APPLICATION FOR CERTIFICATION On Behalf of Philips Lighting(China) Investment Co., Ltd. LED Lamp

Model No. : 9290011998 Brand : Philips FCC ID : 2AGBW9290011998X

Prepared for

Philips Lighting(China) Investment Co., Ltd. Building 9, Lane 888, Tian Lin Road, Minhang district, Shanghai, China

Prepared by

Audix Technology (Wujiang) Co., Ltd. EMC Dept. No. 1289 Jiangxing East Road, the Part of Wujiang Economic Development Zone Jiangsu China 215200

> Tel : +86-512-63403993 Fax :+86-512-63403339

Report NumberACWE-F1512003Date of TestNov.09~Dec.01, 2015Date of ReportDec.07, 2015

TABLE OF CONTENTS

De	Description	
TE	ST REPORT CERTIFICATION	4
1.	SUMMARY OF MEASUREMENTS AND RESULTS	5
2.	GENERAL INFORMATION	6
	2.1. Description of Device (EUT)	6
	2.2. Description of Test Facility	7
_	2.3. Measurement Uncertainty	7
3.	CONDUCTED EMISSION MEASUREMET	8
	3.1. Test Equipment	8
	3 3 Power line Conducted Emission Limit	
	3.4. Test Procedure	9
	3.5. Conducted Emission Measurement Results	9
4.	RADIATED EMISSION MEASUREMENT	12
	4.1. Test Equipment	
	4.2. Block Diagram of Test Setup	
	4.3. Radiated Emission Limits	13 13
	4.5. Assessment In All Three Orthogonal Planes	
	4.6. Measurement Results	15
	4.7. Restricted Bands Measurement Results (For Below 1GHz)	16
	4.8. Restricted Bands Measurement Results (For Above IGHz)	22 28
5	4.9. Spurious Emission Measurement Results in Band Edge Emission (FCC Fart 15, 15.205)	20 3 6
5.	5 1 Test Equipment	
	5.2. Block Diagram of Test Setup	
	5.3. Specification Limits (§15.247(a)(2))	
	5.4. Test Procedure	
	5.5. Test Results	
6.	OUTPUT POWER MEASUREMENT	
	6.1. Test Equipment	
	6.3. Specification Limits (§15.247(b)(3))	
	6.4. Test Procedure	40
	6.5. Test Results	40
7.	BAND EDGES MEASUREMENT	41
	7.1. Test Equipment	
	7.2. Block Diagram of Test Setup	41 41
	7.4. Test Procedure	41
	7.5. Test Results	41
8.	POWER SPECTRAL DENSITY MEASUREMENT	43
	8.1. Test Equipment	43
	8.2. Block Diagram of Test Setup.	43
	8.3. Specification Limits (§15.247(e))	
	0.4. I CSI NCSUIIS	

EMISSION LIMITATIONS MEASUREMENT	46
9.1. Test Equipment	
9.2. Block Diagram of Test Setup	
9.3. Specification Limits (§15.247(d))	
9.4. Test Procedure	
9.5. Test Results	47
DUTY CYCLE	
10.1. Test Equipment	
10.2. Test Results	
DEVIATION TO TEST SPECIFICATIONS	
	EMISSION LIMITATIONS MEASUREMENT 9.1. Test Equipment 9.2. Block Diagram of Test Setup

TEST REPORT CERTIFICATION

Applicant :		Philips Lighting(China) Investment Co., Ltd.
Manufacturer	& : `	Philips Lighting(China) Investment Co., Ltd.
Factory		Arts Electronics Co., Ltd.
EUT Description	S. e	LEDLamp
FCC ID	:	2AGBW9290011998X
(A) Model No.		9290011998
(B) Brand		Philips
(C) Power Supply		AC 110-130V, 50/60Hz
(D) Test Voltage	:	AC 120V, 60Hz

Applicable Standards:

FCC RULES AND REGULATIONS PART 15 SUBPART C, Oct. 2013 ANSI C63.10: 2013 KDB 558074 D01 DTS Meas Guidance v03r02

The device described above was tested by Audix Technology (Wujiang) Co., Ltd. EMC Dept. to determine the maximum emission levels emanating from the device. The maximum emission levels were compared to the FCC Part 15 subpart C section 15.207, 15.205, 15.209&15.247 limits.

The measurement results are contained in this test report and Audix Technology (Wujiang) Co., Ltd. EMC Dept. is assumed full responsibility for the accuracy and completeness of these measurements. Also, this test report shows that the EUT to be technically compliant with the FCC limits.

This test report applies to above tested sample only. This test report shall not be reproduced in part without written approval of Audix Technology (Wujiang) Co., Ltd. EMC Dept.

Date of Test: Nov.09~Dec.01, 2015

Prepared by

Reviewer

Date of Report: Dec.07, 2015

1A mma

(Emma Hu/Assistant Administrator)

(Danny Sun/ Section Manager)

Approved & Authorized Signer

(Ken Lu/Assistant General Manager)

Audix Technology (Wujiang)Co., Ltd. EMC Dept. Report No.: ACWE-F1512003

1. SUMMARY OF MEASUREMENTS AND RESULTS

The EUT has been tested according to the applicable standards and test results are referred as below.

Description of Test Item	Standard	Results	Remark
CONDUCTED EMISSION	FCC 47 CFR Part 15 Subpart C/ Section 15.207 And ANSI C63.10:2013 And KDB 558074 D01 DTS Meas Guidance v03r02	PASS	Minimum passing margin is 9.02 dB at 0.15MHz
RADIATED EMISSION	FCC 47 CFR Part 15 Subpart C/ Section 15.209& Section 15.205 And ANSI C63.10:2013 And KDB 558074 D01 DTS Meas Guidance v03r02	PASS	Minimum passing margin is 9.07 dB at 31.94MHz
6 dB BANDWIDTH	FCC 47 CFR Part 15 Subpart C/ Section 15.247(a)(2) And ANSI C63.10:2013 And KDB 558074 D01 DTS Meas Guidance v03r02	PASS	> 500kHz
OUTPUT POWER	FCC 47 CFR Part 15 Subpart C/ Section 15.247(b)(3) And ANSI C63.10:2013 And KDB 558074 D01 DTS Meas Guidance v03r02	PASS	Minimum passing margin is 26.77dB at CH 20
BAND EDGES	FCC 47 CFR Part 15 Subpart C/ Section 15.247(d) And ANSI C63.10:2013 And KDB 558074 D01 DTS Meas Guidance v03r02	PASS	
POWER SPECTRAL DENSITY	FCC 47 CFR Part 15 Subpart C/ Section 15.247(e) And ANSI C63.10:2013 And KDB 558074 D01 DTS Meas Guidance v03r02	PASS	Minimum passing margin is 21.751dB at CH 11
EMISSION LIMITATIONS	FCC 47 CFR Part 15 Subpart C/ Section 15.247(d) And ANSI C63.10:2013 And KDB 558074 D01 DTS Meas Guidance v03r02	PASS	

2. GENERAL INFORMATION

2.1. Description of Device (EUT)

Description	:	LED Lamp
Model No.	:	9290011998
FCC ID	:	2AGBW9290011998X
Brand	•	Philips
Applicant	:	Philips Lighting(China) Investment Co., Ltd. Building 9, Lane 888, Tian Lin Road, Minhang district, Shanghai, China
Manufacturer	:	Philips Lighting(China) Investment Co., Ltd. Building 9, Lane 888, Tian Lin Road, Minhang district, Shanghai, China
Factory	:	Arts Electronics Co., Ltd. Shangxing Lu, Shangjiao Community, Changan Town, Dongguan Guangdong523000 China
Radio Technology	:	IEEE 802.15.4 (ZigBee®)
Antenna Gain	:	0dBi
Fundamental Range	:	2405 MHz -2480MHz
Tested Frequency	:	2405MHz (CH11) 2450MHz (CH20) 2480MHz (CH26)
Channel Setting Method	:	The Putty Software must be used when setting the channels during test. First, the EUT must be connected with the computer via USB to serial port. Then, when entering into the main configuration interface of the Putty software, we can set the channel information directly and perform the related test projects on the fixed frequency.
Highest Working Frequency	:	2.4GHz
Power Rating	:	10.5W, 150mA
Modulation type	:	O-QPSK
Date of Receipt of Sample	•	Oct.16, 2015
Date of Test	:	Nov.09~Dec.01, 2015

2.2. Description of Test Facility

Name of Firm	Audix Technology (Wujiang) Co., Ltd. EMC Dept.
Site Location	No. 1289 Jiangxing East Road, the Eastern Part of Wujiang Economic Development Zone Jiangsu China 215200
Test Facilities	No.1 Conducted Shielding Enclosure
	No.1 3m Semi-anechoic Chamber Date of Validity: Mar.30, 2018 FCC Registration No.: 897661 IC Registration No.:5183D-2 RF Fully Chamber
NVLAP Lab Code	200786-0 Valid until on Sep.30, 2016 (NVLAP is a signatory member of ILAC MRA) Remark: This report shall not be imply endorsement, certification or approval by NVLAP, NIST, or any agency of the U.S. Federal Government.

