APPLICATION FOR CERTIFICATION On Behalf of Philips Lighting(China) Investment Co., Ltd. LED Lamp

 Model No.
 :
 9290012577

 Brand
 :
 Philips

 FCC ID
 :
 2AGBW9290012577X

Prepared for

Philips Lighting(China) Investment Co., Ltd. Building 9, Lane 888, Tian Lin Road, Minhang district, Shanghai, China

Prepared by

Audix Technology (Wujiang) Co., Ltd. EMC Dept. No. 1289 Jiangxing East Road, the Part of Wujiang Economic Development Zone Jiangsu China 215200

> Tel : +86-512-63403993 Fax :+86-512-63403339

Report NumberACWE-F1605008Date of TestMar.21~Apr.14, 2016Date of ReportMay.19, 2016

TABLE OF CONTENTS

De	escription	Page
TE	ST REPORT CERTIFICATION	4
1.	SUMMARY OF MEASUREMENTS AND RESULTS	5
2.	GENERAL INFORMATION	6
	2.1. Description of Device (EUT)	
	2.2. Description of Test Facility	
	2.3. Measurement Uncertainty	
3.	CONDUCTED EMISSION MEASUREMET	
	3.1. Test Equipment	
	3.2. Block Diagram of Test Setup3.3. Power line Conducted Emission Limit	
	3.4. Test Procedure	
	3.5. Conducted Emission Measurement Results	
4.	RADIATED EMISSION MEASUREMENT	17
	4.1. Test Equipment	17
	4.2. Block Diagram of Test Setup	
	4.3. Radiated Emission Limits	
	4.4. Test Procedure	
	4.5. Measurement Results (For Below 1GHz)	
	4.7. Restricted Bands Measurement Results (For Above 1GHz)	
	4.8. Spurious Emission Measurement Results in Band Edge Emission (FCC Part 15, 15.205)	
5.	6 DB BANDWIDTH MEASUREMENT	45
	5.1. Test Equipment	45
	5.2. Block Diagram of Test Setup	
	5.3. Specification Limits (§15.247(a)(2))	
	5.4. Test Procedure	
6.	OUTPUT POWER MEASUREMENT	
0.	6.1. Test Equipment	
	6.2. Block Diagram of Test Setup	
	6.3. Specification Limits (§15.247(b)(3))	
	6.4. Test Procedure	49
	6.5. Test Results	
7.	BAND EDGES MEASUREMENT	
	7.1. Test Equipment	
	7.2. Block Diagram of Test Setup	
	7.3. Specification Limits (§15.247(d)).7.4. Test Procedure	
	7.5. Test Results	
8.	POWER SPECTRAL DENSITY MEASUREMENT	52
	8.1. Test Equipment	
	8.2.Block Diagram of Test Setup	
	8.3. Specification Limits (§15.247(e))	
	8.4. Test Results	
9.	EMISSION LIMITATIONS MEASUREMENT	
	9.1. Test Equipment	
	9.2. Block Diagram of Test Setup.9.3. Specification Limits (§15.247(d)).	
	9.4. Test Procedure	
	9.5. Test Results	

10.	DUTY CYCLE	79
	10.1. Test Equipment	79
	10.2. Test Results	
11.	DEVIATION TO TEST SPECIFICATIONS	80

TEST REPORT CERTIFICATION

Applicant	:	Philips Lighting(China) Investment Co., Ltd.
Manufacturer):	Philips Lighting(China) Investment Co., Ltd.
EUT Description	:	LED Lamp
FCC ID		2AGBW9290012577X
(A) Model No.	:	9290012577
(B) Brand	: <	Philips
(C) Power Supply	$\langle \cdot \rangle$	AC 110-130V, 60Hz
(D) Test Voltage		AC 120V, 60Hz

Applicable Standards:

FCC RULES AND REGULATIONS PART 15 SUBPART C, Oct. 2015 ANSI C63.10: 2013 KDB 558074 D01 DTS Meas Guidance v03r05

The device described above was tested by Audix Technology (Wujiang) Co., Ltd. EMC Dept. to determine the maximum emission levels emanating from the device. The maximum emission levels were compared to the FCC Part 15 subpart C section 15.207, 15.209&15.247 limits.

The measurement results are contained in this test report and Audix Technology (Wujiang) Co., Ltd. EMC Dept. is assumed full responsibility for the accuracy and completeness of these measurements. Also, this test report shows that the EUT to be technically compliant with the FCC limits.

This test report applies to above tested sample only. This test report shall not be reproduced in part without written approval of Audix Technology (Wujiang) Co., Ltd. EMC Dept.

Date of Test: Mar.21~Apr.14, 2016

Prepared by

Reviewer

Date of Report: May.19, 2016

lu

(Emma Hu/Assistant Administrator)

(Danny Sun/ Section Manager)

Approved & Authorized Signer

(Ken Lu/Assistant General Manager)

Audix Technology (Wujiang)Co., Ltd. EMC Dept. Report No.: ACWE-F1605008

1. SUMMARY OF MEASUREMENTS AND RESULTS

The EUT has been tested according to the applicable standards and test results are referred as below.

Description of Test Item	Standard	Results	Remark
CONDUCTED EMISSION	FCC 47 CFR Part 15 Subpart C/ Section 15.207 And ANSI C63.10:2013 And KDB 558074 D01 DTS Meas Guidance v03r05	PASS	Minimum passing margin is 13.40 dB at 0.15 MHz
RADIATED EMISSION	FCC 47 CFR Part 15 Subpart C/ Section 15.209& Section 15.205 And ANSI C63.10:2013 And KDB 558074 D01 DTS Meas Guidance v03r05	PASS	Minimum passing margin is 13.83 dB at 31.94 MHz
6 dB BANDWIDTH	FCC 47 CFR Part 15 Subpart C/ Section 15.247(a)(2) And ANSI C63.10:2013 And KDB 558074 D01 DTS Meas Guidance v03r05	PASS	> 500kHz
OUTPUT POWER	FCC 47 CFR Part 15 Subpart C/ Section 15.247(b)(3) And ANSI C63.10:2013 And KDB 558074 D01 DTS Meas Guidance v03r05	PASS	Minimum passing margin is 26.81 dB at CH 11
BAND EDGES	FCC 47 CFR Part 15 Subpart C/ Section 15.247(d) And ANSI C63.10:2013 And KDB 558074 D01 DTS Meas Guidance v03r05	PASS	
POWER SPECTRAL DENSITY	FCC 47 CFR Part 15 Subpart C/ Section 15.247(e) And ANSI C63.10:2013 And KDB 558074 D01 DTS Meas Guidance v03r05	PASS	Minimum passing margin is 13.794 dB at CH 11
EMISSION LIMITATIONS	FCC 47 CFR Part 15 Subpart C/ Section 15.247(d) And ANSI C63.10:2013 And KDB 558074 D01 DTS Meas Guidance v03r05	PASS	

2. GENERAL INFORMATION

2.1. Description of Device (EUT)

Description	:	LED Lamp
Model No.	:	9290012577
FCC ID	:	2AGBW9290012577X
Brand	:	Philips
Applicant	:	Philips Lighting(China) Investment Co., Ltd. Building 9, Lane 888, Tian Lin Road, Minhang district, Shanghai, China
Manufacturer	:	Philips Lighting(China) Investment Co., Ltd. Building 9, Lane 888, Tian Lin Road, Minhang district, Shanghai, China
Radio Technology	:	IEEE 802.15.4 (ZigBee®)
Antenna Gain	:	1.9dBi
Fundamental Range	:	2405 MHz -2475MHz
Tested Frequency	:	2405MHz (CH11) 2450MHz (CH20) 2475MHz (CH25) 2480MHz (CH26)
Channel Setting Method	:	Channel is changed according to EUT's power on or power off.
Highest Working Frequency	:	2.4GHz
Power Rating	:	5.5W
Modulation type	:	O-QPSK
Date of Receipt of Sample	:	Mar.15, 2016
Date of Test	:	Mar.21~Apr.14, 2016

2.2. Description of Test Facility

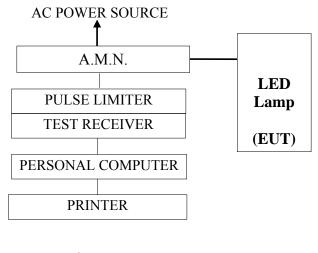
Name of Firm	Audix Technology (Wujiang) Co., Ltd. EMC Dept.			
Site Location	No. 1289 Jiangxing East Road, the Eastern Part of Wujiang Economic Development Zone Jiangsu China 215200			
Test Facilities	No.1 Conducted Shielding Enclosure			
	No.1 3m Semi-anechoic Chamber Date of Validity: Mar.30, 2018 FCC Registration No.: 897661 IC Registration No.:5183D-2 RF Fully Chamber			
NVLAP Lab Code	200786-0 Valid until on Sep.30, 2016 (NVLAP is a signatory member of ILAC MRA) Remark: This report shall not be imply endorsement, certification or approval by NVLAP, NIST, or any agency of the U.S. Federal Government.			

2.3. Measurement Uncertainty

Test Item	Range Frequency	Uncertainty	
No.1 Conducted Disturbance Measurement	$0.15 MHz \sim 30 MHz$	± 2.65dB	
Radiated Disturbance Measurement	$30 MHz \sim 300 MHz$	± 3.18dB	
(At 3m Chamber)	$300 \text{MHz} \sim 1 \text{GHz}$	± 3.12dB	
Radiated Disturbance Measurement	1GHz ~ 6GHz	± 4.56dB	
(At 3m Chamber)	$6 \mathrm{GHz} \sim 18 \mathrm{GHz}$	± 5.03dB	

Remark: Uncertainty = $ku_c(y)$

Test Item	Uncertainty
6 dB Bandwidth	$\pm 0.16 \text{MHz}$
Maximum Peak Output Power	± 0.12dB
Band Edges	± 0.38dB
Power Spectral Density	$\pm 0.38 dB$
Emission Limitations	± 0.38dB


Remark: Uncertainty = $ku_c(y)$

3. CONDUCTED EMISSION MEASUREMET

3.1. Test Equipment

Item	Туре	Manufacturer	Model No.	Serial No.	Last Cal.	Next Cal.
1.	Test Receiver	R & S	ESCI	100839	2016-01-05	2017-01-04
2.	A.M.N	R&S	ESH2-Z5	100153	2015-05-15	2016-05-14
3.	Pulse Limiter	R&S	ESH3-Z2	100605	2015-07-03	2016-07-02
4.	RF Cable	Harbour Industries	RG400	002	2016-01-05	2017-01-04
5.	Software	Audix/e3(6.7.0313)				

3.2. Block Diagram of Test Setup

- : POWER LINE - : SIGNAL LINE

3.3. Power line Conducted Emission Limit

(FCC Part 15, Section 15.207, Class B)

Frequency	Maximum RF Line Voltage		
	Quasi-Peak Level	Average Level	
$150 \mathrm{kHz} \sim 500 \mathrm{kHz}$	$66 \sim 56 \ dB\mu V$	$56 \sim 46 \; dB \mu V$	
500kHz~5MHz	56 dBµV	46 dBµV	
5MHz ~ 30MHz	60 dBµV	50 dBµV	

Remark1: If the average limit is met when using a Quasi-Peak detector, the EUT shall be deemed to meet both limits and measurement with the average detector is unnecessary.

2: The lower limit applies at the band edges.

57

3.4. Test Procedure

The measuring process is according to ANSI C63.10-2013 and laboratory internal procedure TKC-301-004. (For FCC Part15 Subpart C)

In the conducted emission measurement, the EUT and all peripheral devices were set up on a non-metallic table which was 0.8 meter height above the ground plane, and 0.4 meter far away from the vertical plane. The mains cable of the EUT connected to one Artificial Main Network(AMN). All other unit of the EUT and AE connected to a second Line Impedance Stabilization Network(L.I.S.N.). The telecommunication cable connected to the AE through a Impedance Stabilization Network(ISN) which terminated a 50 Ω resistor. For the measurement, the A.M.N measuring port was terminated by a 50 Ω measuring equipment and the second L.I.S.N measuring port was terminated by a 50 Ω terminator. All measurements were done between the phase lead and the reference ground, and between the neutral lead and the reference ground. All cables or wires placement were verified to find out the maximum emission.

The bandwidth of measuring receiver was set at 9 kHz.

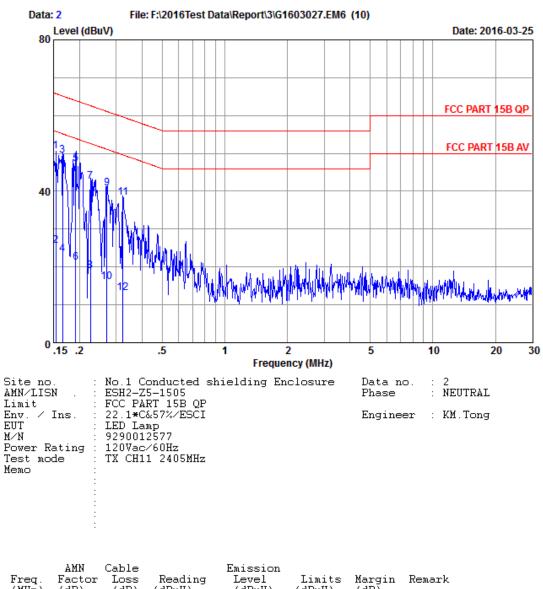
The required frequency band $(0.15 \text{ MHz} \sim 30 \text{ MHz})$ was pre-scanned with peak detector; the final measurement was measured with quasi-peak detector and average detector. (If the average limit is met when using a quasi-peak detector, the average detector is unnecessary).

The emission level is calculated automatically by the test system which uses the following equation:

Emission level $(dB\mu V)$ = Reading $(dB\mu V)$ + A.M.N factor (dB) + Cable loss (dB). (Cable loss includes pulse limiter loss)

3.5. Conducted Emission Measurement Results

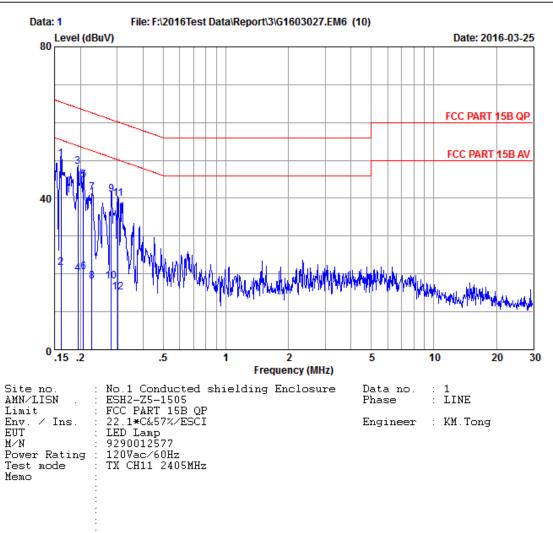
For FCC Part15 Subpart C **PASSED**.


EUT was performed during this section testing and all the test results are attached in next pages.

Test Dat	e Mar.25, 2016	Temperature	22.1	Hum	idity
Mada	Test Canditian	Refe	erence Te	st Data No.	
Mode	Test Condition	Ne	utral	Line	
1	TX CH11 2405MHz	#	2	# 1	
2	TX CH20 2450MHz	#	4	# 3	
3	TX CH25 2475MHz	I	#6	# 5	

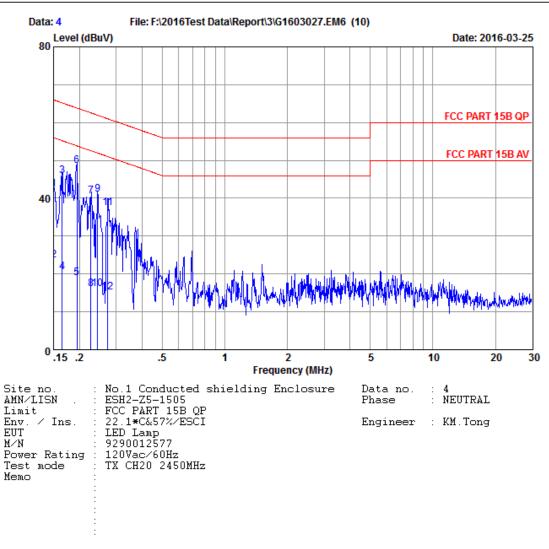
NOTE 1 ' 'means the worst test mode.

NOTE 2- The worst emission is detected at 0.15 MHz with emission level of 52.54 dB (μ V) and with QP detector (Limit is 65.94 dB (μ V)), when the Neutral of the EUT is connected to AMN.



