APPLICATION FOR CERTIFICATION On Behalf of Philips Lighting(China) Investment Co., Ltd. LED Lamp

Model No. : 9290011369B Brand : Philips FCC ID : 2AGBW9290011369BX

Prepared for

Philips Lighting(China) Investment Co., Ltd. Building 9, Lane 888, Tian Lin Road, Minhang district, Shanghai, China

Prepared by

Audix Technology (Wujiang) Co., Ltd. EMC Dept. No. 1289 Jiangxing East Road, the Part of Wujiang Economic Development Zone Jiangsu China 215200

> Tel : +86-512-63403993 Fax :+86-512-63403339

Report Number	:	ACWE-F1702001
Date of Test	:	Jan.20~Feb.06, 2017
Date of Report	:	Feb.08, 2017

TABLE OF CONTENTS

De	escription	Page
TE	ST REPORT CERTIFICATION	4
1.	SUMMARY OF MEASUREMENTS AND RESULTS	5
2.	GENERAL INFORMATION	6
	2.1. Description of Device (EUT)	
	2.2. Description of Test Facility	
	2.3. Measurement Uncertainty	
3.	ANTENNA REQUIREMENTS	8
4.	CONDUCTED EMISSION MEASUREMET	9
	4.1. Test Equipment	9
	4.2. Block Diagram of Test Setup	9
	4.3. Power line Conducted Emission Limit	
	4.4. Test Procedure	
	4.5. Conducted Emission Measurement Results	
5.	RADIATED EMISSION MEASUREMENT	
	5.1. Test Equipment	
	5.2. Block Diagram of Test Setup	
	5.3. Radiated Emission Limits 5.4. Test Procedure	
	5.5. Measurement Results	
	5.6. Restricted Bands Measurement Results (For Below 1GHz)	
	5.7. Restricted Bands Measurement Results (For Above 1GHz)	
	5.8. Spurious Emission Measurement Results in Band Edge Emission (FCC Part 15, 15.205)	
6.	6 DB BANDWIDTH MEASUREMENT	45
	6.1. Test Equipment	
	6.2. Block Diagram of Test Setup	
	6.3. Specification Limits (§15.247(a)(2))	
	6.4. Test Procedure	
_	6.5. Test Results	
7.	OUTPUT POWER MEASUREMENT	
	7.1. Test Equipment	
	7.2. Block Diagram of Test Setup	
	7.3. Specification Limits (§15.247(b)(3))7.4. Test Procedure	
	7.5. Test Results	
8.	BAND EDGES MEASUREMENT	
0.	8.1. Test Equipment	
	8.2. Block Diagram of Test Setup	
	8.3. Specification Limits (§15.247(d))	
	8.4. Test Procedure	
	8.5. Test Results	
9.	POWER SPECTRAL DENSITY MEASUREMENT	53
	9.1. Test Equipment	
	9.2. Block Diagram of Test Setup	
	9.3. Specification Limits (§15.247(e))	
	9.4. Test Results	53

10.	EMISSION LIMITATIONS MEASUREMENT	56
	10.1. Test Equipment	
	10.2. Block Diagram of Test Setup	
	10.3. Specification Limits (§15.247(d))	
	10.4. Test Procedure	
	10.5. Test Results	
11.	DUTY CYCLE	
	11.1. Test Equipment	
	11.2. Test Results	
12.	DEVIATION TO TEST SPECIFICATIONS	80

TEST REPORT CERTIFICATION

Applicant	:	Philips Lighting(China) Investment Co., Ltd.
Manufacturer	9:	Philips Lighting(China) Investment Co., Ltd.
EUT Description		LED Lamp
FCC ID		2AGBW9290011369BX
(A) Model No.	:	9290011369B
(B) Brand	:<	Philips
(C) Power Supply	$\langle \cdot \rangle$	AC 110-130V, 50/60Hz
(D) Test Voltage		AC 120V, 60Hz

Applicable Standards:

FCC RULES AND REGULATIONS PART 15 SUBPART C, Oct. 2015 ANSI C63.10: 2013

The device described above was tested by Audix Technology (Wujiang) Co., Ltd. EMC Dept. to determine the maximum emission levels emanating from the device. The maximum emission levels were compared to the FCC Part 15 subpart C section 15.207, 15.209&15.247 limits.

The measurement results are contained in this test report and Audix Technology (Wujiang) Co., Ltd. EMC Dept. is assumed full responsibility for the accuracy and completeness of these measurements. Also, this test report shows that the EUT to be technically compliant with the FCC limits.

This test report applies to above tested sample only. This test report shall not be reproduced in part without written approval of Audix Technology (Wujiang) Co., Ltd. EMC Dept.

Date of Test: Jan.20~Feb.06, 2017

Prepared by

Date of Report: Feb.08, 2017

(Emma Hu/Assistant Administrator)

Reviewer

(Danny Sun/ Deputy Manager)

Approved & Authorized Signer

(Ken Lu/Assistant General Manager)

Audix Technology (Wujiang)Co., Ltd. EMC Dept. Report No.: ACWE-F1702001

1. SUMMARY OF MEASUREMENTS AND RESULTS

The EUT has been tested according to the applicable standards and test results are referred as below.

Description of Test Item	Standard	Results	Remark
CONDUCTED EMISSION	FCC 47 CFR Part 15 Subpart C/ Section 15.207 And ANSI C63.10:2013	PASS	Minimum passing margin is 11.46 dB at 0.17 MHz
RADIATED EMISSION	FCC 47 CFR Part 15 Subpart C/ Section 15.209& Section 15.205 And ANSI C63.10:2013	PASS	Minimum passing margin is 8.51 dB at 39.70 MHz
6 dB BANDWIDTH	FCC 47 CFR Part 15 Subpart C/ Section 15.247(a)(2) And ANSI C63.10:2013	PASS	> 500kHz
OUTPUT POWER	FCC 47 CFR Part 15 Subpart C/ Section 15.247(b)(3) And ANSI C63.10:2013	PASS	Minimum passing margin is 25.75 dB at CH 11
BAND EDGES	FCC 47 CFR Part 15 Subpart C/ Section 15.247(d) And ANSI C63.10:2013	PASS	
POWER SPECTRAL DENSITY	FCC 47 CFR Part 15 Subpart C/ Section 15.247(e) And ANSI C63.10:2013	PASS	Minimum passing margin is 12.460 dB at CH 11
EMISSION LIMITATIONS	FCC 47 CFR Part 15 Subpart C/ Section 15.247(d) And ANSI C63.10:2013	PASS	

2. GENERAL INFORMATION

2.1. Description of Device (EUT)

Description	:	LED Lamp
Model No.	:	9290011369B
FCC ID	:	2AGBW9290011369BX
Brand	:	Philips
Applicant	:	Philips Lighting(China) Investment Co., Ltd. Building 9, Lane 888, Tian Lin Road, Minhang district, Shanghai, China
Manufacturer	:	Philips Lighting(China) Investment Co., Ltd. Building 9, Lane 888, Tian Lin Road, Minhang district, Shanghai, China
Radio Technology	:	IEEE 802.15.4 (ZigBee®)
Antenna Gain	:	5dBi
Fundamental Range	:	2405 MHz -2480MHz
Tested Frequency	:	2405MHz (CH11) 2450MHz (CH20) 2475MHz (CH25) 2480MHz (CH26)
Channel Setting Method	:	Channel is changed according to EUT's power on or power off.
Highest Working Frequency	:	2.4GHz
Modulation type	:	O-QPSK
Date of Receipt of Sample	:	Jan.09, 2017
Date of Test	:	Jan.20~Feb.06, 2017

2.2. Description of Test Facility

Name of Firm	:	Audix Technology (Wujiang) Co., Ltd. EMC Dept.
Site Location	:	No. 1289 Jiangxing East Road, the Eastern Part of Wujiang Economic Development Zone Jiangsu China 215200
Test Facilities	:	No.1 Conducted Shielding Enclosure
		No.1 3m Semi-anechoic Chamber Date of Validity: Mar.30, 2018 FCC Registration No.: 897661 IC Registration No.:5183D-2 RF Fully Chamber
NVLAP Lab Code	:	200786-0 Valid until on Sep.30, 2017 (NVLAP is a signatory member of ILAC MRA) Remark: This report shall not be imply endorsement, certification or approval by NVLAP, NIST, or any agency of the U.S. Federal Government.

2.3. Measurement Uncertainty

Test Item	Range Frequency	Uncertainty
No.1 Conducted Disturbance Measurement	$0.15 MHz \sim 30 MHz$	± 2.65dB
Radiated Disturbance Measurement (At 3m Chamber)	$30 MHz \sim 300 MHz$	± 3.18dB
	$300 \text{MHz} \sim 1 \text{GHz}$	± 3.12dB
Radiated Disturbance Measurement	$1 \mathrm{GHz} \sim 6 \mathrm{GHz}$	± 4.56dB
(At 3m Chamber)	$6 GHz \sim 18 GHz$	± 5.03dB

Remark: Uncertainty = $ku_c(y)$

Test Item	Uncertainty
6 dB Bandwidth	$\pm 0.16 \mathrm{MHz}$
Maximum Peak Output Power	± 0.12dB
Band Edges	± 0.38dB
Power Spectral Density	± 0.38dB
Emission Limitations	± 0.38dB

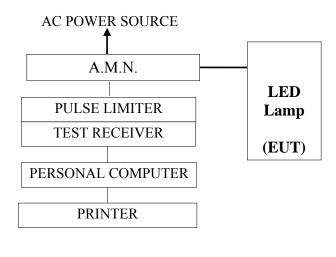
Remark: Uncertainty = $ku_c(y)$

3. ANTENNA REQUIREMENTS

According to FCC 47 CFR §15.203:

" An intentional radiator antenna shall be designed to ensure that no antenna other than that furnished by the responsible party can be used with the device. The use of a permanently attached antenna or of an antenna that uses a unique coupling to the intentional radiator shall be considered sufficient to comply with the provisions of this section."

* The antennas of this E.U.T are permanently attached.


*The E.U.T Complies with the requirement of §15.203

4. CONDUCTED EMISSION MEASUREMET

4.1. Test Equipment

Item	Туре	Manufacturer	Model No.	Serial No.	Last Cal.	Next Cal.
1.	Test Receiver	R & S	ESCI	100839	2017-01-05	2018-01-04
2.	A.M.N	R&S	ESH2-Z5	100153	2016-05-15	2017-05-14
3.	Pulse Limiter	R&S	ESH3-Z2	100605	2017-01-05	2018-01-04
4.	RF Cable	Harbour Industries	RG400	002	2017-01-05	2018-01-04
5.	Software	Audix/e3(6.7.0313)				

4.2. Block Diagram of Test Setup

----: POWER LINE ----: SIGNAL LINE

4.3. Power line Conducted Emission Limit

(FCC Part 15, Section 15.207, Class B)

Frequency	Maximum RF Line Voltage		
	Quasi-Peak Level Average Level		
150kHz ~ 500kHz	$66 \sim 56 \text{ dB}\mu\text{V}$ $56 \sim 46 \text{ dB}\mu$		
500kHz ~ 5MHz	56 dBµV	46 dBµV	
5MHz ~ 30MHz	60 dBµV	50 dBµV	

Remark1: If the average limit is met when using a Quasi-Peak detector, the EUT shall be deemed to meet both limits and measurement with the average detector is unnecessary.

2: The lower limit applies at the band edges.

4.4. Test Procedure

The measuring process is according to ANSI C63.10-2013 and laboratory internal procedure TKC-301-004. (For FCC Part15 Subpart C)

In the conducted emission measurement, the EUT and all peripheral devices were set up on a non-metallic table which was 0.8 meter height above the ground plane, and 0.4 meter far away from the vertical plane. The mains cable of the EUT connected to one Artificial Main Network(AMN). All other unit of the EUT and AE connected to a second Line Impedance Stabilization Network(L.I.S.N.). The telecommunication cable connected to the AE through a Impedance Stabilization Network(ISN) which terminated a 50 Ω resistor. For the measurement, the A.M.N measuring port was terminated by a 50 Ω measuring equipment and the second L.I.S.N measuring port was terminated by a 50 Ω terminator. All measurements were done between the phase lead and the reference ground, and between the neutral lead and the reference ground. All cables or wires placement were verified to find out the maximum emission.

The bandwidth of measuring receiver was set at 9 kHz.

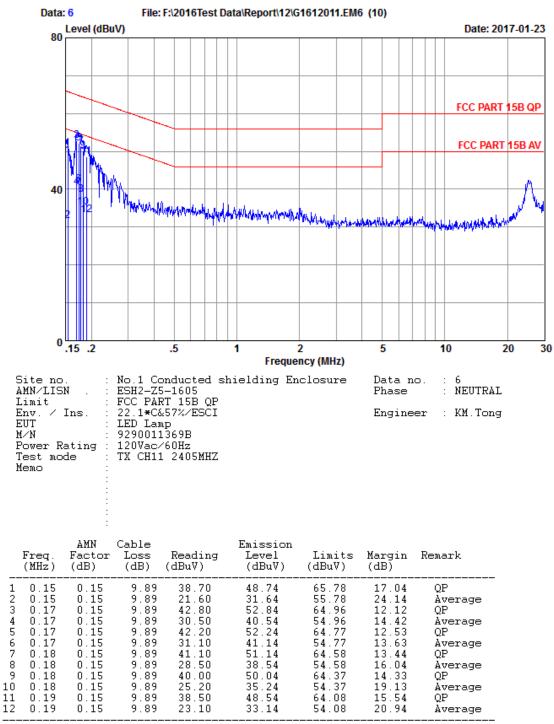
The required frequency band $(0.15 \text{ MHz} \sim 30 \text{ MHz})$ was pre-scanned with peak detector; the final measurement was measured with quasi-peak detector and average detector. (If the average limit is met when using a quasi-peak detector, the average detector is unnecessary).

The emission level is calculated automatically by the test system which uses the following equation:

Emission level $(dB\mu V)$ = Reading $(dB\mu V)$ + A.M.N factor (dB) + Cable loss (dB). (Cable loss includes pulse limiter loss)

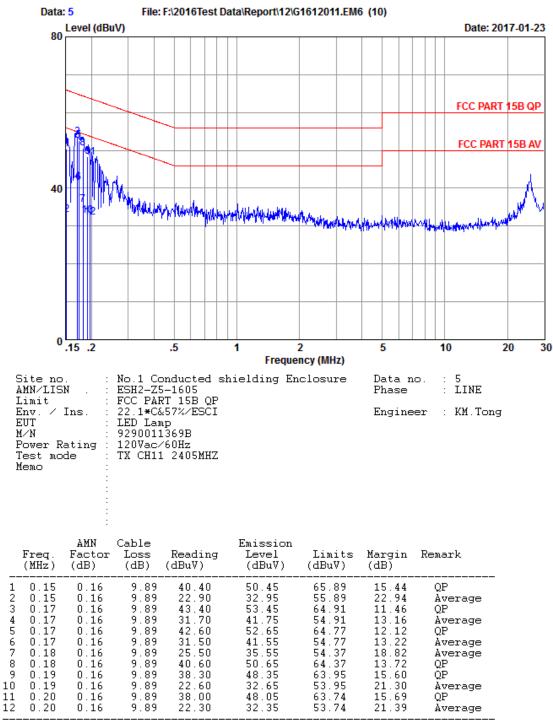
4.5. Conducted Emission Measurement Results

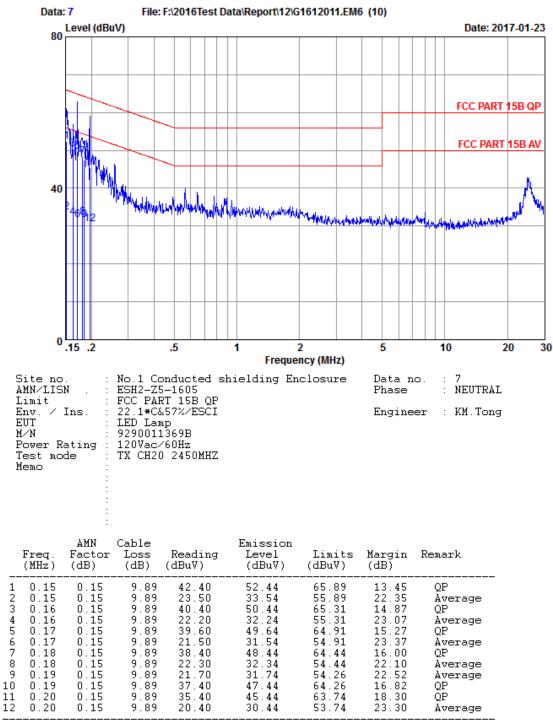
For FCC Part15 Subpart C **PASSED**.

