Report on the Radio Testing of:

HUE CONNECT

Model(s): 9290019684

In accordance with 47 CFR FCC Part 15C

Prepared for: Signify (China) Investment Co., Ltd. Building 9, Lane 888, Tianlin Road, Minhang District Shanghai, China

COMMERCIAL-IN-CONFIDENCE

Document Number: 7191214765-EEC19/01 | Issue: 01 FCC ID: 2AGBW9290019684X

RESPONSIBLE FOR	NAME	DATE	SIGNATURE	
Project Management	Foo Kai Maun	16 Jul 2019	fr	
Authorised Signatory	Quek Keng Huat	16 Jul 2019	Party	
Signatures in this approval box have checked this document in line with the requirements of TÜV SÜD PSB document control rules.				
EXECUTIVE SUMMARY A sample of this product was tested and found to be compliant with the mentioned standard(s).				

 Accredited Laboratory
 LA-2007-0380-A LA-2007-0381-F LA-2007-0382-B LA-2007-0383-G LA-2007-0383-G

 C-SINGLAS
 LA-2007-0384-G

 D380-A
 LA-2007-0385-E

 D381-F
 LA-2007-0386-C

 D382-B
 LA-2010-0464-D

 D383-G
 LA-2018-0702-B

 D384-G
 LA-2018-0703-G

The results reported herein have been performed in accordance with the terms of accreditation under the Singapore Accreditation Council. Inspections/Calibrations/Tests marked "Not SAC-SINGLAS Accredited" in this Report are not included in the SAC-SINGLAS Accreditation Schedule for our inspection body/laboratory.

Laboratory: TÜV SÜD PSB Pte. Ltd. No.1 Science Park Drive Singapore 118221 Phone : +65-6885 1333 Fax : +65-6776 8670 E-mail: enquiries@tuv-sud-psb.sg www.tuv-sud-psb.sg Co. Reg : 199002667R Regional Head Office: TÜV SÜD Asia Pacific Pte. Ltd. 1 Science Park Drive, #02-01 Singapore 118221

Page 1 of 67

TÜV®

Add value. Inspire trust.

TÜV SÜD PSB PTE LTD

Contents

1	Report Summary	3
1.1 1.2 1.3 1.4 1.5 1.6 1.7 1.8 1.9	Report Modification Record Introduction Brief Summary of Results Product Information Deviations from the Standard EUT Modification Record Test Location(s) Test Facilities Registrations Supporting Equipment	4 5 7 8 8 8 8
2	Test Details	10
2.1 2.2 2.3 2.4 2.5 2.6 2.7 2.8 2.9	Conducted Emissions Radiated Emissions (Spurious Emissions Inclusive Restricted Bands Requirement) Spectrum Bandwidth (6db Bandwidth Measurement) Maximum Peak Power RF Conducted Spurious Emissions (Non-Restricted Bands) RF Conducted Spurious Emissions (Restricted Bands) Band Edge Compliance (Conducted) Peak Power Spectral Density	13 18 22 24 29 42 45 50
3	Test Equipment	
4	Measurement Uncertainty	64
5	Annex A – FCC Label and Position	65
End of t	he Test Report	67

1 Report Summary

1.1 Report Modification Record

Alterations and additions to this report will be issued to the holders of each copy in the form of a complete document.

Issue	Description of Change	Date of Issue
1	First Issue	16 Jul 2019

1.2 Introduction

Applicant		Signify (China) Investment Co., Ltd.
		Building 9, Lane 888, Tianlin Road,
		Minhang District Shanghai, China
Manufacturer	:	Same as applicant
Factory	:	Same as applicant
Model Number(s)	:	9290019684
Serial Number(s)	:	Conducted: F22E74 Radiated: 4B9E88
Number of Samples Tested	:	1
Test Sample(s) Condition	:	Good
Quotation Reference	÷	5219630
	0	
Test Specification/Issue/Date	1	FCC 47 CFR Part 15C
	1	
Test Sample(s) Received Date	:	2 Jul 2019
Start of Test	:	10 Jul 2019
Finish of Test	:	12 Jul 2019

1.3 Brief Summary of Results

A brief summary of the tests carried out in accordance with specifications as shown below.

Specification Clause	Test Description	Result	Comments/Base Standard
47 CFR FCC Part 1	5		
15.107(a), 15.207	Conducted Emissions	Pass	ANSI C63.4: 2014 ANSI C63.10: 2013 KDB 558074 D01 DTS Measurement Guidance V05R02: 2019
15.109(a), 15.205, 15.209	Radiated Emissions (Spurious Emissions Inclusive Restricted Bands Requirement)	Pass	ANSI C63.4: 2014 ANSI C63.10: 2013 KDB 558074 D01 DTS Measurement Guidance V05R02: 2019
15.247(a)(2)	Spectrum Bandwidth (6dB Bandwidth Measurement)	Pass	ANSI C63.10: 2013 KDB 558074 D01 DTS Measurement Guidance V05R02: 2019
15.247(b)(3)	Maximum Peak Power	Pass	ANSI C63.10: 2013 KDB 558074 D01 DTS Measurement Guidance V05R02: 2019
15.247(d)	RF Conducted Spurious Emissions (Non-Restricted Bands)	Pass	ANSI C63.10: 2013 KDB 558074 D01 DTS Measurement Guidance V05R02: 2019
15.247(d)	RF Conducted Spurious Emissions (Restricted Bands)	Pass	ANSI C63.10: 2013 KDB 558074 D01 DTS Measurement Guidance V05R02: 2019
15.247(d)	Band Edge Compliance (Conducted)	Pass	ANSI C63.10: 2013 KDB 558074 D01 DTS Measurement Guidance V05R02: 2019
15.247(d)	Band Edge Compliance (Radiated)	Pass	ANSI C63.10: 2013 KDB 558074 D01 DTS Measurement Guidance V05R02: 2019
15.247(e)	Peak Power Spectral Density	Pass	ANSI C63.10: 2013 KDB 558074 D01 DTS Measurement Guidance V05R02: 2019
15.35(c)	Duty Cycle Factor Computation	Not Applicable *See Note 4	ANSI C63.10: 2013 KDB 558074 D01 DTS Measurement Guidance V05R02: 2019
2.1091	Maximum Permissible Exposure	*See Note 5	

Notes

- 1. All the measurements in section 15.247 were done based on conducted measurements except Band Edge Compliance (Radiated) test.
- 2. The EUT is a Class B device when in non-transmitting state and meets the 47 CFR FCC Part15B Class B requirements.
- 3. The maximum measured RF power of the Equipment Under Test is 9.18dBm.
- 4. The EUT was operated in continuous transmission, i.e. 100% duty cycle.
- 5. Specific Absorption Rate (SAR) exemption for this product was carried out. Please refer to Signify (China) Investment Co., Ltd. for more details.

1.4 **Product Information**

1.4.1 Technical Description

Description		The Equipment Under Test(s) (EUT(s) is a HUE CONNECT.
Microprocessor	:	Silicon Labs EFR32™
Operating Frequency	:	Bluetooth: 2.402GHz – 2.480GHz
Clock / Oscillator Frequency	:	40MHz
Modulation	j.	Bluetooth: Gaussian Frequency Shift Keying (GFSK)
Antenna Gain	1:	1.77 dBi
11		
Port / Connectors	1	Nil
Rated Power	:	24Vdc
Accoracion		Nil
Accessories	:	

1.4.2 Test Configuration and Modes of Operation

Mode(s)	Description	Description		
Maximum RF power transmission	24V. The EUT was exercised in the and upper channels as shown belo modulation schemes were evaluated	The EUT was tested using fully charged batteries with DC voltage of 24V. The EUT was exercised in the mode, transmitting at lower, middle and upper channels as shown below one at a time with all supported modulation schemes were evaluated. For Band Edge Compliance, only lower and upper channels were evaluated.		
	Transmit Channel	Frequency (GHz)		
	Channel 0 (Lower Channel)	2.402		
	Channel 19 (Middle Channel)	2.440		
	Channel 39 (Upper Channel)	2.480		

1.5 Deviations from the Standard

Nil.

1.6 EUT Modification Record

No modifications were made.

1.7 Test Location(s)

TÜV SÜD PSB Pte Ltd Electrical & Electronics Centre (EEC), Product Services, No. 1 Science Park Drive, Singapore 118221

1.8 Test Facilities Registrations

Requirements	Registration Numbers
FCC	994109 (Test Firm Registration Number)
	SG0002 (Designation Number)
ISED	SGAP01 (CAB Identifier)
	Science Park
	2932I-1 (3m and 10m Semi-Anechoic Chamber)
	International Business Park
	2932N-1 (10m Semi-Anechoic Chamber)
VCCI	Science Park
	R-1335 (10m ANC)
	C-2306 (C.E @ Lab 3)
	T-1471 (Telecom Ports @ Lab 3)
	International Business Park
	R-3324 (10m ANC), G-203 (10mANC)
	C-4933 (C.E @ CEIBP)
	T-2403 (Telecom Ports @ CEIBP)
BSMI	SL2-IS-E-6001R [CNS-13803 (ISM Equipment)]
	SL2-IN-E-6001R [CNS-13438 (IT Equipment)]
	SL2-R1/R2-E-6001R [CNS-13439 (Broadcast Receivers)]
	SL2-A1-E-6001R [CNS-13783-1 (Household Appliances)]
	SL2-L1-E-6001R [CNS-14115 (Lighting Equipment)]
SABS	SABS/A-LAB/0029/2018

1.9 Supporting Equipment

Equipment Description (Including Brand Name)	Model, Serial & FCC ID Number	Cable Description (List Length, Type & Purpose)
Lenovo R400 Laptop	M/N: 7440-C97	Nil
	S/N: L3-ALB2G 09/05	
	FCC ID: DoC	
Lenovo AC Adapter	M/N: 42T4432	1.80m unshielded power cable
	S/N: 11S42T4432Z1ZF3J0170HL	
	FCC ID: DoC	
Aztech AC Adapter	M/N: LDC50H	1.00m unshielded power cable
	S/N: Nil	
1	FCC ID: DoC	

2 Test Details

2.1 Conducted Emissions

2.1.1 Test Limits

Frequency Range	Limit Values (dBµV)		
(MHz)	Quasi-peak (Q-P)	Average (AV)	
0.15 - 0.5	66 – 56 *	56 – 46 *	
0.5 - 5.0	56	46	
5.0 - 30.0	60	50	
* Decreasing linearly with the logarithm of the frequency			

2.1.2 **Test Setup**

- 2.1.2.1 The EUT and supporting equipment were set up in accordance with the requirements of the standard as shown in the setup photos.
- 2.1.2.2 The power supply for the EUT was fed through a $50\Omega/50\mu$ H EUT LISN, connected to filtered mains.
- 2.1.2.3 The RF OUT of the EUT LISN was connected to the EMI test receiver via a low-loss coaxial cable.
- 2.1.2.4 All other supporting equipment were powered separately from another LISN.