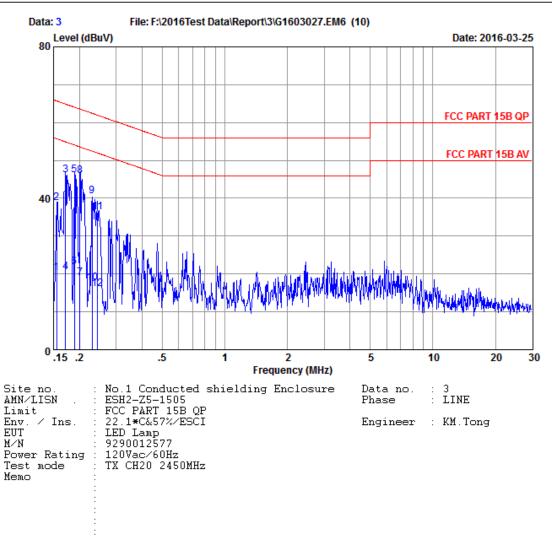
	Freq. (MHz)	Factor (dB)	Loss (dB)	Reading (dBuV)	Level (dBuV)	Limits (dBu∛)	Margin (dB)	Remark
1 2 3 4 5 6 7 8 9 10 11 12	$\begin{array}{c} 0.15\\ 0.15\\ 0.17\\ 0.17\\ 0.19\\ 0.19\\ 0.23\\ 0.23\\ 0.27\\ 0.27\\ 0.32\\ 0.32\\ 0.32\\ \end{array}$	$\begin{array}{c} 0.15\\$	9.89 9.89 9.89 9.89 9.89 9.89 9.89 9.89	$\begin{array}{c} 40.50\\ 15.60\\ 39.50\\ 13.30\\ 37.30\\ 11.20\\ 32.50\\ 9.00\\ 30.71\\ 6.01\\ 28.30\\ 3.00\\ \end{array}$	50.54 25.64 49.54 23.34 47.34 21.24 42.54 19.04 40.75 16.05 38.35 13.05	65.78 55.78 65.16 55.16 53.95 62.60 52.60 52.60 51.09 51.09 59.63 49.63	$\begin{array}{c} 15.24\\ 30.14\\ 15.62\\ 31.82\\ 16.61\\ 32.71\\ 20.06\\ 33.56\\ 20.34\\ 35.04\\ 21.28\\ 36.58\\ \end{array}$	QP Average QP Average QP Average QP Average QP Average QP Average

Remarks:



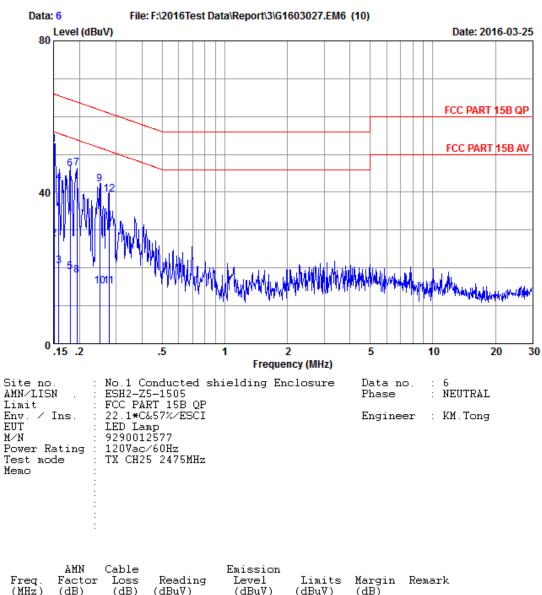
	Freq. (MHz)	AMN Factor (dB)	Cable Loss (dB)	Reading (dBuV)	Emission Level (dBuV)	Limits (dBuV)	Margin (dB)	Remark
1 2 3 4 5 6 7 8 9 10 11	0.16 0.19 0.19 0.21 0.23 0.23 0.23 0.28 0.28 0.30	$\begin{array}{c} 0.16\\ 0.16\\ 0.15\\ 0.15\\ 0.15\\ 0.15\\ 0.15\\ 0.15\\ 0.15\\ 0.16\\ 0.16\\ 0.16\\ 0.16\\ 0.16\\ \end{array}$	9.89 9.89 9.89 9.89 9.89 9.89 9.89 9.89	40.30 11.50 38.30 10.00 34.80 10.40 31.50 8.00 31.00 8.00 29.79	$\begin{array}{c} 50.35\\ 21.55\\ 48.34\\ 20.04\\ 44.84\\ 20.44\\ 41.54\\ 18.04\\ 41.05\\ 18.05\\ 39.85\\ \end{array}$	65.41 55.41 63.86 53.32 53.32 62.56 52.56 60.79 50.79 60.16	$\begin{array}{c} 15.06\\ 33.86\\ 15.52\\ 33.82\\ 18.48\\ 32.88\\ 21.02\\ 34.52\\ 19.74\\ 32.74\\ 20.31\\ \end{array}$	QP Average QP Average QP Average QP Average QP Average QP
12	0.30	0.16	9.90	4.99	15.05	50.16	35.11	Average

Remarks:



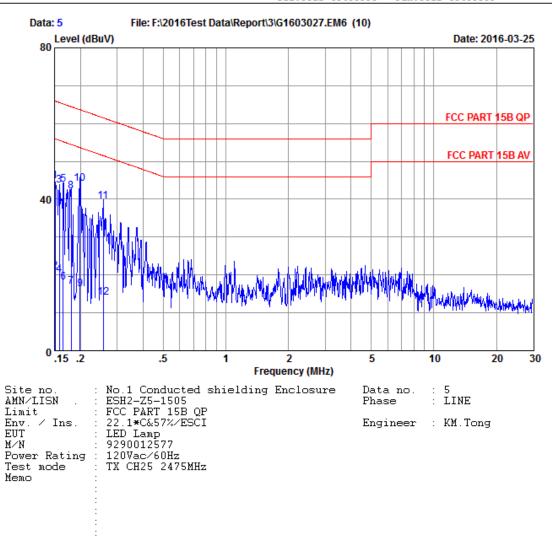
		Freq. (MHz)	AMN Factor (dB)	Cable Loss (dB)	Reading (dBuV)	Emission Level (dBuV)	Limits (dBuV)	Margin (dB)	Remark
10 0.27 0.10 7.07 0.01 10.00 01.00 00.70 MODINGO	3 4 5 6 7 8 9 10 11	0.15 0.17 0.17 0.19 0.23 0.23 0.23 0.24 0.24 0.24	0.15 0.15 0.15 0.15 0.15 0.15 0.15 0.15	9.89 9.89 9.89 9.89 9.89 9.89 9.89 9.89	13.50 35.80 10.50 9.00 38.50 30.50 6.00 31.01 6.01 27.51	23.54 45.84 20.54 19.04 48.54 40.54 16.04 41.05 16.05 37.55	56.00 65.21 55.21 53.86 62.56 52.56 61.96 51.96 61.00	32.46 19.37 34.67 34.82 15.32 22.02 36.52 20.91 35.91 23.45	Average OP Average OP OP Average OP Average OP Average OP

Remarks:



	Freq. (MHz)	AMN Factor (dB)	Cable Loss (dB)	Reading (dBuV)	Emission Level (dBuV)	Limits (dBuV)	Margin (dB)	Remark
1	0.16	0.16	9.89 9.89	10.30 28.80	20.35 38.85	55.73 65.73	35.38 26.88	Average QP
3	0.17	0.16	9.89	36.10	46.15	64.91	18.76	QP
4	0.17	0.16	9.89	10.50	20.55	54.91	34.36	Average
5	0.19 0.19	0.15 0.15	9.89 9.89	36.00 11.80	46.04 21.84	64.08 54.08	18.04 32.24	QP Average
7	0.20	0.15	9.89	9.00	19.04	53.57	34.53	Average
8	0.20	0.15	9.89	35.80	45.84	63.57	17.73	QP -
9 10	0.23 0.23	0.15 0.15	9.89 9.89	30.50 7.50	40.54 17.54	62.45 52.45	21.91 34.91	QP
11	0.23	0.15	9.89	26.31	36.35	52.45 61.96	25.61	Average QP
12	0.24	0.15	9.89	6.01	16.05	51.96	35.91	Äverage

Remarks:

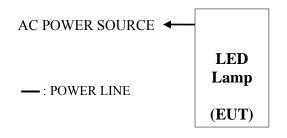


	Freq. (MHz)	Factor (dB)	Loss (dB)	Reading (dBuV)	Level (dBuV)	Limits (dBuV)	Margin (dB)	Remark
- 1 2 3 4 5 6 7 8 9 10 11 12	0.16 0.16 0.18 0.18 0.19 0.19 0.25 0.25 0.25	$\begin{array}{c} 0.15\\$	9.89 9.89 9.89 9.89 9.89 9.89 9.89 9.89	$\begin{array}{c} 42.50\\ 17.50\\ 10.50\\ 32.50\\ 9.00\\ 36.00\\ 36.30\\ 8.00\\ 32.01\\ 5.01\\ 5.01\\ 29.31 \end{array}$	$\begin{array}{c} 52.54\\ 27.54\\ 20.54\\ 42.54\\ 19.04\\ 46.04\\ 46.34\\ 18.04\\ 42.05\\ 15.05\\ 15.05\\ 39.35\\ \end{array}$	65.94 55.94 55.52 65.52 54.49 63.86 53.86 61.76 51.76 50.91 60.91	$\begin{array}{c} 13.40\\ 28.40\\ 34.98\\ 22.98\\ 35.45\\ 18.45\\ 17.52\\ 35.82\\ 19.71\\ 36.71\\ 35.86\\ 21.56\end{array}$	QP Average QP Average QP QP Average QP Average Average QP

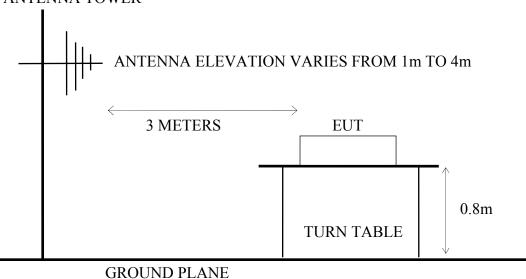
Remarks:

	Freq. (MHz)	AMN Factor (dB)	Cable Loss (dB)	Reading (dBuV)	Emission Level (dBuV)	Limits (dBuV)	Margin (dB)	Remark
1	0.15 0.15	0.16 0.16	9.89 9.89	34.70 11.00	44.75 21.05	65.94 55.94	21.19 34.89	QP Average
3	0.16	0.16	9.89	33.60	43.65	65.57	21.92	QP
4	0.16	0.16	9.89	10.00	20.05	55.57	35.52	Average
5	$0.17 \\ 0.17$	0.16 0.16	9.89 9.89	33.80 8.00	43.85 18.05	65.21 55.21	21.36 37.16	QP
7	0.17	0.16	9.89	7.00	17.04	54.49	37.45	Average Average
8	0.18	0.15	9.89	32.00	42.04	64.49	22.45	QP
9	0.20	0.15	9.89	6.20	16.24	53.65	37.41	Average
10	0.20	0.15	9.89	34.10	44.14	63.65	19.51	QP
11 12	0.26 0.26	0.15 0.15	9.89 9.89	29.41 4.01	39.45 14.05	61.53 51.53	22.08 37.48	QP Average

Remarks:

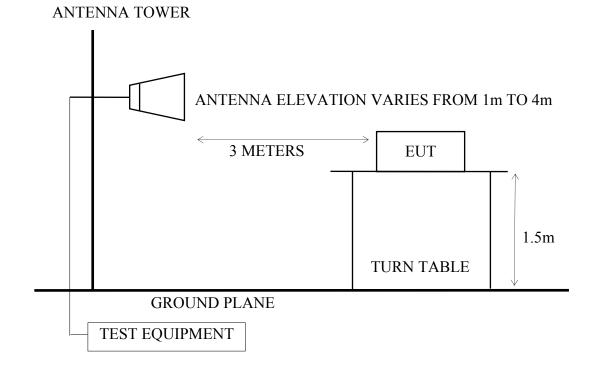

4. RADIATED EMISSION MEASUREMENT

4.1. Test Equipment


The following test equipment was used during the radiated emission measurement: At 3m Semi-Anechoic Chamber

Item	Туре	Manufacturer	Model No.	Serial No.	Last Cal.	Next Cal.	
1.	Preamplifier	Agilent	8449B	3008A02233	2016-01-05	2017-01-04	
2.	Preamplifier	Agilent	8447D	2944A10921	2015-07-03	2016-07-02	
3.	PXA Signal Analyzer	Agilent	N9030A	MY53120367	2015-06-23	2016-06-22	
4.	Test Receiver	R&S	ESCI	100361	2016-01-05	2017-01-04	
5.	Bi-log Antenna	Schaffner	CBL6112D	22250	2015-09-02	2016-09-01	
6.	Horn Antenna	EMCO	3115	62960	2015-06-30	2016-05-29	
7.	RF Cable #1	Yuhang CSYH	cable-3m	001(0.5m)	2016-01-05	2017-01-04	
8.	RF Cable #2	Yuhang CSYH	cable-3m	002(0.5m)	2016-01-05	2017-01-04	
9.	RF Cable #3	Yuhang CSYH	cable-3m	003(3.0m)	2016-01-05	2017-01-04	
10.	Software	Audix/e3(6.7.0313)					

- 4.2. Block Diagram of Test Setup
- 4.2.1. Block Diagram of Test Setup between EUT and simulators



4.2.2. No. 1 3m Semi-Anechoic Chamber Setup Diagram (Test distance:3m) for 30-1000MHz

4.2.3. No. 1 3m Semi-Anechoic Chamber Setup Diagram (Test distance: 3m) for above 1GHz

4.3. Radiated Emission Limits

Radiated Emission Limits (FCC Part15 C, section 15.209, CISPR22)

Frequency	Distance Materia	Field Strengths Limits		
MHz	Distance Meters	dBµV/m		
30 ~ 88	3	40		
88~216	3	43.5		
216~960	3	46		
Above 960	3	54		
Above 1000	2	74 (Peak)		
A00ve 1000	5	54 (Average)		

Remark (1) Emission level $(dB\mu V/m) = 20 \log Emission level (\mu V/m)$

(2)The tighter limit applies at the edge between two frequency bands.

4.4. Test Procedure

The measuring process is according to ANSI C63.10-2013 and laboratory internal procedure TKC-301-001. (For FCC Part15 Subpart C)

In the radiated disturbance measurement, the EUT and all simulators were set up on a non-metallic turn table which was 0.8 meter above the ground plane. Measurement distance between EUT and receiving antennas was set at 10 meters at $30MHz\sim1GHz$ and 3 meters at $1GHz\sim6GHz$. The measurement distance is the shortest horizontal distance between an imaginary circular periphery which consists of EUT periphery and cables and the reference point of the antenna. During the radiated measurement, the EUT was rotated 360° and receiving antennas were used for both horizontal and vertical polarization detection for $30MHz\sim1GHz$, One receiving antennas was used for both horizontal and vertical polarization detection for $1GHz\sim6GHz$ (the absorbing material was added when testing of $1GHz\sim6GHz$ was done). All cables or wires placement were verified to find out the maximum emission.

The bandwidth of measuring receiver (or spectrum analyzer) was set to:

RBW (120 kHz), VBW (300 kHz) for QP detector below 1GHz RBW (1 MHz), VBW (1MHz) for Peak detector above 1GHz RBW (1 MHz), VBW (10Hz) for AV detector above 1GHz

The frequency range from 30MHz to 10th harmonic(25GHz) are checked, and no any emissions were found from 18GHz to 25GHz.

The emission level is calculated automatically by the test system which uses the following equation

- 1. For 30MHz-1GHz measurement: Emission Level (dBµV/m) = Reading (dBµV)+Antenna Factor (dB/m)+Cable Loss (dB)
- 2. For Above 1GHz measurement: Emission Level $(dB\mu V/m) = \text{Reading } (dB\mu V)+\text{Antenna Factor } (dB/m)+\text{Cable Loss}(dB)$ -Pre-amplifier factor (dB)

The three orthogonal planes have been all tested, and the data of the worst mode XZ plan(in Horizontal) & YZ plan(in Vertical) is shown in the report.