2.3. Measurement Uncertainty

Test Item	Range Frequency	Uncertainty	
No.1 Conducted Disturbance Measurement	$0.15 MHz \sim 30 MHz$	± 3.30dB	
Radiated Disturbance Measurement (At 3m Chamber)	Below 1GHz	± 4.50dB	
Radiated Disturbance Measurement (At 3m Chamber)	Above 1GHz	± 5.15dB	

Remark: Uncertainty = $ku_c(y)$

Test Item	Uncertainty
6 dB Bandwidth	$\pm0.16\mathrm{MHz}$
Maximum Peak Output Power	± 0.12dB
Band Edges	± 0.38dB
Power Spectral Density	± 0.38dB
Emission Limitations	± 0.38dB

Remark: Uncertainty = $ku_c(y)$

3. CONDUCTED EMISSION MEASUREMET

3.1. Test Equipment

Item	Туре	Manufacturer	Model No.	Serial No.	Last Cal.	Next Cal.
1.	Test Receiver	R & S	ESCI	100839	2015-01-05	2016-01-04
2.	A.M.N	R&S	ESH2-Z5	100153	2015-05-15	2016-05-14
3.	Pulse Limiter	R&S	ESH3-Z2	100605	2015-07-03	2016-07-02
4.	RF Cable	Harbour Industries	RG400	002	2015-01-05	2016-01-04
5.	Software	Audix/e3(6.7.0313)				

3.2. Block Diagram of Test Setup

- : POWER LINE - : SIGNAL LINE

3.3. Power line Conducted Emission Limit

(FCC Part 15, Section 15.207, Class B)

Frequency	Maximum RF Line Voltage		
	Quasi-Peak Level Average Leve		
$150 \text{kHz} \sim 500 \text{kHz}$	$66 \sim 56 \ dB\mu V$	$56 \sim 46 \; dB \mu V$	
$500 \text{kHz} \sim 5 \text{MHz}$	56 dBµV	46 dBµV	
$5 MHz \sim 30 MHz$	60 dBµV	50 dBµV	

Remark1: If the average limit is met when using a Quasi-Peak detector, the EUT shall be deemed to meet both limits and measurement with the average detector is unnecessary.

2: The lower limit applies at the band edges.

3.4. Test Procedure

The measuring process is according to ANSI C63.10-2013 and laboratory internal procedure TKC-301-004. (For FCC Part15 Subpart C)

In the conducted emission measurement, the EUT and all peripheral devices were set up on a non-metallic table which was 0.8 meter height above the ground plane, and 0.4 meter far away from the vertical plane. The mains cable of the EUT connected to one Artificial Main Network(AMN). All other unit of the EUT and AE connected to a second Line Impedance Stabilization Network(L.I.S.N.). The telecommunication cable connected to the AE through a Impedance Stabilization Network(ISN) which terminated a 50 Ω resistor. For the measurement, the A.M.N measuring port was terminated by a 50 Ω measuring equipment and the second L.I.S.N measuring port was terminated by a 50 Ω terminator. All measurements were done between the phase lead and the reference ground, and between the neutral lead and the reference ground. All cables or wires placement were verified to find out the maximum emission.

The bandwidth of measuring receiver was set at 9 kHz.

The required frequency band $(0.15 \text{ MHz} \sim 30 \text{ MHz})$ was pre-scanned with peak detector; the final measurement was measured with quasi-peak detector and average detector. (If the average limit is met when using a quasi-peak detector, the average detector is unnecessary).

The emission level is calculated automatically by the test system which uses the following equation:

Emission level $(dB\mu V)$ = Reading $(dB\mu V)$ + A.M.N factor (dB) + Cable loss (dB). (Cable loss includes pulse limiter loss)

3.5. Conducted Emission Measurement Results

For FCC Part15 Subpart C **PASSED**.

EUT was performed during this section testing and all the test results are attached in next pages.

Test Date	e Nov.09, 2015	Temperature	21.5	Humidity	53
Mada	Test Condition		Reference Test Data No.		
widde			Neutral	Line	
1	Transmitt	ing	# 5	#6	

NOTE 1 ' 'means the worst test mode.

NOTE 2- The worst emission is detected at 0.15 MHz with emission level of 56.92 dB (μ V) and with QP detector (Limit is 65.94 dB (μ V)), when the Neutral of the EUT is connected to AMN.

Remarks:

1.Emission Level= AMN factor + Cable loss + Reading .

Remarks:

1.Emission Level= AMN factor + Cable loss + Reading .

4. RADIATED EMISSION MEASUREMENT

4.1. Test Equipment

The following test equipment was used during the radiated emission measurement: At 3m Semi-Anechoic Chamber

Item	Туре	Manufacturer	Model No.	Serial No.	Last Cal.	Next Cal.
1.	Preamplifier	Agilent	8449B	3008A02233	2015-01-05	2016-01-04
2.	Preamplifier	Agilent	8447D	2944A10921	2015-07-03	2016-07-02
3.	PXA Signal Analyzer	Agilent	N9030A	MY53120367	2015-06-23	2016-06-22
4.	Test Receiver	R&S	ESCI	100361	2015-01-05	2016-01-04
5.	Bi-log Antenna	Schaffner	CBL6112D	22253	2015-08-05	2016-08-04
6.	Horn Antenna	EMCO	3115	62960	2015-06-30	2016-05-29
7.	RF Cable #1	Yuhang CSYH	cable-3m	001(0.5m)	2015-01-05	2016-01-04
8.	RF Cable #2	Yuhang CSYH	cable-3m	002(0.5m)	2015-01-05	2016-01-04
9.	RF Cable #3	Yuhang CSYH	cable-3m	003(3.0m)	2015-01-05	2016-01-04
10.	Software	Audix/e3(6.7.0313)				

- 4.2. Block Diagram of Test Setup
- 4.2.1. Block Diagram of Test Setup between EUT and simulators

4.2.2. No. 1 3m Semi-Anechoic Chamber Setup Diagram (Test distance:3m) for 30-1000MHz

4.2.3. No. 1 3m Semi-Anechoic Chamber Setup Diagram (Test distance: 3m) for above 1GHz

4.3. Radiated Emission Limits

Radiated Emission Limits (FCC Part15 C, section 15.209, CISPR22)

Frequency	Distance Motors	Field Strengths Limits		
MHz	Distance wreters	dBµV/m		
$30 \sim 230$	10	30.0		
$230 \sim 1000$	10	37.0		
Above 1000	3	74.0 dBµV/m (Peak)		
110010 1000	3	54.0 dBµV/m (Average)		

Remark (1) Emission level $(dB\mu V/m) = 20 \log Emission level (\mu V/m)$

(2)The tighter limit applies at the edge between two frequency bands.

4.4. Test Procedure

The measuring process is according to ANSI C63.10-2013 and laboratory internal procedure TKC-301-001. (For FCC Part15 Subpart C)

In the radiated disturbance measurement, the EUT and all simulators were set up on a non-metallic turn table which was 0.8 meter above the ground plane. Measurement distance between EUT and receiving antennas was set at 10 meters at $30MHz\sim1GHz$ and 3 meters at $1GHz\sim6GHz$. The measurement distance is the shortest horizontal distance between an imaginary circular periphery which consists of EUT periphery and cables and the reference point of the antenna. During the radiated measurement, the EUT was rotated 360° and receiving antennas were used for both horizontal and vertical polarization detection for $30MHz\sim1GHz$, One receiving antennas was used for both horizontal and vertical polarization detection for $1GHz\sim6GHz$ (the absorbing material was added when testing of $1GHz\sim6GHz$ was done). All cables or wires placement were verified to find out the maximum emission.

The bandwidth of measuring receiver (or spectrum analyzer) was set to:

RBW (120 kHz), VBW (300 kHz) for QP detector below 1GHz RBW (1 MHz), VBW (1MHz) for Peak detector above 1GHz RBW (1 MHz), VBW (10Hz) for AV detector above 1GHz

The frequency range from 30MHz to 10th harmonic(25GHz) are checked, and no any emissions were found from 18GHz to 25GHz.

The emission level is calculated automatically by the test system which uses the following equation :

- 1. For 30MHz-1GHz measurement: Emission Level ($dB\mu V/m$) = Reading ($dB\mu V$)+Antenna Factor (dB/m)+Cable Loss (dB)
- 2. For Above 1GHz measurement: Emission Level $(dB\mu V/m) = Reading (dB\mu V)+Antenna Factor (dB/m)+Cable Loss(dB)$ -Pre-amplifier factor (dB)

The three orthogonal planes have been all tested, and the data of the worst mode XY plan(in Horizontal) & XZ plan(in Vertical) is shown in the report.

4.6. Measurement Results

PASSED

4.6.1. For Restricted Bands:

The EUT was tested in restricted bands and all the test results are listed in section 5.7 & 5.8. (The restricted bands defined in part 15.205(a))

For Frequency range : below 1GHz

N.	Test Medee	Reference Test Data No.		
NO.	Test Mode a	Horizontal	Vertical	
1.		2405MHz (Channel 11)	# 1	# 2
2.	Transmitting	2450MHz (Channel 20)	# 3	# 4
3.		2480MHz (Channel 26)	# 5	# 6

For Frequency range : above 1GHz

Ma		Reference Test Data No.				
INO.	Test Mode a	Test Mode and Frequency				
1.		2405MHz (Channel 11)	# 7	# 8		
2.	Transmitting	2450MHz (Channel 20)	# 9	# 10		
3.		2480MHz (Channel 26)	# 11	# 12		

4.6.2. For Band Edge Emission

The EUT was tested in restricted bands and all the test results are listed in section 5.9. The restricted bands defined in part 15.205(a))

			Reference T	est Data No.
No.	Test Mode a	Horizontal	Vertical	
1.	Trongenitting	2405MHz (Channel 11)	# 13, # 15	# 14, # 16
2.	Transmitting	2480MHz (Channel 26)	# 17, # 19	# 18, # 20

4.7. Restricted Bands Measurement Results (For Below 1GHz)

	Freq. (MHz)	Ant. Factor (dB∕m)	Cable Loss (dB)	Reading (dBuV)	Emission Level (dBuV∕m)	Limits (dBuV/m)	Margin (dB)	Remark			
1 2 3 4 5 6	30.00 60.07 66.86 70.74 83.35 261.83	19.50 6.50 6.43 6.55 8.43 13.96	0.23 0.34 0.37 0.39 0.45 1.33	37.13 47.11 47.32 44.80 41.17 35.48	29.51 26.67 26.85 24.48 22.82 24.09	40.00 40.00 40.00 40.00 40.00 40.00 46.00	10.49 13.33 13.15 15.52 17.18 21.91	QP QP QP QP QP QP QP QP			
R	Remarks: 1. Emission Level= Antenna Factor + Cable Loss + Reading. 2. The emission levels that are 20dB below the official limit										

are not reported.