2.1.3 **Test Method**

- 2.1.3.1 The EUT was switched on and allowed to warm up to its normal operating condition.
- 2.1.3.2 A scan was made on the NEUTRAL line over the required frequency range using an EMI test receiver.
- 2.1.3.3 High peaks, relative to the limit line, were then selected.
- The EMI test receiver was then tuned to the selected frequencies and the necessary measurements 2.1.3.4 made with a receiver bandwidth setting of 9kHz. Both Quasi-peak and Average measurements were made.
- The measurements were then repeated for the LIVE line. 2.1.3.5

Sample Calculation Exa	ample	
At 20 MHz	SÜ	Q-P limit = 60.0 dBµV
Transducer factor of LIS	N, pulse limiter & cable loss at 2	20 MHz = 11.2 dB
Q-P reading obtained dir	rectly from EMI Receiver = 40.0	dΒμV
(Calibrated for system lo	sses)	
Therefore, Q-P margin =	60.0 - 40.0 = 20.0	i.e. 20.0 dB below Q-P limit

2.1.4 **Test Results**

Test Input Power	120V 60Hz	Temperature	23°C
Line Under Test	AC Mains	Relative Humidity	60%
		Atmospheric Pressure	1030mbar
		Tested By	Chang Wai Kit
		Test Date	12 Jul 2019

Frequency (MHz)	Q-P Value (dBµV)	Q-P Limit (dBµV)	Q-P Margin (dB)	AV Value (dBµV)	ΑV Limit (dBμV)	AV Margin (dB)	Line	Channel (Worst)
0.5437	42.8	56.0	13.2	33.4	46.0	12.6	Live	39
0.5729	38.8	56.0	17.2	29.3	46.0	16.7	Neutral	39
4.9543	29.6	56.0	26.4	23.3	46.0	22.7	Neutral	39
6.6679	38.8	60.0	21.2	34.2	50.0	15.8	Neutral	39
20.0069	35.5	60.0	24.5	29.4	50.0	20.6	Neutral	39
25.1755	36.1	60.0	23.9	35.9	50.0	14.1	Live	39
<u>Notes</u>								

e limit line at the

2.2 Radiated Emissions (Spurious Emissions Inclusive Restricted Bands Requirement)

2.2.1 Test Limits

Frequency Range (MHz)	Quasi-Peak Limit Values (dBµV/m)					
0.009 - 0.490 *	20 log [2400 / F (kHz)] @ 300m					
0.490 - 1.705	20 log [24000 / F (kHz)] @ 30m					
1.705 - 30.0	30.0 @ 30m					
30 - 88	40.0 @ 3m					
88 – 216	43.5 @ 3m					
216 - 960	46.0 @ 3m					
Above 960 *	54.0 @ 3m					
* For frequency bands 9kHz – 90kHz, 110kHz – 4	90kHz and above 1GHz, average detector was used. A					

peak limit of 20dB above the average limit does apply.

Restricted Bands

			1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1				and the second se				
Γ	MHz	1		MHz			MHz			GHz	
0.090	-	0.110	16.42	-	16.423	399.9	2	410	4.5	-	5.15
0.495	-	0.505	16.69475	-	16.69525	608	-	614	5.35	-	5.46
2.1735	-	2.1905	16.80425	- 1	16.80475	960	-	1240	7.25	-	7.75
4.125	-	4.128	25.5	- 7	25.67	1300	-	1427	8.025	-	8.5
4.17725	-	4.17775	37.5		38.25	1435	-	1626.5	9.0	-	9.2
4.20725	-	4.20775	73	- 3	74.6	1645.5	1	1646.5	9.3	-	9.5
6.215	-	6.218	74.8	(75.2	1660	6 -	1710	10.6	-	12.7
6.26775	-	6.26825	108	1	121.94	1718.8		1722.2	13.25	-	13.4
6.31175	-	6.31225	123	×2	138	2200	- I	2300	14.47	-	14.5
8.291	-	8.294	149.9	-	150.05	2310	14	2390	15.35	-	16.2
8.362	-	8.366	156.52475	-	156.52525	2483.5	1-	2500	17.7	-	21.4
8.37625	-	8.38675	156.7	-	156.9	2690	-	2900	22.01	-	23.12
8.41425	-	8.41475	162.0125	-	167.17	3260	-	3267	23.6	-	24.0
12.29	-	12.293	167.72	-	173.2	3332	-	3339	31.2	-	31.8
12.51975	-	12.52025	240	-	285	3345.8	-	3358	36.43	-	36.5
12.57675	-	12.57725	322	-	335.4	3600	-	4400	Ab	ove 3	8.6
13.36	-	13.41									

2.2.2 Test Setup

- 2.2.2.1 The EUT and supporting equipment were set up in accordance with the requirements of the standard as shown in the setup photos.
- 2.2.2.2 The filtered power supply for the EUT and supporting equipment were tapped from the appropriate power sockets located on the turntable.
- 2.2.2.3 The relevant broadband antenna was set at the required test distance away from the EUT and supporting equipment boundary.

2.2.3 Test Method

- 2.2.3.1 The EUT was switched on and allowed to warm up to its normal operating condition.
- 2.2.3.2 A prescan was carried out to pick the worst emission frequencies from the EUT. For EUT which is a portable device, the prescan was carried out by rotating the EUT through three orthogonal axes to determine which altitude and equipment arrangement produces such emissions.
- 2.2.3.3 The test was carried out at the selected frequency points obtained from the pre-scan. Maximization of the emissions, was carried out by rotating the EUT, changing the antenna polarization, and adjusting the antenna height in the following manner:
 - a. Vertical or horizontal polarisation (whichever gave the higher emission level over a full rotation of the EUT) was chosen.
 - b. The EUT was then rotated to the direction that gave the maximum emission.
 - c. Finally, the antenna height was adjusted to the height that gave the maximum emission
- 2.2.3.4 A Quasi-peak measurement was made for that frequency point if it was less than or equal to 1GHz.For frequency point in range of 9kHz 90kHz, 110kHz 49k0kHz and above 1GHz, both Peak and Average measurements were carried out.
- 2.2.3.5 The measurements were repeated for the next frequency point, until all selected frequency points were measured.
- 2.2.3.6 The frequency range covered was from the lowest radio frequency signal generated from the EUT, without going below 9kHz to 10th harmonics of the EUT fundamental frequency, using the loop antenna for frequency below 30MHz, Bi-log antenna for frequencies from 30MHz up to 1GHz, and the Horn antenna above 1GHz.

Sample Calculation Example

At 300 MHz	Q-P limit = 46.0 dB μ V/m
Log-periodic antenna factor & cable loss at 300 MHz = 18.5 dB Q-P reading obtained directly from EMI Receiver = 40.0 dB μ V/m (Calibrated level including antenna factors & cable losses)	
Therefore, Q-P margin = 46.0 - 40.0 = 6.0	i.e. 6.0 dB below Q-P limit

2.2.5 Test Results

Test Input Power	24Vdc	Temperature	23°C
Test Distance	3m (<30MHz) 3m (≥30MHz – 25GHz)	Relative Humidity	60%
		Atmospheric Pressure	1030mbar
		Tested By	Dylan Lin
		Test Date	12 Jul 2019

Spurious Emissions ranging from 9kHz – 30MHz (for 9kHz – 90kHz, 110kHz – 490kHz) *See Note 2 & 3

Freq (GHz)	Peak Value (dBµV/m)	Peak Limit (dBμV/m)	Peak Margin (dB)	AV Value (dBµV/m)	AV Limit (dBμV/m)	AV Margin (dB)	Height (cm)	Azimuth (Degrees)	Pol (H/V)	Ch
			11-		8					
		//	S							
		14	- /3		1		-			
	- 2	/	/				N.			
	11	/	/			1	-			

Spurious Emissions ranging from 9kHz – 30MHz *See Note 2 & 3

Frequency (MHz)	Q-P Value (dBµV/m)	Q-P Limit (dBµV/m)	Q-P Margin (dB)	Height (cm)	Azimuth (Degrees)	Pol (H/V)	Channel
				-			
		N- 6	PITS.	/			
	1	14 3	UU	1-	14		
	-	-		"	/		
		-			/s		
				1-1			

Spurious Emissions ranging from 30MHz - 1GHz

Frequency (MHz)	Q-P Value (dBμV/m)	Q-P Limit (dBµV/m)	Q-P Margin (dB)	Height (cm)	Azimuth (Degrees)	Pol (H/V)	Channel (Worst)
30.2940	24.1	40.0	15.9	100	32	V	39
46.4590	23.3	40.0	16.7	100	289	V	39
112.9810	27.1	43.5	16.4	100	41	V	39
139.6280	27.5	43.5	16.0	100	23	V	39
142.7630	28.5	43.5	15.0	100	69	V	39
160.3980	26.1	43.5	17.4	401	33	Н	39

Freq (GHz)	Peak Value (dBµV/m)	Peak Limit (dBµV/m)	Peak Margin (dB)	AV Value (dBµV/m)	AV Limit (dBµV/m)	AV Margin (dB)	Height (cm)	Azimuth (Degrees)	Pol (H/V)	Ch
4.8032	42.4	74.0	31.6	38.8	54.0	15.2	200	347	Н	0
6.2624	41.5	74.0	32.5	32.4	54.0	21.6	200	277	V	0
7.5271	49.6	74.0	24.4	34.1	54.0	19.9	200	332	V	0
9.6057	48.6	74.0	25.4	37.8	54.0	16.2	200	345	Н	0
13.9022	51.8	74.0	22.2	40.8	54.0	13.2	200	283	V	0
16.7074	50.8	74.0	23.2	40.7	54.0	13.3	200	197	V	0

Spurious Emissions above 1GHz – 25GHz

Spurious Emissions above 1GHz – 25GHz

Freq (GHz)	Peak Value (dBµV/m)	Peak Limit (dBµV/m)	Peak Margin (dB)	AV Value (dBµV/m)	AV Limit (dBµV/m)	AV Margin (dB)	Height (cm)	Azimuth (Degrees)	Pol (H/V)	Ch
4.8804	50.7	74.0	23.3	46.4	54.0	7.6	200	0	Н	19
8.7161	51.6	74.0	22.4	34.6	54.0	19.4	102	7	н	19
9.7620	48.0	74.0	26.0	36.2	54.0	17.8	102	200	Н	19
13.8938	52.3	74.0	21.7	41.0	54.0	13.0	102	111	Н	19
16.7407	52.2	74.0	21.8	41.7	54.0	12.3	102	317	Н	19
17.9685	52.5	74.0	21.5	43.1	54.0	10.9	102	286	Н	19
				2	1.17					