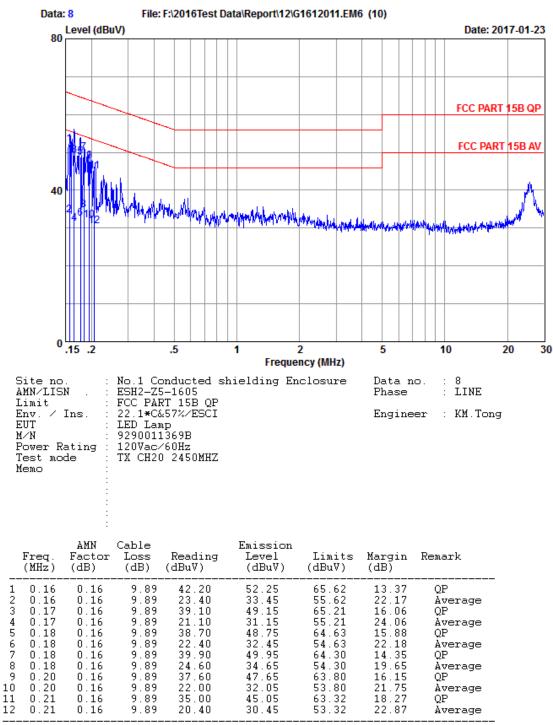

EUT was performed during this section testing and all the test results are attached in next pages.

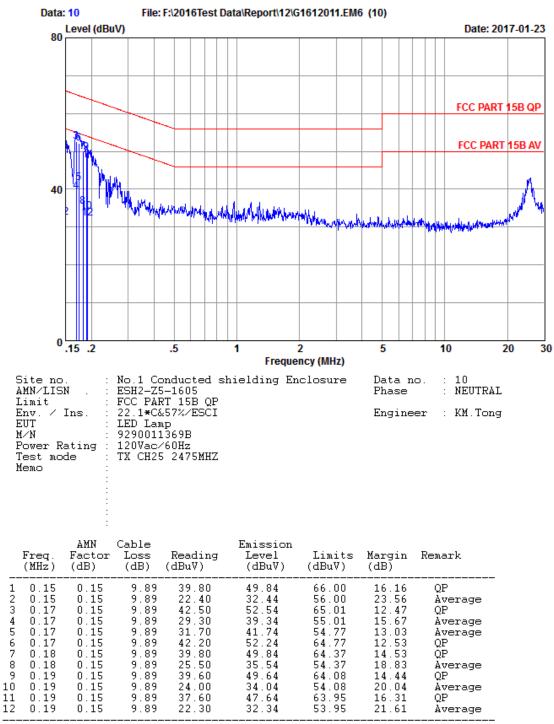
Test Date : Jan.23, 2017		erature: 22.1	Humidity: 57%	
Mada	Test Can litien	Reference Te	est Data No.	
Mode	Test Condition	Neutral	Line	
1	TX CH11 2405MHz	# 6	# 5	
2	TX CH20 2450MHz	# 7	# 8	
3	TX CH25 2475MHz	# 10	# 9	

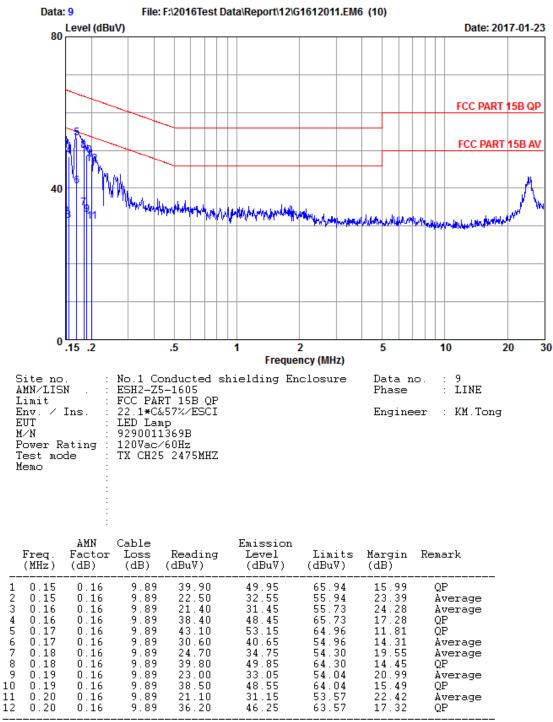
NOTE 1- ' 'means the worst test mode.


NOTE 2- The worst emission is detected at 0.17 MHz with emission level of 53.45 dB (μ V) and with QP detector (Limit is 64.91 dB (μ V)), when the Line of the EUT is connected to AMN.


Remarks:

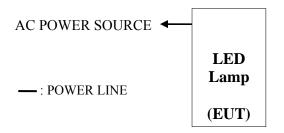

Remarks:

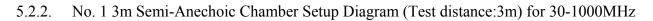

Remarks:

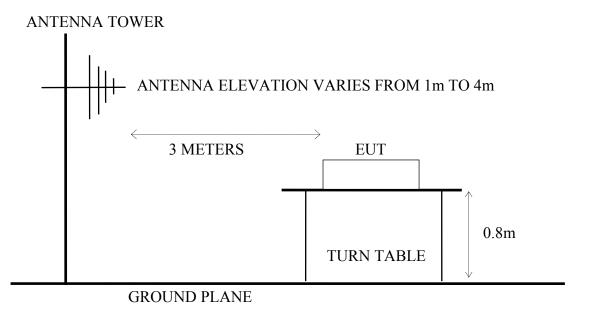

Remarks:

Remarks:

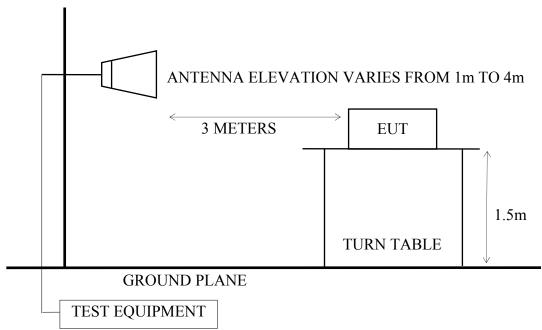
Remarks:


5. RADIATED EMISSION MEASUREMENT


5.1. Test Equipment


The following test equipment was used during the radiated emission measurement: At 3m Semi-Anechoic Chamber

Item	Туре	Manufacturer	Model No.	Serial No.	Last Cal.	Next Cal.	
1.	Preamplifier	Agilent 8449B 30		3008A02233	2017-01-05	2018-01-04	
2.	Preamplifier	Agilent	8447D 2944A10921		2016-07-03	2017-07-02	
3.	PXA Signal Analyzer	Agilent	N9030A	MY53120367	2016-05-15	2017-05-14	
4.	Test Receiver	R&S	ESCI	100361	2017-01-05	2018-01-04	
5.	Bi-log Antenna	Schaffner	CBL6112D 22252		2017-02-02	2018-02-01	
6.	Horn Antenna	EMCO	3115 62959		2016-06-20	2017-06-19	
7.	Horn Antenna	ETS	3116	62641	2016-09-30	2017-09-29	
8.	RF Cable #1	Yuhang CSRH	cable-3m	001(0.5m)	2017-01-05	2018-01-04	
9.	RF Cable #2	Yuhang CSRH	cable-3m	002(0.5m)	2017-01-05	2018-01-04	
10.	RF Cable #3	Yuhang CSRH	cable-3m	003(3.0m)	2017-01-05	2018-01-04	
11.	Software	Audix/e3(6.7.0313)					


- 5.2. Block Diagram of Test Setup
- 5.2.1. Block Diagram of Test Setup between EUT and simulators

5.2.3. No. 1 3m Semi-Anechoic Chamber Setup Diagram (Test distance: 3m) for above 1GHz

ANTENNA TOWER

5.3. Radiated Emission Limits

Frequency	Distance Maters	Field Strengths Limits		
MHz	Distance Meters	dBµV/m		
30 ~ 88	3	40		
88~216	3	43.5		
216~960	3	46		
Above 960	3	54		
Above 1000	2	74 (Peak)		
A00ve 1000	5	54 (Average)		

Radiated Emission Limits (FCC Part15 C, section 15.209, CISPR22)

Remark : (1) Emission level $(dB\mu V/m) = 20 \log Emission level (\mu V/m)$

(2)The tighter limit applies at the edge between two frequency bands.

5.4. Test Procedure

The measuring process is according to ANSI C63.10-2013 and laboratory internal procedure TKC-301-001. (For FCC Part15 Subpart C)

In the radiated disturbance measurement, the EUT and all simulators were set up on a non-metallic turn table which was 0.8 meter above the ground plane. Measurement distance between EUT and receiving antennas was set at 3 meters at $30MHz\sim1GHz$ and 3 meters at $1GHz\sim6GHz$. The measurement distance is the shortest horizontal distance between an imaginary circular periphery which consists of EUT periphery and cables and the reference point of the antenna. During the radiated measurement, the EUT was rotated 360° and receiving antennas were used for both horizontal and vertical polarization detection for $30MHz\sim1GHz$, One receiving antennas was used for both horizontal and vertical polarization detection for $1GHz\sim6GHz$ (the absorbing material was added when testing of $1GHz\sim6GHz$ was done). All cables or wires placement were verified to find out the maximum emission.

The bandwidth of measuring receiver (or spectrum analyzer) was set to:

RBW (120 kHz), VBW (300 kHz) for QP detector below 1GHz RBW (1 MHz), VBW (1MHz) for Peak detector above 1GHz RBW (1 MHz), VBW (10Hz) for AV detector above 1GHz

The frequency range from 30MHz to 10th harmonic(25GHz) are checked, and no any emissions were found from 18GHz to 25GHz.

The emission level is calculated automatically by the test system which uses the following equation :

- 1. For 30MHz-1GHz measurement: Emission Level ($dB\mu V/m$) = Reading ($dB\mu V$)+Antenna Factor (dB/m)+Cable Loss (dB)
- 2. For Above 1GHz measurement: Emission Level ($dB\mu V/m$) = Reading ($dB\mu V$)+Antenna Factor (dB/m)+Cable Loss(dB) -Pre-amplifier factor (dB)

The three orthogonal planes have been all tested, and the data of the worst mode XZ plan(in Horizontal) & XY plan(in Vertical) is shown in the report.

5.5. Measurement Results

PASSED

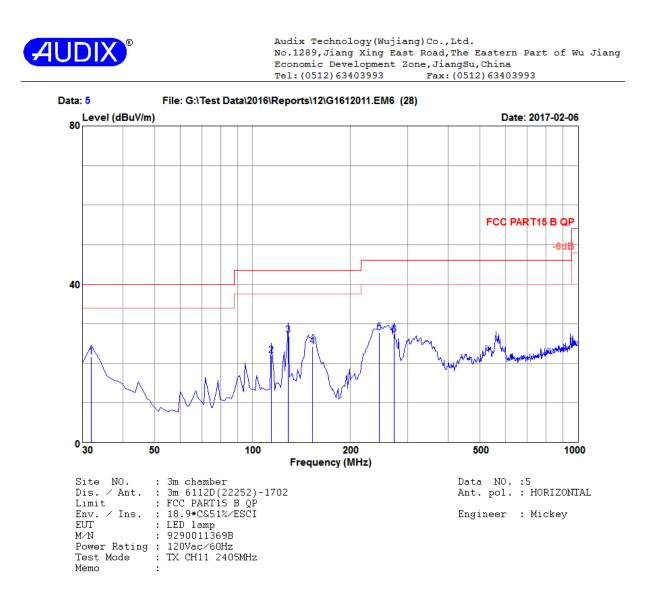
5.5.1. For Restricted Bands:

The EUT was tested in restricted bands and all the test results are listed in section 5.7 & 5.8. (The restricted bands defined in part 15.205(a))

For Frequency range : below 1GHz

N.	T+ M- 1	Reference Test Data No.		
No.	Test Mode a	Horizontal	Vertical	
1.		2405MHz (Channel 11)	# 5	# 6
2.	Transmitting	2450MHz (Channel 20)	# 7	# 8
3.		2475MHz (Channel 25)	# 9	# 10

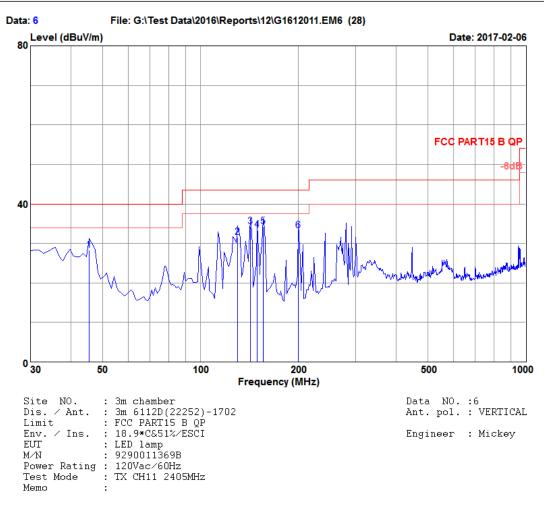
For Frequency range : above 1GHz


No		Reference Test Data No.			
No.	Test Mode a	Test Mode and Frequency			
1.		2405MHz (Channel 11)	# 11	# 12	
2.	Transmitting	2450MHz (Channel 20)	# 13	# 14	
3.		2475MHz (Channel 25)	# 15	# 16	

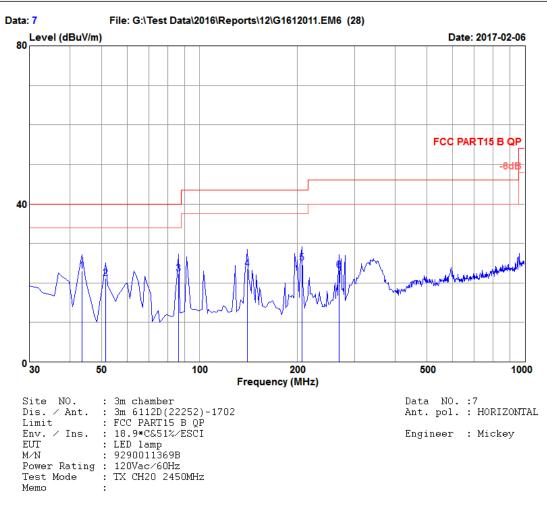
5.5.2. For Band Edge Emission

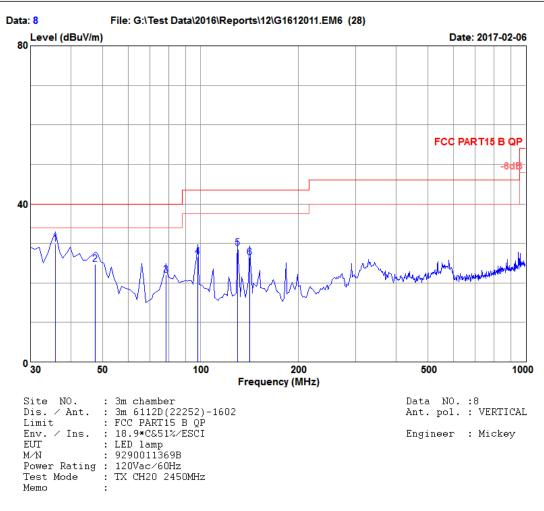
The EUT was tested in restricted bands and all the test results are listed in section 5.9. The restricted bands defined in part 15.205(a)

		Reference Test Data No.		
No.	Test Mode a	Horizontal	Vertical	
1.		2405MHz (Channel 11)	# 17, # 19	# 18, # 20
2.	Transmitting	2475MHz (Channel 25)	# 21, # 23	# 22, # 24
3.	3.	2480MHz (Channel 26)	# 25, # 27	# 26, # 28