	Freq. (MHz)	Ant. Factor (dB∕m)	Cable Loss (dB)	Reading (dBuV)	Emission Level (dBuV/m)	Limits (dBuV/m)	Margin (dB)	Remark
1	31.94	18.46	0.24	39.58	30.93	$\begin{array}{c} 40.00\\ 40.00\\ 40.00\\ 43.50\\ 46.00\\ 46.00\\ 46.00 \end{array}$	9.07	QP
2	63.95	6.46	0.36	50.23	29.78		10.22	QP
3	71.71	6.71	0.39	45.30	25.14		14.86	QP
4	110.51	12.30	0.70	43.73	29.57		13.93	QP
5	229.82	11.55	1.27	37.55	23.63		22.37	QP
6	878.75	21.59	2.75	26.69	23.70		22.30	QP

:	Freq. (MHz)	Ant. Factor (dB⁄m)	Cable Loss (dB)	Reading (dBuV)	Emission Level (dBuV/m)	Limits (dBuV∕m)	Margin (dB)	Remark
1 2 3 4 5 6	31.94 33.88 60.07 122.15 788.54 908.82	18.46 17.42 6.50 13.10 20.70 21.88	0.24 0.24 0.34 0.78 2.56 2.82	37.61 38.86 35.99 29.57 23.50 23.92	28.96 29.18 15.55 16.34 18.96 21.46	40.00 40.00 40.00 43.50 46.00 46.00	11.04 10.82 24.45 27.16 27.04 24.54	QP QP QP QP QP QP QP

	Freq. (MHz)	Ant. Factor (dB∕m)	Cable Loss (dB)	Reading (dBuV)	Emission Level (dBuV/m)	Limits (dBuV/m)	Margin (dB)	Remark
1	31.94	18.46	0.24	37.01	28.36	40.00	11.64	QP
2	47.46	10.30	0.28	37.04	20.31	40.00	19.69	QP
3	52.31	8.34	0.30	38.03	19.37	40.00	20.63	QP
4	74.62	7.17	0.40	46.65	26.97	40.00	13.03	QP
5	145.43	11.83	0.93	34.84	20.58	43.50	22.92	QP
6	428.67	17.03	1.81	28.22	19.62	46.00	26.38	QP

	Freq. (MHz)	Ant. Factor (dB⁄m)	Cable Loss (dB)	Reading (dBuV)	Emission Level (dBuV/m)	Limits (dBuV/m)	Margin (dB)	Remark
1	31.94	18.46	0.24	38.29	29.64	40.00	10.36	QP
2	33.88	17.42	0.24	39.18	29.50	40.00	10.50	QP
3	63.95	6.46	0.36	49.40	28.95	40.00	11.05	QP
4	70.74	6.55	0.39	47.06	26.74	40.00	13.26	QP
5	144.46	11.89	0.93	35.94	21.74	43.50	21.76	QP
6	261.83	13.96	1.33	35.13	23.74	46.00	22.26	QP

	Freq. (MHz)	Ant. Factor (dB∕m)	Cable Loss (dB)	Reading (dBuV)	Emission Level (dBuV/m)	Limits (dBuV/m)	Margin (dB)	Remark
1	31.94	18.46	0.24	38.34	29.69	40.00	10.31	QP
2	44.55	11.80	0.28	42.19	26.96	40.00	13.04	QP
3	71.71	6.71	0.39	48.76	28.60	40.00	11.40	QP
4	79.47	7.95	0.42	43.11	24.24	40.00	15.76	QP
5	113.42	12.57	0.72	36.17	22.31	43.50	21.19	QP
6	229.82	11.55	1.27	38.03	24.11	46.00	21.89	QP

4.8. Restricted Bands Measurement Results (For Above 1GHz)

	Freq. (MHz)	Ant. Factor (dB)	Cable Loss (dB)	Reading (dBuV)	Preamp Factor (dB)	Emissio: Level (dBuV/m	n Limits (dBuV∕m)	Margin (dB)	Remark
1	2407.00	28.49	4.38	92.08	34.94	90.01	74.00	-16.01	Peak
2	3772.00	32.07	5.80	41.04	34.56	44.35	74.00	29.65	Peak
3	3772.12	32.07	5.80	29.60	34.56	32.91	54.00	21.09	Average
4	7447.00	36.68	8.33	36.96	34.12	47.85	74.00	26.15	Peak
5	7447.02	36.68	8.33	26.90	34.12	37.79	54.00	16.21	Average
6	9043.00	38.01	9.05	37.87	34.96	49.97	74.00	24.03	Peak
7	9044.15	38.01	9.05	25.49	34.96	37.59	54.00	16.41	Average
8	10618.00	39.48	10.45	35.43	34.02	51.34	74.00	22.66	Peak
9	10619.25	39.48	10.45	26.71	34.02	42.62	54.00	11.38	Average
10	12655.00	39.17	11.17	35.13	32.98	52.49	74.00	21.51	Peak
11	12655.12	39.17	11.17	24.91	32.98	42.27	54.00	11.73	Average
12	14356.00	42.49	12.14	31.21	32.10	53.74	74.00	20.26	Peak
13	14357.25	42.49	12.14	21.40	32.10	43.93	54.00	10.07	Average
	Remarks:	1. Emiss 2. The e	ion Lev mission	el= Ant.H levels t	actor + hat are	Cable Lo: 20dB bel:	ss + Readi w the off	ng - Prea icial	amp.Factor

limit are not reported.

	Freq. (MHz)	Ant. Factor (dB)	Cable Loss (dB)	Reading (dBuV)	Preamp Factor (dB)	Emissic Level (dBuV/m	on Limits (dBuV∕m)	Margin (dB)	Remark
1 2 3 4 5 6 7 8 9 10 11 12 13	2407.00 4150.00 4151.02 5725.00 5726.21 8224.00 8225.14 10387.00 10388.25 13936.00 13937.14 14986.00 14987.14	28.49 32.58 34.09 34.09 37.27 37.27 39.41 39.41 42.05 41.05 41.05	4.38 6.12 7.35 7.35 8.86 8.86 10.33 10.33 12.03 12.03 12.26 12.27	93.26 39.74 24.79 37.71 26.50 36.23 26.90 35.38 24.10 30.60 21.50 32.35 25.50	34.94 34.39 34.10 34.10 34.80 34.80 34.25 34.25 31.50 33.25 33.30	91.19 44.05 29.10 45.05 33.84 47.56 38.23 50.87 39.59 53.18 44.08 52.41 45.52	$\begin{array}{c} 74.00\\ 74.00\\ 54.00\\ 74.00\\ 54.00\\ 74.00\\ 54.00\\ 74.00\\ 54.00\\ 74.00\\ 54.00\\ 74.00\\ 54.00\\ 54.00\\ 54.00\\ 54.00\\ \end{array}$	-17.19 29.95 24.90 28.95 20.16 26.44 15.77 23.13 14.41 20.82 9.92 21.59 8.48	Peak Peak Average Peak Average Peak Average Peak Average Peak Average
	Remarks:	1. Emiss 2. The e limit	ion Lev mission are no	rel= Ant.H levels t t reporte	Factor + that are	Cable Lo 20dB bel	oss + Readi ow the off	ng - Prea icial	amp.Factor.

	Freq. (MHz)	Ant. Factor (dB)	Cable Loss (dB)	Reading (dBuV)	Preamp Factor (dB)	Emissic Level (dBuV/m	on Limits (dBuV∕m)	Margin (dB)	Remark
1 2 3 4 5 6 7 8 9 10 11 12 13	2449.00 5746.00 5747.25 7930.00 7931.25 9988.00 9989.25 11185.00 11186.25 12949.00 12949.87 14440.00 14441.25	28.58 34.10 36.97 36.97 38.80 39.21 39.21 39.79 39.79 42.56 42.56	4.42 7.38 8.75 8.75 10.08 10.11 10.65 10.65 11.45 11.45 12.16	93.31 37.56 25.80 37.16 26.60 36.42 25.50 36.13 26.50 33.60 24.51 30.51 22.60	34.95 34.09 34.66 34.66 34.65 34.64 33.74 33.74 32.39 32.25 32.25	91.36 44.95 33.19 48.22 37.66 50.65 39.77 52.25 42.62 52.45 43.36 52.98 45.07	$\begin{array}{c} 74.00\\ 74.00\\ 54.00\\ 74.00\\ 54.00\\ 74.00\\ 54.00\\ 74.00\\ 54.00\\ 74.00\\ 54.00\\ 74.00\\ 54.00\\ 54.00\\ 54.00\\ 54.00\\ 54.00\\ \end{array}$	-17.36 29.05 20.81 25.78 16.34 23.35 14.23 21.75 11.38 21.55 10.64 21.02 8.93	Peak Peak Average Peak Average Peak Average Peak Average Peak Average Peak
	Remarks:	1. Emiss 2. The e	ion Lev mission	rel= Ant.H levels t	actor + that are	Cable Lo 20dB bel	oss + Readi ow the off.	ng - Prea icial	amp.Factor

limit are not reported.