4.5. Measurement Results

PASSED

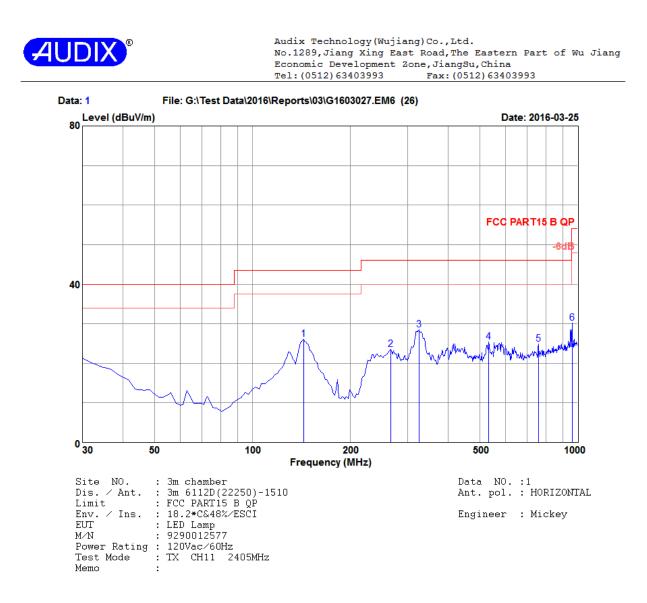
4.5.1. For Restricted Bands:

The EUT was tested in restricted bands and all the test results are listed in section 5.7 & 5.8. (The restricted bands defined in part 15.205(a))

For Frequency range : below 1GHz

Na	Teat Mada a	Reference Test Data No.				
No.	l est Mode a	Test Mode and Frequency				
1.		2405MHz (Channel 11)	# 1	# 2		
2.	Transmitting	2450MHz (Channel 20)	# 3	# 4		
3.		2475MHz (Channel 25)	# 5	# 6		

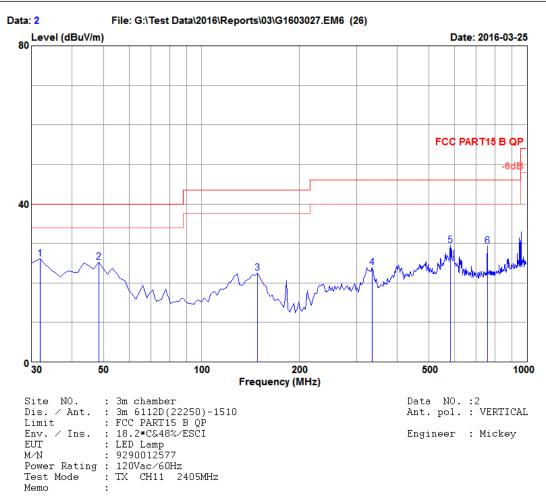
For Frequency range : above 1GHz


Na		Reference Test Data No.		
No.	Test Mode a	nd Frequency	Horizontal	Vertical
1.		2405MHz (Channel 11)	# 7	# 8
2.	Transmitting	2450MHz (Channel 20)	# 9	# 10
3.		2475MHz (Channel 25)	# 11	# 12

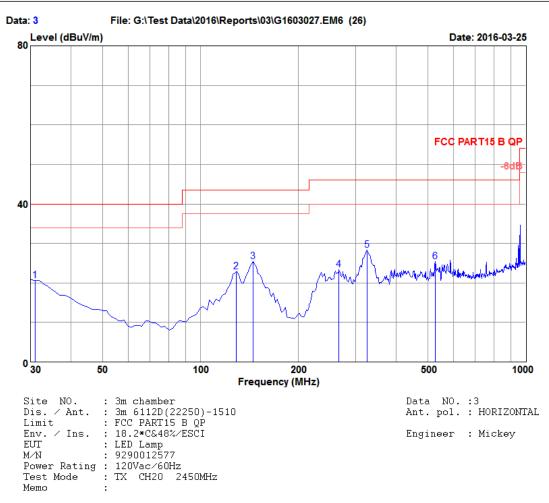
4.5.2. For Band Edge Emission

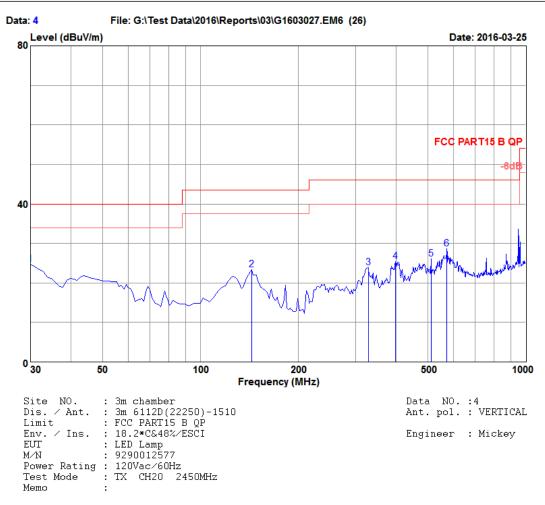
The EUT was tested in restricted bands and all the test results are listed in section 5.9. The restricted bands defined in part 15.205(a)

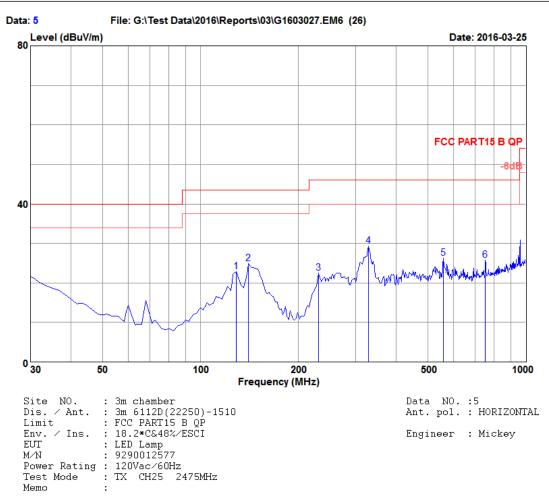
No.		Reference Test Data No.		
	Test Mode a	Horizontal	Vertical	
1.		2405MHz (Channel 11)	# 13, # 15	# 14, # 16
2.		2475MHz (Channel 25)	# 17, # 19	# 18, # 20
3.		2480MHz (Channel 26)	# 27, # 29	# 28, # 30


4.6. Restricted Bands Measurement Results (For Below 1GHz)

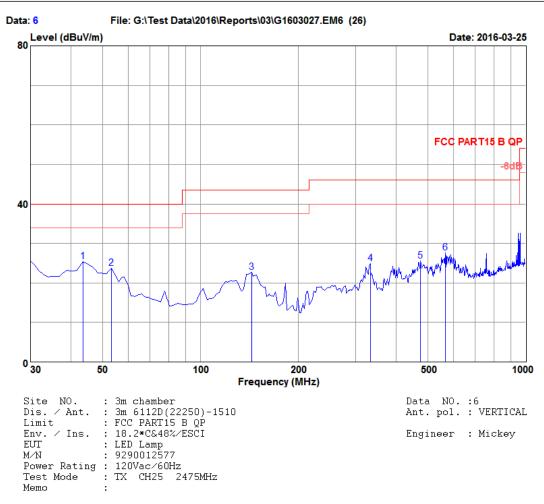
	Freq. (MHz)	Ant. Factor (dB∕m)	Cable Loss (dB)	Reading (dBuV)	Emission Level (dBuV/m)	Limits (dBuV/m)	Margin (dB)	Remark			
1 2 3 4 5 6	143.49 266.68 324.88 533.43 756.53 961.20	12.62 13.80 14.63 18.63 20.51 22.13	1.03 1.48 1.66 2.21 2.72 3.23	39.43 34.89 39.04 32.41 29.43 31.75	26.05 23.50 28.56 25.42 24.86 30.15	43.50 46.00 46.00 46.00 46.00 46.00 54.00	17.45 22.50 17.44 20.58 21.14 23.85	QP QP QP QP QP QP QP			
Re	Remarks: 1. Emission Level= Antenna Factor + Cable Loss + Reading. 2. The emission levels that are 20dB below the official limit										


are not reported.


	Freq. (MHz)	Ant. Factor (dB∕m)	Cable Loss (dB)	Reading (dBuV)	Emission Level (dBuV/m)	Limits (dBuV/m)	Margin (dB)	Remark
1 2	31.94 48.43	20.20 11.63	0.48 0.60	32.84 40.34	26.17 25.27	40.00 40.00	13.83 14.73	QP QP
3 4	148.34 334.58	12.14	1.05	36.26 34.21	22.44	43.50 46.00	21.06	QP QP
5 6	581.93 756.53	19.26	2.33	35.84 33.96	29.55 29.39	46.00	16.45 16.61	QP OP
	/	20.31		JJ.90 	29.39	40.00	10.01	۷r

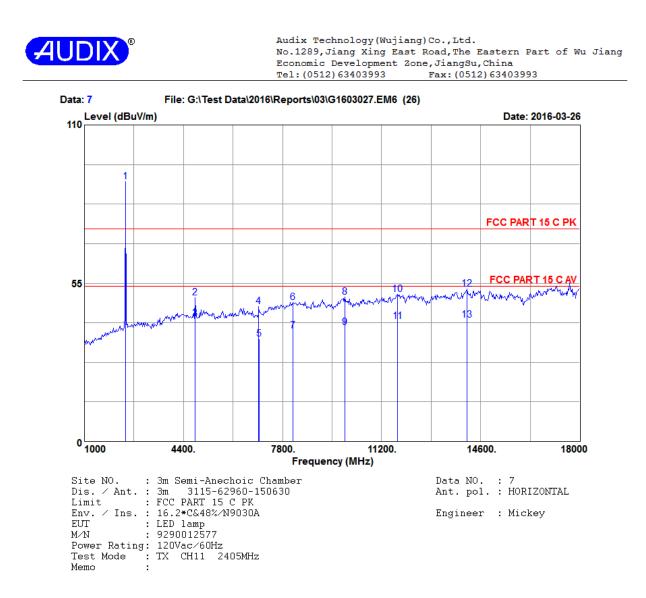

Freq. (MHz)	Ant. Factor (dB⁄m)	Cable Loss (dB)	Reading (dBuV)	Emission Level (dBuV/m)	Limits (dBuV/m)	Margin (dB)	Remark
$\begin{array}{rrrr} 1 & 30.97 \\ 2 & 128.94 \\ 3 & 145.43 \\ 4 & 266.68 \\ 5 & 324.88 \\ 6 & 526.64 \end{array}$	20.75	0.48	26.84	20.72	40.00	19.28	QP
	13.16	0.98	35.80	22.86	43.50	20.64	QP
	12.43	1.04	38.92	25.37	43.50	18.13	QP
	13.80	1.48	34.84	23.45	46.00	22.55	QP
	14.63	1.66	38.75	28.27	46.00	17.73	QP
	18.54	2.19	32.60	25.50	46.00	20.50	OP

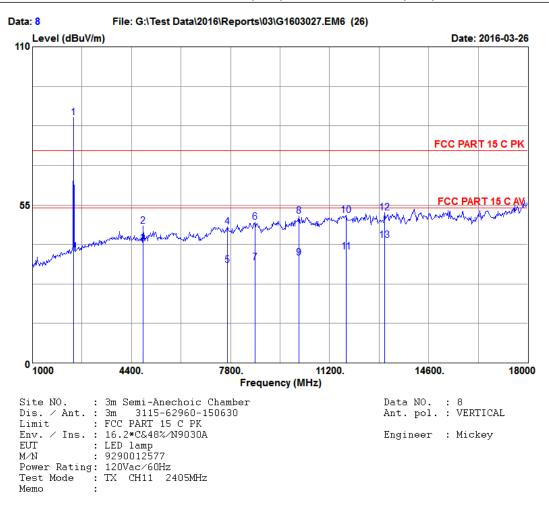
Freq. (MHz)	Ant. Factor (dB∕m)	Cable Loss (dB)	Reading (dBuV)	Emission Level (dBuV/m)	Limits (dBuV/m)	Margin (dB)	Remark
1 30.00	21.30	0.47	30.30	24.72	40.00	15.28	QP
2 143.49	12.62	1.03	36.75	23.37	43.50	20.13	QP
3 327.79	14.72	1.67	34.25	23.85	46.00	22.15	QP
4 397.63	16.74	1.86	34.07	25.39	46.00	20.61	QP
5 512.09	18.35	2.16	33.40	26.10	46.00	19.90	QP
6 572.23	19.13	2.30	35.06	28.62	46.00	17.38	OP



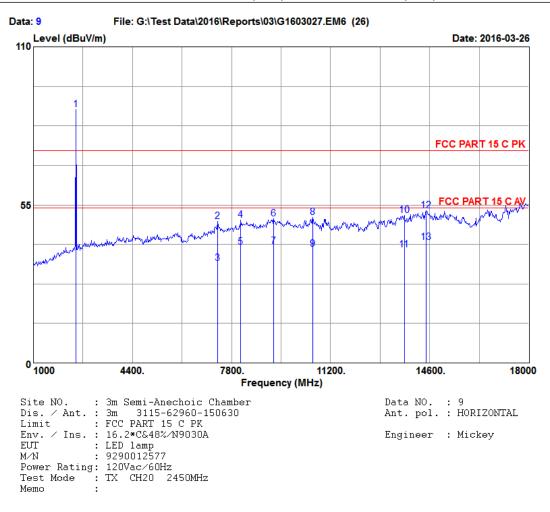
Freq. (MHz)	Ant. Factor (dB∕m)	Cable Loss (dB)	Reading (dBuV)	Emission Level (dBuV/m)	Limits (dBuV/m)	Margin (dB)	Remark
$\begin{array}{rrrr} 1 & 128.94 \\ 2 & 140.58 \\ 3 & 230.79 \\ 4 & 327.79 \\ 5 & 557.68 \\ 6 & 751.68 \end{array}$	13.16	0.98	35.75	22.81	43.50	20.69	QP
	12.90	1.02	37.96	24.84	43.50	18.66	QP
	11.58	1.36	36.27	22.47	46.00	23.53	QP
	14.72	1.67	39.80	29.40	46.00	16.60	QP
	18.94	2.27	32.93	26.28	46.00	19.72	QP
	20.46	2.70	30.37	25.73	46.00	20.27	QP

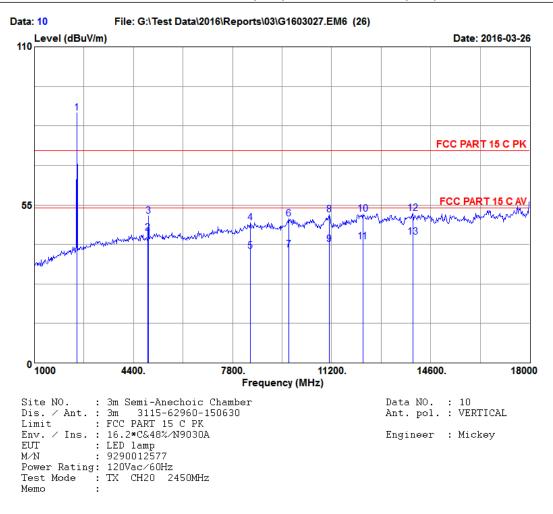
Remarks: 1. Emission Level= Antenna Factor + Cable Loss + Reading. 2. The emission levels that are 20dB below the official limit

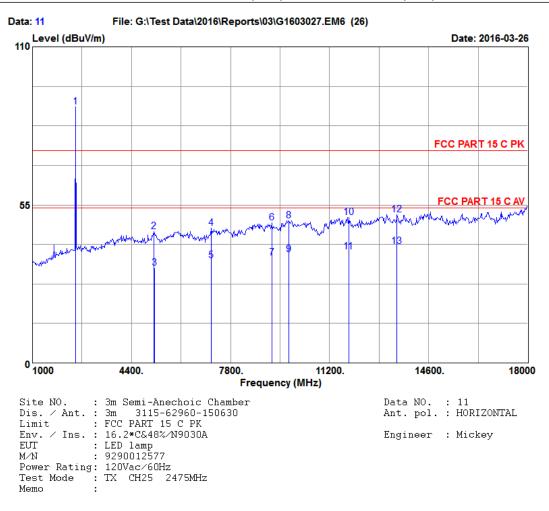

are not reported.