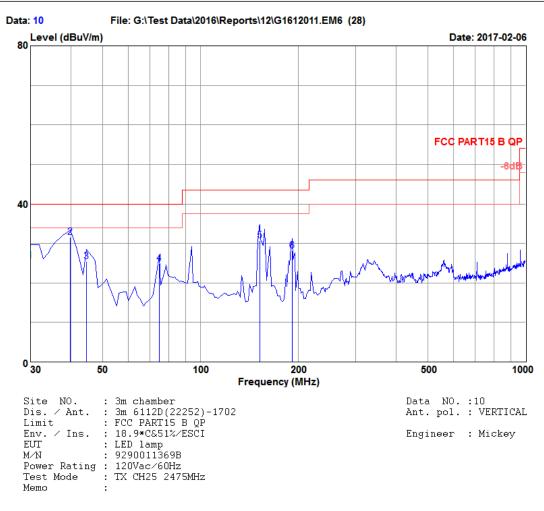

5.6. Restricted Bands Measurement Results (For Below 1GHz)

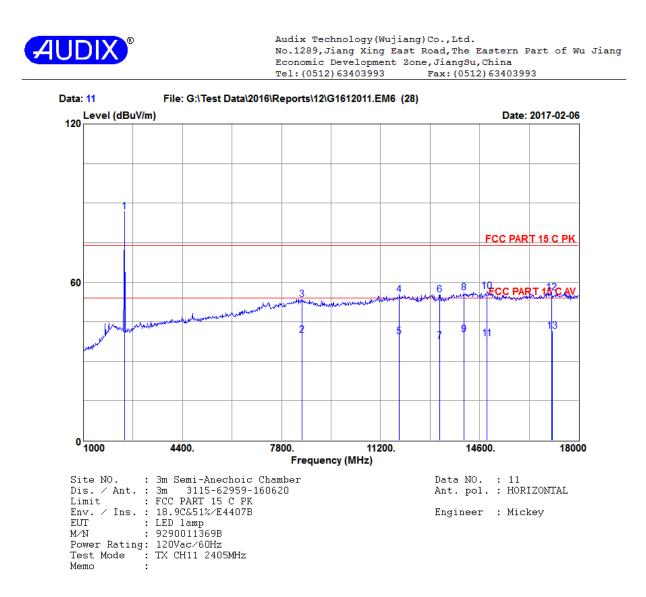
	Freq. (MHz)	Ant. Factor (dB∕m)	Cable Loss (dB)	Reading (dBuV)	Emission Level (dBuV/m)	Limits (dBuV/m)	Margin (dB)	Remark			
1	31.94	18.83	0.65	29.49	21.62	40.00	18.38	QP			
2	114.39	12.59	1.24	35.37	22.06	43.50	21.44	Q̈́Ρ			
3	128.94	12.62	1.32	40.36	27.21	43.50	16.29	QP			
4	153.19	11.13	1.45	38.68	24.27	43.50	19.23	Q̈́Ρ			
5	245.34	12.52	1.88	40.13	27.82	46.00	18.18	QP			
6	272.50	13.62	1.99	38.28	27.24	46.00	18.76	QP			
Re	Remarks: 1. Emission Level= Antenna Factor + Cable Loss + Reading. 2. The emission levels that are 20dB below the official limit										


are not reported.

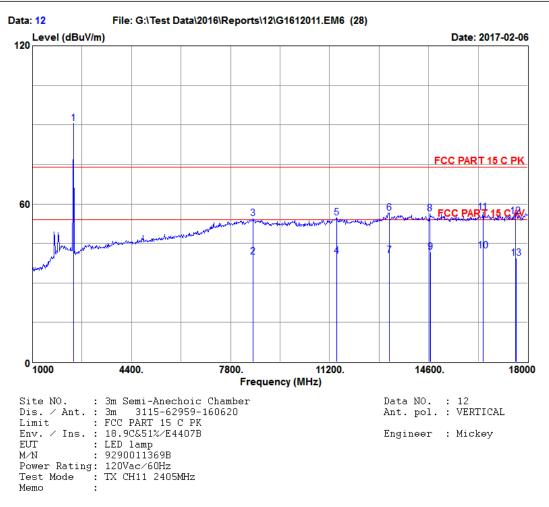

	Freq. (MHz)	Ant. Factor (dB⁄m)	Cable Loss (dB)	Reading (dBuV)	Emission Level (dBuV/m)	Limits (dBuV/m)	Margin (dB)	Remark
1 2 3 4 5	45.52 129.91 142.52 149.31 156.10	11.50 12.50 11.79 11.35 11.02	0.77 1.33 1.40 1.43 1.47	43.29 44.78 48.12 47.65 48.77	28.25 31.53 34.28 33.43 34.28	40.00 43.50 43.50 43.50 43.50	11.75 11.97 9.22 10.07 9.22	QP QP QP QP QP
6	199.75	10.30	1.70	48.03	33.23	43.50	10.27	QP

	Freq. (MHz)	Ant. Factor (dB⁄m)	Cable Loss (dB)	Reading (dBuV)	Emission Level (dBuV/m)	Limits (dBuV/m)	Margin (dB)	Remark
1	43.58	12.47	0.76	37.18	23.09	40.00	16.91	QP
2	51.34	8.44	0.82	39.18	21.14	40.00	18.86	QP
3	86.26	9.14	1.08	39.36	22.35	40.00	17.65	QP
4	140.58	11.90	1.39	37.21	23.46	43.50	20.04	QP
5	206.54	10.42	1.73	39.74	25.10	43.50	18.40	QP
	268.62	13.68	1.98	34.15	23.15	46.00	22.85	QP

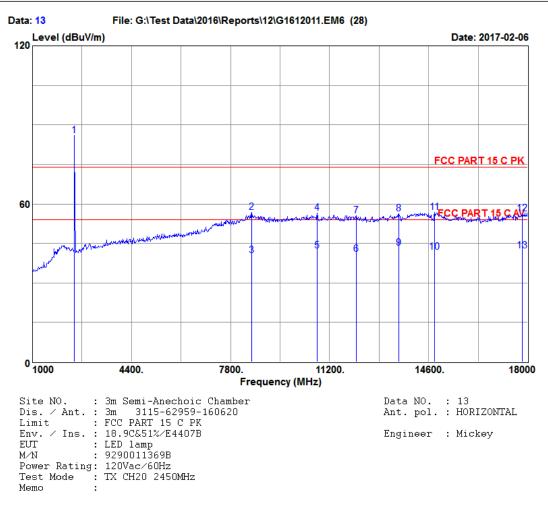

	Freq. (MHz)	Ant. Factor (dB⁄m)	Cable Loss (dB)	Reading (dBuV)	Emission Level (dBuV/m)	Limits (dBuV/m)	Margin (dB)	Remark
1 2 3 4 5 6	35.82 47.46 78.50 97.90 129.91 141.55	17.10 10.25 8.10 10.73 12.50 11.79	0.68 0.78 1.02 1.16 1.33 1.39	39.49 41.05 40.06 41.96 42.16 40.23	29.93 24.77 21.94 26.64 28.91 26.38	40.00 40.00 40.00 43.50 43.50 43.50	10.07 15.23 18.06 16.86 14.59 17.12	QP QP QP QP QP OP

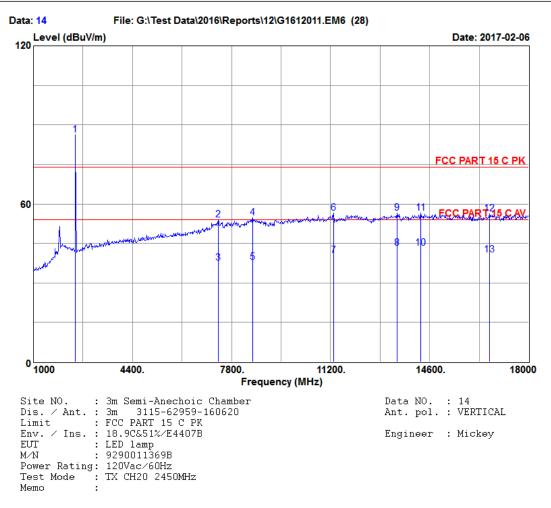

	Freq. (MHz)	Ant. Factor (dB⁄m)	Cable Loss (dB)	Reading (dBuV)	Emission Level (dBuV/m)	Limits (dBuV/m)	Margin (dB)	Remark
1 2 3 4 5	63.95 75.59 87.23 141.55 163.86	6.32 7.46 9.14 11.79 10.62	0.92 1.01 1.09 1.39 1.51	42.85 43.34 45.65 39.76 38.47	22.82 24.56 28.65 25.91 23.65	40.00 40.00 40.00 43.50 43.50	17.18 15.44 11.35 17.59 19.85	QP QP QP QP QP
6	265.71	13.71	1.96	36.82	25.82	46.00	20.18	QP

	Freq. (MHz)	Ant. Factor (dB∕m)	Cable Loss (dB)	Reading (dBuV)	Emission Level (dBuV/m)	Limits (dBuV⁄m)	Margin (dB)	Remark
1 2 3	30.00 39.70 44.55 74.62	19.70 14.40 12.47	0.63 0.72 0.76	32.68 43.70 39.56	25.66 31.49 25.48	40.00 40.00 40.00	14.34 8.51 14.52	QP QP QP
4 5 6	74.62 152.22 191.02	7.46 11.24 10.14	1.00 1.45 1.65	43.74 45.07 43.21	24.95 30.77 28.16	40.00 43.50 43.50	15.05 12.73 15.34	QP QP QP

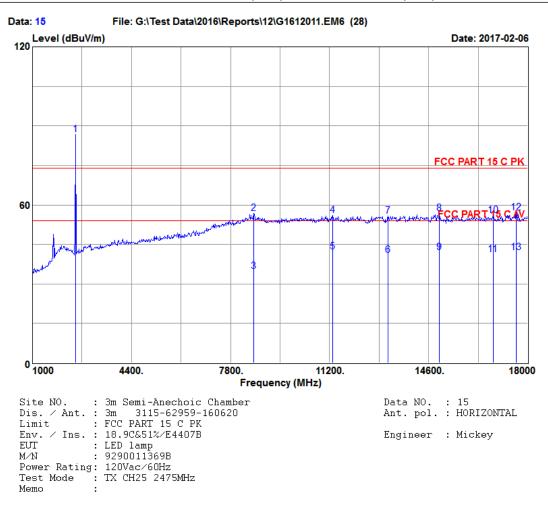

5.7. Restricted Bands Measurement Results (For Above 1GHz)

	Freq. (MHz)	Ant. Factor (dB)	Cable Loss (dB)	Reading (dBuV)	Preamp Factor (dB)		n Limits (dBuV∕m)	Margin (dB)	Remark
5 6 7	14855.00 14856.29 17082.00	29.05 39.30 39.30 41.53 41.53 40.66 40.66 42.60 42.60 41.82 41.82 41.82 42.13	5.09 9.78 9.78 11.48 12.42 12.43 12.87 12.87 13.12 13.12 13.91	86.99 25.17 38.74 36.01 20.19 34.48 16.84 32.33 16.48 34.35 16.48 32.85 16.48	34.50 34.26 34.26 33.78 32.28 32.28 32.26 31.66 31.66 32.78 32.78 32.83 32.83	86.63 39.99 53.56 55.24 39.42 55.28 37.67 56.14 40.29 56.51 38.64 56.06 41.35	74.00 54.00 74.00 54.00 54.00 54.00 74.00 54.00 74.00 54.00 74.00 54.00 54.00 54.00 54.00	-12.63 14.01 20.44 18.76 14.58 18.72 16.33 17.86 13.71 17.49 15.36 17.94 12.65	Peak Average Peak Average Peak Average Peak Average Peak Average Peak Average
10		1. Emiss	ion Lev	rel= Ant.H	actor +	Cable Lo		ng - Prea	amp.Factor.

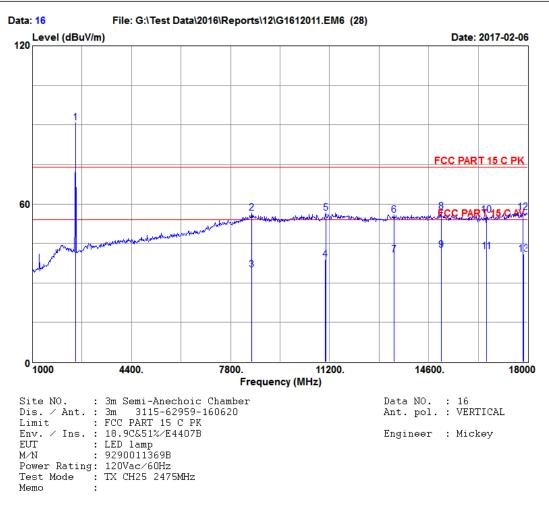

limit are not reported.


	Freq. (MHz)	Ant. Factor (dB)	Cable Loss (dB)	Reading (dBuV)	Preamp Factor (dB)		n Limits (dBuV∕m)	Margin (dB)	Remark
1 2 3 4 5 6 7 8 9 10 11 12	13240.00 13245.16 14651.00 14653.75 16468.75 16470.00 17592.00	29.05 39.18 39.18 40.42 40.69 40.69 42.78 42.78 40.12 40.12 44.66	5.09 9.82 9.82 11.41 11.41 12.43 12.43 13.06 13.06 14.20 14.20 14.20	90.83 25.14 39.76 22.18 36.58 35.81 19.48 32.85 18.28 21.27 35.83 29.68	34.50 34.28 34.28 33.71 32.26 32.26 32.49 32.49 33.41 33.41 32.88	$\begin{array}{c} 90.47\\ 39.86\\ 54.48\\ 40.30\\ 54.70\\ 56.67\\ 40.34\\ 56.20\\ 41.63\\ 42.18\\ 56.74\\ 55.30\end{array}$	74.00 54.00 74.00 54.00 74.00 54.00 74.00 54.00 54.00 54.00 54.00 74.00 54.00 74.00 54.00 74.00 56.00 5	-16.47 14.14 19.52 13.70 19.30 17.33 13.66 17.80 12.37 11.82 17.26 18.70	Peak Average Peak Average Peak Average Peak Average Peak Peak Peak
13		2. The en	mission		hat are		54.00 oss + Readi ow the off		Average amp.Factor.

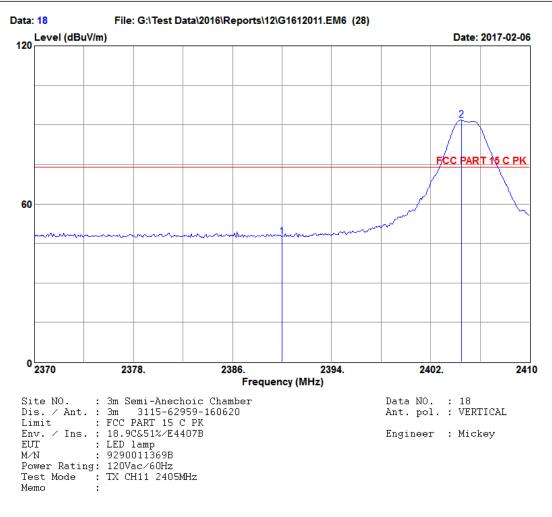
	Freq. (MHz)	Ant. Factor (dB)	Cable Loss (dB)	Reading (dBuV)	Preamp Factor (dB)		on Limits (dBuV∕m)	Margin (dB)	Remark
1 2 3 4 5 6 7 8 9 10 11 12 13	12115.35 12118.00 13580.00	28.83 39.25 39.25 38.42 41.32 41.32 41.33 41.33 42.06 42.06 45.60	5.15 9.80 9.80 11.23 11.61 11.61 12.61 12.63 13.10 13.81 13.81	86.42 41.99 25.69 40.72 26.45 21.75 36.31 34.37 21.19 19.17 34.47 29.78 15.74	34.50 34.27 34.27 33.83 33.63 33.64 33.64 31.97 31.95 32.71 32.71 32.90 32.90	85.90 56.77 40.47 56.54 42.27 41.04 55.60 56.34 43.20 41.62 56.92 56.29 42.25	74.00 74.00 54.00 54.00 54.00 74.00 74.00 54.00 54.00 54.00 54.00 54.00 54.00 54.00	-11.90 17.23 13.53 17.46 11.73 12.96 18.40 17.66 10.80 12.38 17.08 17.71 11.75	Peak Peak Average Peak Average Peak Peak Average Peak Peak Peak Average
	Remarks:	1. Emiss 2. The en	mission	rel= Ant.H	hat are	Cable Lo		ng - Prea	amp.Factor.