	Freq. (MHz)	Ant. Factor (dB)	Cable Loss (dB)	Reading (dBuV)	Preamp Factor (dB)	Emissic Level (dBuV/m	on Limits (dBuV∕m)	Margin (dB)	Remark
1 2 3 4 5 6 7 8 9 10 11 12 13	2449.00 4234.00 4234.57 5872.00 5873.25 7930.00 7931.26 9127.00 9128.14 10576.00 10577.14 13642.00 13643.14	28.58 32.51 34.15 34.15 36.97 38.02 38.02 39.53 39.53 41.43 41.43	4.42 6.15 7.55 7.55 8.75 9.16 9.16 10.44 10.44 11.87 11.87	93.78 39.67 26.50 38.47 26.50 37.26 27.65 37.13 26.41 35.42 26.60 30.94 23.50	34.95 34.39 34.05 34.05 34.66 34.66 34.93 34.93 34.04 34.04 31.74	91.83 43.94 30.77 46.12 34.15 48.32 38.71 49.38 38.66 51.35 42.53 52.50 45.06	$\begin{array}{c} 74.00\\ 74.00\\ 54.00\\ 74.00\\ 54.00\\ 74.00\\ 54.00\\ 74.00\\ 54.00\\ 74.00\\ 54.00\\ 74.00\\ 54.00\\ 54.00\\ 54.00\\ 54.00\\ 54.00\\ \end{array}$	-17.83 30.06 23.23 27.88 19.85 25.68 15.29 24.62 15.34 22.65 11.47 21.50 8.94	Peak Peak Average Peak Average Peak Average Peak Average Peak Average
	Remarks:	1. Emiss 2. The end limit	ion Lev mission are no	rel= Ant.H levels t t reporte	Factor + that are	Cable Lo 20dB bel	oss + Readi low the off	ng - Prea icial	amp.Factor.

	Freq. (MHz)	Ant. Factor (dB)	Cable Loss (dB)	Reading (dBuV)	Preamp Factor (dB)	Emission Level (dBuV/m (n Limits (dBuV∕m)	Margin (dB)	Remark
1 2 3 4 5 6 7 8 9 10 11 12 13	2470.00 4150.00 4151.25 6397.00 6398.14 7342.00 7343.15 10198.00 10199.14 12760.00 12761.14 13894.00 13895.25	28.62 32.58 34.43 34.44 36.43 39.12 39.12 39.39 39.39 41.94 41.98	4.44 6.12 7.80 7.80 8.24 10.22 11.27 11.27 12.01	92.21 39.35 26.59 37.35 22.20 37.62 26.60 35.93 26.60 34.60 27.39 30.46 21.60	34.96 34.39 33.84 33.84 34.00 34.00 34.43 32.78 32.78 31.52	90.31 43.66 30.90 45.74 30.60 48.29 37.27 50.84 41.51 52.48 45.27 52.89 44.07	74.00 74.00 54.00 74.00 74.00 54.00 74.00 54.00 74.00 54.00 54.00 54.00 54.00 54.00	-16.31 30.34 23.10 28.26 23.40 25.71 16.73 23.16 12.49 21.52 8.73 21.11 9.93	Peak Peak Average Peak Average Peak Average Peak Average Peak Average
	Remarks:	1. Emiss 2. The e	ion Lev mission	el= Ant.H levels t	actor + hat are	Cable Los 20dB belo	ss + Readi w the off	ng – Prea icial	amp.Factor

limit are not reported.

	Freq. (MHz)	Ant. Factor (dB)	Cable Loss (dB)	Reading (dBuV)	Preamp Factor (dB)	Emissic Level (dBuV/m	on Limits (dBuV∕m)	Margin (dB)	Remark
1 2 3 4 5 6 7 8 9 10 11 12 13	$\begin{array}{c} 2470.00\\ 5746.00\\ 5747.25\\ 8035.00\\ 8036.25\\ 10555.00\\ 10556.21\\ 12424.00\\ 12425.50\\ 14188.00\\ 14189.25\\ 14860.00\\ 14861.01 \end{array}$	28.62 34.10 34.10 37.04 37.04 39.55 39.55 38.84 38.84 42.35 42.35 41.48	4.44 7.38 7.38 8.83 10.43 10.43 10.97 10.97 12.11 12.11 12.24 12.24	94.97 36.93 25.50 36.80 26.60 35.27 25.49 34.75 25.50 29.54 21.10 31.16 23.60	34.96 34.09 34.76 34.76 34.07 34.07 33.42 33.42 31.77 31.77 33.06 33.06	93.07 44.32 32.89 47.91 37.71 51.18 41.40 51.14 41.89 52.23 43.79 51.82 44.26	74.00 74.00 54.00 74.00 74.00 54.00 74.00 54.00 74.00 54.00 74.00 54.00 54.00 54.00	-19.07 29.68 21.11 26.09 16.29 22.82 12.60 22.86 12.11 21.77 10.21 22.18 9.74	Peak Peak Average Peak Average Peak Average Peak Average Peak Average
	Remarks:	1. Emiss 2. The e	ion Lev mission	rel= Ant.H levels t	Factor +	Cable Lo 20dB bel	oss + Readi ow the off	ng - Prea icial	amp.Factor.

limit are not reported.

4.9. Spurious Emission Measurement Results in Band Edge Emission (FCC Part 15, 15.205)

	Freq. (MHz)	Ant. Factor (dB)	Cable Loss (dB)	Reading (dBuV)	Preamp Factor (dB)	Emissic Level (dBuV/m	on Limits (dBuV∕m)	Margin (dB)	Remark
1	2390.00	28.45	4.38	42.53	34.94	40.42	74.00	33.58	Peak
2	2405.40	28.49	4.38	95.02	34.94	92.95	74.00	-18.95	Peak

	Freq. (MHz)	Ant. Factor (dB)	Cable Loss (dB)	Reading (dBuV)	Preamp Factor (dB)	Emissic Level (dBuV/m	on Limits (dBuV∕m)	Margin (dB)	Remark
1	2390.00	28.45	4.38	30.37	34.94	28.26	54.00	25.74	Average
2	2405.00	28.49	4.38	90.86	34.94	88.79	54.00	-34.79	Average

	Freq. (MHz)	Ant. Factor (dB)	Cable Loss (dB)	Reading (dBuV)	Preamp Factor (dB)	Emissic Level (dBuV/m	on Limits (dBuV∕m)	Margin (dB)	Remark
1	2390.00	28.45	4.38	31.02	34.94	28.91	54.00	25.09	Average
2	2405.00	28.49	4.38	92.97	34.94	90.90	54.00	-36.90	Average

	Freq. (MHz)	Ant. Factor (dB)	Cable Loss (dB)	Reading (dBuV)	Preamp Factor (dB)	Emissic Level (dBuV/m	on Limits (dBuV∕m)	Margin (dB)	Remark
1	2480.34	28.66	4.44	93.75	34.96	91.89	74.00	-17.89	Peak
2	2483.50	28.66	4.44	51.68	34.96	49.82	74.00	24.18	Peak

	Freq. (MHz)	Ant. Factor (dB)	Cable Loss (dB)	Reading (dBuV)	Preamp Factor (dB)	Emissic Level (dBuV/m	>n Limits (dBuV∕m)	Margin (dB)	Remark
1 2	2479.50 2483.50	28.66 28.66	4.44 4.44	96.50 54.86	34.96 34.96	94.64 53.00	74.00 74.00	-20.64 21.00	Peak Peak Peak

	Freq. (MHz)	Ant. Factor (dB)	Cable Loss (dB)	Reading (dBuV)	Preamp Factor (dB)	Emissic Level (dBuV/m	on Limits (dBuV∕m)	Margin (dB)	Remark
1	2479.98	28.66	4.44	92.02	34.96	90.16	54.00	-36.16	Average
2	2483.50	28.66	4.44	39.74	34.96	37.88	54.00	16.12	Average

	Freq. (MHz)	Ant. Factor (dB)	Cable Loss (dB)	Reading (dBuV)	Preamp Factor (dB)	Emissic Level (dBuV/m	on Limits (dBuV∕m)	Margin (dB)	Remark
1	2479.98	28.66	4.44	94.09	34.96	92.23	54.00	-38.23	Average
2	2483.50	28.66	4.44	40.92	34.96	39.06	54.00	14.94	Average

5. 6 dB BANDWIDTH MEASUREMENT

5.1. Test Equipment

Item	Туре	Manufacturer	Model No.	Serial No.	Last Cal.	Next Cal.
1.	PXA Signal Analyzer	Agilent	N9030A	MY53120367	2015-06-23	2016-06-22

5.2. Block Diagram of Test Setup

5.3. Specification Limits (\$15.247(a)(2))

Systems using digital modulation techniques may operate in the 902 - 928 MHz, 2400 - 2483.5 MHz, and 5725 - 5850 MHz bands. The minimum 6 dB bandwidth shall be at least 500kHz.

5.4. Test Procedure

The transmitter output was connected to the test receiver / spectrum analyzer. The bandwidth of the fundamental frequency was measure by spectrum analyzer. The 6 dB bandwidth is defined as the total spectrum the power of which is higher than peak power minus 6 dB. The measurement guideline was according to KDB558074 v03r02.

5.5. Test Results

Channel	Center Frequency(MHz)	6 dB Bandwidth(MHz)
11	2405	1.143
20	2450	1.402
26	2480	1.222

PASSED. All the test results are attached in next pages.