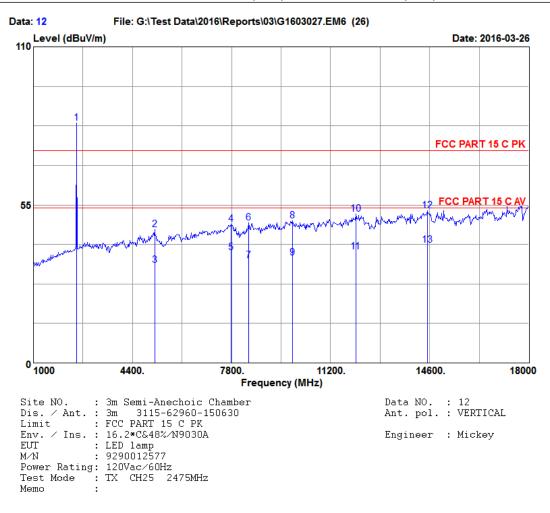

	Freq. (MHz)	Ant. Factor (dB∕m)	Cable Loss (dB)	Reading (dBuV)	Emission Level (dBuV/m)	Limits (dBuV⁄m)	Margin (dB)	Remark
1	43.58	13.95	0.56	38.26	25.45	40.00	14.55	QP
2	53.28	9.86	0.63	40.47	23.67	40.00	16.33	QP
3	143.49	12.62	1.03	36.02	22.64	43.50	20.86	QP
4	332.64	14.86	1.68	35.13	24.84	46.00	21.16	QP
5	475.23	17.85	2.07	33.33	25.57	46.00	20.43	QP
6	567.38	19.07	2.29	34.10	27.59	46.00	18.41	QP

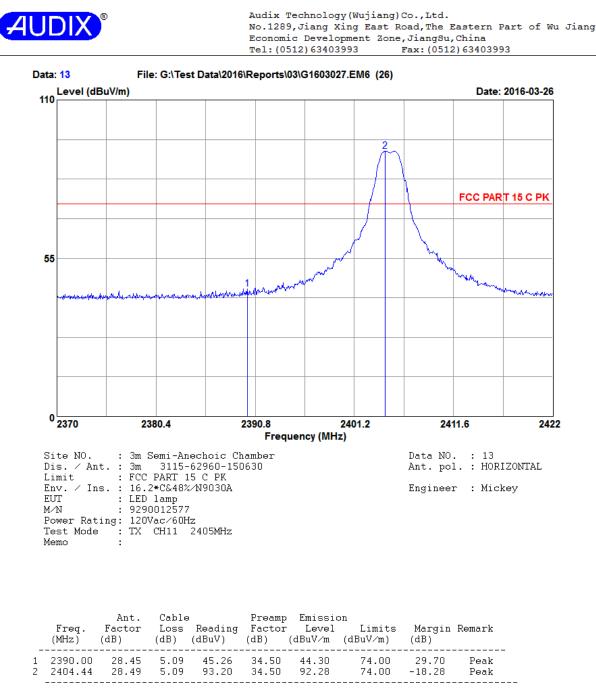
4.7. Restricted Bands Measurement Results (For Above 1GHz)

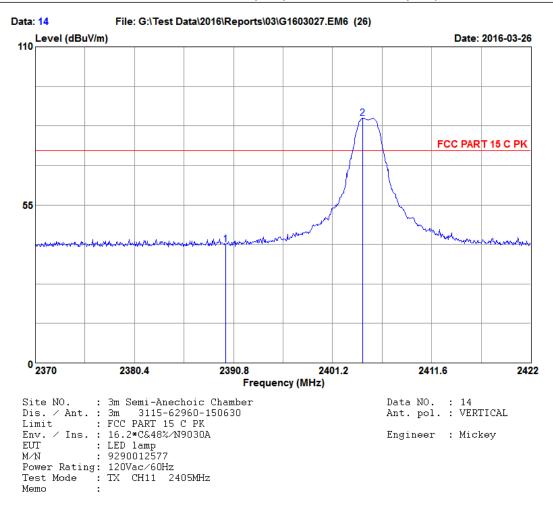

	Freq. (MHz)	Ant. Factor (dB)	Cable Loss (dB)	Reading (dBuV)	Preamp Factor (dB)		on Limits (dBuV∕m)	Margin (dB)	Remark
1 2 3 4 5 6 7 8 9	2407.00 4801.00 4802.16 6985.00 6986.15 8161.00 8162.16 9946.00 9947.18 11752.00	28.49 32.86 35.56 35.56 37.19 37.19 38.73 38.73 39.26	5.09 7.32 7.32 8.83 8.83 9.65 9.65 10.81 10.81 11.47	91.17 43.63 36.50 36.53 25.40 35.66 25.80 35.09 24.60 34.20	34.50 33.95 33.95 34.02 34.02 34.16 34.16 34.47 34.47 33.77	90.25 49.86 42.73 46.90 35.77 48.34 38.48 50.16 39.67 51.16	74.00 74.00 54.00 54.00 74.00 54.00 74.00 54.00 74.00 54.00 74.00	-16.25 24.14 11.27 27.10 18.23 25.66 15.52 23.84 14.33 22.84	Peak Peak Average Peak Average Peak Average Peak Average Peak
10 11 12 13	11753.15 14125.00	39.28 39.24 42.30 42.30	11.47 11.47 12.89 12.89	24.80 29.53 18.70	33.77 33.77 31.77 31.77	41.74 52.95 42.12	74.00 54.00 74.00 54.00	22.84 12.26 21.05 11.88	Feak Average Peak Average
	Remarks:						oss + Readin ow the off:		amp.Factor.


	Freq. (MHz)	Ant. Factor (dB)	Cable Loss (dB)	Reading (dBuV)	Preamp Factor (dB)		on Limits (dBuV∕m)	Margin (dB)	Remark
1	2407.00	28.49	5.09 7.32	86.28 41.30	34.50 33.95	85.36 47.53	74.00	-11.36	Peak
3	4801.00 4802.14	32.86 32.86	7.32	41.30 35.30	33.95 33.95	47.53	74.00 54.00	26.47 12.47	Peak Average
4	7699.00	36.88	9.36	35.29	34.08	47.45	74.00	26.55	Peak
5	7701.18	36.88	9.36	21.90	34.08	34.06	54.00	19.94	Average
6	8644.00	37.72	9.85	35.77	34.31	49.03	74.00	24.97	Peak
- 7	8645.18	37.72	9.85	21.80	34.31	35.06	54.00	18.94	Average
8	10156.00	39.07	10.93	35.58	34.34	51.24	74.00	22.76	Peak
- 9	10157.18	39.07	10.93	20.89	34.34	36.55	54.00	17.45	Average
10	11773.00	39.23	11.47	34.44	33.77	51.37	74.00	22.63	Peak
11	11774.18	39.23	11.48	21.80	33.78	38.73	54.00	15.27	Average
12	13096.00	40.15	12.35	32.16	32.39	52.27	74.00	21.73	Peak
13	13097.18	40.15	12.35	22.60	32.39	42.71	54.00	11.29	Average
	Remarks:	2. The e	mission		hat are		oss + Readi low the off		amp.Factor.


	Freq. (MHz)	Ant. Factor (dB)	Cable Loss (dB)	Reading (dBuV)	Preamp Factor (dB)		on Limits (dBuV∕m)	Margin (dB)	Remark
1	2449.00	28.58	5.15	88.91	34.50	88.14	74.00	-14.14	Peak
2	7321.00	36.39	9.08	37.73	34.05	49.15	74.00	24.85	Peak
3	7322.25	36.39	9.08	23.24	34.05	34.66	54.00	19.34	Average
4	8119.00	37.14	9.63	37.17	34.14	49.80	74.00	24.20	Peak
5	8120.25	37.14	9.63	27.70	34.14	40.33	54.00	13.67	Average
6	9253.00	38.05	10.21	36.31	34.43	50.14	74.00	23.86	Peak
7	9254.19	38.05	10.21	26.80	34.43	40.63	54.00	13.37	Average
8	10597.00	39.50	$\begin{array}{c} 11.14\\ 11.14 \end{array}$	34.04	33.98	50.70	74.00	23.30	Peak
9	10598.18	39.50		22.90	33.98	39.56	54.00	14.44	Average
10	13726.00	$41.61 \\ 41.61$	12.70	28.95	31.84	51.42	74.00	22.58	Peak
11	13727.18		12.70	16.91	31.84	39.38	54.00	14.62	Average
12	14482.00	42.59	13.01	29.65	32.28	52.97	74.00	21.03	Peak
13	14483.16	42.59	13.01	18.70	32.28	42.02	54.00	11.98	Average
10									
	Remarks:	2. The e	mission		hat are		oss + Readi low the off		amp.Factor.

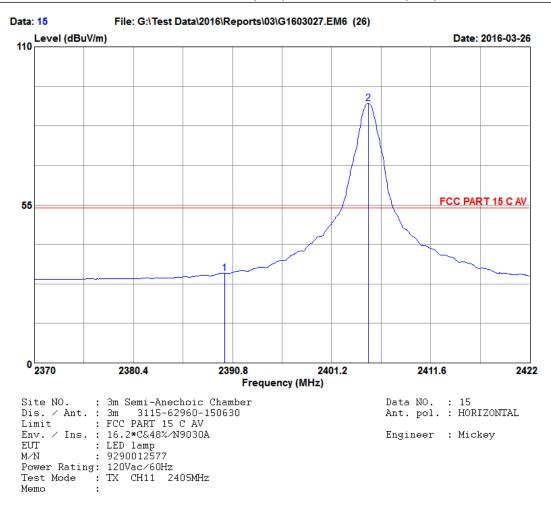

	Freq. (MHz)	Ant. Factor (dB)	Cable Loss (dB)	Reading (dBuV)	Preamp Factor (dB)		on Limits (dBuV∕m)	Margin (dB)	Remark
1	2449.00	28.58	5.15	87.79	34.50	87.02	74.00	-13.02	Peak
2	4900.84	33.01	7.37	38.80	33.94	45.24	54.00	8.76	Average
3	4906.00	33.04	7.37	44.62	33.94	51.09	74.00	22.91	Peak
4	8413.00	37.50	9.75	35.75	34.24	48.76	74.00	25.24	Peak
- 5	8414.25	37.50	9.75	25.90	34.24	38.91	54.00	15.09	Average
6	9736.00	38.44	10.63	35.51	34.46	50.12	74.00	23.88	Peak
- 7	9737.25	38.44	10.63	24.90	34.46	39.51	54.00	14.49	Average
8	11122.00	39.17	11.36	34.72	33.66	51.59	74.00	22.41	Peak
9	11123.68	39.18	11.36	24.50	33.66	41.38	54.00	12.62	Average
10	12277.00	38.93	11.73	34.60	33.44	51.82	74.00	22.18	Peak
11	12278.18	38.93	11.73	24.91	33.44	42.13	54.00	11.87	Average
12	13999.00	42.20	12.85	28.54	31.59	52.00	74.00	22.00	Peak
13	14001.12	42.20	12.85	20.30	31.59	43.76	54.00	10.24	Average
10	14001.12	72.20	12.00	20.30	51.57	43.70	54.00	10.24	Average
	Remarks:	2. The e	mission		that are		oss + Readi low the off		amp.Factor.

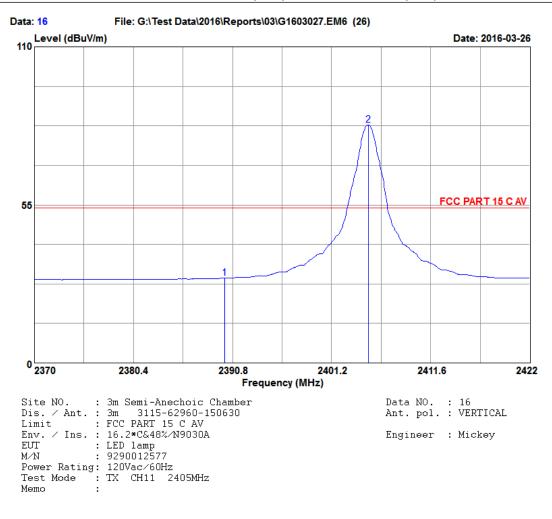

	Freq. (MHz)	Ant. Factor (dB)	Cable Loss (dB)	Reading (dBuV)	Preamp Factor (dB)		on Limits (dBuV∕m)	Margin (dB)	Remark
1	2470.00	28.62	5.18	89.75	34.49	89.06	74.00	-15.06	Peak
2	5179.00	33.49	7.62	38.54	33.91	45.74	74.00	28.26	Peak
3	5180.19	33.49	7.62	25.90	33.91	33.10	54.00	20.90	Average
4	7132.00	35.93	8.93	36.15	34.03	46.98	74.00	27.02	Peak
5	7133.18	35.93	8.94	24.80	34.03	35.64	54.00	18.36	Average
6	9211.00	38.04	10.17	35.00	34.43	48.78	74.00	25.22	Peak
7	9212.18	38.04	10.17	22.90	34.43	36.68	54.00	17.32	Average
8	9799.00	38.53	10.67	34.83	34.46	49.57	74.00	24.43	Peak
- 9	9801.19	38.53	10.67	23.11	34.46	37.85	54.00	16.15	Average
10	11857.00	39.18	11.49	33.81	33.79	50.69	74.00	23.31	Peak
11	11858.18	39.18	11.49	21.90	33.79	38.78	54.00	15.22	Average
12	13516.00	41.14	12.59	29.89	32.01	51.61	74.00	22.39	Peak
13	13517.18	41.14	12.59	18.89	32.01	40.61	54.00	13.39	Average
	Remarks:	2. The e	mission		hat are		oss + Readi low the off	0	amp.Factor.



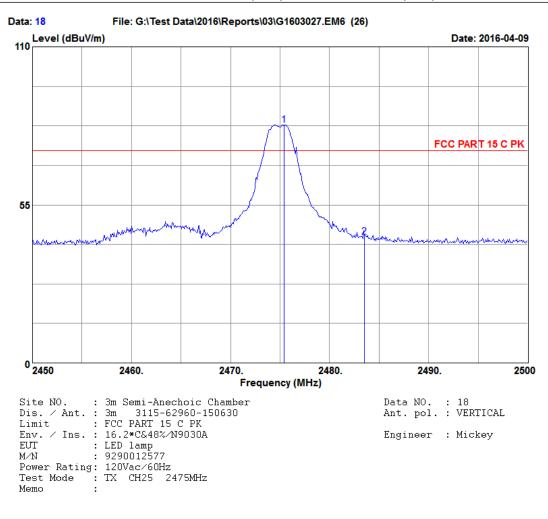
	Freq. (MHz)	Ant. Factor (dB)	Cable Loss (dB)	Reading (dBuV)	Preamp Factor (dB)		on Limits (dBuV∕m)	Margin (dB)	Remark	
1 2	2470.00 5158.00	28.62 33.47	5.18	84.10 39.38	34.49 33.92	83.41 46.52	74.00 74.00	-9.41 27.48	Peak Peak	
- 3	5150.00	33.47	7.59	26.91	33.92	40.52 34.05	74.00 54.00	27.40	Average	
4	7783.00	36.91	9.42	35.97	34.09	48.21	74.00	25.79	Peak	
5	7784.28	36.91	9.42	26.20	34.09	38.44	54.00	15.56	Average	
6	8392.00	37.48	9.74	35.74	34.23	48.73	74.00	25.27	Peak	
- 7	8393.15	37.48	9.74	22.60	34.23	35.59	54.00	18.41	Average	
8	9883.00	38.66	10.74	34.62	34.46	49.56	74.00	24.44	Peak	
- 9	9884.18	38.66	10.74	21.69	34.46	36.63	54.00	17.37	Average	
10	12067.00	39.06	11.57	35.02	33.71	51.94	74.00	22.06	Peak	
11	12068.14	39.06	11.57	21.70	33.71	38.62	54.00	15.38	Average	
12	14524.00	42.49	13.01	29.87	32.31	53.06	74.00	20.94	Peak	
13	14525.15	42.49	13.01	17.80	32.31	40.99	54.00	13.01	Average	
	Remarks: 1. Emission Level= Ant.Factor + Cable Loss + Reading - Preamp.Factor. 2. The emission levels that are 20dB below the official									

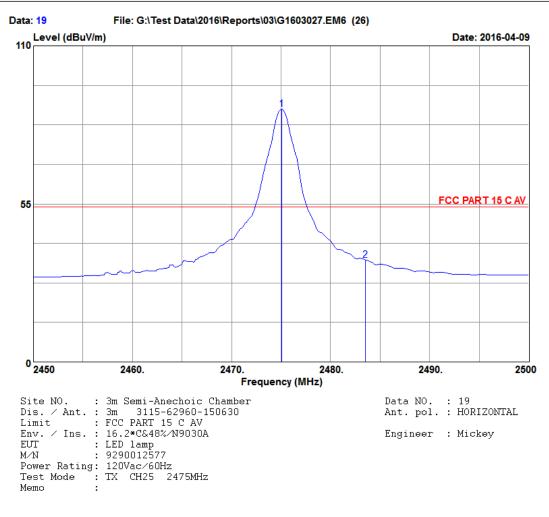
4.8. Spurious Emission Measurement Results in Band Edge Emission (FCC Part 15, 15.205)