	Freq. (MHz)	Ant. Factor (dB)	Cable Loss (dB)	Reading (dBuV)	Preamp Factor (dB)		on Limits (dBuV∕m)	Margin (dB)	Remark
1	2445.00	28.83	5.15	86.79	34.50	86.27	74.00	-12.27	Peak
2	7341.00	36.40	9.10	42.49	34.05	53.94	74.00	20.06	Peak
3	7345.82	36.40	9.10	26.18	34.05	37.63	54.00	16.37	Average
4	8531.00	39.25	9.80	39.99	34.27	54.77	74.00	19.23	Peak
	8532.48	39.25	9.80	23.18	34.27	37.96	54.00	16.04	Average
6	11302.00	39.86	11.39	38.99	33.69	56.55	74.00	17.45	Peak
7	11305.49	39.86	11.39	22.95	33.69	40.51	54.00	13.49	Average
8	13475.15	41.07	12.56	21.75	32.06	43.32	54.00	10.68	Average
9	13478.00	41.07	12.56	35.02	32.06	56.59	74.00	17.41	Peak
10	14292.34	43.09	12.94	19.15	31.99	43.19	54.00	10.81	Average
11	14294.00	43.09	12.94	32.50	31.99	56.54	74.00	17.46	Peak
12	16657.00	40.67	14.10	34.68	33.21	56.24	74.00	17.76	Peak
13	16660.72	40.67	14.10	19.19	33.21	40.75	54.00	13.25	Average
10	Remarks:	1. Emiss 2. The e	ion Lev mission	el= Ant.H	actor +	Cable Lo		ng - Prea	amp.Factor.

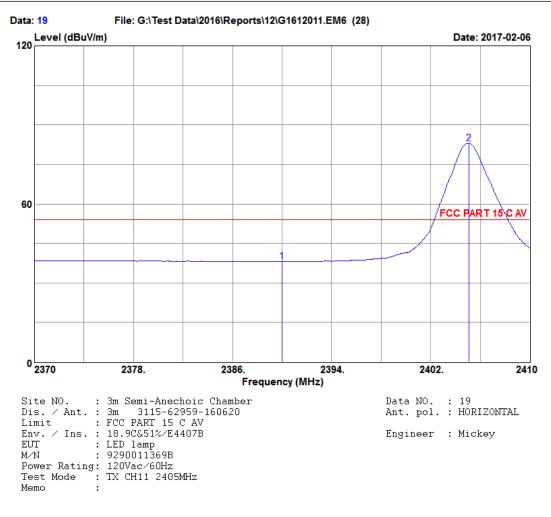

limit are not reported.

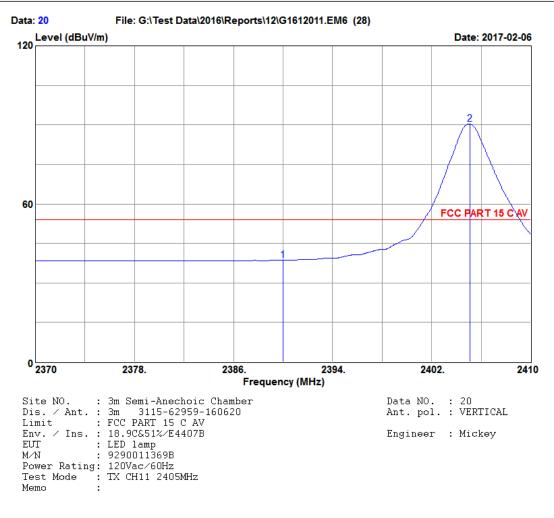
	Freq. (MHz)	Ant. Factor (dB)	Cable Loss (dB)	Reading (dBuV)	Preamp Factor (dB)		n Limits (dBuV∕m)	Margin (dB)	Remark
1 2 3 4 5 6 7 8 9 10 11 12 13	13205.39	28.61 39.16 39.86 40.63 40.63 41.26 41.26 41.13 41.13 44.73	5.18 9.83 9.83 11.39 12.42 12.42 13.16 14.02 14.02 13.84 13.84	87.40 42.10 20.17 38.43 24.75 20.14 34.94 35.41 20.49 33.80 19.14 31.40 16.39	34.49 34.29 34.29 33.69 32.28 32.28 32.96 32.96 32.96 33.03 33.03 32.88 32.88	86.70 56.80 34.87 55.99 42.31 40.91 55.71 56.87 41.95 55.92 41.26 57.09 42.08	$\begin{array}{c} 74.00\\ 74.00\\ 54.00\\ 54.00\\ 54.00\\ 74.00\\ 74.00\\ 74.00\\ 54.00\\ 74.00\\ 54.00\\ 74.00\\ 54.00\\ 54.00\\ 54.00\\ 54.00\\ \end{array}$	-12.70 17.20 19.13 18.01 11.69 13.09 18.29 17.13 12.05 18.08 12.74 16.91 11.92	Feak Peak Average Peak Average Feak Peak Average Feak Average Feak Average
	Remarks:	2. The en	mission		that are		oss + Readin ow the off		amp.Factor.



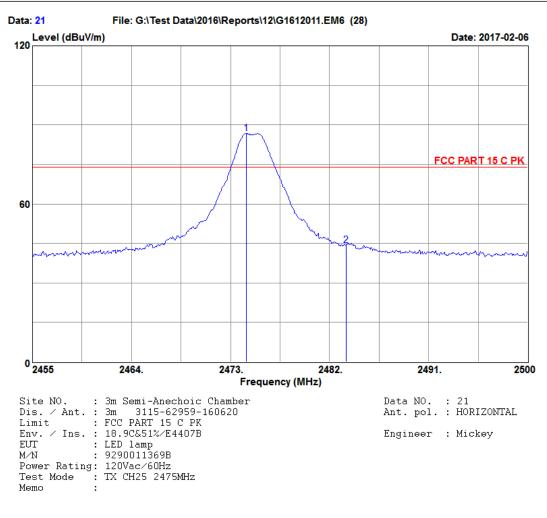
	Freq. (MHz)	Ant. Factor (dB)	Cable Loss (dB)	Reading (dBuV)	Preamp Factor (dB)		on Limits (dBuV∕m)	Margin (dB)	Remark
1 2 3 4 5 6 7 8 9 10 11 12 13	13410.00	28.61 39.25 39.25 38.88 40.96 40.96 41.04 41.04 41.04 40.46 40.46 45.75 45.75	5.18 9.80 9.80 11.35 12.53 12.53 13.20 13.20 14.15 14.15 13.80 13.80	91.62 41.84 20.17 22.36 40.08 34.44 19.34 35.76 21.18 34.44 20.64 30.12 14.17	34.49 34.27 34.27 33.65 32.10 32.10 33.03 33.03 33.30 33.30 32.90 32.90	90.92 56.62 34.95 38.94 55.83 40.73 56.97 42.39 55.75 41.95 56.77 40.82	$\begin{array}{c} 74.00\\ 74.00\\ 54.00\\ 54.00\\ 74.00\\ 54.00\\ 74.00\\ 54.00\\ 74.00\\ 54.00\\ 74.00\\ 54.00\\ 74.00\\ 54.00\\ 54.00\\ 54.00\\ \end{array}$	-16.92 17.38 19.05 15.06 17.34 18.17 13.27 17.03 11.61 18.25 12.05 17.23 13.18	Peak Peak Average Peak Peak Average Peak Average Peak Average Peak Average
	Remarks:	2. The e	mission		hat are		oss + Readi ow the off		amp.Factor.

5.8. Spurious Emission Measurement Results in Band Edge Emission (FCC Part 15, 15.205)

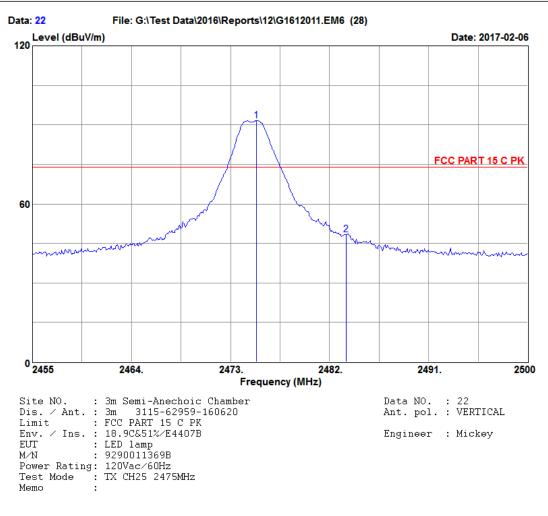



	Freq. (MHz)			Reading	Factor		on Limits (dBuV∕m)	Margin (dB)	Remark
_	2390.00 2404.48	29.16 29.05	5.09 5.09	47.88 92.11	34.50 34.50	47.63 91.75		26.37 -17.75	Peak Peak

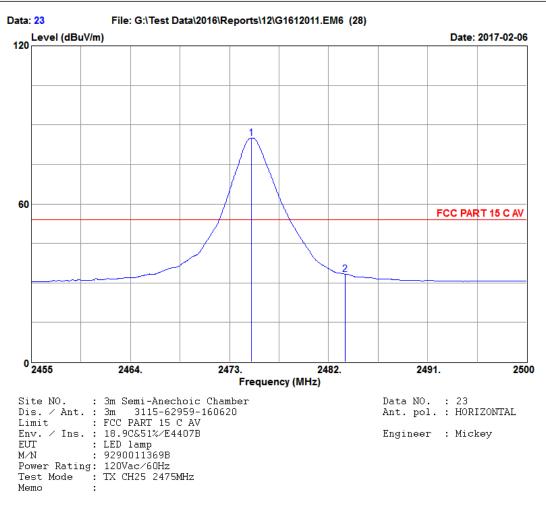
	Freq. (MHz)	Ant. Factor (dB)	Cable Loss (dB)	Reading (dBuV)	Preamp Factor (dB)	Level	on Limits (dBuV∕m)	Margin (dB)	Remark
1	2390.00	29.16	5.09	38.41	34.50	38.16	54.00	15.84	Average
2	2405.08	29.05	5.09	83.26	34.50	82.90	54.00	-28.90	Average



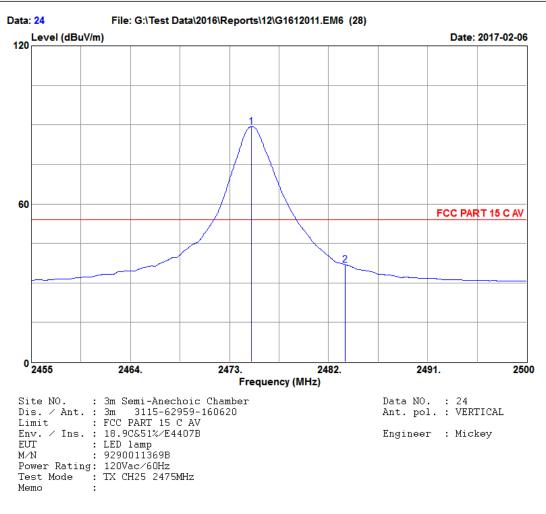
	Freq. (MHz)	Ant. Factor (dB)	Cable Loss (dB)	Reading (dBuV)	Preamp Factor (dB)	Level	on Limits (dBuV∕m)	Margin (dB)	Remark
1	2390.00	29.16	5.09	38.83	34.50	38.58	54.00	15.42	Average
2	2405.08	29.05	5.09	90.70	34.50	90.34	54.00	-36.34	Average


Audix Technology (Wujiang) Co., Ltd. No.1289, Jiang Xing East Road, The Eastern Part of Wu Jiang Economic Development Zone, JiangSu, China Tel: (0512) 63403993 Fax: (0512) 63403993

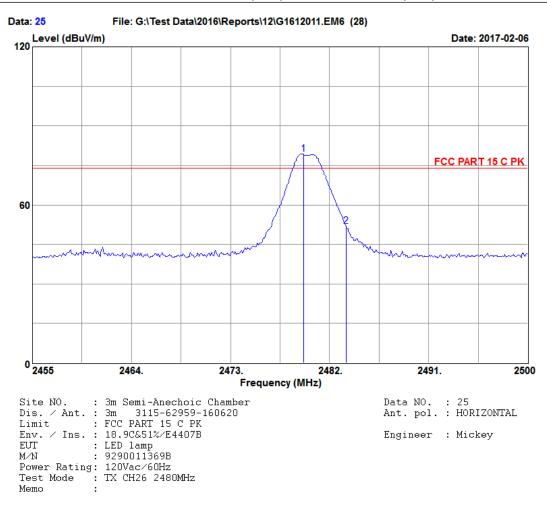
	Freq. (MHz)		Reading	Factor		on Limits (dBuV∕m)	0	Remark
-	2474.44 2483.50	28.61 28.61	 87.42 45.08	34.49 34.49	86.72 44.38		-12.72 29.62	Peak Peak


Audix Technology (Wujiang) Co., Ltd. No.1289, Jiang Xing East Road, The Eastern Part of Wu Jiang Economic Development Zone, JiangSu, China Tel: (0512) 63403993 Fax: (0512) 63403993

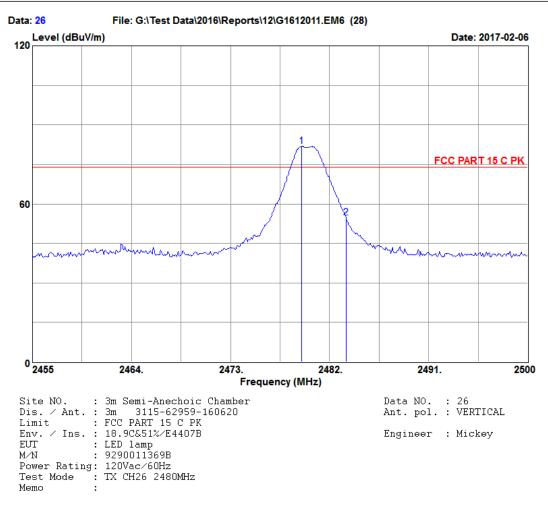
	Freq. (MHz)	Ant. Factor (dB)	Loss	Reading	Factor		on Limits (dBuV∕m)	Margin (dB)	Remark
_	2475.34 2483.50	28.61 28.61		92.39 49.07	34.49 34.49	91.69 48.37	74.00 74.00	-17.69 25.63	Peak Peak Peak


Audix Technology(Wujiang)Co.,Ltd. No.1289,Jiang Xing East Road,The Eastern Part of Wu Jiang Economic Development Zone,JiangSu,China Tel:(0512)63403993 Fax:(0512)63403993

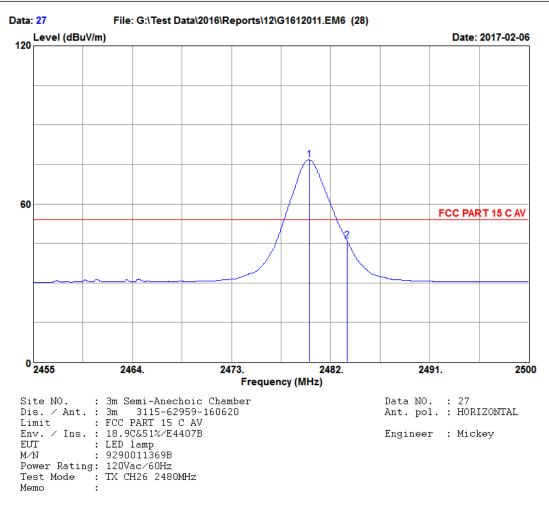
	Freq. (MHz)	Ant. Factor (dB)			Factor	Emissic Level (dBuV/m	Limits	Margin (dB)	Remark
_	2474.98	28.61	5.18	85.75	34.49	85.05	54.00	-31.05	Average
	2483.50	28.61	5.18	34.04	34.49	33.34	54.00	20.66	Average