Spurious Emissions above 1GHz - 25GHz

Freq (GHz)	Peak Value (dBµV/m)	Peak Limit (dBµV/m)	Peak Margin (dB)	AV Value (dBµV/m)	AV Limit (dBµV/m)	AV Margin (dB)	Height (cm)	Azimuth (Degrees)	Pol (H/V)	Ch
3.9157	32.8	74.0	41.2	29.4	54.0	24.6	102	201	V	39
4.1772	55.4	74.0	18.6	29.9	54.0	24.1	300	89	н	39
4.9604	55.4	74.0	18.6	50.1	54.0	3.9	300	10	н	39
7.8041	45.5	74.0	28.5	34.1	54.0	19.9	102	352	V	39
13.8816	50.4	74.0	23.6	40.9	54.0	13.1	102	38	н	39
17.6782	52.6	74.0	21.4	43.0	54.0	11.0	102	12	Н	39

<u>Notes</u>

1.	All possible modes of operation were investigated. Only the worst case emissions measured, using the correct CISPR detectors, are reported. All other emissions were relatively insignificant.					
2.	"" indicates no emissions were found and shows compliance to the limits.					
3.	The measurement was done at 3m. The measured results were extrapolated to the specified test limits as specified in § 15.209 (a) based on 40dB/decade.					
4.	Quasi-peak measurement was used for frequency measurement up to 1GHz. Average and peak measurements were used for emissions above 1GHz. The average measurement was done by averaging over a complete cycle of the pulse train, including the blanking interval as the pulse train duration does not exceed 0.1 second.					
5.	A "positive margin" indicates a PASS as it refers to the margin present below the limit line at the particular frequency. Conversely, a "negative margin" indicates a FAIL.					
6.	EMI receiver Resolution Bandwidth (RBW) and Video Bandwidth (VBW) settings:					
	<u>30MHz - 1GHz</u>					
	RBW: 120kHz VBW: 1MHz					
	>1GHz					
	RBW: 1MHz VBW: 3MHz					
7.	The upper frequency of radiated emission investigations was according to requirements stated in Section 15.33 (a) for intentional radiators & Section 15.33 (b) for unintentional radiators.					
8.	The channel in the table refers to the transmit channel of the EUT.					

2.3 Spectrum Bandwidth (6db Bandwidth Measurement)

2.3.1 Test Limits

The EUT shows compliance to the requirements of this section, which states that the minimum bandwidth of the EUT employing digital modulation techniques shall be at least 500kHz.

2.3.2 Test Setup

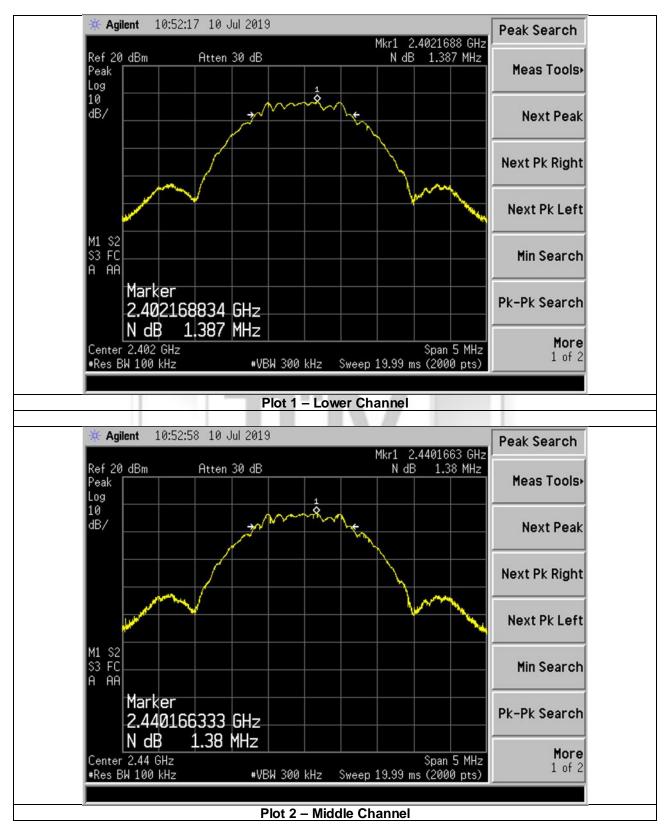
- 2.3.2.1 The EUT and supporting equipment were set up as shown in the set up photo.
- 2.3.2.2 The power supply for the EUT was connected to a filtered mains.
- 2.3.2.3 The RF antenna connector was connected to the spectrum analyser via a low-loss coaxial cable.
- 2.3.2.4 The resolution bandwidth (RBW) and the video bandwidth (VBW) of the spectrum analyser were respectively set to 100kHz and 3 times of RBW.
- 2.3.2.5 All other supporting equipment were powered separately from another filtered mains.

2.3.3 Test Method

- 2.3.3.1 The EUT was switched on and allowed to warm up to its normal operating condition. The EUT was then configured to operate in the test mode at lower channel.
- 2.3.3.2 The center frequency of the spectrum analyser was set to the transmitting frequency with the frequency span wide enough to capture the 6dB bandwidth of the transmitting frequency.
- 2.3.3.3 The spectrum analyser was set to max hold to capture the transmitting frequency. The signal capturing was continuous until no further changes were observed.
- 2.3.3.4 The peak of the transmitting frequency was detected with the marker peak function of the spectrum analyser. The frequencies below the 6dB peak frequency at lower (f_L) and upper (f_H) sides of the transmitting frequency were marked and measured by using the marker-delta function of the spectrum analyser.
- 2.3.3.5 The 6dB bandwidth of the transmitting frequency is the frequency difference between the marked lower and upper frequencies, $|f_H f_L|$.
- 2.3.3.6 The measurements were repeated if the EUT supports more than one modulation and data rate.
- 2.3.3.7 The measurements were repeated with the transmitting frequency was set to middle and upper channel respectively.

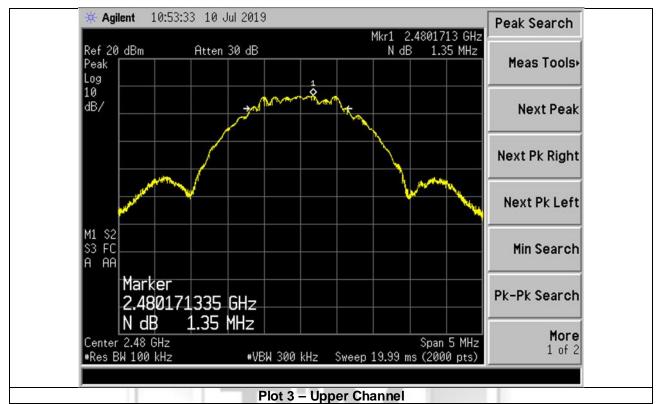
2.3.4 Test Results

Test Input Power	24Vdc	Temperature	24ºC
Attached Plots 1-3		Relative Humidity 60%	
		Atmospheric Pressure	1030mbar
		Tested By	Chang Wai Kit
		Test Date	10 Jul 2019


Channel	Channel Frequency (GHz)			
Lower	2.402	1.387	≥ 500	
Middle	2.440	1.380	≥ 500	
Upper	2.480	1.350	≥ 500	

<u>Notes</u>

The only the largest measured bandwidths were reported. Nerer to plots for all measured bandwidth	1.	Only the largest measured bandwidths were reported. Refer to plots for all measured bandwidth.
---	----	--



Spectrum Bandwidth (6dB Bandwidth Measurement) Plots

Spectrum Bandwidth (6dB Bandwidth Measurement) Plots

2.4 Maximum Peak Power

2.4.1 Test Limits

The EUT shows compliance to the requirements of this section, which states the maximum peak power of the EUT employing digital modulation shall not exceed 1W (30dBm).

2.4.2 Test Setup

- 2.4.2.1 The EUT and supporting equipment were set up as shown in the setup photo.
- 2.4.2.2 The power supply for the EUT was connected to a filtered mains.
- 2.4.2.3 The RF antenna connector was connected to a power meter.
- 2.4.2.4 All other supporting equipment were powered separately from another filtered mains.

2.4.3 Test Method

- 2.4.3.1 The EUT was switched on and allowed to warm up to its normal operating condition. The EUT was then configured to operate in the test mode at lower channel.
- 2.4.3.2 The maximum peak power of the transmitting frequency was detected and recorded.
- 2.4.3.3 The measurements were repeated if the EUT supports more than one modulation and data rate.
- 2.4.3.4 The measurement was repeated with the transmitting frequency was set to middle channel and upper channel respectively.

2.4.4 Test Results

Test Input Power	24Vdc	Temperature	24ºC
Antenna Gain	1.77 dBi	Relative Humidity	60%
		Atmospheric Pressure	1030mbar
		Tested By	Chang Wai Kit
		Test Date	10 Jul 2019

Channel	Channel Frequency (GHz)	Maximum Peak Power (W) *See Note 1	Limit (W)		
Lower	2.402	0.0079	1.0		
Middle	2.440	0.0083	1.0		
Upper	2.480	0.0083	1.0		

Notes

1.	Only the highest measured peak power were reported.	

2.5 RF Conducted Spurious Emissions (Non-Restricted Bands)

2.5.1 Test Limits

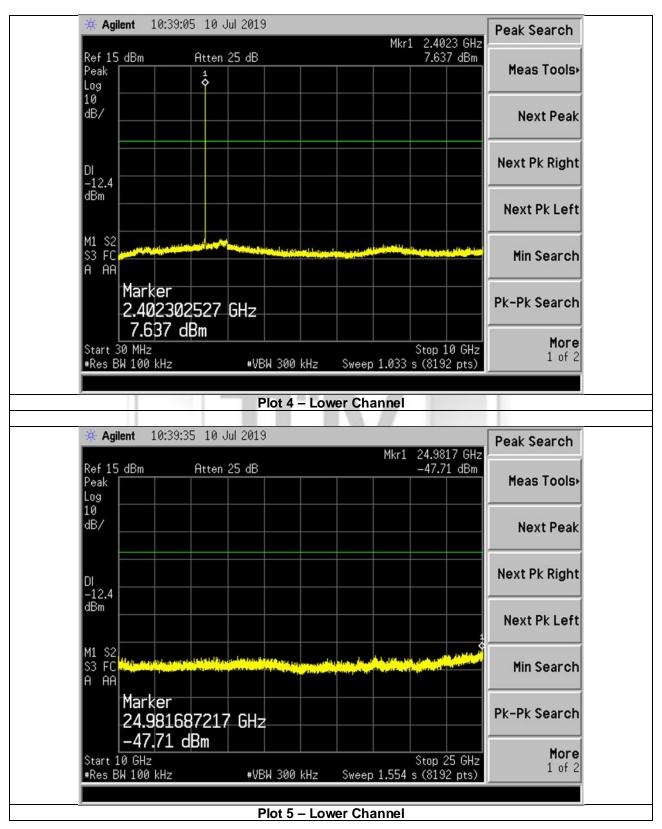
The EUT shows compliance to the requirements of this section, which states in any 100kHz bandwidth outside the frequency band in which the spread spectrum intentional radiator (EUT) is operating, the radio frequency power that is produced by the EUT shall be at least 20dB below that in the 100kHz bandwidth within the band that contains the highest level of desired power.