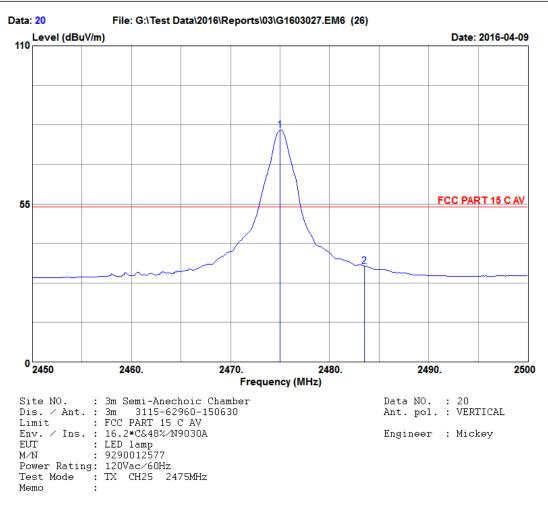


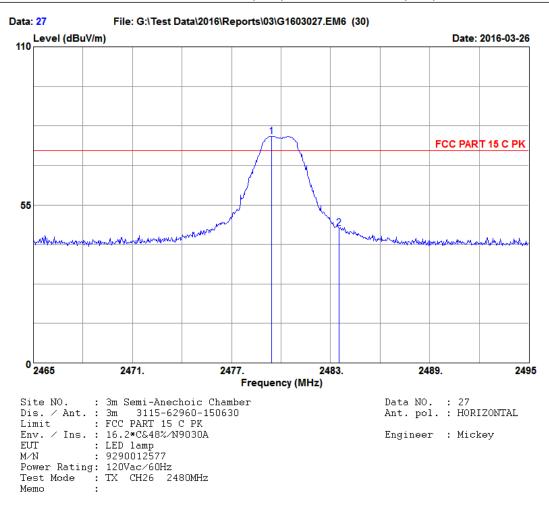

	Freq. (MHz)	Ant. Factor (dB)		Reading	Factor	Emissic Level (dBuV/m	Limits	Margin (dB)	Remark
-	2390.00 2404.38	28.45 28.49	5.09 5.09	42.36 86.09	34.50 34.50	41.40 85.17		32.60 -11.17	Peak Peak

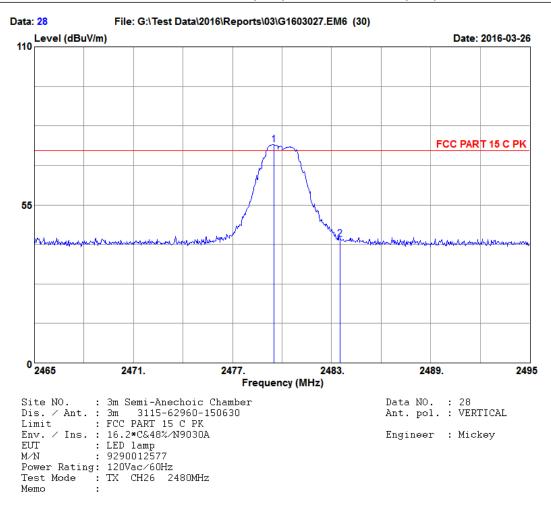
	Freq. (MHz)	Ant. Factor (dB)	Cable Loss (dB)		Factor		on Limits (dBuV∕m)	Margin (dB)	Remark
1	2390.00	28.45	5.09	32.22	34.50	31.26	54.00	22.74	Average
2	2405.04	28.49	5.09	91.35	34.50	90.43	54.00	-36.43	Average

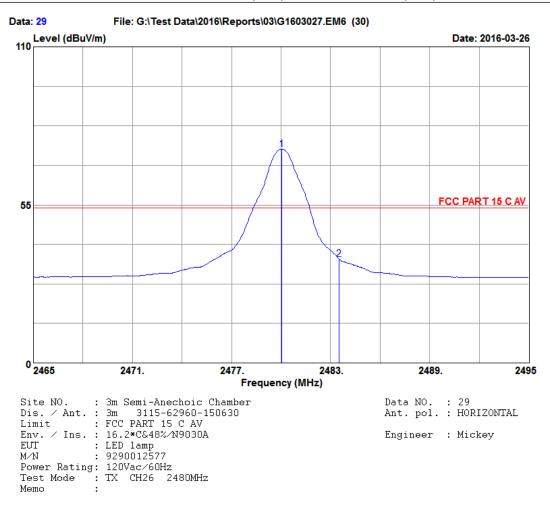

	Freq. (MHz)	Ant. Factor (dB)	Cable Loss (dB)		Factor		on Limits (dBuV∕m)	Margin (dB)	Remark
_	2390.00	28.45	5.09	30.45	34.50	29.49	54.00	24.51	Average
	2405.04	28.49	5.09	83.78	34.50	82.86	54.00	-28.86	Average

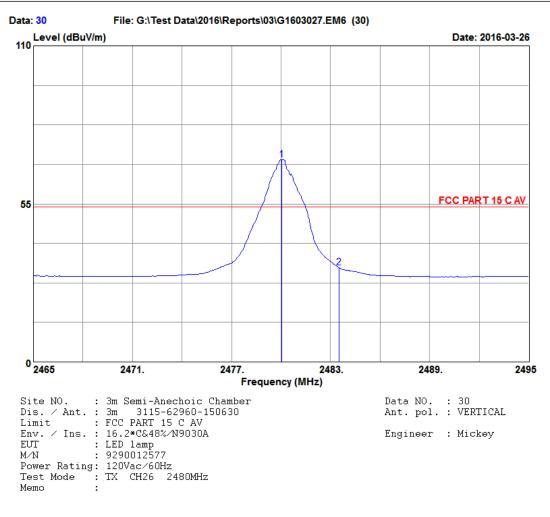

	Freq. (MHz)		Reading	Factor		on Limits (dBuV∕m)		Remark
-	2475.41 2483.50	 	90.96 47.88		90.31 47.23		-16.31 26.77	Peak Peak Peak


	Freq. (MHz)	Loss	Reading	Factor		on Limits (dBuV∕m)	Margin (dB)	Remark
_	2475.41 2483.50	 5.18 5.18	83.53 44.47	34.49 34.49	82.88 43.82	74.00 74.00	-8.88 30.18	Peak Peak

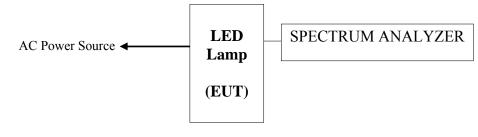

	Freq. (MHz)	Ant. Factor (dB)			Factor	Emissic Level (dBuV/m	Limits	Margin (dB)	Remark
1	2475.06	28.66	5.18	88.57	34.49	87.92	54.00	-33.92	Average
2	2483.50	28.66	5.18	36.16	34.49	35.51	54.00	18.49	Average


	Freq. (MHz)	Ant. Factor (dB)		e Reading (dBuV)	Factor	Emissic Level (dBuV/m	Limits	Margin (dB)	Remark
_	2474.99	28.66	5.18	81.26	34.49	80.61	54.00	-26.61	Average
	2483.50	28.66	5.18	34.06	34.49	33.41	54.00	20.59	Average


	Freq. (MHz)		Reading	Factor		on Limits (dBuV∕m)		Remark
-	2479.42 2483.50	28.66 28.66	 79.56 47.63	34.49 34.49	78.91 46.98	74.00 74.00	-4.91 27.02	Peak Peak


	Freq. (MHz)	Ant. Factor (dB)	Loss	Reading	Factor		on Limits (dBuV∕m)	Margin (dB)	Remark
_	2479.49 2483.50	28.66 28.66	5.18 5.18	76.71 43.90	34.49 34.49	76.06 43.25	74.00 74.00	-2.06 30.75	Peak Peak Peak

	Freq. (MHz)	Ant. Factor (dB)		Reading (dBuV)	Factor	Emissic Level (dBuV/m	Limits	Margin (dB)	Remark
-	2480.05	28.66	5.18	75.08	34.49	74.43	54.00	-20.43	Average
	2483.50	28.66	5.18	36.79	34.49	36.14	54.00	17.86	Average


	Freq. (MHz)	Ant. Factor (dB)			Factor		on Limits (dBuV∕m)	Margin (dB)	Remark
_	2480.05	28.66	5.18	71.05	34.49	70.40	54.00	-16.40	Average
	2483.50	28.66	5.18	33.41	34.49	32.76	54.00	21.24	Average

5. 6 dB BANDWIDTH MEASUREMENT

5.1. Test Equipment

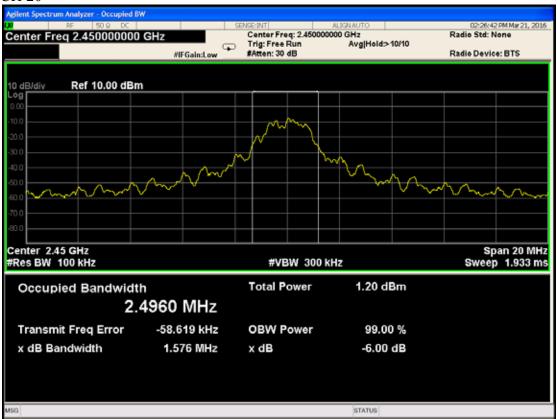
Item	Туре	Manufacturer	Model No.	Serial No.	Last Cal.	Next Cal.
1.	PXA Signal Analyzer	Agilent	N9030A	MY53120367	2015-06-23	2016-06-22

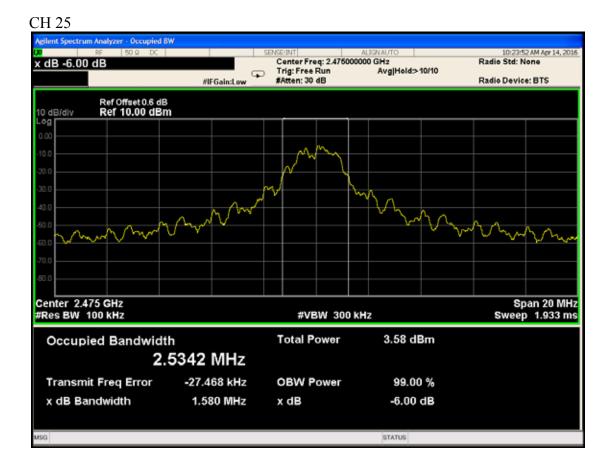
5.2. Block Diagram of Test Setup

5.3. Specification Limits (\$15.247(a)(2))

Systems using digital modulation techniques may operate in the 902 - 928 MHz, 2400 - 2483.5 MHz, and 5725 - 5850 MHz bands. The minimum 6 dB bandwidth shall be at least 500kHz.

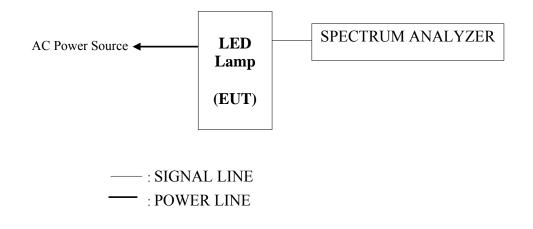
5.4. Test Procedure


The transmitter output was connected to the test receiver / spectrum analyzer. The bandwidth of the fundamental frequency was measure by spectrum analyzer. The 6 dB bandwidth is defined as the total spectrum the power of which is higher than peak power minus 6 dB. The measurement guideline was according to KDB558074 v03r05.


5.5. Test Results

Channel	Center Frequency(MHz)	6 dB Bandwidth(MHz)
11	2405	1.525
20	2450	1.576
25	2475	1.580

PASSED. All the test results are attached in next pages.



6. OUTPUT POWER MEASUREMENT

6.1. Test Equipment

Item	Туре	Manufacturer	Model No.	Serial No.	Last Cal.	Next Cal.
1.	PXA Signal Analyzer	Agilent	N9030A	MY53120367	2015-06-23	2016-06-22

6.2. Block Diagram of Test Setup

6.3. Specification Limits (§15.247(b)(3))

For systems using digital modulation in the 902-928 MHz, 2400-2483.5 MHz, and 5725-5850 MHz bands: 1 Watt. As an alternative to a peak power measurement, compliance with the one Watt limit can be based on a measurement of the maximum conducted output power. Maximum Conducted Output Power is defined as the total transmit power delivered to all antennas and antenna elements averaged across all symbols in the signaling alphabet when the transmitter is operating at its maximum power control level. Power must be summed across all antennas and antenna elements. The average must not include any time intervals during which the transmitter is off or is transmitting at a reduced power level. If multiple modes of operation are possible (e.g., alternative modulation methods), the maximum conducted output power is the highest total transmit power occurring in any mode.

6.4. Test Procedure

- a) Set span to at least 1.5 times the OBW.
- b) Set RBW = 1-5% of the OBW, not to exceed 1 MHz.
- c) Set VBW \geq 3 x RBW.
- d) Number of points in sweep $\geq 2 \times \text{span} / \text{RBW}$. (This gives bin-to-bin spacing $\leq \text{RBW}/2$, so that narrowband signals are not lost between frequency bins.)
- e) Sweep time = auto.
- f) Detector = RMS (i.e., power averaging), if available. Otherwise, use sample detector mode.
- g) If transmit duty cycle < 98 %, use a sweep trigger with the level set to enable triggering only on full power pulses. The transmitter shall operate at maximum power control level for the entire duration of every sweep. If the EUT transmits continuously (i.e., with no off intervals) or at duty cycle \ge 98 %, and if each transmission is entirely at the maximum power control level, then the trigger shall be set to "free run".
- h) Trace average at least 100 traces in power averaging (i.e., RMS) mode.
- i) Compute power by integrating the spectrum across the OBW of the signal using the instrument's band power measurement function, with band limits set equal to the OBW band edges. If the instrument does not have a band power function, sum the spectrum levels (in power units) at intervals equal to the RBW extending across the entire OBW of the spectrum.

6.5. Test Results

PASSED. All the test results are attached in next pages.

Channel	Frequency	Power(dBm)	Limit(dBm
11	2405	3.19	30
20	2450	2.35	30
25	2475	2.98	30
26	2480	-7.65	30

7. BAND EDGES MEASUREMENT

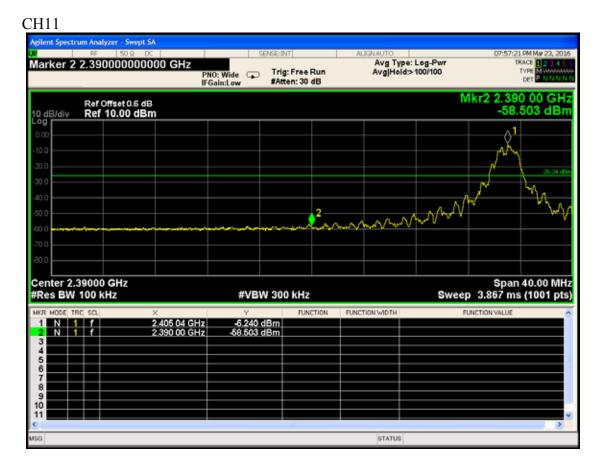
7.1. Test Equipment

Item	Туре	Manufacturer	Model No.	Serial No.	Last Cal.	Next Cal.
1.	PXA Signal Analyzer	Agilent	N9030A	MY53120367	2015-06-23	2016-06-22

7.2. Block Diagram of Test Setup

The same as section 5.2.

7.3. Specification Limits (§15.247(d))


In any 100 kHz bandwidth outside the frequency band in which the spread spectrum or digitally modulated intentional radiator is operating, the radio frequency power that is produced by the intentional radiator shall be at least 20 dB below that in the 100 kHz bandwidth within the band that contains the highest level of the desired power, based on either an RF conducted or a radiated measurement, provided the transmitter demonstrates compliance with the peak conducted power limits. If the transmitter complies with the conducted power limits based on the use of RMS averaging over a time interval, as permitted under paragraph (b)(3) of this section, the attenuation required under this paragraph shall be 30 dB instead of 20 dB. Attenuation below the general limits specified in Section 15.209(a) is not required. In addition, radiated emissions which fall in the restricted bands, as defined in Section 15.205(a), must also comply with the radiated emission limits specified in Section 15.209(a) (see Section 15.205(c)).

7.4. Test Procedure

The transmitter output was connected to the test receiver / spectrum analyzer. Set RBW of spectrum analyzer to 100kHz and VBW to 300kHz with suitable frequency span including 100kHz bandwidth from band edge.

7.5. Test Results

PASSED. The testing data was attached in the next pages.