Audix Technology(Wujiang)Co.,Ltd. No.1289,Jiang Xing East Road,The Eastern Part of Wu Jiang Economic Development Zone,JiangSu,China Tel:(0512)63403993 Fax:(0512)63403993

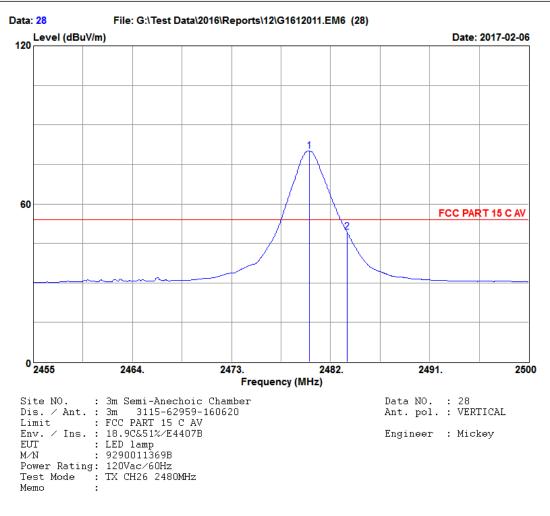
	Freq. (MHz)	Ant. Factor (dB)		e Reading (dBuV)			Limits	Margin (dB)	Remark
_	2474.98	28.61	5.18	89.99	34.49	89.29	54.00	-35.29	Average
	2483.50	28.61	5.18	37.65	34.49	36.95	54.00	17.05	Average


Audix Technology (Wujiang) Co., Ltd. No.1289, Jiang Xing East Road, The Eastern Part of Wu Jiang Economic Development Zone, JiangSu, China Tel: (0512) 63403993 Fax: (0512) 63403993

	Freq. (MHz)	Ant. Factor (dB)	Loss	Reading	Factor		on Limits (dBuV∕m)	Margin (dB)	Remark
_	2479.62 2483.50	28.61 28.61			34.49 34.49	79.36 51.88	74.00 74.00	-5.36 22.12	Peak Peak

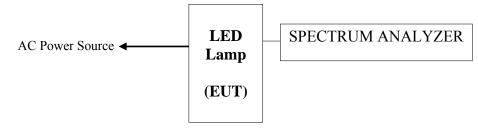

Audix Technology (Wujiang) Co., Ltd. No.1289, Jiang Xing East Road, The Eastern Part of Wu Jiang Economic Development Zone, JiangSu, China Tel: (0512) 63403993 Fax: (0512) 63403993

	Freq. (MHz)		Loss	Reading	Factor		>n Limits (dBuV∕m)	0	Remark
-	2479.48 2483.50	28.61 28.61		82.60 55.44	34.49 34.49	81.90 54.74	74.00 74.00	-7.90 19.26	Peak Peak Peak


Audix Technology(Wujiang)Co.,Ltd. No.1289,Jiang Xing East Road,The Eastern Part of Wu Jiang Economic Development Zone,JiangSu,China Tel:(0512)63403993 Fax:(0512)63403993

	Freq. (MHz)	Ant. Factor (dB)		e Reading (dBuV)	Factor	Emissio Level (dBuV/m	Limits	Margin (dB)	Remark
-	2480.07	28.61	5.18	77.38	34.49	76.68	54.00	-22.68	Average
	2483.50	28.61	5.18	46.82	34.49	46.12	54.00	7.88	Average

Audix Technology(Wujiang)Co.,Ltd. No.1289,Jiang Xing East Road,The Eastern Part of Wu Jiang Economic Development Zone,JiangSu,China Tel:(0512)63403993 Fax:(0512)63403993


	Freq. (MHz)	Ant. Factor (dB)		e Reading (dBuV)	Factor	Emissio Level (dBuV/m	Limits	Margin (dB)	Remark
-	2480.07	28.61	5.18	80.79	34.49	80.09	54.00	-26.09	Average
	2483.50	28.61	5.18	50.04	34.49	49.34	54.00	4.66	Average

6. 6 dB BANDWIDTH MEASUREMENT

6.1. Test Equipment

Item	Туре	Manufacturer	Model No.	Serial No.	Last Cal.	Next Cal.
1.	PXA Signal Analyzer	Agilent	N9030A	MY53120367	2016-05-15	2017-05-14

6.2. Block Diagram of Test Setup

6.3. Specification Limits (\$15.247(a)(2))

Systems using digital modulation techniques may operate in the 902 - 928 MHz, 2400 - 2483.5 MHz, and 5725 - 5850 MHz bands. The minimum 6 dB bandwidth shall be at least 500kHz.

6.4. Test Procedure

The steps for the first option are as bellow:

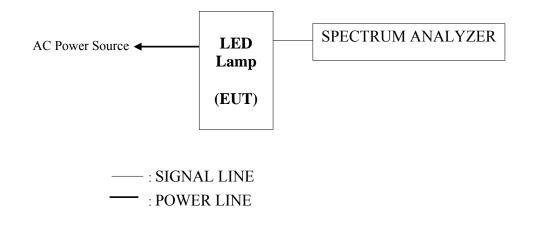
- a) Set RBW = 100 kHz.
- b) Set the VBW $[3 \times RBW]$.
- c) Detector = peak.
- d) Trace mode = max hold.
- e) Sweep = auto couple.
- f) Allow the trace to stabilize.
- g) Measure the maximum width of the emission that is constrained by the frequencies associated with the two outermost amplitude points (upper and lower frequencies) that are attenuated by 6 dB relative to the maximum level measured in the fundamental emission.
- 6.5. Test Results

PASSED. All the test results are attached in next pages.

Channel	Center Frequency(MHz)	6 dB Bandwidth(MHz)
11	2405	1.482
20	2450	1.518
25	2475	1.528

CH 11

<u>CH 20</u>



7. OUTPUT POWER MEASUREMENT

7.1. Test Equipment

Item	Туре	Manufacturer	Model No.	Serial No.	Last Cal.	Next Cal.
1.	PXA Signal Analyzer	Agilent	N9030A	MY53120367	2016-05-15	2017-05-14

7.2. Block Diagram of Test Setup

7.3. Specification Limits (§15.247(b)(3))

For systems using digital modulation in the 902-928 MHz, 2400-2483.5 MHz, and 5725-5850 MHz bands: 1 Watt. As an alternative to a peak power measurement, compliance with the one Watt limit can be based on a measurement of the maximum conducted output power. Maximum Conducted Output Power is defined as the total transmit power delivered to all antennas and antenna elements averaged across all symbols in the signaling alphabet when the transmitter is operating at its maximum power control level. Power must be summed across all antennas and antenna elements. The average must not include any time intervals during which the transmitter is off or is transmitting at a reduced power level. If multiple modes of operation are possible (e.g., alternative modulation methods), the maximum conducted output power is the highest total transmit power occurring in any mode.

7.4. Test Procedure

- a) Set span to at least 1.5 times the OBW.
- b) Set RBW = 1-5% of the OBW, not to exceed 1 MHz.
- c) Set VBW \geq 3 x RBW.
- d) Number of points in sweep $\geq 2 \times \text{span} / \text{RBW}$. (This gives bin-to-bin spacing $\leq \text{RBW}/2$, so that narrowband signals are not lost between frequency bins.)
- e) Sweep time = auto.
- f) Detector = RMS (i.e., power averaging), if available. Otherwise, use sample detector mode.
- g) If transmit duty cycle < 98 %, use a sweep trigger with the level set to enable triggering only on full power pulses. The transmitter shall operate at maximum power control level for the entire duration of every sweep. If the EUT transmits continuously (i.e., with no off intervals) or at duty cycle \ge 98 %, and if each transmission is entirely at the maximum power control level, then the trigger shall be set to "free run".
- h) Trace average at least 100 traces in power averaging (i.e., RMS) mode.
- i) Compute power by integrating the spectrum across the OBW of the signal using the instrument's band power measurement function, with band limits set equal to the OBW band edges. If the instrument does not have a band power function, sum the spectrum levels (in power units) at intervals equal to the RBW extending across the entire OBW of the spectrum.

7.5. Test Results

PASSED. All the test results are attached in next pages.

Channel	Frequency	Power(dBm)	Limit(dBm)
11	2405	4.25	30
20	2450	4.01	30
25	2475	3.81	30
26	2480	-4.65	30

8. BAND EDGES MEASUREMENT

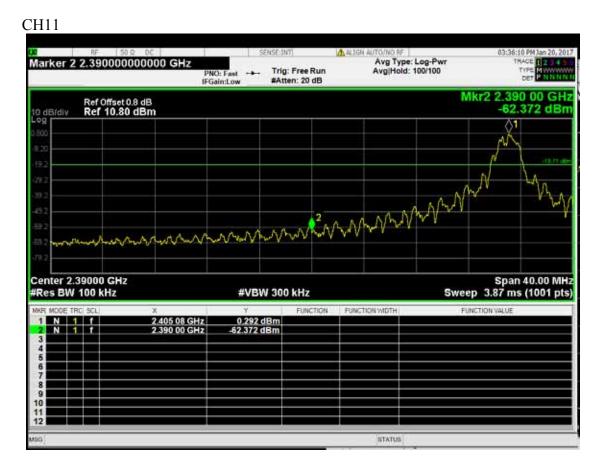
8.1. Test Equipment

Iten	и Туре	Manufacturer	Model No.	Serial No.	Last Cal.	Next Cal.
1.	PXA Signal Analyzer	Agilent	N9030A	MY53120367	2016-05-15	2017-05-14

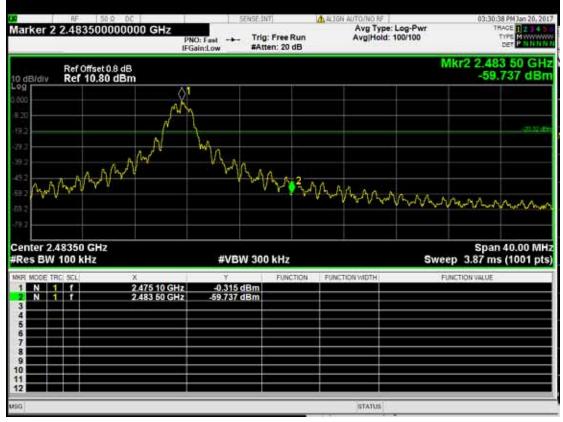
8.2. Block Diagram of Test Setup

The same as section 5.2.

8.3. Specification Limits (§15.247(d))


In any 100 kHz bandwidth outside the frequency band in which the spread spectrum or digitally modulated intentional radiator is operating, the radio frequency power that is produced by the intentional radiator shall be at least 20 dB below that in the 100 kHz bandwidth within the band that contains the highest level of the desired power, based on either an RF conducted or a radiated measurement, provided the transmitter demonstrates compliance with the peak conducted power limits. If the transmitter complies with the conducted power limits based on the use of RMS averaging over a time interval, as permitted under paragraph (b)(3) of this section, the attenuation required under this paragraph shall be 30 dB instead of 20 dB. Attenuation below the general limits specified in Section 15.209(a) is not required. In addition, radiated emissions which fall in the restricted bands, as defined in Section 15.205(a), must also comply with the radiated emission limits specified in Section 15.209(a) (see Section 15.205(c)).

8.4. Test Procedure


The transmitter output was connected to the test receiver / spectrum analyzer. Set RBW of spectrum analyzer to 100kHz and VBW to 300kHz with suitable frequency span including 100kHz bandwidth from band edge.

8.5. Test Results

PASSED. The testing data was attached in the next pages.

CH25

RF 50	Q 00 Q	SENSE	:INT] 🔼	LIGN AUTO/NO RF		03:32:02 PM Jan 20, 2
arker 2 2.483500	PN		rig: Free Run Atten: 20 dB	Avg Type: Avg Hold: 1		TRACE 2 3 4 TYPE MYNYW DET P N N N
Ref Offset (dB/div Ref 10.80).8 dB IdBm				M	lkr2 2.483 50 GH -54.975 dB
200		×1				
20		A.				
22		N				48.57.4
		N	his			
92	- Alad	Afw	My 2 n a	A		
A ALAMAA	mann	NW	Mr 2 Mar	Manna	mand	AA
2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2	man	N ^W	Vh 2Vh vh	Minna	M.M.	mm
enter 2.48350 GHz	mm			MMMM		Span 40.00 M
enter 2.48350 GHz Res BW 100 kHz		#VBW 30	00 kHz		Swee	Span 40.00 Mi p 3.87 ms (1001 pt
enter 2,48350 GHz Res BW 100 kHz RR MODE TRC SCL	X 2.480 10 GHz	#VBW 30	00 kHz FUNCTION F	ปี เพราะเพชาน	Swee	Span 40.00 MI p 3.87 ms (1001 pt
enter 2.48350 GHz Res BW 100 kHz RF MODE TRC SCL	x	#VBW 30	00 kHz FUNCTION F		Swee	Span 40.00 Mi p 3.87 ms (1001 pt
enter 2.48350 GHz Res BW 100 kHz R MODE TRC SCL 1 N 1 f 2 N 1 f 3 4 5	X 2.480 10 GHz	#VBW 30	00 kHz FUNCTION F		Swee	Span 40.00 Mi p 3.87 ms (1001 pt
enter 2.48350 GHz Res BW 100 kHz I N 1 f N 1 f N 1 f A 1 G G	X 2.480 10 GHz	#VBW 30	00 kHz FUNCTION F		Swee	Span 40.00 Mi p 3.87 ms (1001 pt
enter 2.48350 GHz Res BW 100 kHz R MODE TRC SCL 1 N 1 f 2 N 1 f 3 4 5 6	X 2.480 10 GHz	#VBW 30	00 kHz FUNCTION F		Swee	Span 40.00 Mi p 3.87 ms (1001 pt

9. POWER SPECTRAL DENSITY MEASUREMENT

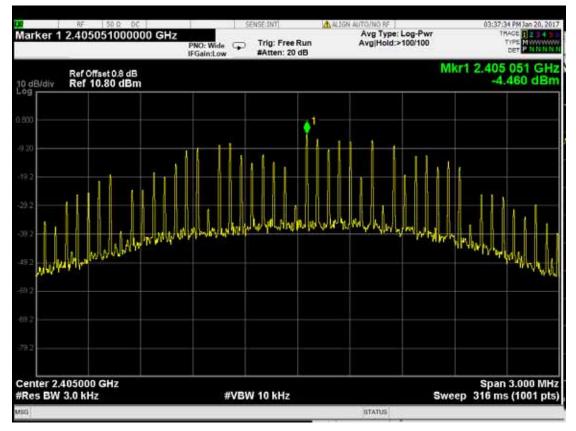
9.1. Test Equipment

Item	Туре	Manufacturer	Model No.	Serial No.	Last Cal.	Next Cal.
1.	PXA Signal Analyzer	Agilent	N9030A	MY53120367	2016-05-15	2017-05-14

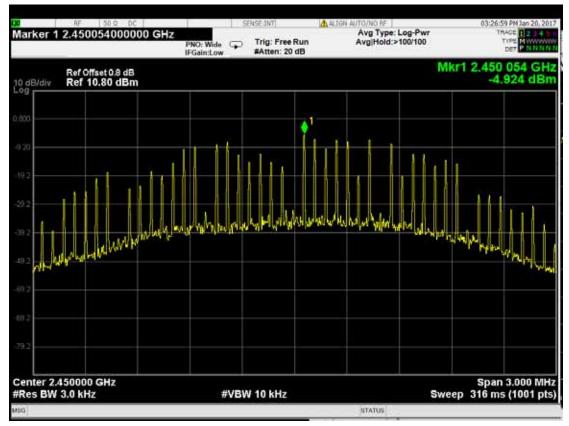
9.2. Block Diagram of Test Setup

The same as section 5.2.