CH 20

6. OUTPUT POWER MEASUREMENT

6.1. Test Equipment

Item	Туре	Manufacturer	Model No.	Serial No.	Last Cal.	Next Cal.
1.	PXA Signal Analyzer	Agilent	N9030A	MY53120367	2015-06-23	2016-06-22

6.2. Block Diagram of Test Setup

6.3. Specification Limits (§15.247(b)(3))

For systems using digital modulation in the 902-928 MHz, 2400-2483.5 MHz, and 5725-5850 MHz bands: 1 Watt. As an alternative to a peak power measurement, compliance with the one Watt limit can be based on a measurement of the maximum conducted output power. Maximum Conducted Output Power is defined as the total transmit power delivered to all antennas and antenna elements averaged across all symbols in the signaling alphabet when the transmitter is operating at its maximum power control level. Power must be summed across all antennas and antenna elements. The average must not include any time intervals during which the transmitter is off or is transmitting at a reduced power level. If multiple modes of operation are possible (e.g., alternative modulation methods), the maximum conducted output power is the highest total transmit power occurring in any mode.

6.4. Test Procedure

- a) Set span to at least 1.5 times the OBW.
- b) Set RBW = 1-5% of the OBW, not to exceed 1 MHz.
- c) Set VBW \geq 3 x RBW.
- d) Number of points in sweep $\geq 2 \times \text{span} / \text{RBW}$. (This gives bin-to-bin spacing $\leq \text{RBW}/2$, so that narrowband signals are not lost between frequency bins.)
- e) Sweep time = auto.
- f) Detector = RMS (i.e., power averaging), if available. Otherwise, use sample detector mode.
- g) If transmit duty cycle < 98 %, use a sweep trigger with the level set to enable triggering only on full power pulses. The transmitter shall operate at maximum power control level for the entire duration of every sweep. If the EUT transmits continuously (i.e., with no off intervals) or at duty cycle \ge 98 %, and if each transmission is entirely at the maximum power control level, then the trigger shall be set to "free run".
- h) Trace average at least 100 traces in power averaging (i.e., RMS) mode.
- i) Compute power by integrating the spectrum across the OBW of the signal using the instrument's band power measurement function, with band limits set equal to the OBW band edges. If the instrument does not have a band power function, sum the spectrum levels (in power units) at intervals equal to the RBW extending across the entire OBW of the spectrum.

6.5. Test Results

PASSED. All the test results are attached in next pages.

Channel	Frequency	Power(dBm)	Limit(dBm
11	2405	3.18	30
20	2450	3.23	30
26	2480	3.01	30

7. BAND EDGES MEASUREMENT

7.1. Test Equipment

Item	Туре	Manufacturer	Model No.	Serial No.	Last Cal.	Next Cal.
1.	PXA Signal Analyzer	Agilent	N9030A	MY53120367	2015-06-23	2016-06-22

7.2. Block Diagram of Test Setup

The same as section 5.2.

7.3. Specification Limits (§15.247(d))

In any 100 kHz bandwidth outside the frequency band in which the spread spectrum or digitally modulated intentional radiator is operating, the radio frequency power that is produced by the intentional radiator shall be at least 20 dB below that in the 100 kHz bandwidth within the band that contains the highest level of the desired power, based on either an RF conducted or a radiated measurement, provided the transmitter demonstrates compliance with the peak conducted power limits. If the transmitter complies with the conducted power limits based on the use of RMS averaging over a time interval, as permitted under paragraph (b)(3) of this section, the attenuation required under this paragraph shall be 30 dB instead of 20 dB. Attenuation below the general limits specified in Section 15.209(a) is not required. In addition, radiated emissions which fall in the restricted bands, as defined in Section 15.205(a), must also comply with the radiated emission limits specified in Section 15.209(a) (see Section 15.205(c)).

7.4. Test Procedure

The transmitter output was connected to the test receiver / spectrum analyzer. Set RBW of spectrum analyzer to 100kHz and VBW to 300kHz with suitable frequency span including 100kHz bandwidth from band edge.

7.5. Test Results

PASSED. The testing data was attached in the next pages.

CH26

8. POWER SPECTRAL DENSITY MEASUREMENT

8.1. Test Equipment

Item	Туре	Manufacturer	Model No.	Serial No.	Last Cal.	Next Cal.
1.	PXA Signal Analyzer	Agilent	N9030A	MY53120367	2015-06-23	2016-06-22

8.2. Block Diagram of Test Setup

The same as section 5.2.

8.3. Specification Limits (§15.247(e))

For digitally modulated systems, the power spectral density conducted from the intentional radiator to the antenna shall not be greater than 8 dBm in any 3 kHz band during any time interval of continuous transmission.

8.4. Test Results

PASSED. All the test results are attached in next page.

Channel	Frequency(GHz)	Value(dBm/3kHz)
11	2.405	-11.685
20	2.450	-13.822
26	2.480	-13.997

CH 11

Agilent	Spectru	m Ana	lyzer - Swept S	٨							
<mark>.00</mark> Mark	(er 1 '	≅ 2.40	50 Q DC 48489000	00 GHz		SENSE:INT	A	Avg Type:	Log-Pwr	01:45:54	PMNov 09, 2015
men			40403000	OU ONE	PNO: Close 🔸 IFGain:Low	. Trig: Free #Atten: 30	Run dB	Avg Hold: 2	/100		DET PINNNNN
10 dB	/div	Ref (Ref	offset 0.6 dB 10.00 dBn	ı					Mkr	1 2.404 8 -11.	48 9 GHz 685 dBm
LUg											
0.00						<u>_1</u>					
-10.0	سر	M	~~~~	$\sim \wedge$		M,			\sim	\sim	\sim
-20.0			,	V		, v	V - ~~ ~	v v · ·	V		
-30.0											
-40.0											
-50.0											
-60.0											
-70.0											
-80.0											
Cent #Res	er 2.4 BW 3	0486 1.0 ki	i00 GHz Hz	~	#VE	SW 10 kHz			#Swe	Spar ep 100.0 s	300.0 kHz (1001 pts)
MSG								STATUS			

CH 20

CH 26

Agilent Spe	ctrum Analyzer - Swept S/	٨						04.05.00	
Marker	1 2.4800809000	00 GHz		SENSEONT	A	Avg Type: I	Log-Pwr	04:35:02	PMNov 09, 2015
		P	NO: Close ++ FGain:Low	#Atten: 30	dB	Avginoid: 1	100		DET PINNNNN
10 dB/div	Ref Offset 0.6 dB Ref 10.00 dBm	1					Mkr	1 2.480 0 -13.	80 9 GHz 997 dBm
0.00									
-10.0									1
-20.0	m_{n}	\sim		٨Л	\mathcal{M}^{h}		$\sim \sim \sim$	كمسكم	$\sim \sim$
-30.0		· ·	~~~		Y				
-40.0									
-50.0									
-60.0									
-70.0									
-80.0									
Center : #Res B	2.4799600 GHz N 3.0 kHz		#VB	W 10 kHz			#Swe	span ep 100.0 s	i 300.0 kHz i (1001 pts)
MSG						STATUS			

9. EMISSION LIMITATIONS MEASUREMENT

9.1. Test Equipment

Item	Туре	Manufacturer	Model No.	Serial No.	Last Cal.	Next Cal.
1.	PXA Signal Analyzer	Agilent	N9030A	MY53120367	2015-06-23	2016-06-22

9.2. Block Diagram of Test Setup

The same as section 5.2.

9.3. Specification Limits (§15.247(d))

In any 100 kHz bandwidth outside the frequency band in which the spread spectrum or digitally modulated intentional radiator is operating, the radio frequency power that is produced by the intentional radiator shall be at least 20 dB below that in the 100 kHz bandwidth within the band that contains the highest level of the desired power, based on either an RF conducted or a radiated measurement, provided the transmitter demonstrates compliance with the peak conducted power limits. If the transmitter complies with the conducted power limits based on the use of RMS averaging over a time interval, as permitted under paragraph (b)(3) of this section, the attenuation required under this paragraph shall be 30 dB instead of 20 dB. Attenuation below the general limits specified in Section 15.209(a) is not required. In addition, radiated emissions which fall in the restricted bands, as defined in Section 15.205(a), must also comply with the radiated emission limits specified in Section 15.209(a) (see Section 15.205(c)).

9.4. Test Procedure

The transmitter output was connected to the spectrum analyzer. Set RBW = 100kHz, VBW ≥ 300 kHz, scan up through 10th harmonic. All harmonics/spurs must be at least 20 dB down from the highest emission level within the authorized band as measured with a 100 kHz RBW. The measurement guideline was according to KDB558074 v03r02.

9.5. Test Results

Channel	Frequency(MHz)	Amplitude(dBm)
	738.63	-61.403
	882.68	-60.814
	2404.95	0.988
	3699.60	-55.255
	4810.00	-58.129
	5015.15	-56.039
	5900.45	-56.716
	7245.00	-56.355
	8092.65	-56.599
	10585.40	-55.643
	9877.25	-58.113
	12376.10	-56.153
11	11961.05	-57.013
	13686.40	-55.797
	14016.80	-55.946
	15083.55	-55.182
	16039.95	-56.019
	18782.75	-54.306
	17813.65	-55.174
	19104.75	-53.865
	20246.85	-54.972
	22356.60	-53.231
	21984.20	-53.455
	23721.75	-52.905
	24646.70	-54.427
	826.81	-60.630
	599.20	-61.164
	2449.90	0.278
20	3845.30	-55.123
	4210.60	-56.567
	5024.75	-56.512
	6442.85	-56.973

PASSED. All the test results are attached in next pages.