2.5.2 Test Setup

- 2.5.2.1 The EUT and supporting equipment were set up as shown in the setup photo.
- 2.5.2.2 The power supply for the EUT was connected to a filtered mains.
- 2.5.2.3 The RF antenna connector was connected to the spectrum analyser via a low-loss coaxial cable.
- 2.5.2.4 The resolution bandwidth (RBW) and the video bandwidth (VBW) of the spectrum analyser were respectively set to 100kHz and 3 times of RBW.
- 2.5.2.5 All other supporting equipment were powered separately from another filtered mains.

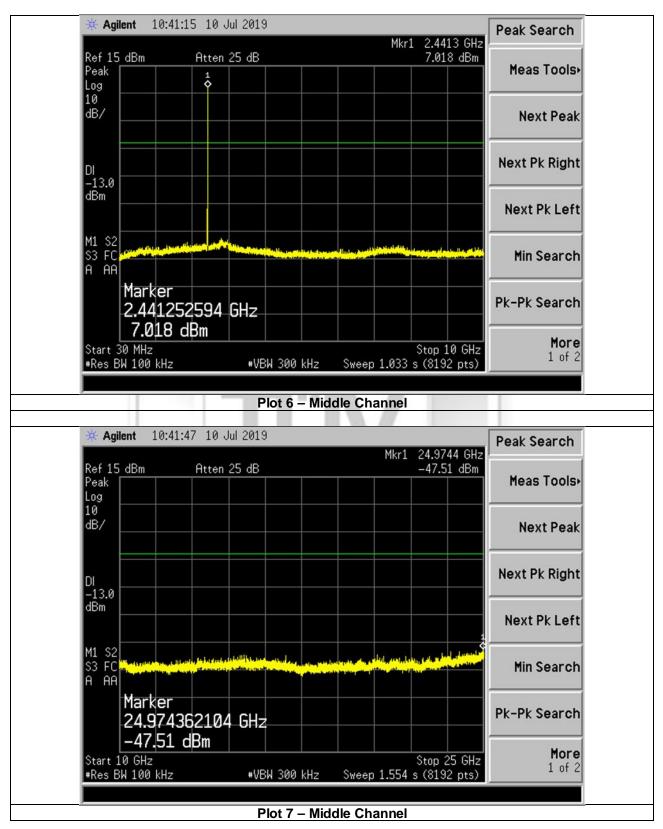
2.5.3 Test Method

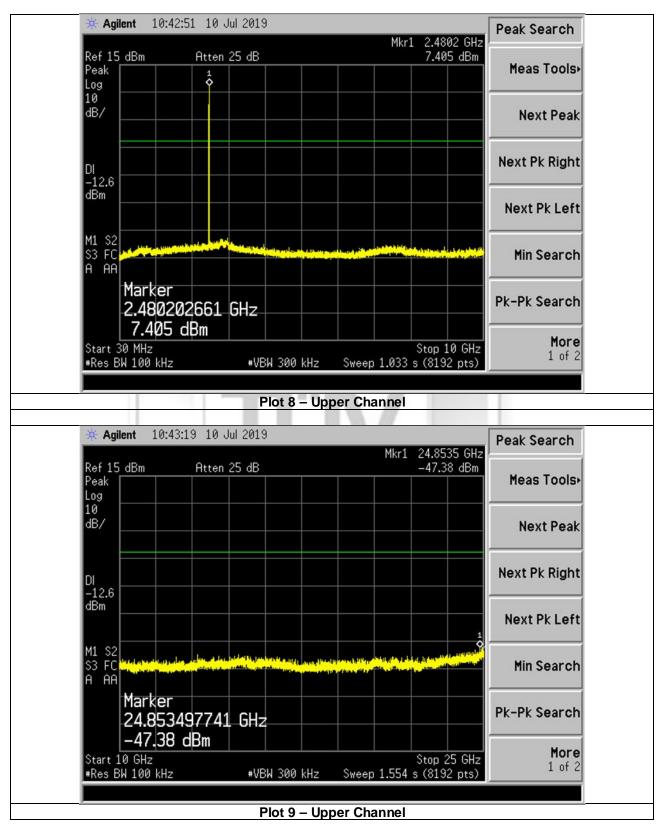
- 2.5.3.1 The EUT was switched on and allowed to warm up to its normal operating condition. The EUT was then configured to operate in the test mode, with transmitting frequency at lower channel.
- 2.5.3.2 The start and stop frequencies of the spectrum analyser were set to 30MHz and 10GHz.
- 2.5.3.3 The spectrum analyser was set to max hold to capture any spurious emissions within the span. The signal capturing was continuous until no further spurious emissions were detected.
- 2.5.3.4 The measurements were repeated with frequency span was set from 10GHz to 25GHz.
- 2.5.3.5 The measurements were repeated if the EUT supports more than one modulation and data rate.
- 2.5.3.6 The measurements were repeated with the transmitting frequency was set to middle channel and upper channel respectively.


2.5.4 Test Results

Test Input Power	24Vdc	Temperature	24ºC
Attached Plots 4 – 9		Relative Humidity	60%
		Atmospheric Pressure	1030mbar
		Tested By	Chang Wai Kit
		Test Date	10 Jul 2019

All spurious signals found were below the specified limit. Please refer to the attached plots.




RF Conducted Spurious Emissions (Non-Restricted Bands) Plots

RF Conducted Spurious Emissions (Non-Restricted Bands) Plots

RF Conducted Spurious Emissions (Non-Restricted Bands) Plots

2.6 RF Conducted Spurious Emissions (Restricted Bands)

2.6.1 Test Limits

The EUT shows compliance to the requirements of this section, which states that emissions which fall in the restricted bands must comply with the radiated emission limits specified in the table below:

Frequency Range (MHz)	Radiated Emissions (dBµV/m)							
0.009 - 0.490	67.6 – 20logF* @ 300m **							
0.490 - 1.705 -41.4 - (-52.3) ** 87.6 - 20logF* @ 30m **								
1.705 – 30 -45.7 29.5 @ 30m								
30 - 88 -55.2 40.0 @ 3m								
88 - 216	88 - 216 -51.7 43.5 @ 3m							
216 - 960	-49.2	46.0 @ 3m						
>960	-41.2 ***	54.0 @ 3m ***						
* F is frequency in kHz.	F is frequency in kHz.							
** Decreasing linearly with the log	Decreasing linearly with the logarithm of the frequency.							
*** Above 1GHz, a peak limit of 20	* Above 1GHz, a peak limit of 20dB above the average limit does apply.							

47 CFR FCC Part 15.205 Restricted Bands

Γ	MHz			MHz		W/	MHz			GHz	
0.090	-	0.110	16.42	-	16.423	399.9	-	410	4.5	-	5.15
0.495	-	0.505	16.69475	- 5	16.69525	608	/-	614	5.35	-	5.46
2.1735	-	2.1905	16.80425	î	16.80475	960	-	1240	7.25	-	7.75
4.125	-	4.128	25.5	X	25.67	1300	-	1427	8.025	-	8.5
4.17725	-	4.17775	37.5	-	38.25	1435	1	1626.5	9.0	-	9.2
4.20725	-	4.20775	73	-	74.6	1645.5	1	1646.5	9.3	-	9.5
6.215	-	6.218	74.8	-	75.2	1660		1710	10.6	-	12.7
6.26775	-	6.26825	108	-	121.94	1718.8	-	1722.2	13.25	-	13.4
6.31175	-	6.31225	123	-	138	2200	-	2300	14.47	-	14.5
8.291	-	8.294	149.9	-	150.05	2310	-	2390	15.35	-	16.2
8.362	-	8.366	156.52475	-	156.52525	2483.5	-	2500	17.7	-	21.4
8.37625	-	8.38675	156.7	-	156.9	2690	-	2900	22.01	-	23.12
8.41425	-	8.41475	162.0125	-	167.17	3260	-	3267	23.6	-	24.0
12.29	-	12.293	167.72	-	173.2	3332	-	3339	31.2	-	31.8
12.51975	-	12.52025	240	-	285	3345.8	-	3358	36.43	-	36.5
12.57675	-	12.57725	322	-	335.4	3600	-	4400	Ab	ove 3	8.6
13.36	-	13.41									

2.6.2 Test Setup

- 2.6.2.1 The EUT and supporting equipment were set up as shown in the setup photo.
- 2.6.2.2 The power supply for the EUT was connected to a filtered mains.
- 2.6.2.3 The RF antenna connector was connected to the spectrum analyser via a low-loss coaxial cable.
- 2.6.2.4 The resolution bandwidth (RBW) of the spectrum analyser was set to the following settings. The video bandwidth (VBW) was set to at least three times of the RBW.

Frequency (MHz)	RBW (kHz)
0.009 – 0.150	0.2
0.150 – 30.0	9.0
30.0 - 1000	100.0
> 1000	1000.0

- 2.6.2.5 The detector of the spectrum analyser was set to peak detection mode.
- 2.6.2.6 All other supporting equipment were powered separately from another filtered mains.