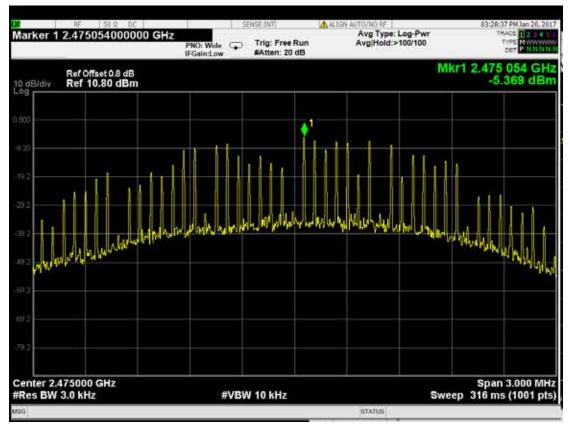
9.3. Specification Limits (§15.247(e))


For digitally modulated systems, the power spectral density conducted from the intentional radiator to the antenna shall not be greater than 8 dBm in any 3 kHz band during any time interval of continuous transmission.

9.4. Test Results


PASSED. All the test results are attached in next page.

Channel	Frequency(GHz)	Value(dBm/3kHz)
11	2.405	-4.460
20	2.450	-4.924
25	2.475	-5.369


CH 11

CH 20

10.EMISSION LIMITATIONS MEASUREMENT

10.1. Test Equipment

Item	Туре	Manufacturer	Model No.	Serial No.	Last Cal.	Next Cal.
1.	PXA Signal Analyzer	Agilent	N9030A	MY53120367	2015-05-15	2017-05-14

10.2. Block Diagram of Test Setup

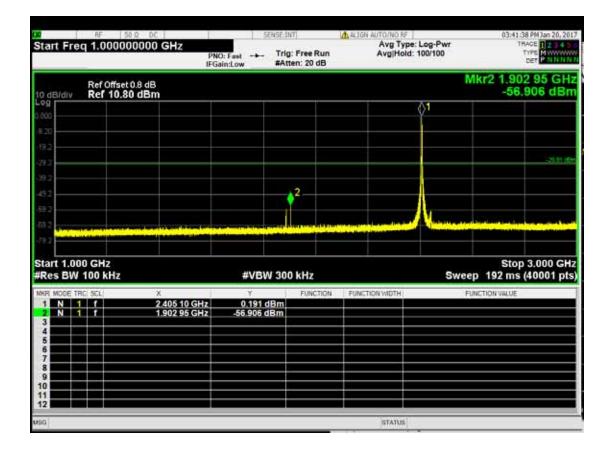
The same as section 5.2.

10.3. Specification Limits (§15.247(d))

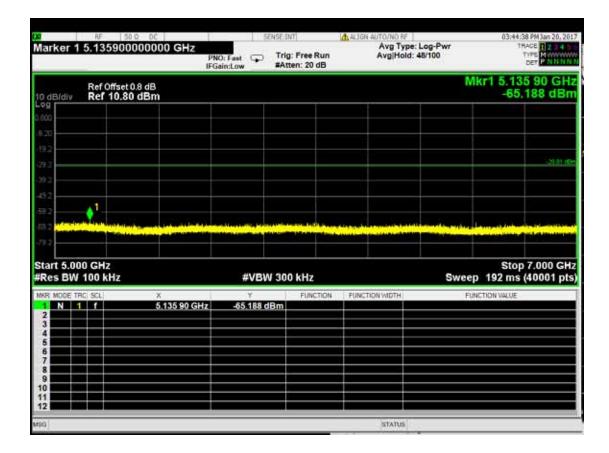
In any 100 kHz bandwidth outside the frequency band in which the spread spectrum or digitally modulated intentional radiator is operating, the radio frequency power that is produced by the intentional radiator shall be at least 20 dB below that in the 100 kHz bandwidth within the band that contains the highest level of the desired power, based on either an RF conducted or a radiated measurement, provided the transmitter demonstrates compliance with the peak conducted power limits. If the transmitter complies with the conducted power limits based on the use of RMS averaging over a time interval, as permitted under paragraph (b)(3) of this section, the attenuation required under this paragraph shall be 30 dB instead of 20 dB. Attenuation below the general limits specified in Section 15.209(a) is not required. In addition, radiated emissions which fall in the restricted bands, as defined in Section 15.205(a), must also comply with the radiated emission limits specified in Section 15.209(a) (see Section 15.205(c)).

10.4. Test Procedure

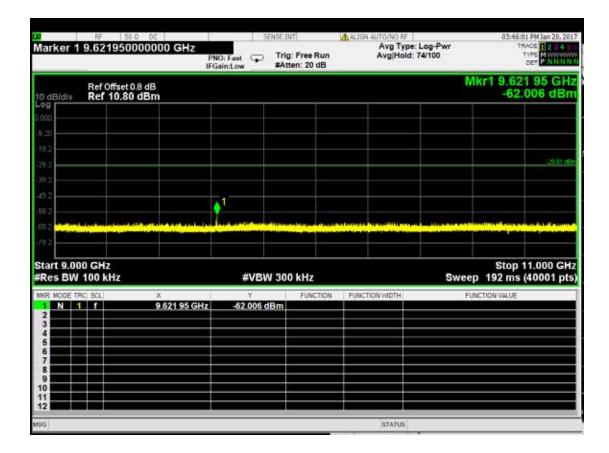
The transmitter output was connected to the spectrum analyzer. Set RBW = 100kHz, VBW ≥ 300 kHz, scan up through 10th harmonic. All harmonics/spurs must be at least 30 dB down from the highest emission level within the authorized band as measured with a 100 kHz RBW. The measurement guideline was according to KDB558074 v03r05.

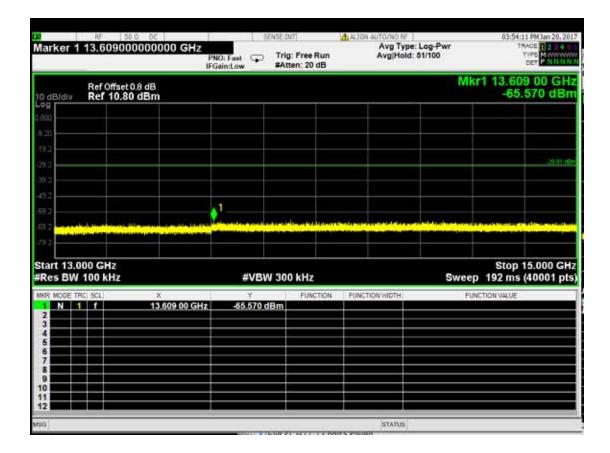

10.5. Test Results

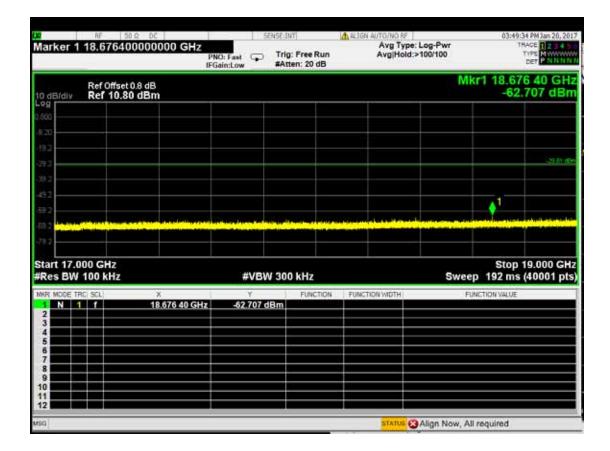
Channel	Frequency(MHz)	Amplitude(dBm)
	907.583	-69.920
	2405.10	0.191
	1902.95	-56.906
	4810.95	-56.775
	5135.90	-65.188
	7216.25	-46.191
11	9621.95	-62.006
	12211.20	-64.924
	13609.00	-65.570
	15130.65	-63.987
	18676.40	-62.707
	19231.40	-62.518
	22741.15	-61.916
	23570.45	-61.983
	823.169	-68.817
	2450.10	0.092
	1903.05	-53.703
	4901.00	-55.976
	5177.80	-64.899
	7351.25	-49.120
20	9801.95	-59.015
20	11533.75	-65.585
	13674.30	-64.591
	16279.55	-65.177
	18925.20	-64.503
	20164.45	-63.800
	22686.00	-62.640
	23604.60	-61.705
	963.310	-70.071
25	2475.10	-0.521
25	1886.15	-48.854
	4951.00	-55.433

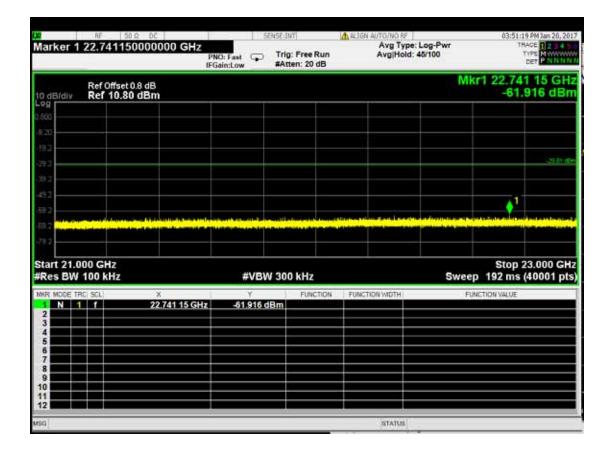

5990.30	-65.293
7426.20	-48.271
9902.00	-62.792
11104.00	-66.039
14811.25	-65.128
15118.90	-64.988
18736.00	-64.021
19305.45	-64.014
22338.20	-62.415

CH	11


arker 1 907.5832	50000 MHz		: Free Run	Avg Type Avg Hold:		03:43:16 PM Jan 20, 2 TRACE 2 2 4 TYPE MYNNW DET P N N H
Ref Offsett	0.8 dB	Gain:Low #At	ten: 20 dB		M	lkr1 907.583 MH -69.920 dB
2						
						-20.81
2						
		A second second Harborn				
3		#VBW 30		n finandon ann a tao bhan bhan Marainn an tao tao bhan an tao		Stop 1.0000 GI
art 30.0 MHz es BW 100 kHz R MODE TRC SCL	× 907.583 MHz	#VBW 30 -69.920 dBm		FUNCTION WDTH	Sweep	Stop 1.0000 GI
art 30.0 MHz es BW 100 kHz MODE TRC SCL N 1 7	X	Ŷ	0 kHz		Sweep	Stop 1.0000 GI 93.3 ms (40001 pl
art 30.0 MHz es BW 100 kHz MODE TRC SCL N 1 1	X	Ŷ	0 kHz		Sweep	Stop 1.0000 Gl 93.3 ms (40001 p
art 30.0 MHz les BW 100 kHz	X	Ŷ	0 kHz		Sweep	Stop 1.0000 GI 93.3 ms (40001 pl

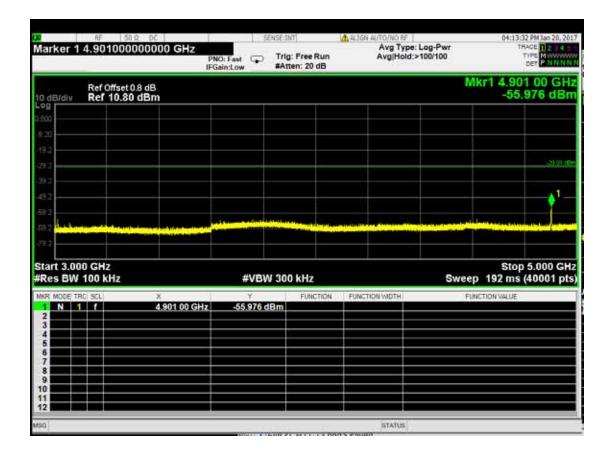

arker 1 4	4.81095000	DOOOD GHz		(1)(1) (ig: Free Run Atten: 20 dB	Aug Type: Avg Type: Avg Hold:	Log-Pwr 84/100	03:44:06 PM Jan 20, 20 TRAGE 1 2 3 4 TYPE M DET 2 N NI
0 dB/div	Ref Offset 0.8 Ref 10.80 c	i dB IBm				Mł	r1 4.810 95 GH -56.775 dBi
300 120							
92							-20.81.0
92 92							
12							•1
2 Notice		i Manang Sunta				-	ter in the Light street in the
tart 3.000 Res BW 1			#VBW 3	00 kHz		Sweep	Stop 5.000 GH 192 ms (40001 pt
art 3.000 Res BW 1 R MODE TRO N 1	IOO KHZ	× 4.810 95 GHz	#VBW 3	FUNCTION	FUNCTION WIDTH	Polyites	Stop 5.000 GF 192 ms (40001 pt TIDNVALUE
art 3.000 Res BW 1 R MODE TRO N 1	IOO KHZ		Ŷ	FUNCTION	FUNCTION WDTH	Polyites	192 ms (40001 pt
Res BW 1 R MDDE TRO N 1 2 3 4 5 5 6 6	IOO KHZ		Ŷ	FUNCTION	FUNCTION WDTH	Polyites	192 ms (40001 pt
art 3.000 Res BW 1 R MODE TRO	IOO KHZ		Ŷ	FUNCTION	FUNCTION WDTH	Polyites	Stop 5.000 GF 192 ms (40001 pt TION VALUE


	50.0 0		5	ENSE:INT]	ALIGN	AUTO/NO RE			PM Jan 20, 20
arker 1 7.21	16250000	PN	IO: Fast 😱 iain:Low	Trig: Free Ru #Atten: 20 dB		Avg Type: Avg Hold: 0	Log-Pwr S3/100	T	AGE 1 2 3 4 1 VPE MWWWW DET P N N N N
dB/div Rei	Offset 0.8 di f 10.80 dB	B M					M	kr1 7.216 -46.1	25 GH 191 dBr
3									
20									
2									229 B1 M
2	• ¹								
2									
12 mininistration	and Coloresteiner								the states
art 7.000 GH			#VBV	V 300 kHz			Sweep	Stop 192 ms (9.000 Gi 40001 pi
art 7.000 GF Res BW 100 R MODE TRC SCL	kHz	× 7 216 25 GHz	Ŷ	FUNCTIO	DN FUNCT	ION WIDTH !	Contraction of Contraction	Stop 192 ms (CTION VALUE	9.000 GH 40001 pt
art 7.000 GH Res BW 100 R MODE TRC SCL N 1 f	kHz	X 7.216 25 GHz	#VBV -46.191 c	FUNCTIO	IN FUNCT	ION WIDTH .	Contraction of Contraction	192 ms (9.000 GH 40001 pi
art 7.000 GF Res BW 100 R MODE TRC SOL N 1 f 3 4 5	kHz		Ŷ	FUNCTIO	UN FUNCT	ION WOTH	Contraction of Contraction	192 ms (9.000 GH 40001 pt
art 7.000 GF Res BW 100 R MODE TRC SCL N 1 f	kHz		Ŷ	FUNCTIO	IN FUNCT	ION WIDTH	Contraction of Contraction	192 ms (9.000 GH 40001 pi
art 7.000 GF Res BW 100 R MODE TRC SCL N 1 f 2 3 4 5 5 5 5 5 7 8 9 0	kHz		Ŷ	FUNCTIO	DN FUNCT		Contraction of Contraction	192 ms (9.000 GH 40001 pt
art 7.000 GH Res BW 100 R MODE TRC SCL N 1 1 2 3 4 5 5 7 8 8	kHz		Ŷ	FUNCTIO	DN FUNCT		Contraction of Contraction	192 ms (9.000 GH

