

RF Exposure Evaluation Declaration

Product Name	:	Hue Outdoor light strip 5m
Model No.	:	9290022891A
FCC ID	:	2AGBW9290022891AX
IC	:	20812-2891AX

- Applicant : Signify (China) Investment Co., Ltd.
- Address : Building no.9, Lane 888, Tianlin Road, Minhang District, Shanghai 200233, China

Date of Receipt	:	Sep. 30, 2019
Test Date	:	Oct. 08, 2019 ~ Nov. 04, 2019
Issued Date	:	Dec. 02, 2019
Report No.	:	1992204R-RF-US-P20V01
Report Version	:	V1.0

The test results presented in this report relate only to the object tested.

This report shall not be reproduced, except in full, without the written approval of the Issuing CB Testing Laboratory.

The measurement result is considered in conformance with the requirement if it is within the prescribed limit, It is not necessary to calculate the uncertainty associated with the measurement result.

This report is not used for social proof in China (or Mainland China) market.

Test Report Certification Issued Date : Dec. 02, 2019

Issued Date : Dec. 02, 2019 Report No. : 1992204R-RF-US-P20V01

Product Name	: Hue Outdoor light strip 5m							
Applicant	Signify (China) Investment Co., Ltd.							
Address	Building no.9, Lane 888, Tianlin Road, Minhang District, Shanghai 200233, China							
Manufacturer	: Signify (China) Investment Co., Ltd.							
Address	Building no.9, Lane 888, Tianlin Road, Minhang District, Shanghai 200233, China							
Model No.	: 9290022891A							
FCC ID	: 2AGBW9290022891AX							
IC	: 20812-2891AX							
Brand Name	: PHILIPS							
EUT Voltage	: 100-120 Vac, 50-60 Hz							
Test Voltage	: AC 120V/60Hz							
Applicable Standard	: KDB 447498D01V06							
	FCC Part1.1310							
	RSS-102: Issue 5, 2015							
Test Result	Complied							
Performed Location	 DEKRA Testing & Certification (Suzhou) Co., Ltd. No.99 Hongye Rd., Suzhou Industrial Park, Suzhou, 215006, Jiangsu, China TEL: +86-512-6251-5088 / FAX: +86-512-6251-5098 FCC Designation Number: CN1199 ISED CAB identifier: CN0040 							
Documented By	Kitty Li							
	(Project Assistant: Kitty Li)							
Reviewed By	Frankhe							
	(Senior Engineer: Frank He)							
Approved By	Jack shang							
	(Engineer Supervisor: Jack Zhang)							

1. RF Exposure Evaluation

1.1. Limits

According to FCC 1.1310: The criteria listed in the following table shall be used to evaluate the environment impact of human exposure to radio frequency (RF) radiation as specified in 1.1307(b)

LIMITS FOR MAXIMUM PERMISSIBLE EXPOSURE (MPE)

_	Electric	Magnetic	Power	Average		
Frequency Range (MHz)	Field Strength	Field Strength	Density (mW/cm2)	Time (Minutes)		
(V/m) (A/m) (A/m) (A) Limits for Occupational/ Control Exposures						
300-1500			F/300	6		
1500-100,000			5	6		
(B) Limits for General Population/ Uncontrolled Exposures						
300-1500			F/1500	6		
1500-100,000			1	30		

F= Frequency in MHz

Friis Formula

Friis transmission formula: $Pd = (Pout^{*}G)/(4^{*}pi^{*}r^{2})$

Where

 $Pd = power density in mW/ cm^2$

Pout = output power to antenna in mW

G = gain of antenna in linear scale

Pi = 3.1416

R = distance between observation point and center of the radiator in cm

Pd is the limit of MPE, 1 mW/cm². If we know the maximum gain of the antenna and the total power input to the antenna, through the calculation, we will know the distance r where the MPE limit is reached.

According to RSS 102 Issue 5: The criteria listed in the following table shall be used to evaluate the environment impact of human exposure to radio frequency (RF) radiation as specified in RSS 102 Clause 4

LIMITS FOR MAXIMUM PERMISSIBLE EXPOSURE (MPE)

Frequency Range (MHz)	Electric Field (V/m rms)	Magnetic Field (A/m rms)	Power Density (W/m ²)	Reference Period (minutes)	
$0.003 - 10^{21}$	83	90	1990 - 19900 - 19900 - 19900 - 1990 - 1990 - 1990 - 19900 - 1990 - 1990 - 1990	Instantaneous*	
0.1-10	-	0.73/ f		6**	
1.1-10	$87/f^{0.5}$	-	648 1	6**	
10-20			2	6	
20-48	58.07/ f ^{0.25}	$0.1540/f^{0.25}$	$8.944/f^{0.5}$	6	
48-300	22.06	22.06 0.05852		6	
300-6000	$3.142 f^{0.3417}$	$0.008335 f^{0.3417}$	$0.02619f^{0.6834}$	6	
6000-15000	61.4	0.163	10	6	
15000-150000	61.4	0.163	10	$616000/f^{1.2}$	
150000-300000	$0.158 f^{0.5}$	$4.21 \times 10^{-4} f^{0.5}$	$6.67 \ge 10^{-5} f$	616000/ f ^{1.2}	
Note: f is frequency *Based on nerve stin ** Based on specific	in MHz.		: (A		

1.2. Test Procedure

Software provided by client enabled the EUT to transmit and receive data at lowest, middle and highest channel individually.

The temperature and related humidity: 18° C and 78° RH.

1.3. Test Result of RF Exposure Evaluation

Product	:	Hue Outdoor light strip 5m				
Test Item	•	RF Exposure Evaluation				
Test Site	:	AC-6				

• Antenna Information:

Antenna manufacturer	N/A					
Antenna Delivery	\boxtimes	1*TX+1*RX 🗌 2*TX+2*RX 🔲 3*TX+3*RX				
Antenna technology	\square	SISO				
		MIMO		Basic		
				CDD		
				Beam-forming		
Antenna Type		External] Dipole		
		Internal		PIFA		
			\boxtimes	PCB		
				Ceramic Chip Antenna		
				Stamping Antenna		
				Metal plate type F antenna		
				Monopole antenna		
Antenna Gain	2.99 dBi					

• Power Density:

The tune-up power is 1dB, so the maximum conducted power of BT we used to calculate RF exposure is 10.31dBm.

The tune-up power is 1dB, so the maximum conducted power of Zigbee we used to calculate RF exposure is 10.27dBm.

Test Mode	Frequency Band (MHz)	EIRP (dBm)	Limit of Power Density S(mW/cm ²)	Power Density at R = 20 cm (mW/cm ²)
BT	2400 ~ 2483.5	13.30	1	0.0043
Zigbee	2400 ~ 2483.5	13.26	1	0.0042

Note:

The maximum power density is 0.0043mW/cm² for LED lamp without any other radio equipment.

- The End