	8817.65	-55.462
	8385.85	-56.125
	9711.65	-55.522
	10562.60	-55.823
	12370.70	-54.852
	11869.15	-57.094
	13648.00	-54.840
	14373.05	-55.882
	15822.00	-55.580
	16505.65	-55.899
	18930.75	-54.793
	18462.10	-54.419
	19051.25	-54.012
	20588.45	-54.488
	22641.35	-52.801
	22573.10	-53.265
	23363.50	-53.107
	24307.10	-53.419
	846.98	-60.202
	721.37	-59.774
	2479.90	0.650
	3757.65	-54.859
	4678.05	-46.420
	5097.55	-55.495
	6406.30	-56.495
	8117.25	-55.645
	7339.55	-56.076
26	9760.20	-56.160
	10121.55	-56.559
	11437.70	-57.391
	12321.90	-55.859
	14080.80	-55.358
	13659.70	-55.578
	16060.30	-55.472
	15937.35	-55.792
	18593.45	-53.942
	18865.05	-53.622

Audix Technology (Wujiang)Co., Ltd. EMC Dept. Report No.: ACWE-F1512003

19104.25	-54.254
20702.25	-54.573
22538.85	-53.200
22321.45	-53.407
23591.15	-52.820
23885.15	-53.038

CH 11							
Agilent Spect	rum Analyzer - Swept SA						
Marker 2	2 882.678500000 MHz	PNO: Fast	Trig: Free Run #Atten: 30 dB	ALIGN AUTO/NORF Avg Tyj Avg Hol	e: Log-Pwr d>100/100	07:16:19 TR T	PM Jan 06, 2016 ACE 1 2 3 4 5 6 VPE M DET P N N N N N
10 dB/div	Ref Offset 0.6 dB Ref 10.00 dBm					Mkr2 882 -60.8	2.68 MHz 814 dBm
-10.0							
-20.0 -30.0							-29.01 dBm
-40.0					^1	¢2	
-70.0					ditan yang karan di Daniha		this better and produced
Start 30.0 #Res BW	0 MHz / 100 kHz	#VBV	V 300 kHz		Sweep	Stop 1 93.33 ms (.0000 GHz 20001 pts)
MKR MODE T	RC SDL X 1 f 738,63 M 1 f 882,68 M	Hz -61.403 d Hz -60.814 d	FUNCTION IBm IBm	FUNCTION WIDTH	P	UNCTION VALUE	
5 6 7 8 9							
11 MSG				STATUS			>

Agilent Spect	rum Analyzer	- Swept SA							
Marker 2	⊮ 4.81000	50 0 DC 00000000 GHz	PNO: Fast 😱 FGain:Low	Trig: Free #Atten: 30	<u> ∆</u> ∧ Run dB	Avg Type: Avg[Held>	Log-Pwr 100/100	07:19:32	PM Jan 06, 2016 IACE 1 2 3 4 5 6 IYPE MULLION NN DET P. NNN NN
10 dB/div	Ref Offse Ref 10.0	t0.6 dB 00 dBm					N	lkr2 4.81 -58.	0 00 GHz 129 dBm
0.00									
-10.0									-29.01 dBm
-30.0 -40.0									
-50.0 -60.0			•		alan Mala Inda		a a a sa ann ta sa da a		2
-70.0									
Start 3.00 #Res BW	00 GHz 100 kHz		#VB	N 300 kHz			Sweep	Stop 192.0 ms	5.000 GHz (40001 pts)
MKR HODE T 1 N 2 N 3 4 5 6 7 8 9 9 10 11 <		× 3.699 60 GHz 4.810 00 GHz	-55.255 -58.129 (dBm dBm	CTION P	UNCTION WIDTH	n	INCTION VALUE	
MSG						STATUS			

Agilent Spectr	rum Analyzer - Sw	ept SA							
Marker 2	®F 50 Ω 8.0926500	00000 GHz IF	NO: Fast 🖵 Gain:Low	Trig: Free #Atten: 30	ALIG Run dB	Avg Type Avg Holdo	Log-Pwr 100/100	07:24:53 19	PPM Jan 06, 2016 RACE 1 2 3 4 5 6 TYPE MUNICIPAL DET P NNNNN
10 dB/div	Ref Offset 0. Ref 10.00	6 dB dBm					N	lkr2 8.09 -56.	2 65 GHz 599 dBm
0.00									
-20.0									-29.01 dBm
-40.0					.2				
-60.0		ishen a çin seleteki di		a da ata dana			hand to the R to tend of the	din tan 1986 di	
-70.0									
Start 7.00 #Res BW	00 GHz 100 kHz		#VBV	V 300 kHz			Sweep	Stop 192.0 ms	9.000 GHz (40001 pts)
MKR HODE T 1 N 2 3 4 5 6 6 7 7 8 9 9 10 11		× 7.245 00 GHz 8.092 65 GHz	- -56.355 c -56.599 c	FUN IBm IBm	CTION FUNI	CTION WIDTH	n	INCTION VALUE	
MSG						STATUS			

Agilent Spec	trum Anal	lyzer - Swept SA									
Marker 2	2 11.9	61050000	000 GHz	PNO: Fast 😱 Gain:Low	Trig: Free #Atten: 30	Run dB	J <u>A</u> ALIGN /	Avg Type: Avg Held>	Log-Pwr 100/100	07:34:13	PM Jan 06, 2016 AACE 1 2 3 4 5 6 TYPE M DET 2 N N N N N
10 dB/div	Ref (Ref	Offset 0.6 dB 10.00 dBm	1	_					Mł	(r2 11.96 -57.	1 05 GHz 013 dBm
0.00											
-20.0											-29.01 dBm
-30.0 -40.0											
-50.0 -60.0			i i i i iiren aaaa			2	ر ماران خونان				- (
-70.0											
Start 11. #Res BM	.000 GI V 100 k	Hz (Hz		#VB	W 300 kHz	2			Sweep	Stop 1 192.0 ms	3.000 GHz (40001 pts)
MKR MODE	TRC SCL	12 12	2.376 10 GHz	-56.153 -57.013	dBm dBm	ICTION	FUNCTI	ON WIDTH	Д	INCTION VALUE	^
2 3 4 5 6 7 8 9 10			361 US GHZ								
MSG								STATUS			2

Agilent Spectrum Analyzer - Swept SA		11.10			07-10-10	
Marker 2 16.039950000000 GHz	PNO: Fast Tri IFGain:Low #A	ig: Free Run tten: 30 dB	Avg Type: Avg Hold>	Log-Pwr 100/100	07:49:15	DET NNNNN DET NNNNN
Ref Offset 0.6 dB				MI	r2 16.03 -56.	9 95 GHz 019 dBm
0.00						
-10.0						
-30.0						-29.01 dBm
-40.0 -50.0 A ¹		2				
£0.0	e de la constant de l		alle ist of each open a		enter picken af a ba	
-70.0						
Start 15.000 GHz #Res BW 100 kHz	#VBW 30	00 kHz		Sweep	Stop 1 192.0 ms	7.000 GHz (40001 pts)
MKR MODE TRC SCL X	v -55.185 dBm	FUNCTION	FUNCTION WIDTH	FL	INCTION VALUE	^
2 N 1 f 16.039 95 GH 3 4 5 5 6 6 7 7 8 9 9 10 10 10 10 10 10 10 10 10 10 10 10 10	z -56.019.dBm					

MF 50 Ω DC		SENSE:1	VT .	ALIGN AUTO/NOIF		07:59:26	PM Jan 06, 201
ker 2 20.2468500000	DO GHZ PNO: Fast IFGain:Low	Tri	g: Free Run ten: 30 dB	Avg Type Avg Hold>	100/100		
Ref Offset 0.6 dB 3/div Ref 10.00 dBm					Mk	(r2 20.246 -54.9	85 GH
							-29.01 (
. ≬ ¹				¢2			
	Margan Margarian Andre						
t 19.000 GHz s BW 100 kHz	#	VBW 30	0 kHz		Sweep	Stop 2 192.0 ms (1.000 Gi 40001 p
N 1 1 19.1	104 76 GHz -53.6	66 dBm	FUNCTION	PUNCTION WIDTH	FU	INCTION VALUE	
N 1 f 20.2	246 85 GHz -54.9	172 dBm					

Agilent Spectrum Analyzer - Swept SA	CENC	SANT A	ALICALALITO MORE		00:05:50	DM 10005 2016
Marker 2 24.646700000000 GHz	PNO: Fast 🖵 T IFGain:Low	rig: Free Run Atten: 30 dB	Avg Type: Lo Avg Hold>10	og-Pwr 10/100	TR	ACE 123456 TYPE MULLION NNN DET 2 NNNNN
Ref Offset 0.6 dB				Mk	r2 24.64 -54.	6 70 GHz 427 dBm
0.00						
-20.0						-29.01 dBm
-40.0					. 2	
			a afriti ing a na kan ni sa	the second second		. ini sing dia ba
-70.0						
-80.0						
Start 23.000 GHz #Res BW 100 kHz	#VBW 3	100 kHz		Sweep	Stop 2 192.0 ms (5.000 GHz (40001 pts)
MKR NODE TRC SCL X	√ 4z52.905.dBn	FUNCTION	FUNCTION WIDTH	FU	NCTION VALUE	^
2 N 1 f 23.72115 Gr 3 4 4 5 6 6 6 6 7 7 8 9 9 10 11 1	-54.427 dBn					

