ouput power were calculated by considering the Antenna dBi values.

#### Test Setup:



**TEST REPORT VERSION 1.0** 

#### Transmitter Radiated Output Power (continued)

## Results :

| Channel | Radiated Peak Power<br>(dBm) |  |
|---------|------------------------------|--|
| Bottom  | 6.87                         |  |
| Тор     | 6.23                         |  |

### Plots :



#### **Bottom Channel**







## 6. Measurement Uncertainty

The expression of uncertainty of a measurement result allows realistic comparison of results with reference values and limits given in specifications and standards.

The uncertainty of the result may need to be taken into account when interpreting the measurement results.

The reported expanded uncertainties below are based on a standard uncertainty multiplied by an appropriate coverage factor such that a confidence level of approximately 95% is maintained. For the purposes of this document "approximately" is interpreted as meaning "effectively" or "for most practical purposes".

| Measurement Type                    | Confidence Level<br>(%) | Calculated<br>Uncertainty |
|-------------------------------------|-------------------------|---------------------------|
| Conducted Maximum Peak Output Power | 95%                     | ±0.59 dB                  |
| Radiated Spurious Emissions         | 95%                     | ±3.10 dB                  |

The methods used to calculate the above uncertainties are in line with those recommended within the various measurement specifications. Where measurement specifications do not include guidelines for the evaluation of measurement uncertainty the published guidance of the appropriate accreditation body is followed.



ISSUE DATE: 16 NOVEMBER 2022

**TEST REPORT VERSION 1.0** 

## 7. Used equipment

| ID      | Manufacturer                        | Туре                            | Model        | Serial                | Calibration<br>Date | Cal. Cycle<br>(months) |
|---------|-------------------------------------|---------------------------------|--------------|-----------------------|---------------------|------------------------|
| 1       | Rohde & Schwarz                     | Antenna, Loop                   | HFH2-Z2      | 831247/012            | 10/07/2020          | 36                     |
| 377     | BONN Elektronik                     | Amplifier, Low Noise Pre        | BLMA 0118-1A | 025294B               | 13/07/2022          | 12                     |
| 460     | Deisel                              | Turntable                       | DT 4250 S    | n/a                   | n/a                 | n/a                    |
| 452     | Schwarzbeck                         | Antenna, Trilog<br>Broadband    | VULB 9168    | 9168-240              | 02/09/2020          | 36                     |
| 496     | Rohde & Schwarz                     | Antenna, log periodical         | HL050        | 100297                | 05/08/2020          | 36                     |
| 587     | Maturo                              | antenna mast, tilting           | TAM 4.0-E    | 011/7180311           | n/a                 | n/a                    |
| 588     | Maturo                              | Controller                      | NCD          | 029/7180311           | n/a                 | n/a                    |
| 669     | Rohde & Schwarz                     | EMI Test Receiver               | ESW 44       | 103087                | 03/02/2022          | 12                     |
| 608     | Rohde & Schwarz                     | Switch Matrix                   | OSP 120      | 101227                | lab verification    | n/a                    |
| 628     | Maturo                              | Antenna mast                    | CAM 4.0-P    | 224/19590716          | n/a                 | n/a                    |
| 629     | Maturo                              | Kippeinrichtung                 | KE 2.5-R-M   | MAT002                | n/a                 | n/a                    |
| -/-     | Testo                               | Thermo-Hygrometer               | 608-H1       | 01                    | lab verification    | n/a                    |
| 1603665 | Siemens<br>Matsushita<br>Components | semi-anechoic chamber<br>SR1/ 2 | -/-          | B83117-A1421-<br>T161 | n/a                 | n/a                    |

#### Test site: SR 1/2

### Test site: SR 9

| ID      | Manufacturer                        | Туре                  | Model                 | Serial                | Calibration<br>Date | Cal. Cycle<br>(months) |
|---------|-------------------------------------|-----------------------|-----------------------|-----------------------|---------------------|------------------------|
| 445     | Huber & Suhner                      | RF Attenuator (10 dB) | 6810.17.AC            |                       | lab verification    | 12                     |
| 637     | Rohde &<br>Schwarz                  | Spectrum Analyzer     | FSV40                 | 101587                | 15/07/2022          | 12                     |
| -/-     | Huber+Suhner                        | RF Cable -OSP120-DUT1 | ST18/SMAm/S<br>MAm/72 | 605505                | lab verification    | n/a                    |
| -/-     | Testo                               | Thermo-Hygrometer     | 608-H1                | 07                    | lab verification    | n/a                    |
| 1603668 | Siemens<br>Matsushita<br>Components | shielded room         |                       | B83117-<br>B1422-T161 | n/a                 | n/a                    |



# 8. Report Revision History

| Version | Revision Details |        |                 |
|---------|------------------|--------|-----------------|
| Number  | Page No(s)       | Clause | Details         |
| 1.0     | 17               | -      | Initial Version |

--- END OF REPORT ---