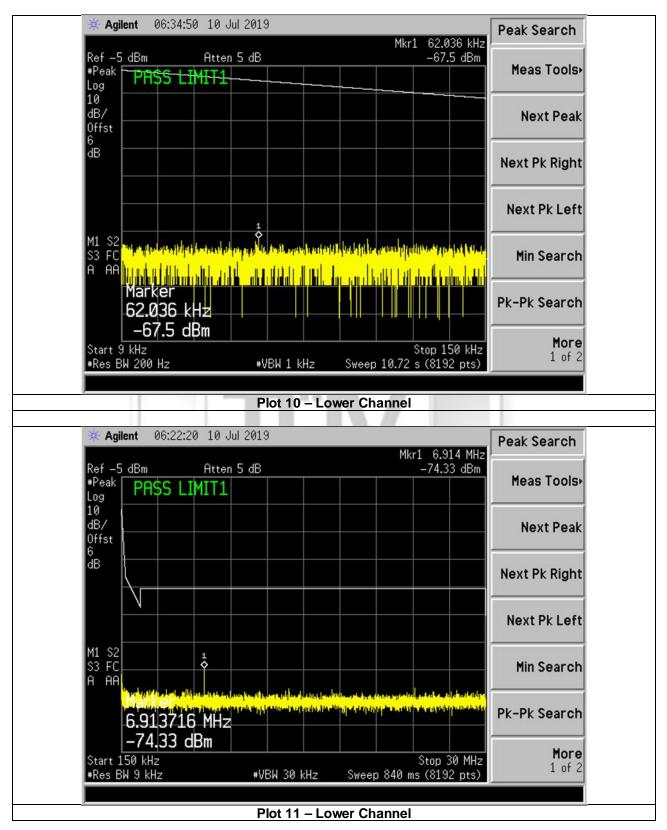
2.6.3 Test Method

Measurement in the range 9kHz - 1000MHz

- 2.6.3.1 The EUT was switched on and allowed to warm up to its normal operating condition. The EUT was then configured to operate in the test mode, with the transmitting frequency was set to lower channel.
- 2.6.3.2 The start and stop frequencies of the spectrum analyser were set according to the supported RBW.
- 2.6.3.3 The spectrum analyser was set to max hold to capture any spurious emissions within the span. The signal capturing was continuous until no further spurious emissions were detected. The antenna gain of the EUT was added to the captured spurious emissions.
- 2.6.3.4 No further measurement was required if all the captured emissions complied to the limits. Else, the spectrum analyser was set to zoom to the captured emission with the detector of the spectrum analyser was set to quasi-peak. The emission level of the captured frequency was measured.
- 2.6.3.5 The measurements were repeated until all the captured emissions which exceeding the limits were measured.
- 2.6.3.6 The measurements were repeated if the EUT supports more than one modulation and data rate.
- 2.6.3.7 The measurements were repeated with the transmitting frequency was set to middle and upper channel respectively

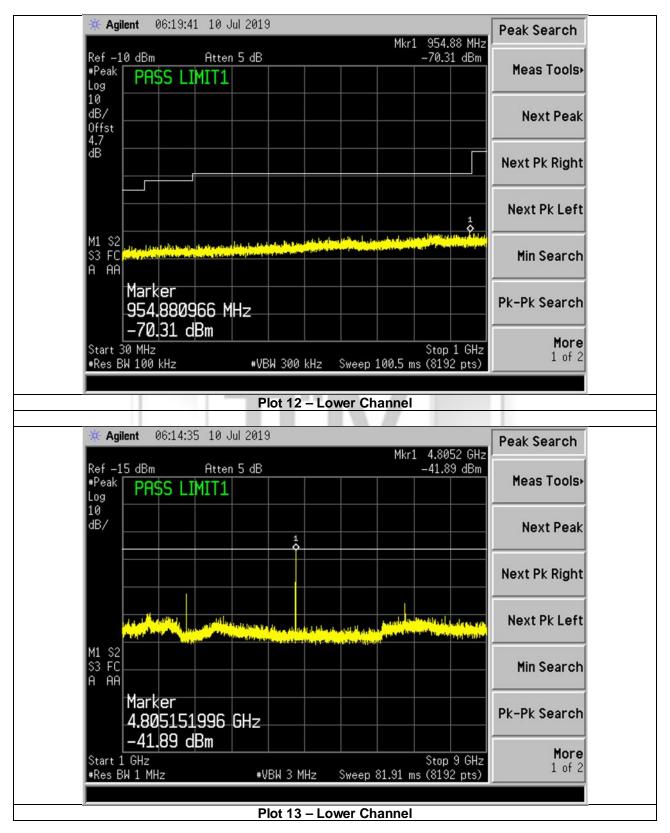
Measurement above 1000MHz

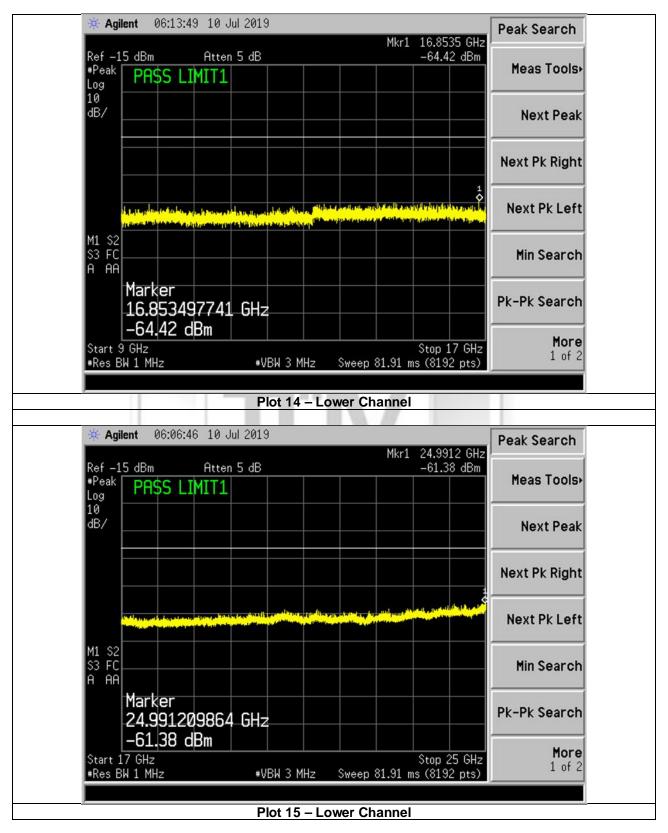
- 2.6.3.8 The EUT was switched on and allowed to warm up to its normal operating condition. The EUT was then configured to operate in the test mode, with the transmitting frequency was set to lower channel.
- 2.6.3.9 The start and stop frequencies of the spectrum analyser were set according to the supported frequency band of the set RBW with the number of points in a sweep was set to equal or greater than 2 times of the ratio of span over RBW.
- 2.6.3.10 The detector of the spectrum analyser was set to power average (RMS) mode with the sweep time was set to equal or greater than 10 times of the product of number of measurement points in a sweep and transmission symbol time.
- 2.6.3.11 The spectrum analyser was then allowed to capture any spurious emissions within a single sweep. The peak marker function of the spectrum analyser was used to locate the highest power level. The antenna gain of the EUT was added to the captured spurious emissions.
- 2.6.3.12 The measurements were repeated until all the required frequency bands were measured.
- 2.6.3.13 The measurements were repeated if the EUT supports more than one modulation and data rate.
- 2.6.3.14 The measurements were repeated with the transmitting frequency was set to middle and upper channel respectively.
- 2.6.3.15 The measurements were repeated with the detector of the spectrum analyser was set to peak detecting mode. The sweep time was set to auto coupler.

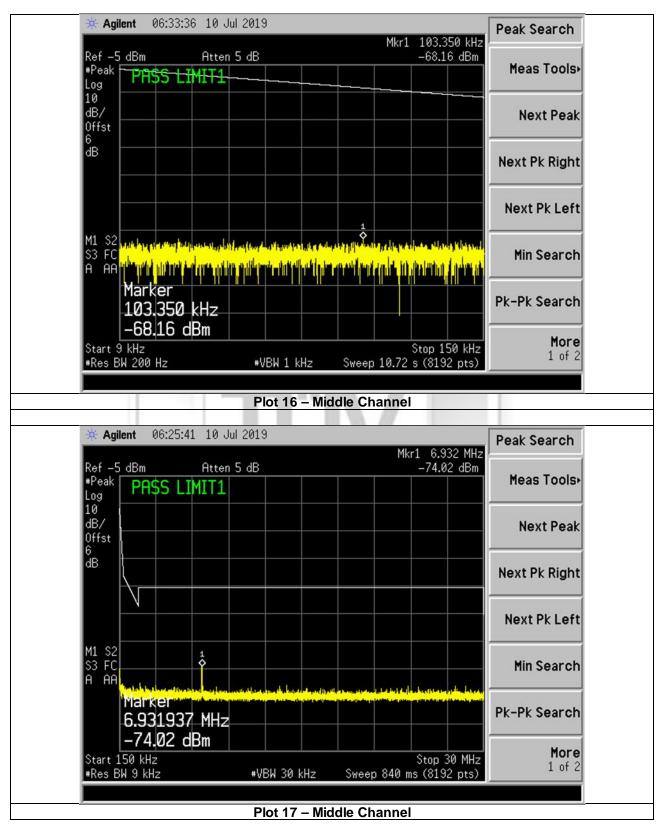

2.6.4 Test Results

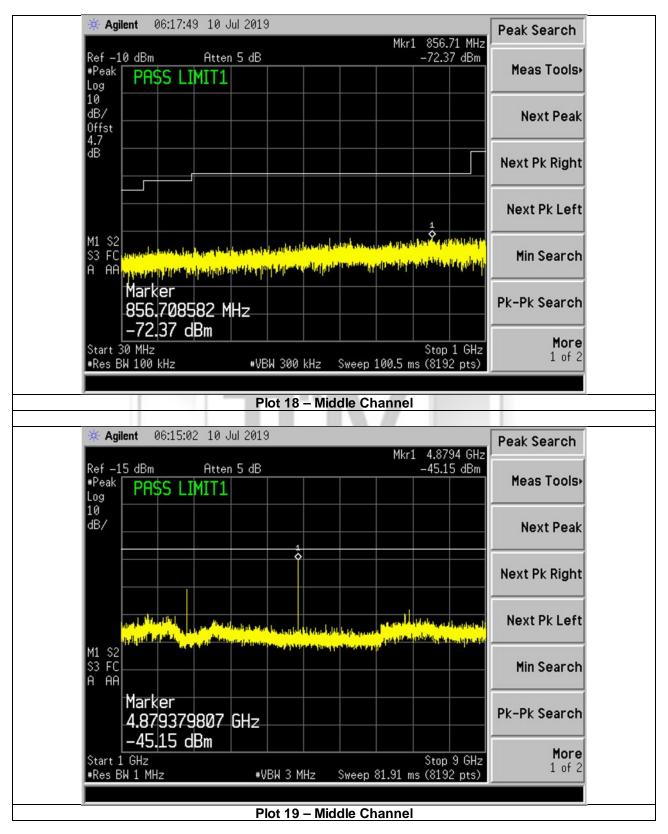
Test Input Power	24Vdc	Temperature	24°C	
Attached Plots 10 – 27 (Peak)		Relative Humidity 60%		
		Atmospheric Pressure	1030mbar	
		Tested By	Chang Wai Kit	
		Test Date	10 Jul 2019	