CH 20

Agilent Spec	ctrum Ana	lyzer - Swept SA	l									
Display	⊮ Line -	50 Ω DC 29.72 dBn	n		SENSE:INT		<u>∧</u> ∧	Avg Type	e: Log-Pwr		06:48:17	7 PM Jan 07, 2016 RACE 123450
			P IF	PNO: Fast 🖵 Gain:Low	Trig: Fre #Atten: 3	se Run 30 dB		Avg Hold:	>100/100			DET P NNNNN
10 dB/div	Ref Ref	Offset 0.6 dB 10.00 dBm	1							Μ	kr1 2.44 0.	9 90 GHz 278 dBm
0.00									(1			
-10.0										_		
-20.0										_		
-30.0												-29.72.08m
-40.0												
-50.0											م اليه بين	
-70.0												
-80.0									_	_		
Start 1.0 #Res BV	000 GH N 100 I	z kHz		#VB	W 300 KI	łz			Swe	eep	Stop 192.0 ms	3.000 GHz (40001 pts)
MKR NODE	TRC SCL	3	K	Y	18.00	UNCTION	FUNCT	NON WIDTH		FU	INCTION VALUE	-
1 2 3 4 5 6 7 8 9 10 11			2.449 90 GHz	0.278	dBm							
MSG								STATUS				2

Agilent Spectrum Analyzer - Swept SA						
Marker 2 6.442850000000 GHz	PNO: Fast Tr IFGain:Low #A	ig: Free Run itten: 30 dB	ALIGN OFF Avg Type: Avg Hold>	Log-Pwr 100/100	06:56:27 TF	PM Jan 07, 2016 ACE 1 2 3 4 5 6 TYPE M DET P N N N N N
Ref Offset 0.6 dB 10 dB/div Ref 10.00 dBm				N	lkr2 6.44: -56.	2 85 GHz 973 dBm
-10.0						
40.0						-2072.000
	dun a fuizzar e diama	it is a list to second	- a - a dama ta data da bati	2		und reactions.
-70.0						
Start 5.000 GHz #Res BW 100 kHz	#VBW 30	00 kHz		Sweep	Stop 192.0 ms	7.000 GHz (40001 pts)
MKR HODE TRC SCL X	Y 56 512 dBm	FUNCTION	FUNCTION WIDTH	PL	INCTION VALUE	<u>^</u>
2 N 1 f 6.442.86 GH 3 4 5 6 6 6 6 6 7 7 7 8 8 9 9 10 10 10 11 1 1 1 1 1 1 1 1 1 1 1 1	2 -56.973 dBm					

9						
PNO: Fast 😱 IFGain:Low	Trig: Free #Atten: 30	Run dB	ALIGN OFF Avg Type Avg Hold:	Log-Pwr 100/100	06:59:53 19	1PM Jan 07, 2016 KACE 1 2 3 4 5 6 TYPE MUNICIPAL OFT DET P N N N N N
				MI	(r2 10.56) -55.	2 60 GHz 823 dBm
						-29.72 d 0 m
^1				¢ ²		
	a la a til sa sa sa		the second states of	ah gulinni a fiti	harris a billiotha	derb der Nichteinen
#VBV	V 300 kHz			Sweep	Stop 1 192.0 ms	1.000 GHz (40001 pts)
y -55.522 c	FUN	CTION FU	NCTION WIDTH	FL	UNCTION VALUE	^
z -55.823 c	Bm					
	PN0: Fast IFGain:Low	PNO: Fast IFGain:Low Trig: Free # #Atten: 30 # # # # # # # # # # # # #	Y Function #Atten: 30 dB	PNO: Fast IFGain:Low Trig: Free Run #Atten: 30 dB Avg Hold: Avg Hold: A	PNO: Fast Trig: Free Run Avg Hold>100/100 IFGain:Low #Atten: 30 dB MI Image: Status Image: Status Image: Status Image: Status Image: Status Image: Status	PNO: Fast IFGain:Low Trig: Free Run #Atten: 30 dB Program Avg Hold>100/100 Mkr2 10.56: -55:

Agilent Spec	trum Anal	yzer - Swept SA									
Marker 2	2 14.3	73050000	DOO GHz	'NO: Fast 😱 Gain:Low	Trig: Fre #Atten: 3	e Run 0 dB	ALIGN OF Avg Avg	g Type: I Hold>1	Log-Pwr 100/100	07:02:56 Ti	5 PM Jan 07, 2016 RACE 2 3 4 5 6 TYPE M DET P N N N N N
10 dB/div	Ref (Ref	offset 0.6 dB 10.00 dBm							MI	(r2 14.37 -55.	3 05 GHz 882 dBm
0.00											
-20.0											-20 72 (Bu
-30.0											
-50.0 -60.0		le un det es te	ula - 14 an dia da ka		u han tin heiste		libe li france de subri	•	e server a state diverse d	. Lation bit when t	and here and
-70.0											
Start 13. #Res BV	000 GH V 100 k	iz Hz		#VB	W 300 kH	z			Sweep	Stop 1 192.0 ms	15.000 GHz (40001 pts)
МКЛ НООС 1 N 2 N 3 4 5 6 7 8 9 10 11	TRC SCL) 13 14	648 00 GHz 373 05 GHz	¥ 54.840 -55.882	dBm dBm	UNCTION	PUNCTION WIL		P.	INCTION VALUE	
MSG							ST	ATUS			2

Agilent	Spectrum A	nalyzer - Swep	it SA								
Mark	er 2 18.	4601000	00000 GHz	PNO: Fast 🗣	Trig: Fre #Atten: 3	e Run 0 dB	<u>A</u> A	Avg Type: Avg Hold>	Log-Pwr 100/100	07:06:46 TF	5 PM Jan 07, 2016 RACE 1 2 3 4 5 6 TYPE M DET P N N N N N
10 dB	Re Idiv R	of Offset 0.6 ef 10.00 di	dB Bm						MI	(r2 18.46) -54.	0 10 GHz 419 dBm
0.00											
-10.0											
-30.0											-29.72 dBm
-40.0									2		1
-50.0 -60.0	- List is supplying the		in shek to treat to the				avi-lan		antista antista	a dinth man i th	<u>.</u>
-70.0											
-80.0											
Start #Res	17.000 BW 100	GHz) kHz		#VB	W 300 kH	z			Sweep	Stop 1 192.0 ms	9.000 GHz (40001 pts)
MKR M	ODE TRC SI	1	× 18 930 75 GHz	y 54 793	dBm	NCTION	FUNCT	ION WIDTH	F	UNCTION VALUE	^
2	N 1 1		18.460 10 GHz	-54.419	dBm						
4	\pm										_
7 8	\rightarrow										
9 10											
11					1						>
MSG								STATUS			

Agilent S	ipectrum Ana	lyzer - Swept SA	1								
Marke	er 2 22.5	73100000	000 GHz	NO: Fast 🗣	Trig: Fre #Atten: \$	e Run 80 dB	<u>A</u> 4	Avg Type: Avg Held>	Log-Pwr 100/100	07:11:34	PPM Jan 07, 2016 RACE 1 2 3 4 5 6 TYPE MULTINE DET P N N N N N
10 dB/d	Ref div Ref	Offset 0.6 dB 10.00 dBm	ı						MI	(r2 22.57 -53.	3 10 GHz 265 dBm
0.00											
-10.0 -20.0											
-30.0											-29.72 dBm
-40.0								the second first the	•	2 \ 1	
-60.0 -70.0											
-80.0						_					
Start : #Res	21.000 G BW 100 I	Hz kHz		#VB	W 300 KH	Iz			Sweep	Stop 2 192.0 ms	23.000 GHz (40001 pts)
MKR NO	DE TRC SCL)	x X CAA OF OH-	Y 50.904	- F	UNCTION	FUNCT	ION WIDTH	FL	INCTION VALUE	-
1 2 3 4 5 6 7 8 9 10 11		22	2.641 35 GHz 2.573 10 GHz	-52.801 -53.265	dBm dBm						
MSG								STATUS			

CH 26							
Agilent Spect Vi Marker 2	rum Analyzer - Swept SA SS SO Q DC 2 721.367500000 MHz	PNO: Fast	Trig: Free Run	ALIGN OFF Avg Typ Avg Hold	e: Log-Pwr t>100/100	07:20:2 T	PPM Jan 07, 2016 RACE 1 2 3 4 5 TYPE MUNICIPAL
10 dB/div	Ref Offset 0.6 dB Ref 10.00 dBm	PGaint.ow	PARTER. OV VD			Mkr2 72 -59.	1.37 MHz 774 dBm
-10.0							
-30.0 -40.0							-29.35 dBr
-50.0 -60.0 -70.0	na mile 200 a bli e santa na basal internetia		12 Sectore Admin	u da da anti incluigan da anci	¢ ²	1	in the Lagrange
-80.0 Start 30.0	0 MHz					Stop /	1.0000 GHz
WRES BW	100 KH2 TRC SD. × 1 f 845.98 M 1 f 721.37 M	#VBV Hz -60.202 (Hz -59.774 (PUNCTION IBm	FUNCTION WIDTH	sweep	UNCTION VALUE	(20001 pts
3 4 5 6 7							
8 9 10 11							
MSG				STATUS			>