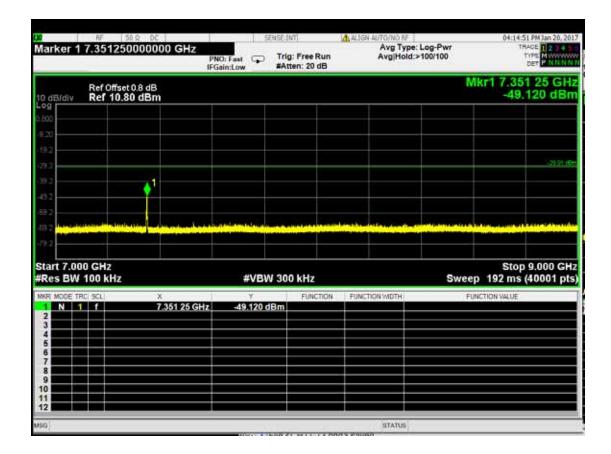

arker 1				rig: Free Run Atten: 20 dB	Avg Type: Avg Hold: 8	Log-Pwr 33/100	03:46:57 PM Jan 20, 20 TRACE 1 2 3 4 TYPE MWWWW DET P N N M
0 dB/div	Ref Offset	0.8 dB 0 dBm				Mkr	1 12.211 20 GH -64.924 dBr
09 C							
20							
+2							Siat a
9.2					1		
	-						a triti belance gi da
9.2					2012		
	000 GHz 100 kHz		#VBW 3	00 kHz		Sweep	Stop 13.000 GH 192 ms (40001 pl
R MODE TH	100 kHz	X 12.211 20 GHz	#VBW 3 -64.924 dBn	FUNCTION	FUNCTION WIDTH	(SAR) AND	Stop 13.000 GF 192 ms (40001 pf TION VALUE
Res BW	100 kHz		Ŷ	FUNCTION	FUNCTION WDTH	(SAR) AND	192 ms (40001 pt
Res BW	100 kHz		Ŷ	FUNCTION	FUNCTION WIDTH	(SAR) AND	192 ms (40001 pt
R MODE TR	100 kHz		Ŷ	FUNCTION	FUNCTION WIDTH	(SAR) AND	Stop 13.000 GH 192 ms (40001 pt TION VALUE

arker 1		30650000		PNO: Fast		nii) g: Free Rur tten: 20 dB		Avg Type: Avg Type: Avg Hold:	Log-Pwr 71/100	03:4	8:31 PM Jan 20, 20 TRACE 1 2 3 4 TYPE MONTH
dB/div	Ref C	offset 0.8 dB 10.80 dBn	n	IFGain:Low	#A)	ten: 20 dB			M	kr1 15.1 -6	30 65 GH 3.987 dBr
200											
20											
+2											-20 B1 r
12											
1 m 1											
Sec. and	2				nus in plan						and the last
2	2						d I d'arrent				
tart 15.0 Res BW	00 GH	iz Hz			#VBW 30	0 kHz			Swe	Stop ep 192 m	p 17.000 GF s (40001 pt
art 15.0 Res BW	100 k	Hz	× 5.130.65.GH	- T	#VBW 30 Y	0 kHz FUNCTIO	N FUNC	TION WDTH !		Stop 9 192 m	s (40001 pl
art 15.0 Res BW	100 k	Hz		- T	Ŷ	and the second	N FUNC	TIDE WDTH		ep 192 m	s (40001 pl
art 15.0 Res BW R MODE TF 2 3 4 5 5	100 k	Hz		- T	Ŷ	and the second	N. FUNC	TIDE WDTH		ep 192 m	s (40001 pl
art 15.0 Res BW	100 k	Hz		31	Ŷ	and the second	N FUNC	TIDEN WIDTH		ep 192 m	p 17.000 GH s (40001 pt

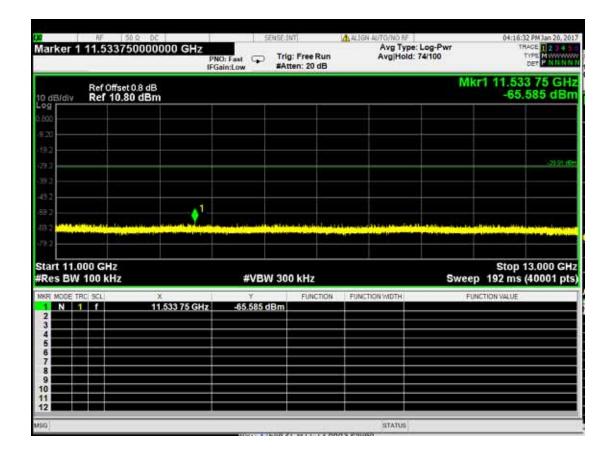
#VBW 300			Mkr	-62.518 d
#\/BW/300				
#\/BW/300				
#\/BW 300				
#\/BW 300				
#VBW 300				telisee Marshall
#VBW 300				
#VBW 300				
Septe 300	kHz		Sweep	Stop 21.000 192 ms (40001
Y -62.518 dBm	FUNCTION F	UNCTION WIDTH	FUNC	TION VALUE
			STATUS	STATUS

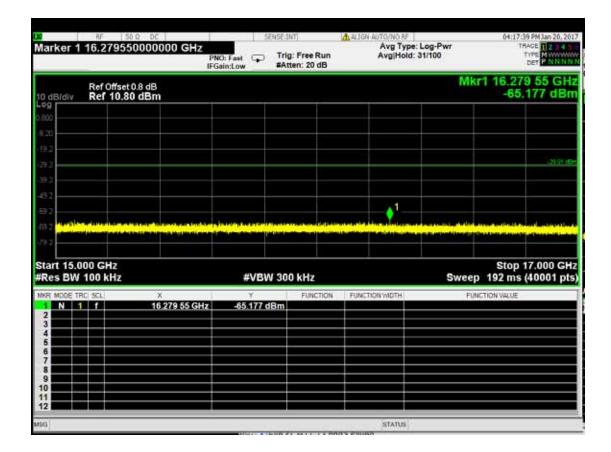


	RF 50 C		SENS	SE:SNT]	ALIGN AUTO/NO RF		03:53:11 PM Jan 20, 20
arker 1	23.570450			Trig: Free Run #Atten: 20 dB	Avg Type: Avg Hold:>	Log-Pwr 100/100	TRACE 2 3 4 5 TYPE MWWWW DET P N N N N
0 dBfdiv	Ref Offset 0. Ref 10.80					Mkr	1 23.570 45 GH -61.983 dBr
00 00							
20					_		
9.2							Los en re
+2							
92							
12	in a fille di tio parta					fining string bi	
9.7							
	000 GHz 100 kHz		#VBW :	300 kHz		Sweep	Stop 25.000 GH 192 ms (40001 pt
R MODE TH	100 kHz	×	Ŷ	FUNCTION	FUNCTION WIDTH	2 solution	Stop 25.000 GH 192 ms (40001 pt TIONVALUE
Res BW	100 kHz	X 23.570 45 GHz		FUNCTION	FUNCTION WIDTH	2 solution	192 ms (40001 pt
Res BW	100 kHz		Ŷ	FUNCTION	FUNCTION WIDTH	2 solution	192 ms (40001 pt
Res BW	100 kHz		Ŷ	FUNCTION	FUNCTION WIDTH	2 solution	192 ms (40001 pt
Res BW	100 kHz		Ŷ	FUNCTION	FUNCTION WIDTH	2 solution	192 ms (40001 pt
Res BW	100 kHz		Ŷ	FUNCTION	FUNCTION WIDTH	2 solution	Stop 25.000 GH 192 ms (40001 pt TIDN VALUE

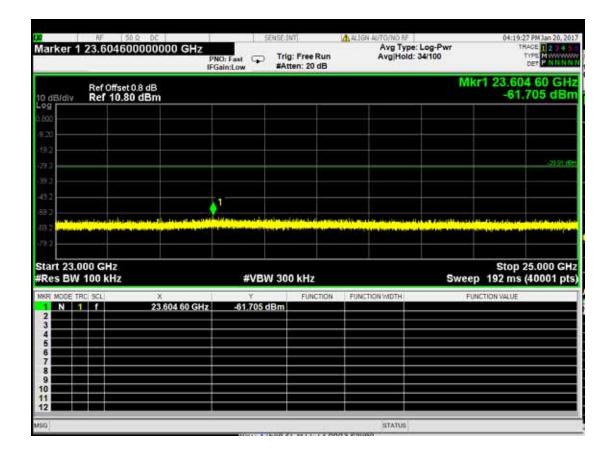

CH 20

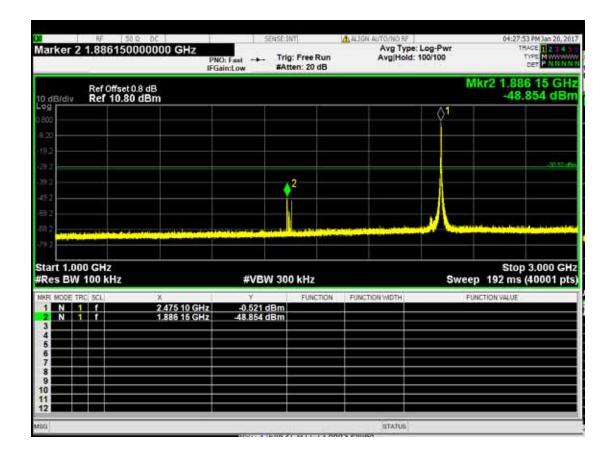
arker 1 823.16900	DOOOO MHz		g: Free Run tten: 20 dB	Avg Type: Avg Hold:>	Log-Pwr 100/100	71	B PM Jan 20, 20 NACE 1 2 3 4 5 TYPE MWWWW DET P N N N N
Ref Offset 0 dB/div Ref 10.80	.8 dB dBm					Mkr1 823 -68.	169 MH 817 dBr
*9 800 120							
92							-20 01 IS
92 92							
82						1	
tart 30.0 MHz						\$1 Stop	1.0000 GH
tart 30.0 MHz Res BW 100 kHz		#VBW 30	and the second			ep 93.3 ms	1.0000 GH (40001 pt
tart 30.0 MHz	X 823.169 MHz	#VBW 30	0 kHz FUNCTION	FUNCTION WDTH		Stop 93.3 ms	1.0000 GH (40001 pt
tart 30.0 MHz Res BW 100 kHz Res BW 100 kHz		Ŷ	and the second	FUNCTION WIDTH		ep 93.3 ms	1.0000 GH (40001 pt
tart 30.0 MHz Res BW 100 kHz R MODE TRC SCL N 1 7 2 3 4 5 6		Ŷ	and the second	FUNCTION WDTH		ep 93.3 ms	1.0000 GF (40001 pt


RF 50 0 00 9030500000000 GH;	PNO: East +++ Trig	: Free Run	Avg Type: Log-Pwr Avg Hold: 100/100	04:11:24 PMJan 20, 20 TRACE 1 2 3 4 TYPE MANNAN DET PINISH
				Mkr2 1.903 05 GH -53.703 dBr
			\\Q1	
				-20.01
		¢2		
				and the second se
	#VBW 30	0 kHz	Swe	Stop 3.000 Gl p 192 ms (40001 pl
	Y GHz 0.092 dBm	FUNCTION F	UNCTION WOTH F	UNCTION VALUE
	tef Offset 0.8 dB tef 10.80 dBm	IFGain:Low #At tef Offset 0.8 dB tef 10.80 dBm SHZ 0 kHz #VBW 300 SHZ 0 kHz 9 4 4 4 4 4 4 4 4 4 4 4 4 4	PRO: Fast → Trig: Free Run IFGain:Low #Atten: 20 dB tef Offset 0.8 dB tef 10.80 dBm 2 2 2 3 3 3 4 4 4 4 4 4 4 4 4 4 4 4 4	PNO: Fast (FGsin:Low Trig: Free Run #Atten: 20 dB Avg Hold: 100/100 tef Offset 0.8 dB tef 10.80 dBm 0 0 2 0

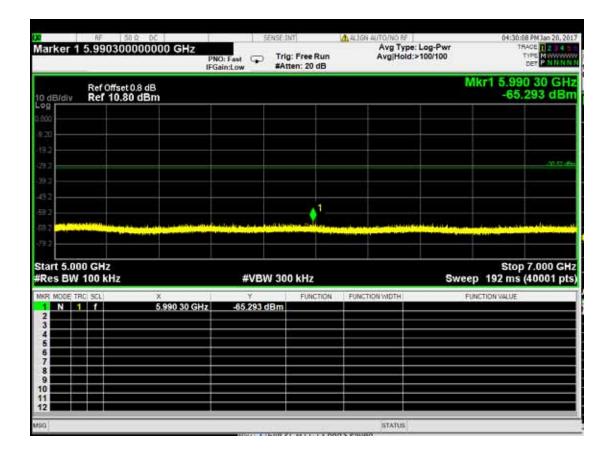

arker 1 5.1778000	000000 GHz		ig: Free Run Atten: 20 dB	ALIGN AL	Avg Type: I Avg Hold: 2	Log-Pwr 9/100	TF	7 PM Jan 20, 20 NACE 1 2 4 4 TYPE MUNICIPAL POINT OF POIN
Ref Offset 0. dB/dlv Ref 10.80	8 dB dBm					M	lkr1 5.17 -64.	7 80 GH 899 dBr
99 00								
20								
2								-20.91 H
12								
				Anno ann is an		int lines in Leve	unutukase	
				fami ya ka				
art 5.000 GHz		#VBW 3	00 kHz			Sweej	Stop p 192 ms	7.000 GH (40001 pt
art 5.000 GHz Res BW 100 kHz R MODE TRCI SCL N 1 f	X 5.177 80 GHz	#VBW 30 ¥VBW 30 ¥	FUNCTION	FUNCTION	N WDTH	20.040	Stop p 192 ms NCTION VALUE	7.000 Gi (40001 pi
art 5.000 GHz Res BW 100 kHz R MODE TRC SCL		Ŷ	FUNCTION	FUNCTION	NWDTH .	20.040	p 192 ms	7.000 Gi (40001 pi
art 5.000 GHz Res BW 100 kHz R MODE TRC SCL N 1 f		Ŷ	FUNCTION	FUNCTION	N WDTH .	20.040	p 192 ms	7.000 GH (40001 pl
Tart 5.000 GHz Res BW 100 kHz Res BW 100 kHz R MDDE TRC SCL N 1 f		Ŷ	FUNCTION	FUNCTIO	N WDTH	20.040	p 192 ms	7.000 GH (40001 pt


arker 1 9.801950000000 G	PNO: Fast IFGain:Low #Atten:	ree Run Avg Hol	pe: Log-Pwr d:>100/100	04:15:45 PM Jan 20, 20 TRACE 1 2 1 4 TYPE M
Ref Offset 0.8 dB D dB/div Ref 10.80 dBm			Mkr	1 9.801 95 GH -59.015 dBr
20 200				
22				
12				-29.91 H
12	1			
	and the second second	na konstantation		telete top de Vienlag Lude
2			_	
art 0 000 CH2				Stop 11 000 CH
tart 9.000 GHz Res BW 100 kHz	#VBW 300 k	Hz	Sweep	Stop 11.000 GH 192 ms (40001 pt
Res BW 100 kHz R MODE TRC SCL X N 1 f 9.801 S	Y 1	HZ FUNCTION WDTH	Contract (March 1)	Stop 11.000 GH 192 ms (40001 pf DN VALUE
Res BW 100 kHz R Mode TRC SCL X N 1 7 9.801 9 2 3 4 4 4 4 5 5 5 5 5 5	Y 1		Contract (March 1)	192 ms (40001 pl
Res BW 100 kHz R MODE TRC SCL X 9.801 9 8 8 9 8 9 9 8 9 9 9 9 9 9 9 9 9 9 9 9	Y 1		Contract (March 1)	192 ms (40001 pt
Res BW 100 kHz	Y 1		Contract (March 1)	192 ms (40001 pt