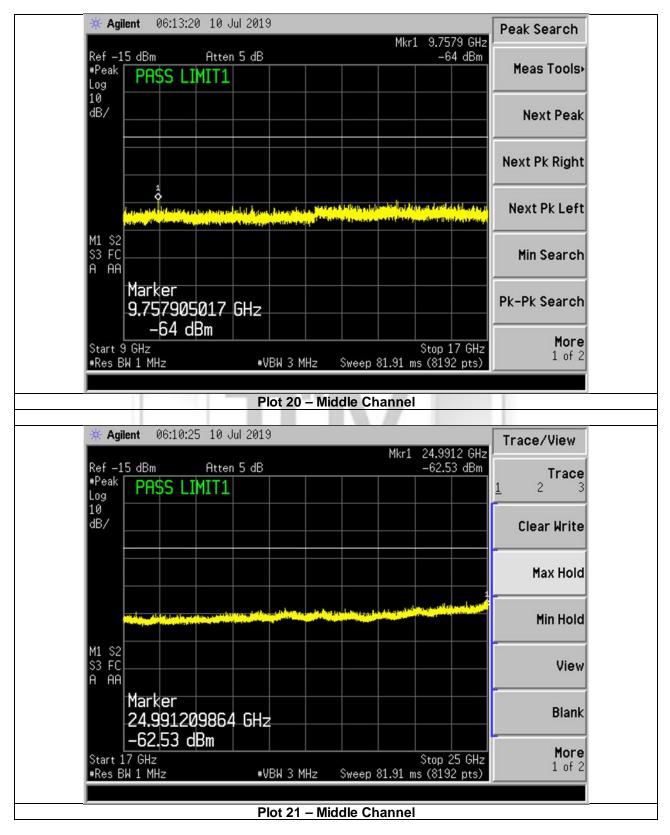
All spurious signals found were below the specified limit. Please refer to the attached plots.

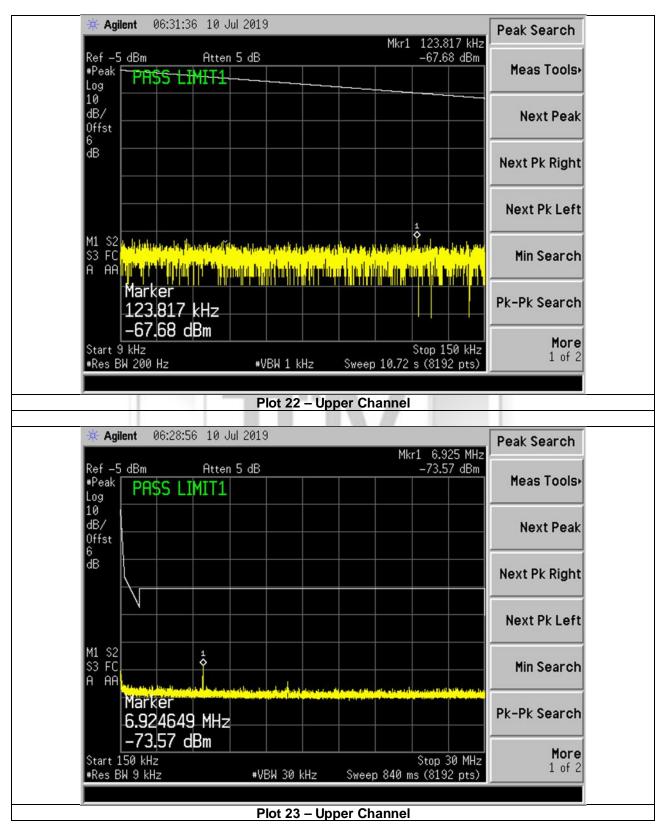


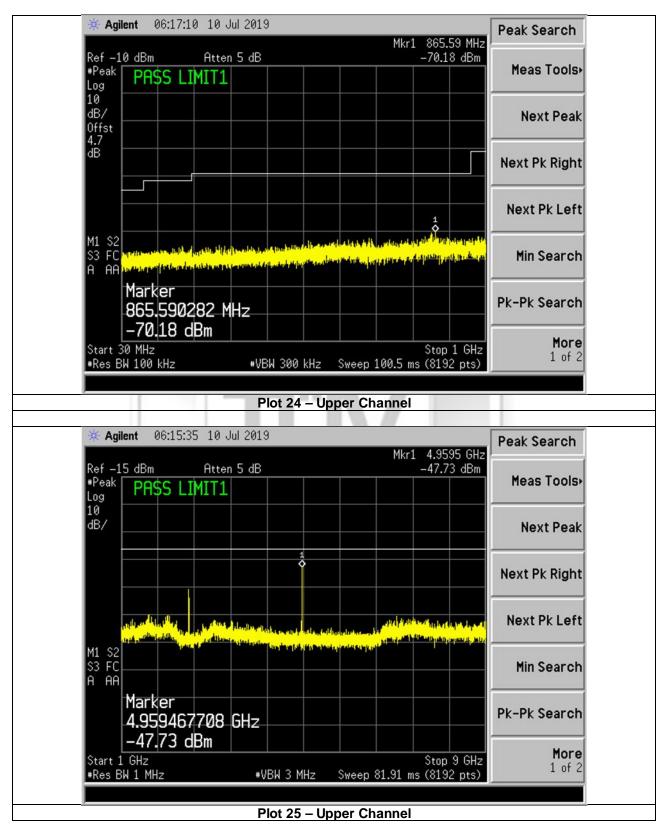

RF Conducted Spurious Emissions (Restricted Bands) Plots – Peak

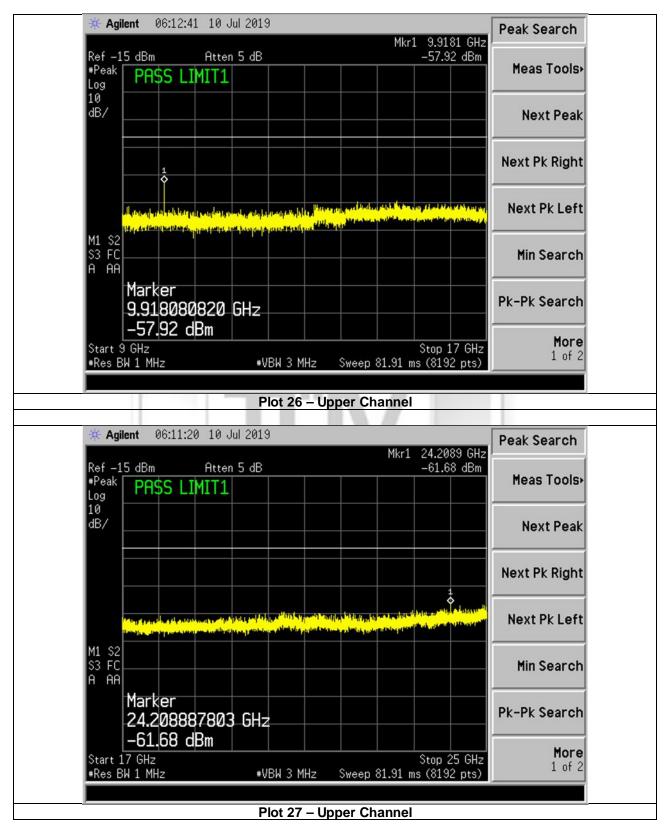

RF Conducted Spurious Emissions (Restricted Bands) Plots - Peak


RF Conducted Spurious Emissions (Restricted Bands) Plots – Peak


RF Conducted Spurious Emissions (Restricted Bands) Plots – Peak


RF Conducted Spurious Emissions (Restricted Bands) Plots - Peak


RF Conducted Spurious Emissions (Restricted Bands) Plots – Peak


RF Conducted Spurious Emissions (Restricted Bands) Plots – Peak

RF Conducted Spurious Emissions (Restricted Bands) Plots - Peak

RF Conducted Spurious Emissions (Restricted Bands) Plots – Peak

2.7 Band Edge Compliance (Conducted)

2.7.1 Test Limits

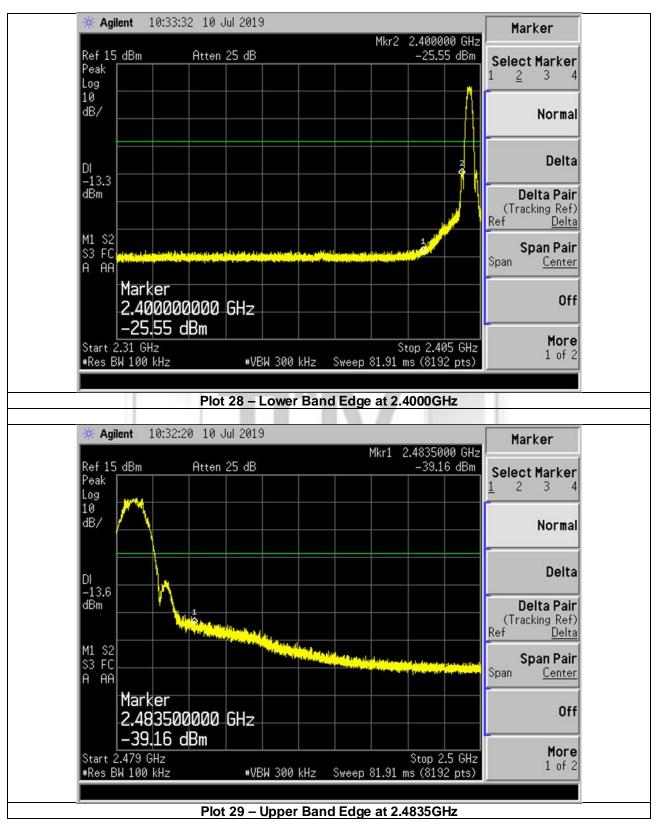
The EUT shows compliance to the requirements of this section, which states in any 100kHz bandwidth outside the frequency band in which the spread spectrum intentional radiator (EUT) is operating, the radio frequency power that is produced by the EUT shall be at least 20dB below that in the 100kHz bandwidth within the band that contains the highest level of desired power.