Audix Technology (Wujiang)Co., Ltd. EMC Dept. Report No.: ACWE-F1512003

Agilent Spec	ctrum Analy	yzer - Swept SA									
Marker	≥ 4.678	50 Q DC 30500000	DO GHz	NO: Fast 😱 Gain:Low	Trig: Free #Atten: 30	Run dB	ALD.	Avg Type: Avg Hold>	Log-Pwr 100/100	07:22:16	5 PM Jan07, 2016 tACE 1 2 3 4 5 6 TYPE MULTURE DET PINNNNN
10 dB/div	Ref 0 Ref	ffset 0.6 dB 10.00 dBm							N	lkr2 4.67 -56.	8 05 GHz 420 dBm
0.00											
-10.0 -20.0											
-30.0											-29.35 000
-50.0				1		datation	under state		and hand supply	22	a ha an Anna an Anna an
-70.0											لتتحفيد
-80.0	00 CH									Stop	5 000 CHz
#Res BV	N 100 k	Hz		#VB	W 300 kHz				Sweep	192.0 ms	(40001 pts)
MKR MODE	TRC SCL	÷	(.757 65 GHz	v -54.859	dBm	ICTION	FUNCTIO	IN WIDTH	P.	INCTION VALUE	â
2 N 3 4	1 f		.678 05 GHz	-56.420	dBm						
5 6 7											
8 9 10											
11 C											>
MSG								STATUS			

Agilent Spect	rum Anal	yzer - Swept SA)									
Marker 2	7.339	50 Ω DC 95500000	00 GHz	PNO: Fast 😱 Gain:Low	SENSE: Triş #At	g: Free ten: 30	Run dB	<u>A</u> A	Avg Type Avg Holdo	Log-Pwr 100/100	07:27:21 19	IPM Jan07, 2016 KACE 1 2 3 4 5 6 TYPE MUMMANN DET P NNNNN
10 dB/div	Ref 0 Ref	offset 0.6 dB 10.00 dBm	1							N	lkr2 7.33 -56.	9 55 GHz 076 dBm
0.00												
-10.0												-70 % #De
-30.0												
-50.0		2- 	di suli es adri e					∲ <u>1</u>	a kanati sha mara	An station (see) in the		tet in tet i die tit et
-70.0												
Start 7.00 #Res BW	00 GH2 100 k	z Hz		#VB	W 30	0 kHz				Sweep	Stop 192.0 ms	9.000 GHz (40001 pts)
МКЛ МОДЕ Т 1 N 2 2 N 2 3 4 5 6 7 8 9	RC SCL) (1) (1) (1) (1) (1) (1) (1) (1) (1) (1	× 3.117 25 GHz 7.339 65 GHz	-55,645 -56,076	dBm dBm	FUN	CTION	FUNCT	NON WIDTH	n	UNCTION VALUE	
10 11 MSG						1			STATUS			>

wept SA						
2 DC 0000000 GHz IF	NO: Fast	rig: Free Run Atten: 30 dB	ALIGN OFF Avg Typ Avg Held	e: Log-Pwr d>100/100	07:37:36 TR 1	PM Jan 07, 2016 AGE 1 2 3 4 5 6 YPE MMMMMMM DET P N N N N N
).6 dB dBm				M	(r2 12.32) -55.8	l 90 GHz 859 dBm
						-29.35 dBm
1			2			
and the Second Second	والمقالية ومقالية ومعاليه	itterios til tello (c.		tetilete vediste de la		
	#VBW 3	00 kHz		Sweep	Stop 1 192.0 ms (3.000 GHz 40001 pts)
× 11.437 70 GHz	v -57.391 dBr	FUNCTION	FUNCTION WIDTH	FL	UNCTION VALUE	^
1232190 GHz	-55,859 dBr					×
	x 2 CC 2 CCC 2 CC 2 CCC 2 CC 2	America SA SERVER 2 DC SERVER 2 DC PNO: Fast IFGain:Low T 2 Main America Structure T T 3 Main America Structure T T 3 Main America Structure T T 3 Main America Structure T T 4 Main America Structure T T 5	Wept SA SENSE:INT DO000000 GHz PNO: Fast Trig: Free Run IFGain:Low Trig: Free Run Atten: 30 dB Image: Sense:INT Image: Sense:INT Image: Sense:INT PNO: Fast Image: Sense:INT PNO: Fast Image: Sense:INT Image: Sense:INT Image: Sense:INT Image: Sense:	Avg Typ PNO: Fast PNO: Fast PN	AVEXA SA DOCUDOOO GHZ PNO: Fast If Gain: Low Trig: Free Run #Atten: 30 dB Avg Type: Log-Pwr Avg Held>100/100 MH Avg Type: Log-Pwr Avg Type: Log-	ALDON OFF 07:37:26 2 DC 000000 GHz PNO: Fast Trig: Free Run #Atten: 30 dB 16 dB 16 dB 16 dB 16 dB 16 dB 17 g: Free Run #Atten: 30 dB 16 dB 16 dB 16 dB 17 g: Free Run #Atten: 30 dB 16 dB 16 dB 17 g: Free Run #Atten: 30 dB 16 dB 16 dB 16 dB 17 g: Free Run #Atten: 30 dB 18 g: Free Run #Atten: 30 dB 19 g: Free Run #Atten: 30 dB 10 g: Free Run #At

Agilent Spect	rum Anal	lyzer - Swept SA	1									
Marker 2	2 15.9	50 Ω DC 37350000	000 GHz	PNO: Fast 🕞 Gain:Low	Trig:	Freel	Run dB	<u>A</u> A	Avg Type Avg Hold2	Log-Pwr 100/100	07:40:56 Ti	SPM Jan 07, 2016 RACE 1 2 3 4 5 6 TYPE MUNICIPAL OF DET P NNNNN
10 dB/div	Ref (Ref	Offset 0.6 dB 10.00 dBm	1							M	(r2 15.93 -55.	7 35 GHz 792 dBm
0.00												
-10.0												
-30.0												-29.35 dBm
-40.0						▲2	1					
-60.0				an an de constante		den	e ne de ca		abarren bi per etal			
-70.0												
Start 15.0 #Res BW	000 GI 100 k	Hz (Hz		#VB	W 300	kHz				Sweep	Stop 1 192.0 ms	7.000 GHz (40001 pts)
MKR MODE T	rric scl.	10	× 5.060 30 GHz	, -55.472	dBm	FUN	CTION	FUNCT	ION WIDTH	PI	UNCTION VALUE	^
2 N 3 4 5 6 7 8 9 10 11		18	5.937 35 GHz	-55.792	dBm							
MSG									STATUS			

Agilent S	pectrum Ana	lyzer - Swept SA	1								
Marke	er 2 20.7	02250000	000 GHz	PNO: Fast 🗣	Trig: Free #Atten: 30	Run dB	<u>A</u> A	Avg Type: Avg Hold>	Log-Pwr 100/100	07:45:46 TB	2 PM Jan 07, 2016 RACE 1 2 3 4 5 6 TYPE MUSEUM
10 dB/c	Ref div Ref	Offset 0.6 dB 10.00 dBm	1						MI	(r2 20.70) -54.	2 25 GHz 573 dBm
0.00											
-10.0											20 X 40+
-30.0 -40.0											128.33.0000
-50.0 -60.0	0 1	a de la companya de l	abbederick life of	danta de Den Denire	1.0.00					• ²	
-70.0											
Start	19.000 G	Hz								Stop 2	21.000 GHz
#Res	BW 100 I	kHz		#VB	W 300 kH:	z			Sweep	192.0 ms	(40001 pts)
мкя мо	DE TRC SCL	19	× 9.104 25 GHz	-54.254	dBm	NCTION	FUNCT	ION WIDTH	P	INCTION VALUE	^
3 4		2	J.702 20 GHZ	-04.0/3	dBm						
6											
9 10											
<											>
MSG								STATUS			

Agilent Spect	rum Analy	rzer - Swept SA										
Marker 2	23.88	50 Q DC 85150000	000 GHz	PNO: Fast Gain:Low	Trig #Atto	: Free F en: 30 d	Run 18	<u>≜</u> A	Avg Type: Avg Hold>	Log-Pwr 100/100	07:49:24 19	EPM Jan 07, 2016 RACE 1 2 3 4 5 6 TYPE MUNICIPAL DET P N N N N N
10 dB/div	Ref 0 Ref	nfset 0.6 dB 10.00 dBm								MI	(r2 23.88 -53.	5 15 GHz 038 dBm
0.00												
-20.0												-29.35 dBm
-40.0				1		2						
-50.0 -60.0	dist of the		Y	deles automotification		din mi	finid u			a bate de set	i un francia da da	o, ekster i të rit
-70.0 -80.0												
Start 23.0 #Res BW	000 GH 100 ki	iz Hz		#VB	W 300) kHz				Sweep	Stop 2 192.0 ms	25.000 GHz (40001 pts)
MKR MODE T	AC SCL	,	(Y		FUNC	TION	FUNCT	ION WIDTH	P	INCTION VALUE	<u>^</u>
1 N 1 2 N 7 3 4 5 6 7 7 8 9 10 11		23	.591 15 GHz 1885 15 GHz	-52 820 -53 038	dBm dBm							
MSG									STATUS			

10.DUTY CYCLE

10.1. Test Equipment

Item	Туре	Manufacturer	Model No.	Serial No.	Last Cal.	Next Cal.
1.	PXA Signal Analyzer	Agilent	N9030A	MY53120367	2015-06-23	2016-06-22

10.2. Test Results

The measurement of duty cycle is 100%.

CH 11

	RF 50 Q DC		SENSE:INT	ALIGNAUTO	02:00:09 PMNov 09, 20
rker 1	16.7500 ms	PNO: Wide	. Trig: Free Run #Atten: 30 dB	Avg Type: Log-Pwr	TRACE 234 TYPE WARMAN DET P NNN
dB/div	Ref Offset 0.6 dB Ref 10.00 dBm				Mkr1 16.75 n 2.88 dB
		↓ ¹			
0					
,					
· —					
,					
, <u> </u>					
,					
nter 2.4	105000000 GHz				Span 0

11.DEVIATION TO TEST SPECIFICATIONS

NONE