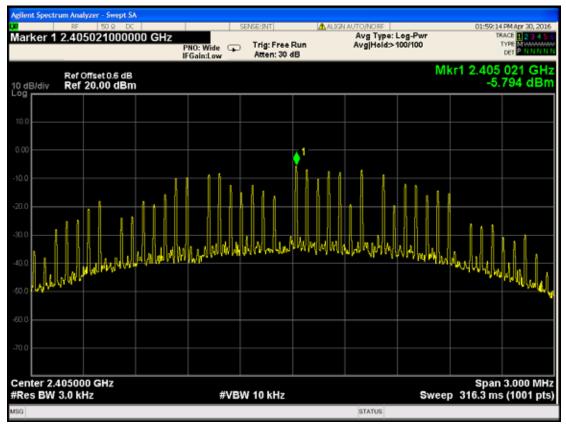
8. POWER SPECTRAL DENSITY MEASUREMENT

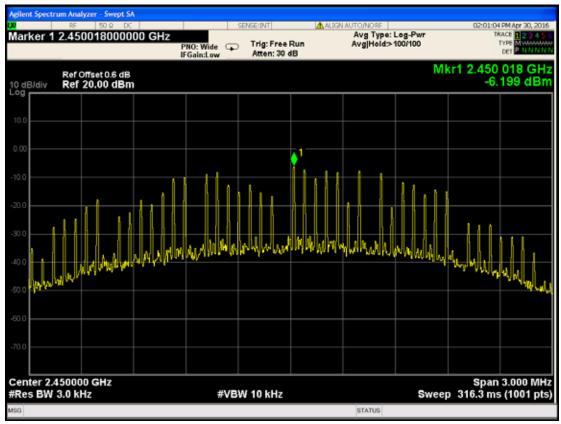
8.1. Test Equipment

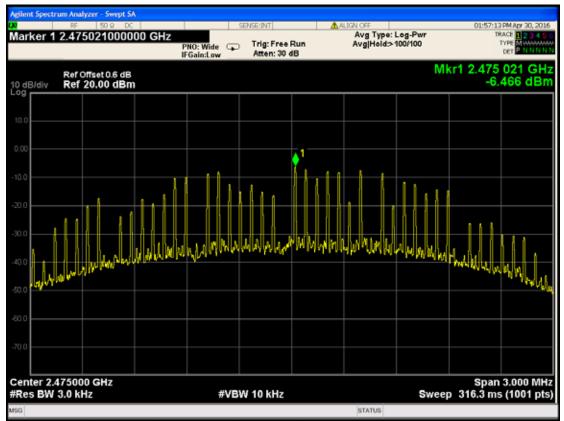
Item	Туре	Manufacturer	Model No.	Serial No.	Last Cal.	Next Cal.
1.	PXA Signal Analyzer	Agilent	N9030A	MY53120367	2015-06-23	2016-06-22

8.2. Block Diagram of Test Setup

The same as section 5.2.


8.3. Specification Limits (§15.247(e))


For digitally modulated systems, the power spectral density conducted from the intentional radiator to the antenna shall not be greater than 8 dBm in any 3 kHz band during any time interval of continuous transmission.


8.4. Test Results

PASSED. All the test results are attached in next page.

Channel	Frequency(GHz)	Value(dBm/3kHz)				
11	2.405	-5.794				
20	2.450	-6.199				
25	2.475	-6.466				

9. EMISSION LIMITATIONS MEASUREMENT

9.1. Test Equipment

Item	Туре	Manufacturer	Model No.	Serial No.	Last Cal.	Next Cal.
1.	PXA Signal Analyzer	Agilent	N9030A	MY53120367	2015-06-23	2016-06-22

9.2. Block Diagram of Test Setup

The same as section 5.2.

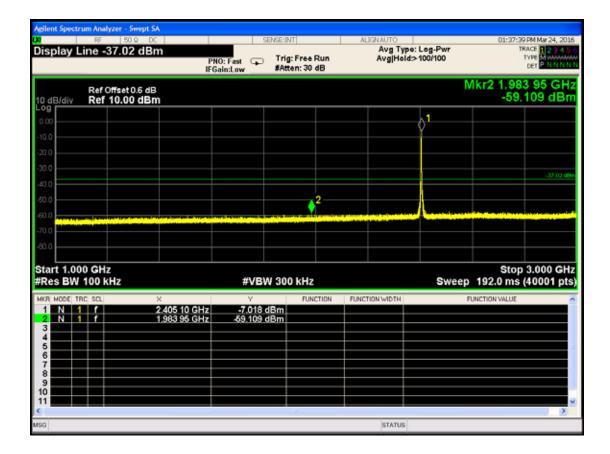
9.3. Specification Limits (§15.247(d))

In any 100 kHz bandwidth outside the frequency band in which the spread spectrum or digitally modulated intentional radiator is operating, the radio frequency power that is produced by the intentional radiator shall be at least 20 dB below that in the 100 kHz bandwidth within the band that contains the highest level of the desired power, based on either an RF conducted or a radiated measurement, provided the transmitter demonstrates compliance with the peak conducted power limits. If the transmitter complies with the conducted power limits based on the use of RMS averaging over a time interval, as permitted under paragraph (b)(3) of this section, the attenuation required under this paragraph shall be 30 dB instead of 20 dB. Attenuation below the general limits specified in Section 15.209(a) is not required. In addition, radiated emissions which fall in the restricted bands, as defined in Section 15.205(a), must also comply with the radiated emission limits specified in Section 15.209(a) (see Section 15.205(c)).

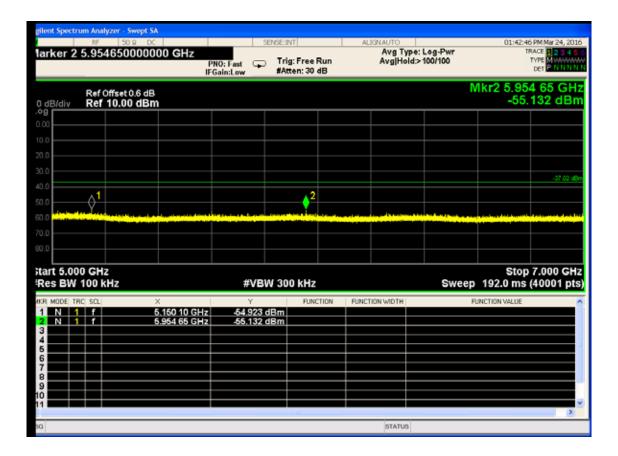
9.4. Test Procedure

The transmitter output was connected to the spectrum analyzer. Set RBW = 100kHz, VBW ≥ 300 kHz, scan up through 10th harmonic. All harmonics/spurs must be at least 30 dB down from the highest emission level within the authorized band as measured with a 100 kHz RBW. The measurement guideline was according to KDB558074 v03r05.

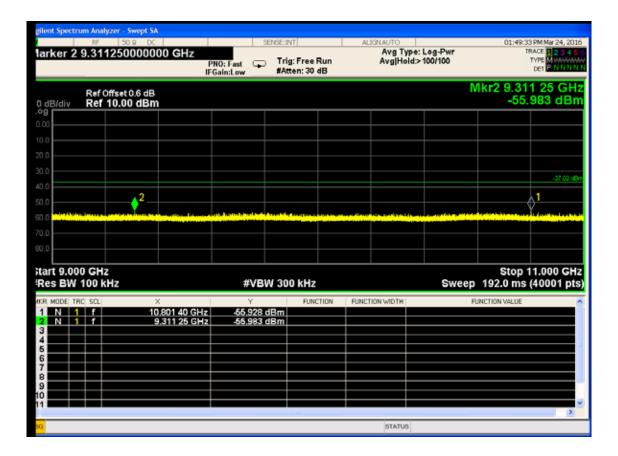
9.5. Test Results

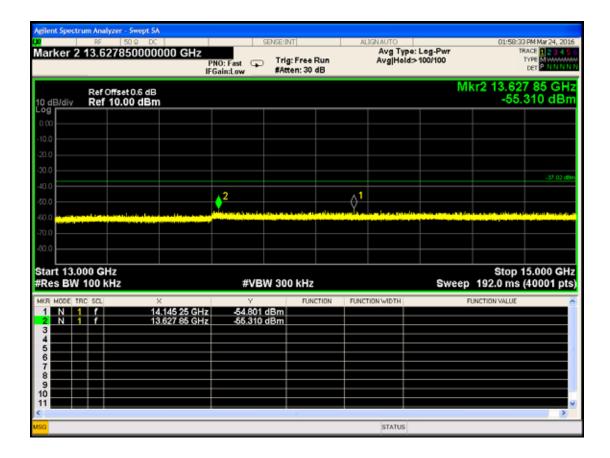

Channel	Frequency(MHz)	Amplitude(dBm)		
	959.84	-50.308		
	327.31	-62.613		
	2405.10	-7.018		
	1983.95	-59.109		
	3709.20	-55.169		
	4629.75	-55.807		
	5150.10	-54.823		
	5954.65	-55.132		
	7257.45	-56.184		
	7976.55	-56.397		
	10801.40	-55.928		
	9311.25	-55.983		
11	11894.75	-55.834		
11	12111.70	-55.907		
	14145.25	-54.801		
	13627.85	-55.310		
	1545.55	-56.044		
	15801.35	-56.104		
	18766.00	-53.870		
	18003.70	-54.976		
	19182.80	-53.026		
	20367.50	-55.143		
	22367.10	-52.612		
	21121.30	-54.839		
	23675.70	-52.358		
	24209.80	-52.588		
	950.48	-54.025		
	422.07	-61.859		
20	2450.05	-7.966		
20	1727.60	-55.178		
	3755.10	-54.355		
	4262.60	-56.206		

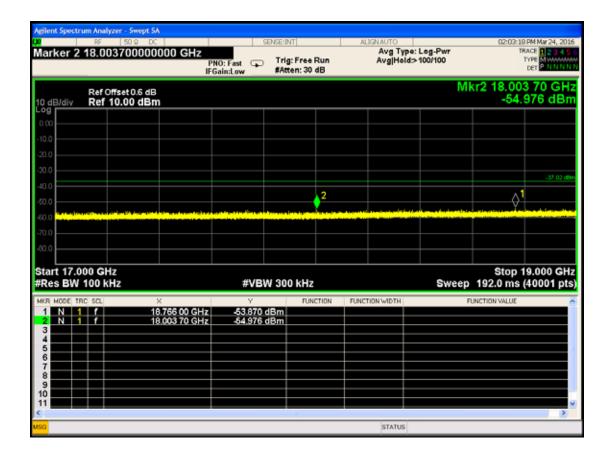
PASSED. All the test results are attached in next pages.


	5097.90	-56.065
	6353.15	-56.457
	7348.35	-55.180
	8810.20	-57.110
	9785.35	-56.406
	10617.60	-56.552
	11228.60	-55.792
	11957.80	-56.350
	14851.70	-55.440
	14370.65	-55.622
	16468.15	-55.366
	15448.50	-55.899
	18471.90	-54.105
	17705.85	-55.073
	19064.35	-52.697
	19646.45	-53.639
	22070.45	-52.310
	22844.80	-52.688
	23824.75	-52.770
	24125.40	-52.975
	955.623	-48.358
	516.12	-63.141
	2475.10	-5.871
	1936.65	-58.777
	3824.35	-54.262
	4975.85	-56.349
	5053.75	-55.053
	6949.70	-56.015
25	8917.20	-55.210
	7423.25	-55.980
	10609.65	-55.653
	9773.95	-56.100
	12359.65	-56.235
	11584.70	-56.456
	14370.55	-55.231
	13163.95	-57.050
	15441.95	-55.790

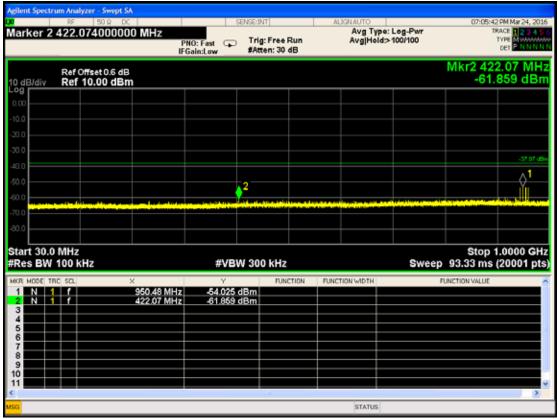
16286.25	-56.094
18500.30	-54.708
17902.40	-56.019
19338.15	-53.966
20099.70	-54.783
22003.15	-52.981
22615.05	-53.074
24985.40	-52.015
23516.10	-52.782

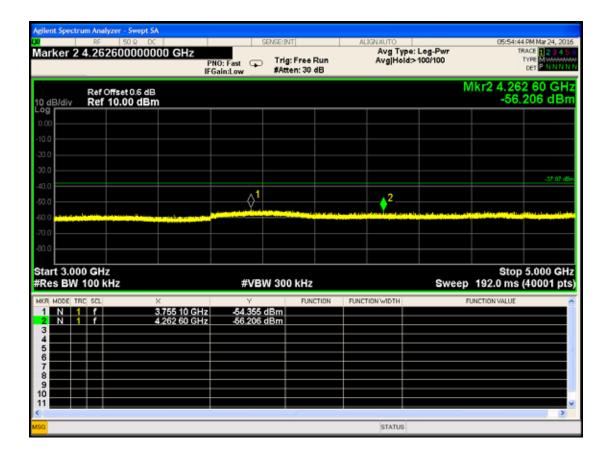

		er - Swept SA 50 Ω DC		SEF	NSE:INT		ALIGN AUT	0		04:40:1	9 PM Mar 24, 20
arker 2	327.30	05000000 MHz	PNO: IFGair	Fast 😱	Trig: Free #Atten: 30		Avg Avg	Type:L Hold>10	og-Pwr 00/100	т	RACE 234 TYPE MUMMUM DET PNNN
dB/div		fset 0.6 dB 0.00 dBm								Mkr2 32 -62	7.31 MH 613 dB
.00											
0.0											
1.0											
).0											-37.02 (
0.0											0
).0			_2								l li
	and a second	te la la de la la companya de carbonal de	ater dan	dinduda filma	inte de la classica de la	Result er		a heine eine	<u>diturnetinte</u>	alter automotion de	dan sekiling
art 30.0		_		40 (B) (4)	000 1411-				•	Stop	1.0000 GI
	100 kH				300 kHz					93.33 ms	(20001 p
I NODE T	RC SCL	× 959.84 N	Hz			CTION	FUNCTION WIE	TH	F	UNCTION VALUE	
2 N 1	Î Î	327.31 N		-62.613 dl	Bm						
5											
7											

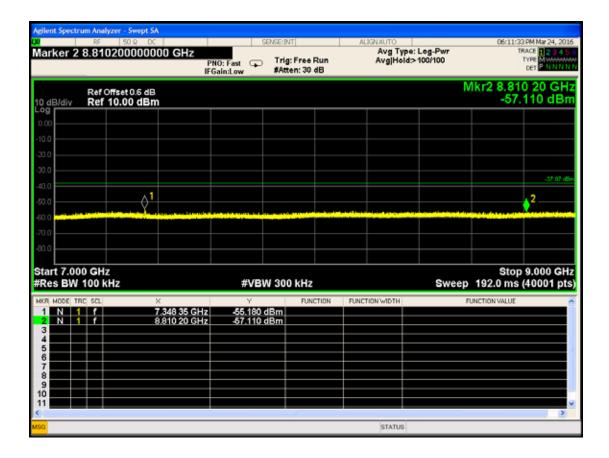

rker 2		50 0 DC 50000000 GH	Z PNO: Fast IFGain:Low		g: Free Run tten: 30 dB	ALK	Avg Type: L Avg Hold>1		П	LPM Mar 24, 2 RACE
B/div		set 0.6 dB 0.00 dBm						N	lkr2 4.62 -55.	9 75 G 807 dE
										-37.02
0				1	-				¢ ²	
-										
rt 3.00 es BW	0 GHz 100 kHz	2		#VBW 30	0 kHz			Sweep	Stop 192.0 ms	5.000 G (40001 p
MODE TF	RC SCL	× 3,709.2	0 GHz -55	⊻ 169 dBm	FUNCTION	FUNCTION	ON WIDTH	FL	NCTION VALUE	
N 1	1	4.629 71	5 GHz -55	.807 dBm						
	+									

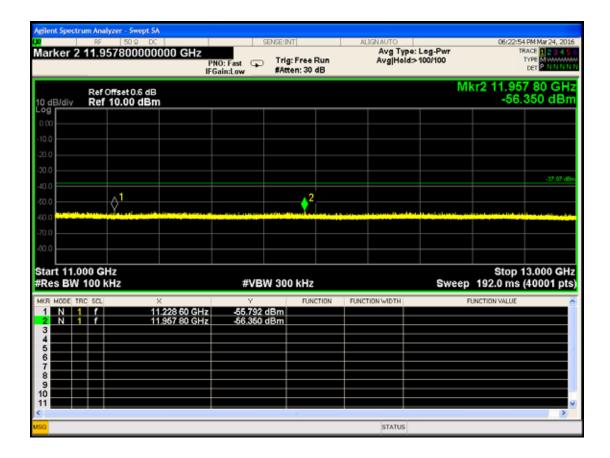

	rum Ana	lyzer - Swept SA								
arker 2	27.97	50 g DC 65500000	00 GHz	NO: Fast Gain:Low	Trig: Free #Atten: 30		ALIGNAUTO Avg Typ Avg Hole	be:Log-Pwr d>100/100		7 PM Mar 24, 20: RACE 2 3 4 1 TYPE MUNICIPAL OFT P N N N 1
dB/div		Offset 0.6 dB 10.00 dBn						N	/kr2 7.97 -56.	6 55 GH 397 dBi
00 00							_			
.0										
0										
0										-37.02 d
.0		-0 ¹				2				
.0		a Maining and An Andrews		na kinda kain a					elinensi (den jai) d	
.0										
art 7.00 les BW				#VB	W 300 kHz			Sweep	Stop 192.0 ms	9.000 GH
CO D 11	1001							oncep	192101113	(10001 p)
R MODE T	RC SCL	1	×	Y		TION	FUNCTION WIDTH	F	UNCTION VALUE	
N N	RC SCL		× 7.257 45 GHz 7.976 55 GHz	-56.184 -56.397	dBm	TION	FUNCTION WIDTH	F	UNCTION VALUE	
ZZ	RC SCL		7.257 45 GHz	-56.184	dBm	TION	FUNCTION WIDTH	P	UNCTION VALUE	
N	RC SOL		7.257 45 GHz	-56.184	dBm	TION	FUNCTION WIDTH	R	UNCTION VALUE	
N 1	RC SCL		7.257 45 GHz	-56.184	dBm		FUNCTION WIDTH	F	UNCTION VALUE	
	RC SCL		7.257 45 GHz	-56.184	dBm		FUNCTION WIDTH	F	UNCTION VALUE	