2.7.2 Test Setup

- 2.7.2.1 The EUT and supporting equipment were set up as shown in the setup photo.
- 2.7.2.2 The power supply for the EUT was connected to a filtered mains.
- 2.7.2.3 The RF antenna connector was connected to the spectrum analyser via a low-loss coaxial cable.
- 2.7.2.4 The resolution bandwidth (RBW) and the video bandwidth (VBW) of the spectrum analyser were respectively set to 100kHz and 300kHz.
- 2.7.2.5 All other supporting equipment were powered separately from another filtered mains.

2.7.3 Test Method

- 2.7.3.1 The EUT was switched on and allowed to warm up to its normal operating condition. The EUT was then configured to operate in the test mode.
- 2.7.3.2 The frequency span of the spectrum analyser was set to wide enough to capture the lower band edge of the transmission band, 2.400GHz and any spurious emissions at the band edge (within 2MHz of the band edge).
- 2.7.3.3 The spectrum analyser was set to max hold to capture any spurious emissions within the span. The signal capturing was continuous until no further spurious emissions were detected.
- 2.7.3.4 The measurements were repeated if the EUT supports more than one modulation and data rate.
- 2.7.3.5 The measurements were repeated with the frequency span of the spectrum analyser was set to wide enough to capture the upper band edge frequency of the transmission band, 2.4835GHz and the any spurious emissions at the band-edge.


2.7.4 Test Results

Test Input Power	24Vdc	Temperature	24ºC
Attached Plots	28 – 29	Relative Humidity	60%
		Atmospheric Pressure	1030mbar
		Tested By	Chang Wai Kit
		Test Date	10 Jul 2019

No significant signal was found and they were below the specified limit.

Band Edge Compliance (Conducted) Plots

2.8 Band Edge Compliance (Radiated)

2.8.1 Test Limits

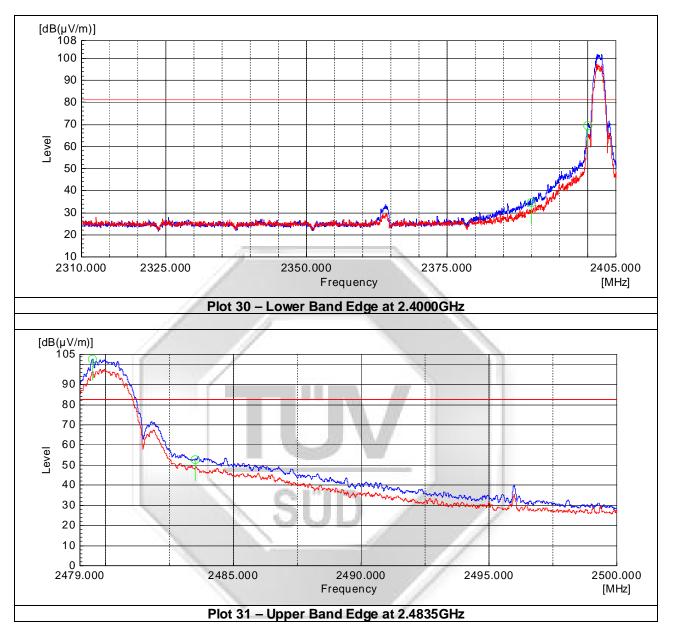
The EUT shows compliance to the requirements of this section, which states in any 100kHz bandwidth outside the frequency band in which the spread spectrum intentional radiator (EUT) is operating, the radio frequency power that is produced by the EUT shall be at least 20dB below that in the 100kHz bandwidth within the band that contains the highest level of the desired power. In addition, radiated emissions which fall in the restricted bands shall comply to the radiated emission limits specified in 15.209.

2.8.2 Test Setup

- 2.8.2.1 The EUT and supporting equipment were set up as shown in the setup photo.
- 2.8.2.2 The power supply for the EUT was connected to a filtered mains.
- 2.8.2.3 The resolution bandwidth (RBW) and the video bandwidth (VBW) of the spectrum analyser were respectively set to 100kHz and 300kHz to show compliance of spurious at band edges are at least 20dB below the carriers. For restricted band spurious at band edges, peak and average measurement plots were taken using the following setting:
 - a. Peak Plot:
 - RBW = 1MHz, VBW = 3RBW
 - b. Average Plot RBW = 1MHz, VBW = 10Hz
- 2.8.2.4 All other supporting equipment were powered separately from another filtered mains.

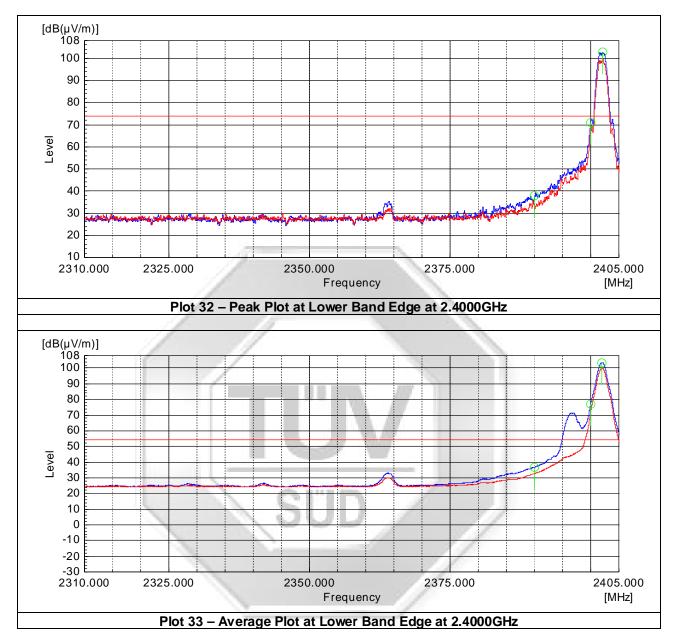
2.8.3 Test Method

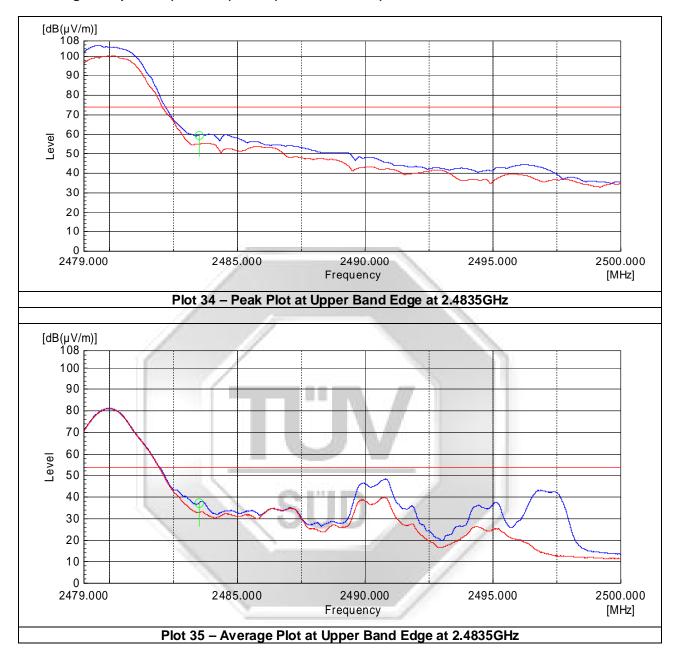
- 2.8.3.1 The EUT was switched on and allowed to warm up to its normal operating condition. The EUT was then configured to operate in the test mode.
- 2.8.3.2 The frequency span of the spectrum analyser was set to wide enough to capture the lower band edge of the transmission band, 2.400GHz and any spurious emissions at the band edge.
- 2.8.3.3 The spectrum analyser was set to max hold to capture any spurious emissions within the span. The signal capturing was continuous until no further spurious emissions were detected.
- 2.8.3.4 The measurements were repeated if the EUT supports more than one modulation and data rate.
- 2.8.3.5 The measurements were repeated with the frequency span of the spectrum analyser was set to wide enough to capture the upper band edge frequency of the transmission band, 2.4835GHz and the any spurious emissions at the band-edge.


2.8.4 Test Results

Test Input Power	24Vdc	Temperature	23°C
Attached Plots	30 – 35	Relative Humidity	60%
		Atmospheric Pressure	1030mbar
		Tested By	Dylan Lin
		Test Date	12 Jul 2019

No significant signal was found and they were below the specified limit.




Band Edge Compliance (Radiated) Plots (20dB Delta from Carrier at Band Edge)

Band Edge Compliance (Radiated) Plots (Restricted Band)

Band Edge Compliance (Radiated) Plots (Restricted Band)

2.9 Peak Power Spectral Density

2.9.1 Test Limits

The EUT shows compliance to the requirements of this section, which states the peak power spectral density conducted from the intentional radiator (EUT) to the antenna shall not be greater than 8dBm (6.3mW) in any 3kHz band during any time interval of continuous transmission.

2.9.2 Test Setup

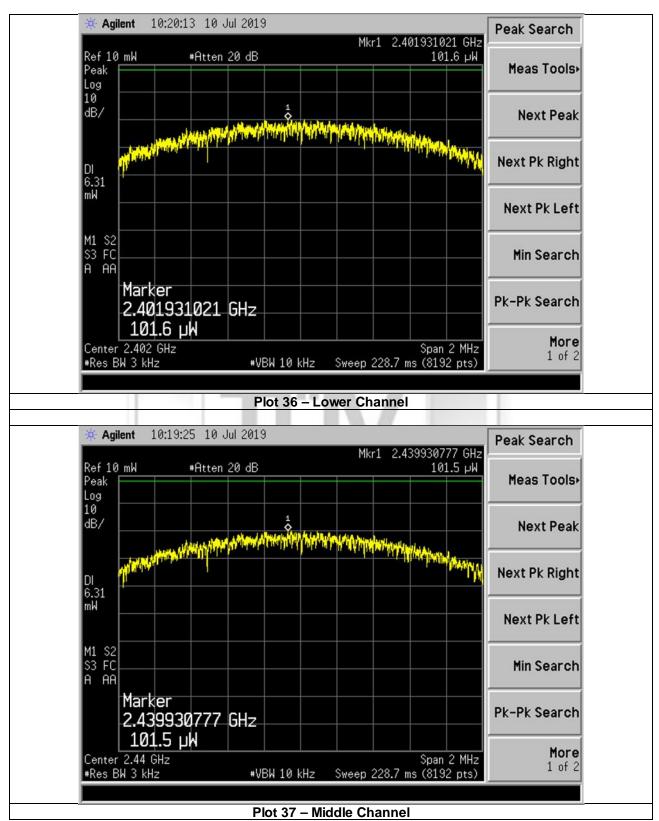
- 2.9.2.1 The EUT and supporting equipment were set up as shown in the setup photo.
- 2.9.2.2 The power supply for the EUT was connected to a filtered mains.
- 2.9.2.3 The RF antenna connector was connected to the spectrum via a low-loss coaxial cable.
- 2.9.2.4 The resolution bandwidth (RBW) and the video bandwidth (VBW) of the spectrum analyser were set to the following:
 RBW = 3kHz
 VBW = 3RBW
 Span = 1.5 times the channel bandwidth (6dB Bandwidth)
 Sweep time = auto couple
- 2.9.2.5 All other supporting equipment were powered separately from another filtered mains.

