MPE Report

Averaging Time Electric Field Magnetic Field Power Frequency $|E|^{2}$, $|H|^{2}$ or S Range Strength (E) Strength (H) Density (S) (minutes) (MHz) (V/m)(A/m) (mW/cm^2) 614 0.3-1.34 1.63 (100)*30 (180/f2)* 30 1.34-30 824/f 2.19/f 30-300 27.5 0.073 0.2 30 300-1500 --f/150 30 --30 1500-100,000 ---1.0 __

1. Specification Limits

Limits for General Population/Uncontrolled Exposure

f = frequency in MHz

*Plane-wave equivalent power density

NOTE: General population/uncontrolled exposures apply in situations in which the general public may be exposed, or in which persons that are exposed as a consequence of their employment may not be fully aware of the potential for exposure or can not exercise control over their exposure.

The limit value 1.0mW/cm^2 is available for this EUT.

2. MPE Calculation Method

$$\mathbf{S} = \mathbf{PG}/(4\,\pi\,\mathbf{R}^2)$$

$$R = [PG/(4 \pi S)]^{0.5}$$

where: S = power density (in appropriate units, e.g. mW/ cm²)

P = power input to the antenna (in appropriate units, e.g., mW)

(the measured power value see Report: F12124 Section 6.6)

G = power gain of the antenna in the direction of interest relative to an isotropic radiator

 \mathbf{R} = distance to the center of radiation of the antenna (appropriate units, e.g., cm)

3. Calculated Result

Frequency	Output Power to Antenna	Antenna Gain		Power Density	Limit
(MHz)	(mW)	(dBi)	(Numeric)	(mW/cm^2)	(mW/cm^2)
2405	2.08	0	1	0.000613	1.0
2450	2.10	0	1	0.000617	1.0
2480	2.00	0	1	0.000597	1.0

Radio Frequency Radiation Exposure Evaluation

Separation distance R= 20cm.