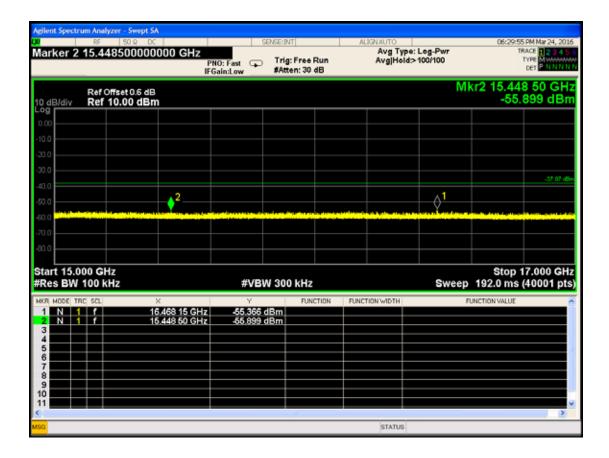
		DC		ENSE:INT	A	JGN AUTO			PM Mar 24, 20
arker 2	12.111700	000000 GHz	PNO: Fast 😱 FGain:Low	Trig: Free i #Atten: 30		Avg Type: I Avg Hold>1	Log-Pwr 100/100		TYPE MORAN DET P NNN
dB/div	Ref Offset 0. Ref 10.00						MI	(r2 12.11 -55.	1 70 GH 907 dB
a 									
									-37.02
.0					2				
	and the second second	and the first state of the state				the subscription of	a for the second		
art 11.00 Res BW			#VB	W 300 kHz			Sweep	Stop 1 192.0 ms	(40001 pi
R HODE TRI	C SCL	×	Y		TION FUNC	TION WIDTH	P	UNCTION VALUE	
N 1	f	11.894 75 GHz 12.111 70 GHz	-55.834 -55.907						
									>

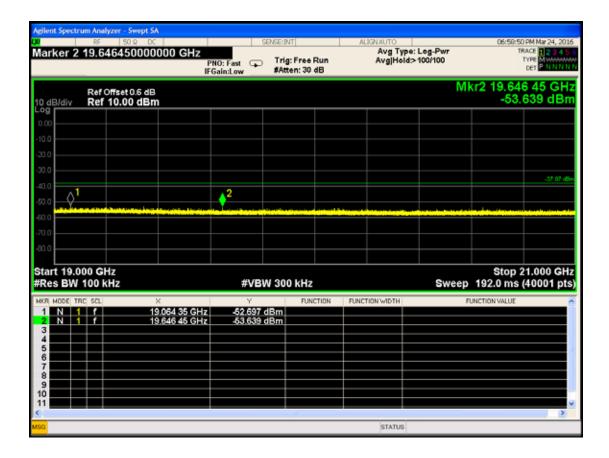

		50 Q DC		SENSE:INT		ALIGN AUT			02:01:12 PM Mar 24, 20
arker 2	15.8013	50000000 GI	IZ PNO: Fast G IFGain:Low	D Trig: Fr #Atten:		Avg Avg	Type:Log-Pv Hold>100/100	vr)	TRACE 1 2 3 4 TYPE M DET P N N N
dB/div	Ref Offse Ref 10.0							Mkr2 1	5.801 35 GH -56.104 dB
a									
									-37.02
.0	1			2					
		a distant an bes av det	has a strange of the last franchistic stra		nter e lintre e		. M. San Belle darf of Dr.		alle be an en la bedende
.0									
.0									
	00 GHz 100 kHz		#V	BW 300 kl	lz		S	weep 192.	Stop 17.000 Gi 0 ms (40001 pi
R NODE TP	nc scl	×	Y		UNCTION	FUNCTION WID	тн	FUNCTION	VALUE
N 1	f	15.145 55 15.801 35	GHz -56.04 GHz -56.10	4 dBm 4 dBm					

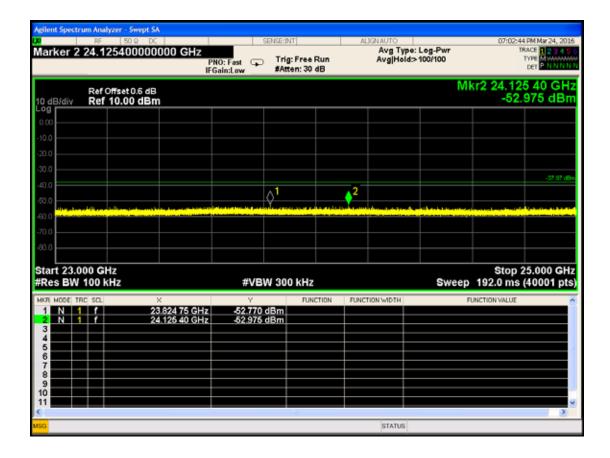

	um Analyzer - S	Q DC		ENSE:INT	ALIGNAUTO		02070210	M Mar 24, 201
arker 2		0000000 GHz	PNO: Fast 😱 FGain:Low	Trig: Free Run #Atten: 30 dB	Avg T	'ype: Log-Pwr old:>100/100	TRA	CE 12345 PE M DET PNNNN
) dB/div	Ref Offset 0 Ref 10.00					M	kr2 20.367 -55.1	50 GH 43 dBr
.00								
0.0								
.0								-37.02.6
	1					2		
		uludes de thuis antificada	and all the strength of the second	the second state of a st			an ann ailtean Maria de at	- Caller of Aller
.0								
							6 (a) 2(000 01
tart 19.0 Res BW	100 GH2		#VBV	V 300 kHz		Sweep	5 192.0 ms (4	.000 GH 0001 pt
R HODE TP		×	-53.026 d	FUNCTIO	FUNCTION WIDTH	1	FUNCTION VALUE	
I N 1 2 N 1		19.182 80 GHz 20.367 50 GHz						
								>

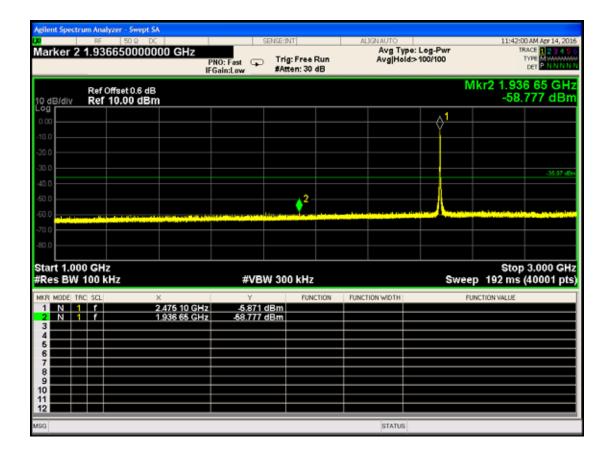

filent Spectr	um Analyzer - Swept								
larker 2	24.20980000	0000 GHz	NO: Fast 😱 Gain:Low	Trig: Free F #Atten: 30 d		ALIGNAUTO Avg Type Avg Helda			4 PM Mar 24, 201 RACE 1 2 3 4 5 TYPE MULTINE DET PINNIN
0 dB/div	Ref Offset 0.6 di Ref 10.00 dB						M	(r2 24.20 -52.	9 80 GH 588 dBn
0.00									
20.0									
0.0									37.02.08
0.0			^1			2			
0.0	teres de la de esta social d			t-Ritinistiati	ut de Eini			ala da se estado de da	
0.0									
tart 23.0 Res BW			#VB\	W 300 kHz			Sweep	Stop 2 192.0 ms	25.000 GH (40001 pt:
	1	× 23.675 70 GHz	-52.358		TION F	UNCTION WIDTH	ŗ	UNCTION VALUE	
2 N 1 3	f	24.209 80 GHz	-52,588	dBm					
5									
8 9									
1									
· · · · · ·					_	STATUS			

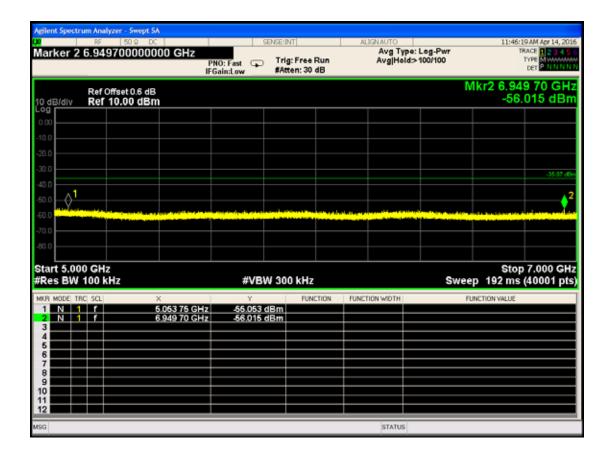

Agilent Spectr	um Analyzer -	Swept SA						05.40.00	20110-21-2016
Display L			PNO: Fast 🖵	Trig: Free F #Atten: 30 c	lun	AUGNAUTO Avg Type Avg Hold	:: Log-Pwr >100/100	T	DPM Mar 24, 2016 RACE 1 2 3 4 5 6 TYPE M DET P N N N N
10 dB/div	Ref Offset Ref 10.0						N	1kr2 1.72 -55.	7 60 GHz 178 dBm
0.00							\$ ¹		
-20.0									
-40.0			2						-37.97 dBm
-60.0							A	wane anti-	
-80.0									
Start 1.00 #Res BW	0 GHz 100 kHz		#VB	W 300 kHz			Sweep	Stop 192.0 ms	3.000 GHz (40001 pts)
MKR HODE TR	1	× 2.450 05 GH 1.727 60 GH	z -7.966 z -55.178		TION FUR	NCTION WIDTH	P	UNCTION VALUE	
3 4 5									_
6 7 8 9									
10 11									>
MSG						STATUS			

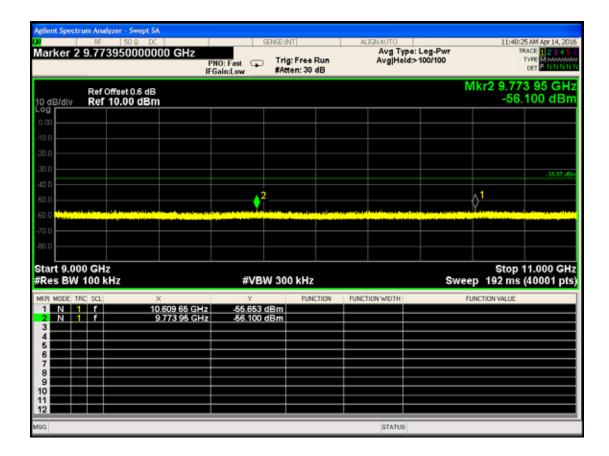

	50 Ω DC	SENS	INT	ALIGNAUTO			PM Mar 24, 20
arker 2 6.35315			rig: Free Run Atten: 30 dB	Avg Type: Avg Hold⊃	Log-Pwr 100/100	т	ACE 234 YPE Moderna DET PNNN
dB/div Ref Offse					N	1kr2 6.353 -56.4	3 15 GH 157 dB
9							
							-37.97
۰ ۱				_ 2			
o serie de la serie de la	discourse section discussion	to destruction of a state of a state	telephone de la com	a construction of the log	ant faite first state		interest and
.0							
.0							
art 5.000 GHz						Stop	7.000 GI
es BW 100 kHz		#VBW 3	00 kHz		Sweep	192.0 ms (40001 p
R MODE TRC SCL	×	Y	FUNCTION	FUNCTION WIDTH	P	UNCTION VALUE	
	5.097 90 GH; 6.353 15 GH;	z -56.065 dBn z -56.457 dBn					
N 1 F							

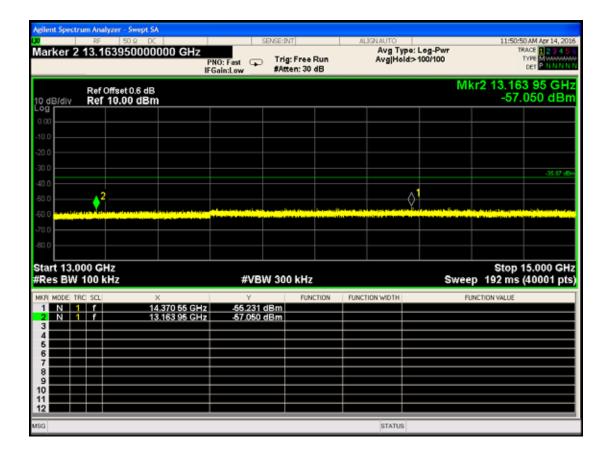

	RF 50 Q			SENSE:INT		ALIGNAUTO			0 PM Mar 24, 20
arker 2	10.6176000	000000 GHz	PNO: Fast 😱 FGain:Low	Trig: Free i #Atten: 30		Avg Type: Avg Hold>	Log-Pwr 100/100	T	TYPE MONTH
dB/div	Ref Offset 0.6 Ref 10.00 d						M	kr2 10.61 -56	7 60 GH 552 dB
9 									
									-37.97
			0	1				<mark>↓</mark> 2	
.0 ditidade	ali na a bi atti	وفقاد والمتعاطية والمتقاطعة		til til til som	hi i di ti an	te des blats et rige		a and the second	adain this date
.0									
art 9.000 tes BW 1			#VB	W 300 kHz			Sweep	Stop 192.0 ms	11.000 GI (40001 p
R HODE TRO	C SCL	×	Y		TION FUN	ICTION WIDTH	ſ	UNCTION VALUE	
N 1	f	9.785 35 GHz 10.617 60 GHz	-56.406 -56.552						

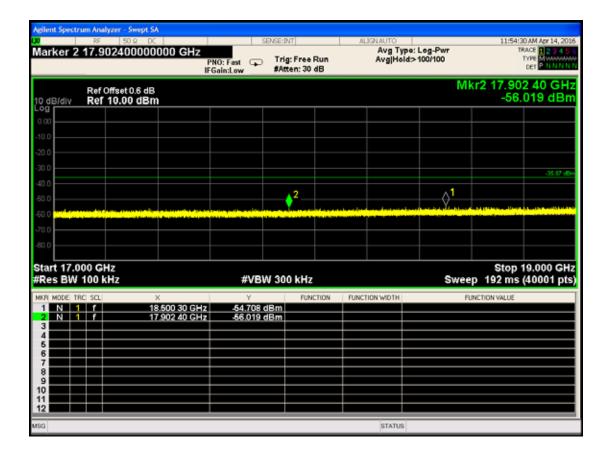

RF	50 Q DC	SE	NSEINT	ALIGNAUTO		06:24:41 PM N	far 24, 201
arker 2 14.37	/0650000000 G	PNO: Fast F IFGain:Low	Trig: Free Run #Atten: 30 dB	Avg Type: Avg Held>	Log-Pwr 100/100	TYPE	1234 M P N N N
	ffset 0.6 dB 10.00 dBm				M	(r2 14.370 6 -55.62	5 GH 2 dBi
9 00							
.0							
.0							
.0							-37.97 c
.0					2		
.0					-	Ś	1
.0							
art 13.000 GH Res BW 100 k		#VBN	/ 300 kHz		Sweep	Stop 15.0 192.0 ms (40	00 GH 001 pi
R HODE TRC SCL	×	ALL	FUNCTION	FUNCTION WIDTH	PL PL	INCTION VALUE	
N 1 f	14.851 70 14.370 65	GHz -55.440 d GHz -55.622 d					
							3