2.9.3 Test Method

- 2.9.3.1 The EUT was switched on and allowed to warm up to its normal operating condition. The EUT was then configured to operate in the test mode at lower channel.
- 2.9.3.2 The peak of the transmitting frequency was detected with the marker peak function of the spectrum analyser.
- 2.9.3.3 The peak power density of the transmitting frequency was plotted and recorded.
- 2.9.3.4 The measurements were repeated if the EUT supports more than one modulation and data rate.
- 2.9.3.5 The measurement was repeated with the transmitting frequency was set to middle channel and upper channel respectively.

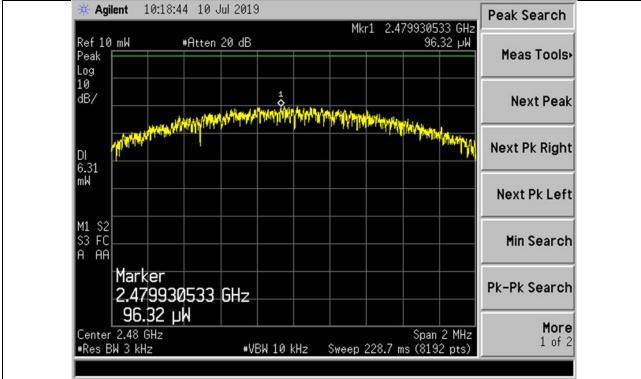
2.9.4 Test Results

Test Input Power	24Vdc	Temperature	24°C
Attached Plots	36 – 38	Relative Humidity	60%
		Atmospheric Pressure	1030mbar
		Tested By	Chang Wai Kit
		Test Date	10 Jul 2019


Channel	Channel Frequency (GHz)	Peak Power Spectral Density (mW) *See Note 1	Limit (mW)
Lower	2.402	0.102	6.3
Middle	2.440	0.102	6.3
Upper	2.480	0.096	6.3

<u>Notes</u>

1.	Only the highest measured peak power spectral density was reported. Refer to plots for a	ıll
	measured peak power spectral density.	



Peak Power Spectral Density Plots

Peak Power Spectral Density Plots

Plot 38 – Upper Channel

4 Test Equipment

Instrument	Model	S/No	Cal Due Date
Conducted Emissions			
R&S Test Receiver	ESPI3	100349	01 Feb 2020
Agilent EMC Analyzer	E7403A	US41160166	06 Oct 2019
Schaffner LISN	NNB42	00008	08 May 2020
Schaffner LISN (EUT)	NNB42	04/10055	04 Oct 2019
Radiated Emissions (Spurious Emissions Incl	lusive Restricted Band	ds Requirement)	
R&S EMI Test Receiver	ESW44	101661	30 May 2020
Schaffner Bilog Antenna (30MHz-2GHz)	CBL6112B	2597	27 Mar 2020
TDK-RF Horn Antenna	HRN-0118	130256	20 Mar 2020
ETS Horn Antenna (18GHz-40GHz)	3116	0004-2474	07 Jan 2020
Com-Power Preamplifier (1MHz-1GHz)	PAM-103	441158	18 Jul 2019
R&S Preamplifier (1GHz -18GHz)	SCU18	102191	15 Jan 2020
Agilent Preamplifier (1GHz-26.5GHz)	8449D	3008A02305	28 Sep 2019
Micro-tronics Bandstop Filter (2.4GHz)	BRM50701-02	007	13 Aug 2019
Spectrum Bandwidth (6dB Bandwidth Measu Bands), Band Edge Compliance (Conducted)			ns (Non-Restricted
Spectrum Bandwidth (6dB Bandwidth Measu Bands), Band Edge Compliance (Conducted)			ns (Non-Restricted
Bands), Band Edge Compliance (Conducted)			ns (Non-Restricted
Bands), Band Edge Compliance (Conducted) Agilent EMC Analyzer	, Peak Power Spectra	l Density	
Bands), Band Edge Compliance (Conducted) Agilent EMC Analyzer	, Peak Power Spectra E7405A	MY40240195	16 Apr 2020
Bands), Band Edge Compliance (Conducted) Agilent EMC Analyzer Agilent DC Power Supply	, Peak Power Spectra E7405A	MY40240195	16 Apr 2020
Bands), Band Edge Compliance (Conducted) Agilent EMC Analyzer Agilent DC Power Supply Maximum Peak Power	, Peak Power Spectra E7405A	MY40240195	16 Apr 2020
	, Peak Power Spectra E7405A E3620A	I Density MY40240195 MY40000448	16 Apr 2020 Output Monitor
Bands), Band Edge Compliance (Conducted) Agilent EMC Analyzer Agilent DC Power Supply Maximum Peak Power Boonton RF Power Meter	, Peak Power Spectra E7405A E3620A 4532 56218-S/1	I Density MY40240195 MY40000448 97701	16 Apr 2020 Output Monitor 13 Aug 2019
Bands), Band Edge Compliance (Conducted) Agilent EMC Analyzer Agilent DC Power Supply Maximum Peak Power Boonton RF Power Meter Boonton Power Sensor RF Conducted Spurious Emissions (Restricted	, Peak Power Spectra E7405A E3620A 4532 56218-S/1	I Density MY40240195 MY40000448 97701	16 Apr 2020 Output Monitor 13 Aug 2019
Bands), Band Edge Compliance (Conducted) Agilent EMC Analyzer Agilent DC Power Supply Maximum Peak Power Boonton RF Power Meter Boonton Power Sensor	, Peak Power Spectra E7405A E3620A 4532 56218-S/1	I Density MY40240195 MY40000448 97701 1414	16 Apr 2020 Output Monitor 13 Aug 2019 13 Aug 2019
Bands), Band Edge Compliance (Conducted) Agilent EMC Analyzer Agilent DC Power Supply Maximum Peak Power Boonton RF Power Meter Boonton Power Sensor RF Conducted Spurious Emissions (Restricted Agilent EMC Analyzer	, Peak Power Spectra E7405A E3620A 4532 56218-S/1 <i>Bands)</i> E7405A	I Density MY40240195 MY40000448 97701 1414 MY40240195	16 Apr 2020 Output Monitor 13 Aug 2019 13 Aug 2019 13 Aug 2019
Bands), Band Edge Compliance (Conducted) Agilent EMC Analyzer Agilent DC Power Supply Maximum Peak Power Boonton RF Power Meter Boonton Power Sensor RF Conducted Spurious Emissions (Restricted Agilent EMC Analyzer Agilent DC Power Supply	, Peak Power Spectra E7405A E3620A 4532 56218-S/1 Bands) E7405A E3620A	I Density MY40240195 MY40000448 97701 1414 MY40240195 MY40000448	16 Apr 2020 Output Monitor 13 Aug 2019 0utput Monitor
Bands), Band Edge Compliance (Conducted), Agilent EMC Analyzer Agilent DC Power Supply Maximum Peak Power Boonton RF Power Meter Boonton Power Sensor RF Conducted Spurious Emissions (Restricted Agilent EMC Analyzer Agilent DC Power Supply Micro-tronics Bandstop Filter (2.4GHz) Band Edge Compliance (Radiated)	, Peak Power Spectra E7405A E3620A 4532 56218-S/1 Bands) E7405A E3620A BRM50701-02	I Density MY40240195 MY40000448 97701 1414 MY40240195 MY40000448 007	16 Apr 2020 Output Monitor 13 Aug 2019 13 Aug 2019
Bands), Band Edge Compliance (Conducted) Agilent EMC Analyzer Agilent DC Power Supply Maximum Peak Power Boonton RF Power Meter Boonton Power Sensor RF Conducted Spurious Emissions (Restricted Agilent EMC Analyzer Agilent DC Power Supply Micro-tronics Bandstop Filter (2.4GHz)	, Peak Power Spectra E7405A E3620A 4532 56218-S/1 Bands) E7405A E3620A	I Density MY40240195 MY40000448 97701 1414 MY40240195 MY40000448	16 Apr 2020 Output Monitor 13 Aug 2019 0utput Monitor

5 Measurement Uncertainty

All test measurements carried out are traceable to national standards. The uncertainty of the measurement at a confidence level of approximately 95%, with a coverage factor of 2.

Test Name	Measurement Uncertainty
Conducted Emissions	9kHz to 30MHz, ±2.4dB
Radiated Emissions	9kHz to 30MHz @ 10m, ±2.3dB 30MHz to 1GHz @ 10m, ±4.0dB 30MHz to 1GHz @ 3m, ±5.6dB >1GHz to 40GHz @3m, ±5.0dB
Maximum Permissible Exposure	0.1MHz – 3GHz is ±15.0%

Please note that this Report is issued under the following terms :

- 1. This report applies to the sample of the specific product/equipment given at the time of its testing/calibration. The results are not used to indicate or imply that they are applicable to other similar items. In addition, such results must not be used to indicate or imply that TÜV SÜD PSB approves, recommends or endorses the manufacturer, supplier or user of such product/equipment, or that TÜV SÜD PSB in any way "guarantees" the later performance of the product/equipment. Unless otherwise stated in this report, no tests were conducted to determine long term effects of using the specific product/equipment.
- The sample/s mentioned in this report is/are submitted/supplied/manufactured by the Client. TÜV SÜD PSB therefore assumes no responsibility for the accuracy of information on the brand name, model number, origin of manufacture, consignment or any information supplied.
- 3. Nothing in this report shall be interpreted to mean that TÜV SÜD PSB has verified or ascertained any endorsement or marks from any other testing authority or bodies that may be found on that sample.
- 4. This report shall not be reproduced wholly or in parts and no reference shall be made by the Client to TÜV SÜD PSB or to the report or results furnished by TÜV SÜD PSB in any advertisements or sales promotion.
- 5. Unless otherwise stated, the tests were carried out in TÜV SÜD PSB Pte Ltd, No.1 Science Park Drive Singapore 118221.

July 2011