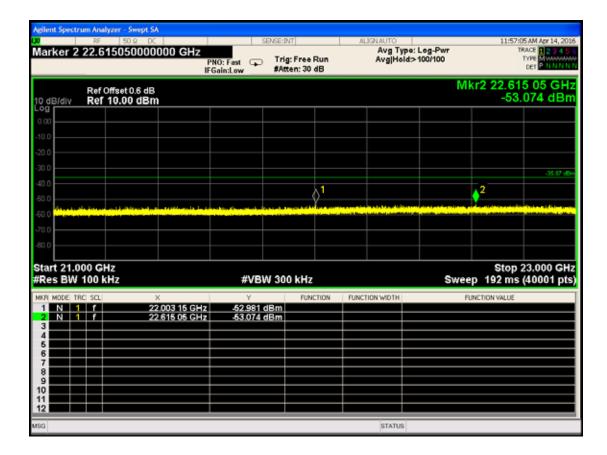

gilent Spectr	um Analyzer - Swe							
larker 2	™ 50 Ω 17.7058500	00000 GHz		rig: Free Run Atten: 30 dB		be:Log-Pwr d≫100/100	TRJ	M Mar 24, 2016
0 dB/div	Ref Offset 0.6 Ref 10.00 d					M	kr2 17.705 -55.0	85 GH: 73 dBn
10.0								
20.0								
40.0			2					-37.97 66
50.0 70.0								
0.0								
tart 17.0 Res BW	00 GHz 100 kHz		#VBW 3	00 kHz		Sweep	Stop 19 192.0 ms (4	9.000 GH 10001 pt
KR HODE TR	1	× 18.471 90 GHz 17.705 85 GHz	y -54,105 dBn -55,073 dBn		FUNCTION WIDTH		FUNCTION VALUE	
4 5 6 7 8 8								
9)


	RF 50 Q	DC	S	ENSE:INT		ALIGN AUTO		07:01:12	PM Mar 24, 20
arker 22	22.8448000	Р	NO: Fast 😱 Gain:Low	Trig: Free F #Atten: 30		Avg Type Avg Hold	:: Log-Pwr >100/100		RACE 1234 TYPE MULAU DET PININ
) dB/div	Ref Offset 0.6 of Ref 10.00 di						М	kr2 22.84 -52.	4 80 GH 688 dBi
.00									
									-37.97 c
					_\\$ '				_ ∮ ²
.0	and the second second			la de la dela dela dela del	ter starte in				
							_		
								8 1 a.u. (0.000.01
art 21.00 Res BW 1			#VBV	V 300 kHz			Sweep	192.0 ms	23.000 GH (40001 pt
R NODE TRO		×	Y	FUNC	TION	FUNCTION WIDTH	1	FUNCTION VALUE	
N 1	f	22.070 45 GHz 22.844 80 GHz	-52.310 c						


arker		50 Ω DC 5500000 MHz	1	ENSE:INT	ALIGNAUTO Avg	Type: Log-Pwr	12:01:59 PM Apr 14, 2 TRACE 12:34
			PNO: Fast 🖵 IFGain:Low	Trig: Free Ru #Atten: 30 dB	n Avg F	loid>100/100	DET P N N N
		et 0.6 dB					Mkr2 516.12 MH -63.141 dB
) dB/div	Ref 10	.00 dBm	_				-03.141 UB
.00							
1.0							
1.0							
1.0							-35.07
1.0							<u>م</u> 1
1.0				2			
1.0	and the state of the state	and because to an advect set of	and the second state of the second		Marina de la completa		an and a state of the local distance
1.0						أنفاه بالمتنافق فقنتنا	
1.0							
art 30.	0 MHz						Stop 1.0000 G
	/ 100 kHz		#VB	W 300 kHz		Swee	p 93.3 ms (20001 p
		×	Y	FUNCTION	N FUNCTION WIDT	4 J	UNCTION VALUE
-	1 r	955.623 MH 516.12 MH					
R MODE	1 f						
N N B	1 f						
N N	1 f						
-	1 f						


	RF 50 Q	DC	SENS	ie:INT	ALIGN AUTO		11:44:58 AM Apr 14, 2
arker 2	4.97585000	Р		Trig: Free Run Atten: 30 dB	Avg Type Avg Hold:	:: Log-Pwr >100/100	TRACE 1 2 3 4 TYPE MUNICIPAL DET P N N N
	Ref Offset 0.6	5 dB				M	kr2 4.975 85 GH
dB/div	Ref 10.00 (-56.349 dB
.0							
1.0							-35.97
.0			<u>ئ</u>				
			Ý				
I.O accented							
1.0						++	
1.0							
art 2.00							Stop 5 000 Cl
art 3.00 Res BW	0 GHz 100 kHz		#VBW :	300 kHz		Sweep	Stop 5.000 Gi 192 ms (40001 pi
Res BW	100 kHz	X	Y	FUNCTION	FUNCTION WIDTH		Stop 5.000 Gl 192 ms (40001 p CTION VALUE
Res BW	100 kHz	3.824 35 GHz	۲ 54.262 dBı	FUNCTION	FUNCTION WIDTH		192 ms (40001 p
R MODE TR	100 kHz		Y	FUNCTION	FUNCTION WIDTH		192 ms (40001 p
Res BW	100 kHz	3.824 35 GHz	۲ 54.262 dBı	FUNCTION	FUNCTION WIDTH		192 ms (40001 p
	100 kHz	3.824 35 GHz	۲ 54.262 dBı	FUNCTION	FUNCTION WIDTH		192 ms (40001 p
	100 kHz	3.824 35 GHz	۲ 54.262 dBı	FUNCTION	PUNCTION WIDTH		192 ms (40001 p
	100 kHz	3.824 35 GHz	۲ 54.262 dBı	FUNCTION	FUNCTION WIDTH		192 ms (40001 p
Res BW	100 kHz	3.824 35 GHz	۲ 54.262 dBı	FUNCTION	PUNCTION WIDTH		192 ms (40001 p


arker 2	RF	50 Q DC			SENSE:0	TI	AL	JGN AUTO		11:47:2	2 AM Apr 14, 20
	7.423	325000000		PNO: Fast FGain:Low		: Free Run ten: 30 dB		Avg Type Avg Holdo	: Log-Pwr 100/100		TYPE MULTURE
	RefO	ffset 0.6 dB							M	kr2 7.42	3 25 GH
dB/div		10.00 dBm								-55.	980 dB
1.0											
1.0											-35.97
1.0			<u>^</u> 2								. 1
1.0			¢ ²								0
3.0 11.010	<u>kinaikin</u>	Ribelson and Mark	Contractions		Ch. United and the second			<u>tenikkins</u> i			
1.0											
1.0											
										-	
art 7.00				4	WBW 30	0 kHz			Swee	Stop p 192 ms	9.000 GI (40001 p
Res BW	100 k	HZ									
Res BW	RC SCL	X			Y	FUNCTION	FUNCT	TION WIDTH	FU	NCTION VALUE	
R MODE TF	RC SCL	X 8.	917 20 GHz	-65	210 dBm	FUNCTION	FUNCT	TION WIDTH	FU	NCTION VALUE	
R MODE TH	RC SCL	X 8.		-65		FUNCTION	FUNC	TION WIDTH	FU	NCTION VALUE	
R MODE TP	RC SCL	X 8.	917 20 GHz	-65	210 dBm	FUNCTION	FUNC	TION WIDTH	Fu	NCTION VALUE	
R MODE TR	RC SCL	X 8.	917 20 GHz	-65	210 dBm	FUNCTION	FUNC	FION WIDTH	FU	NCTION VALUE	
P MODE TP	RC SCL	X 8.	917 20 GHz	-65	210 dBm	FUNCTION	FUNC	TION WIDTH	FU	NCTION VALUE	
P(MODE) TP 1 N 1 2 N 1 3 4 5 5 2 1 5 2 1 7 2 1 1 7 1 1 7 1 1 7 1 1 7 1 1 7 1 7 1 1 7 1 7	RC SCL	X 8.	917 20 GHz	-65	210 dBm	FUNCTION	FUNC	TION WID TH	FU	NCTION VALUE	
R MODE TR	RC SCL	X 8.	917 20 GHz	-65	210 dBm	FUNCTION	FUNC	ION WIDTH	FU	NCTION VALUE	


	RF	50 Q DC			SENS	E:INT		ALIGNAUTO			11:49:32 M	M Apr 14, 20
arker 2	11.5	84700000		PNO: Fast FGain:Lov		rig: Free I Atten: 30		Avg Ty Avg Ho	pe: Log-Pwr Id>100/100		TYP	
dB/div		Offset 0.6 dB 10.00 dBm								Mkr2 ⁻	11.584 -56.4	70 GH
²	- Nor											
.00												
.0												
1.0												
.0												-35.97 c
.0												
.0				2					0 ¹			
.0				a second data		data sin na i	alles e le	atte en familie fin fin		in the state	and the local division of	designed a
1.0												
0.0												
art 11.0					#VBW 3	00 kHz			Sv	veep 1	Stop 13. 92 ms (4)	000 GI 0001 p
art 11.0 Res BW		(Hz		1	Y	FUNC	TION	FUNCTION WIDTH	Sv	veep 19	92 ms (4	000 GI 0001 pi
art 11.00 tes BW	100 k	(Hz) 12	.359 65 GHz	-54	Y 5.235 dBr	FUNC	TION	FUNCTION WIDTH	Sv		92 ms (4	000 GI 0001 pi
art 11.00 tes BW	100 k	(Hz) 12		-54	Y	FUNC	TION	FUNCTION WIDTH,	Sv		92 ms (4	000 GI 0001 p
art 11.00 Res BW N 1 N 1	100 k	(Hz) 12	.359 65 GHz	-54	Y 5.235 dBr	FUNC	TIÓN	FUNCTION WIDTH	Sv		92 ms (4	000 GI 0001 p
art 11.00 Res BW R MODE TRI N 1	100 k	(Hz) 12	.359 65 GHz	-54	Y 5.235 dBr	FUNC	TION	FUNCTION WIDTH	Sv		92 ms (4	000 GI 0001 p
art 11.00 Res BW R MODE TR N 1 2 N 1 3	100 k	(Hz) 12	.359 65 GHz	-54	Y 5.235 dBr	FUNC	TION	FUNCTION WIDTH	Sv		92 ms (4	000 GI 0001 pi
art 11.00 Res BW	100 k	(Hz) 12	.359 65 GHz	-54	Y 5.235 dBr	FUNC	TION	PUNCTION WIDTH	Sv		92 ms (4	000 GI 0001 p
art 11.0 Res BW R MODE TR N 1 3 3 4 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5	100 k	(Hz) 12	.359 65 GHz	-54	Y 5.235 dBr	FUNC	TION	PUNCTION WIDTH	Sv		92 ms (4	000 GI 0001 pi

	RF	50 Q DC			SENSE	INT		ALIGN	IAUTO		11:52	:36 AM Apr 14, 20
arker 2	16.2	86250000		PNO: Fast IFGain:Low		ig: Free i tten: 30			Avg Type: Avg Hold>	Log-Pwr 100/100		TYPE MUMMUM DET P N N N
		Offset 0.6 dB								M	kr2 16.28	36 25 GH
dB/div	Ref	10.00 dBm						_			-56	.094 dB
1.0												
1.0												
1.0												-35.97 (
1.0												
1.0			-0 ¹						²			
1.0			an la sur sub sur	1				adapate at	e hadronia i ha	day de stabilitar en ser	Alter of the La	
1.0												
1.0												
					#VBW 3	10 VH2				Swaa	Stop	17.000 G
tes BW	100 k	Hz	,	;	#VBW 30		TION	RUNCTION			ep 192 ms	17.000 GI (40001 p
art 15.0 Res BW		(Hz > 15	441 95 GHz	55	#VBW 30 Y .790 dBm	FUNC	CTION	FUNCTION	WIDTH		Stop p 192 ms	17.000 Gi (40001 pi
Res BW	100 k	(Hz > 15	(.441 95 GHz .286 25 GHz	55	Y	FUNC	CTION	FUNCTION	IWDTH		ep 192 ms	17.000 GI (40001 pi
Res BW	100 k	(Hz > 15	441 95 GHz	55	Y .790 dBm	FUNC	CTION	FUNCTION	IWDTH		ep 192 ms	17.000 Gi (40001 pi
	100 k	(Hz > 15	441 95 GHz	55	Y .790 dBm	FUNC	TION	FUNCTION	IWDTH		ep 192 ms	17.000 GI (40001 pi
	100 k	(Hz > 15	441 95 GHz	55	Y .790 dBm	FUNC	CTION	FUNCTION	IWIDTH		ep 192 ms	17.000 Gi (40001 pi
Res BW R MODE TR 1 N 1 2 N 1 3 4 5 5 5 5 5 5 7 7 8 8 7 7 8 7 7 8 8	100 k	(Hz > 15	441 95 GHz	55	Y .790 dBm	FUNC	CTION	FUNCTION	IWDTH		ep 192 ms	17.000 Gi (40001 pi
Res BW	100 k	(Hz > 15	441 95 GHz	55	Y .790 dBm	FUNC	CTION	FUNCTION	IWIDTH		ep 192 ms	17.000 Gi (40001 pi
Res BW (A) MODE TR 1 N 1 2 N 1 3 4 5 5 5 6 7 7 8 9 9	100 k	(Hz > 15	441 95 GHz	55	Y .790 dBm	FUNC	CTION	FUNCTION	WDTH .		ep 192 ms	17.000 GF

	RF	50 Q DC			SENSE:0	IT	A	JGN AUTO		11:55:4	5 AM Apr 14, 20
arker 2	20.0	997000000		PNO: Fast G FGain:Low		: Free Ru ten: 30 dB		Avg Type: Avg Hold⊃	Log-Pwr 100/100		RACE 2345 TYPE MULLIN DET PNNNN
	Ref	Offset 0.6 dB							Mk	r2 20.09	9 70 GH
odB/div		10.00 dBm								-54.	783 dBi
1.0											
1.0											
1.0											-35.97 d
		0 ¹					<mark></mark> 2				
.0		in a start of the	- luce to child the sec	turnen hat		and the second second	ales dequés es	lost an ellet a la bar	the state of the second states	and the second sheet	alls and said
1.0											
.0											
										Stop	21.000 G
art 19.0 Res BW				#V	BW 30	0 kHz			Sweep	o 192 ms	(40001 p
Res BW	100 k	KHz		Y		D kHz Functio	ON FUNC	TION WIDTH		D 192 ms	(40001 p
Res BW	100	(Hz × 19	.338 15 GHz .099 70 GHz	Y -63.96	BW 300 6 dBm 3 dBm		ON FUNC	TION WIDTH			(40001 pi
R MODE TH	100 k	(Hz × 19	.338 15 GHz	Y -63.96	6 dBm		DN PUNC	TION WIDTH			(40001 pi
R MODE TP	100 k	(Hz × 19	.338 15 GHz	Y -63.96	6 dBm		ON FUNC	TION WIDTH			(40001 pi
Res BW	100 k	(Hz × 19	.338 15 GHz	Y -63.96	6 dBm		ON FUNC	TION WIDTH			(40001 pi
Res BW	100 k	(Hz × 19	.338 15 GHz	Y -63.96	6 dBm		ON FUNC	TION WIDTH			(40001 pi
	100 k	(Hz × 19	.338 15 GHz	Y -63.96	6 dBm		ON FUNC	TION WIDTH			(40001 p
	100 k	(Hz × 19	.338 15 GHz	Y -63.96	6 dBm		ON FUNC	TION WIDTH			(40001 pi

art Fre	⊮ q 23.	50 Q DC 00000000) GHz	PNO: Fast FGain:Low		g: Free F tten: 30 (AL		e: Log-Pwr >100/100			17 PM Age 14, 2 RACE 1 2 3 4 TYPE MUSER DET P. N.N.N
dB/div	Ref (Offset 0.6 dB 10.00 dBm									Mk	r2 23.51 -52	6 10 GH 782 dB
		10.00 0.011											
.0													
.0													
.0													-35.97
1.0		an talenta an an	¢ ²			u batan				An and the second		at a first second state	
												and a second second	
.0													
art 23.0 tes BW				#	VBW 30	0 kHz				s	weep	Stop 192 ms	25.000 G (40001 p
R MODE TR	IC SCL	>	.985 40 GHz		r 015 dBm	FUNC	TIÓN	FUNCT	ION WIDTH		FUR	NCTION VALUE	
N 1	1		516 10 GHz		782 dBm								
	\pm												
	\blacksquare												
									STATUS				

10.DUTY CYCLE

10.1. Test Equipment

Item	Туре	Manufacturer	Model No.	Serial No.	Last Cal.	Next Cal.
1.	PXA Signal Analyzer	Agilent	N9030A	MY53120367	2015-06-23	2016-06-22

10.2. Test Results

The measurement of duty cycle is 100%.

SENSE INT	ALIGNAUTO	02:17:16 PM Mar 21, 2016
PNO: Wide Trig: Free Run IFGain:Low #Atten: 30 dB	Avg Type: Log-Pwr	TRACE 12 14 TYPE WWWWWW DET PINNINN
		Mkr1 5.900 m -4.27 dBn
VBW 1.0 MHz	Swee	Span 0 H p 50.00 ms (1001 pt
	IFGain:Low #Atten: 30 dB	IFGain:Low #Atten: 30 dB IIII IIIIIIIIIIIIIIIIIIIIIIIIIIIIIIII

11.DEVIATION TO TEST SPECIFICATIONS

NONE