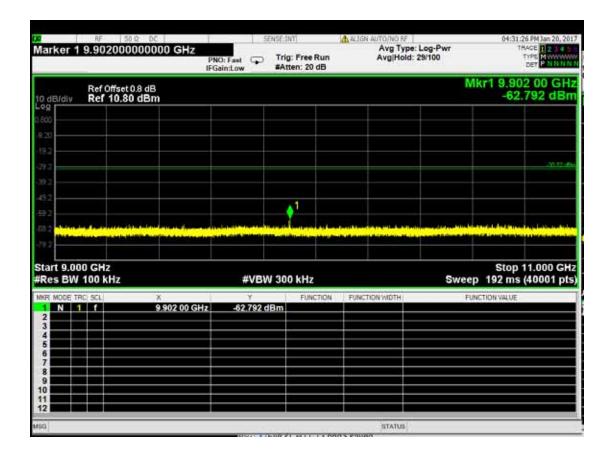

arker 1 13.6743			g: Free Run Iten: 20 dB	ALIGN AUTO/NO RF Avg Type: Log Avg Hold: 57/1	-Pwr 00	04:17:11 PMJan 20,20 TRACE 1 2 3 4 TYPE M WWWW DET P N IN N
Ref Offs dB/div Ref 10.	et 0.8 dB 80 dBm				Mkr	13.674 30 GH -64.591 dBr
og 800						
20						
+2 +2						-20.91.8
92		1				
	, il and a start of the	- transformer and a second				ul al domini de la comune d
9.7						
tart 13.000 GHz Res BW 100 kHz		#VBW 30	0 kHz		Sweep	Stop 15.000 GH 192 ms (40001 pt
	× 13.674 30 GHz	Y -64.591 dBm	FUNCTION	FUNCTION WIDTH	FUNCT	ION VALUE
1 N 1 f	13.674 30 GHZ					
	13.674 30 GHZ					
N 1 f 2 3 4 5	13.074 30 GHZ					
KR MODE TRC SCL	13.074 30 GHZ					
N 1 7 2 3 4 5 6 7 7 8	13.0/4 30 GHZ					


arker 1 18.925200	0000000 GHz		g: Free Run Itten: 20 dB	Avg Type: Log-Pr Avg Hold: 25/100		18:03 PM Jan 20, 20 TRACE 1 2 3 4 5 TYPE MWWWW DET P N N N
Ref Offset 0 dBirdiv Ref 10.80	.8 dB dBm				Mkr1 18.	925 20 GH 34.503 dBr
29 00						
20						
12						-29.91 #
2						
			men kere			
			and the second party is			and a little second second second
art 17.000 GHz Res BW 100 kHz		#VBW 30	0 kHz		Sto Sweep 192 n	p 19.000 Gi ns (40001 pi
art 17.000 GHz Res BW 100 kHz R MODE TRC SCL N 1 f	X 18.925 20 GHz	#VBW 30 ¥ -84.503 dBm	0 kHz FUNCTION	FUNCTION WDTH	Sto Sweep 192 n FUNCTION VAL	ns (40001 pl
art 17.000 GHz Res BW 100 kHz R MODE TRC SCL N 1 1		Y	In the second second second second	FUNCTION WDTH	Sweep 192 n	ns (40001 pl
art 17.000 GHz Res BW 100 kHz R MODE TRC SCL N 1 f		Y	In the second second second second	FUNCTION WDTH	Sweep 192 n	ns (40001 pl
tart 17.000 GHz Res BW 100 kHz IR MODE TRC SCL		Y	In the second second second second	FUNCTION WIDTH	Sweep 192 n	

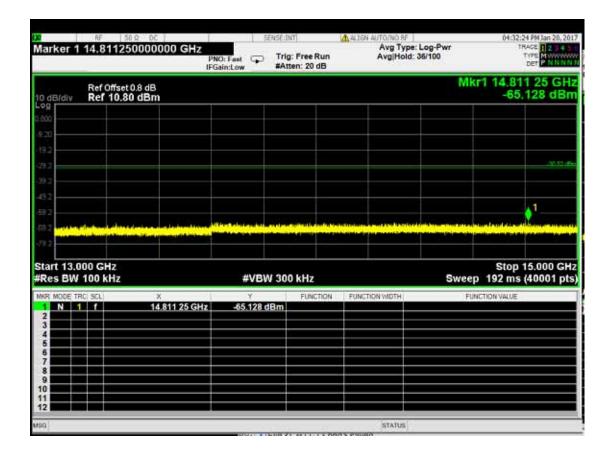
	RF 50 0 00 2.6860000000000 GH	PNO: East C Trig	: Free Run ten: 20 dB	ALIGN AUTO/NO RF Avg Type: Log-Pwr Avg Hold: 29/100	04:18:56 PM Jan 20, 20 TRACE 1 2 3 4 TYPE M
dBidiy R	ef Offset 0.8 dB tef 10.80 dBm			Λ	Akr1 22.686 00 GH -62.640 dBr
300					
20					
+2 +2					-20.91 r
92					1
					
tart 21.000 Res BW 10		#VBW 300) kHz	Swe	Stop 23.000 GP 2001 Pt 192 ms (40001 pt
R MODE TRC S		Y -62,640 dBm	FUNCTION	FUNCTION WDTH	FUNCTION VALUE
2					
5					
1					

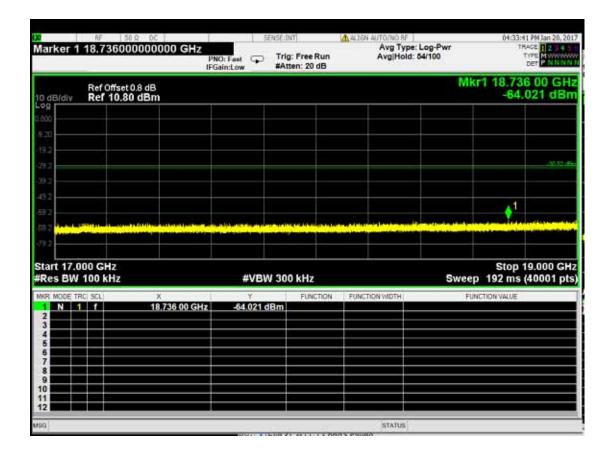


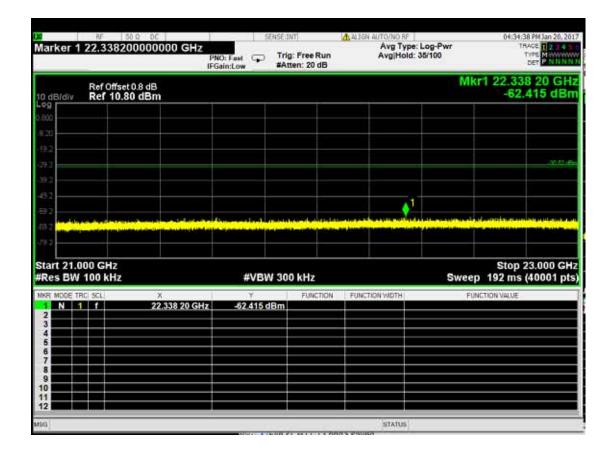
RF 50 Q 0C	SENSE	SN0]	ALIGN AUTO/NO RF		04:28:21 PMJan 20, 20
larker 1 963.309750000 MH;	PNO: East	ig: Free Run tten: 20 dB	Avg Type: L Avg Hold:>1	og-Pwr 00/100	TRACE 1 2 1 4 TYPE MINIMUM DET P NINN
Ref Offset 0.8 dB 0 dBirdiv Ref 10.80 dBm				M	kr1 963.310 MH -70.071 dBr
99					
00					
20					
97					
92					
92					
					1
tu ti katina li kata na dalah mahina	and all the match single burning		interesting to a state of the		
				Sweep	Stop 1.0000 GH 93.3 ms (40001 pt
	#VBW 30	10 kHz			
Res BW 100 kHz	#VBW 30	FUNCTION	FUNCTION WIDTH	Column 1	CTION VALUE
Res BW 100 kHz RF MODE TRC SCL X N 1 f 963.310	Ŷ		FUNCTION WOTH	Column 1	white conversion and
Res BW 100 kHz KR MODE TRC SCL X N 1 f 963.310 2 3 1 1	Ŷ		FUNCTION WDTH	Column 1	win with the second
N 1 X N 1 7 963.310 2 3 4 4	Ŷ		FUNCTION WIDTH	Column 1	white conversion and
Res BW 100 kHz RR MODE TRC SCL X 1 N 1 7 963.310 2 3 4 5 6 6	Ŷ		FUNCTION WIDTH	Column 1	white conversion and
N 1 X <thx< th=""> X X X</thx<>	Ŷ		FUNCTION WIDTH	Column 1	white conversion and
	Ŷ		FUNCTION WDTH	Column 1	with Clifford and Exc



Audix Technology (Wujiang)Co., Ltd. EMC Dept. Report No.: ACWE-F1702001


arker 1 4.951000000	000 GHz PNO: Fast IFGain:Low	in programmero	ALIGN AUTO/NO RF Avg Type: Log-Pwr Avg Hold:>100/100	04:29:09 PM Jan 20, 20 TRACE 1 2 3 4 TIPE MUNICIPAL DET PIN HAN
Ref Offset 0.8 dB dB/div Ref 10.80 dBn	r)			Mkr1 4.951 00 GH -55.433 dBr
29 00				
20				
2				
2				
12				
	Internet in the second			
	#V	/BW 300 kHz	Sw	Stop 5.000 GH eep 192 ms (40001 pt
Res BW 100 kHz	X Y	FUNCTION	FUNCTION WIDTH	Stop 5.000 GH eep 192 ms (40001 pt FUNCTION VALUE
Res BW 100 kHz R MODE TRC SCL N 1 f	X Y		the later of the second s	eep 192 ms (40001 pt
Res BW 100 kHz R MODE TRC SCL N 1 f	X Y	FUNCTION	the later of the second s	eep 192 ms (40001 pt
Res BW 100 kHz R MODE TRC SCL N 1 f	X Y	FUNCTION	the later of the second s	eep 192 ms (40001 pt
	X Y	FUNCTION	the later of the second s	Stop 5.000 GH eep 192 ms (40001 pt FUNCTION VALUE


	tun Avg Hold:>100/100	04:31:03 PM Jan 20, 20 TRACE 1 2 3 4 TIME MUNICIPAL DET PINTER
		Mkr1 7.426 20 GH -48.271 dBr
	والمتعادية والمراجع والمراجع المحمد	analiki genta, belandak menanaki
#VBW 300 kHz	5	Stop 9.000 G Sweep 192 ms (40001 pt
Y FUNC Hz -48.271 dBm	TION FUNCTION WOTH	FUNCTION VALUE
	PNO: Fast IFGain:Low Trig: Free R #Atten: 20 d	PNO: Fast IFGain:Low Trig: Free Run #Atten: 20 dB Avg Type: Log-Pwr Avg Hold:>100/100 Avg Hold:>100/


	0.0 00	SENSE:	1N7] 🔼	ALIGN AUTO/NO RF	04:31:55 PM Jan 20, 20
arker 1 11.10400	P		g: Free Run tten: 20 dB	Avg Hold: 42/100	
Ref Offset D dB/div Ref 10.8	0.8 dB 0 dBm				Mkr1 11.104 00 GH -66.039 dBr
200					
20					
22					
2					
2					
17 Internetic auto	and the state of the state of	la en existe la later ha	all set of the set of		and a second distance of the second
Controlle constitution in the					
art 11.000 GHz		#VBW 30	10 kHz		Stop 13.000 GF Sweep 192 ms (40001 pf
tart 11.000 GHz Res BW 100 kHz	X 11 104 00 GHz	Ŷ		FUNCTION WDTH :	Stop 13.000 GF Sweep 192 ms (40001 pt FUNCTION VALUE
art 11.000 GHz Res BW 100 kHz R MODE TRC SCL N 1 f	X 11.104.00 GHz	Ŷ		and the control of the state of	Sweep 192 ms (40001 pt
art 11.000 GHz Res BW 100 kHz R MODE TRC SCL N 1 f		Ŷ		and the control of the state of	Sweep 192 ms (40001 pt
art 11.000 GHz Res BW 100 kHz R MDDE TRC SCL N 1 f		Ŷ		and the control of the state of	Sweep 192 ms (40001 pt
Tart 11.000 GHz Res BW 100 KHz RES BW 100 KHz REMODE TRC SCL N 1 f 2 3 4 4 5 6 6 7 7 8 9 9 0		Ŷ		and the control of the state of	Stop 13.000 GF Sweep 192 ms (40001 pt FUNCTION VALUE
Image: Second		Ŷ		and the control of the state of	Sweep 192 ms (40001 p

arker 1 15.118900000000 GHz	PNO: Enst	T I I I I I I I I I I I I I I I I I I I	Avg Type: Log-Pwr Avg Hold: 41/100	04:32:54 PM Jan 20, 20 TRACE 1 2 3 4 9 TYPE M DET P N N N
Ref Offset 0.8 dB dB/div Ref 10.80 dBm				Mkr1 15.118 90 GH -64.988 dBr
P4				
20				
2				
12				
	and all the second states and the second states and the			
			متعلقات وتعليما الألكار أرائك المتعلقات المتعلقات الألك	
art 15.000 GHz Res BW 100 kHz	#VBW 300	kHz	St	Stop 17.000 GF weep 192 ms (40001 pf
art 15.000 GHz Res BW 100 kHz R MODE TRC SCL X N 1 f 15.118 90 GH	Y Y	stands and speak the second	UNICTION WADTH	Stop 17.000 GF weep 192 ms (40001 pt FUNCTION VALUE
art 15.000 GHz Res BW 100 kHz R MODE TRC SCL X N 1 f 15.118 90 GH	Y Y	stands and speak the second	A REPORT OF A R	weep 192 ms (40001 pt
art 15.000 GHz Res BW 100 kHz R MODE TRC SCL X N 1 f 15.118 90 GH	Y Y	stands and speak the second	A REPORT OF A R	weep 192 ms (40001 pt
rart 15.000 GHz Res BW 100 kHz R MODE TRC SCL X	Y Y	stands and speak the second	A REPORT OF A R	Stop 17.000 GH weep 192 ms (40001 pt FUNCTION VALUE

arker 1 19.305450000000 GH	SENSE (INT)		GN AUTO/NO RF	04:34:08 PM Jan 20, 20 TRACE
	PNO: Fast C Trig: F IFGain:Low #Atten	ree Run : 20 dB	AvgiHold: 31/100	DET P NNNA
Ref Offset 0.8 dB D dB/div Ref 10.80 dBm				Mkr1 19.305 45 GH -64.014 dBr
og 200				
20				
22				- 20.02.4
2				
22 				
		lanije fastikala ka	a di dia mata a santa da d	
art 19.000 GHz	#VBW 300 k	Hz	seditetti en de se la tria di uni	Stop 21.000 GF veep 192 ms (40001 pf
tart 19.000 GHz Res BW 100 kHz	Ŷ	and the second line of the second	SV CTION WDTH	Stop 21.000 GH veep 192 ms (40001 pt FUNCTION VALUE
tart 19.000 GHz Res BW 100 kHz R MODE TRC SCL X 1 N 1 f 19.305 45 G	Ŷ	and the second line when the	and the second range of the	veep 192 ms (40001 pt
Tart 19.000 GHz Res BW 100 kHz Res BW 100 kHz R MODE TRC SCL X N 1 7 19.305 45 G	Ŷ	and the second line when the	and the second range of the	veep 192 ms (40001 pt
R MODE TRCI SCL X N 1 7 19.305 45 G	Ŷ	and the second line when the	and the second range of the	veep 192 ms (40001 pt
Image: Second State Image: Second State	Ŷ	and the second line when the	and the second range of the	veep 192 ms (40001 pt
Aart 19,000 GHz Res BW 100 KHz R MODE TRC SCL X N 1 f 19,305 45 G	Ŷ	and the second line when the	and the second range of the	veep 192 ms (40001 pt

9	RF 50 Q	00	SEN	SE:DVT]	ALIGN AUTO/NO RF		04:35:47 PMJan 20, 20
larker 1 23	3.57520000	PNC		Trig: Free Run #Atten: 20 dB	Avg Type: Avg Hold:>	Log-Pwr 100/100	TRACE 1 2 3 4 5 TYPE MYWWWW DET NNNN
0 dB/div	Ref Offset 0.8 d Ref 10.80 dB	B im				Mkr	1 23.575 20 GH -61.591 dBr
09 800							
20							
+2							31.04
9.2							
92							
		THE OWNER WATER OF A DESCRIPTION OF A DE					
12 Malecarbell						inter line (m.	
The second second							
tart 23.000				300 kHz		Sweep	Stop 25.000 GF 192 ms (40001 pt
tart 23.000 Res BW 10	SCL	X	#VBW	300 kHz	FUNCTION WIDTH	Constant of	Stop 25.000 GH 192 ms (40001 pt TIDIVAUE
art 23.000 Res BW 10 MODE TRC 3 N 1 2	SCL	X 233.575 20 GHz	#VBW	300 kHz		Constant of	192 ms (40001 pt
art 23.000 Res BW 10 R MODE TRC 3	SCL		#VBW	300 kHz		Constant of	192 ms (40001 pt
tart 23.000 Res BW 10 R MODE TRC 1 N 1 3 4 5 5	SCL		#VBW	300 kHz		Constant of	192 ms (40001 pt
2 3 4 5 6 7 8 9	SCL		#VBW	300 kHz		Constant of	192 ms (40001 pt
tart 23.000 Res BW 10 R MODE TRC: 1 N 1 2 3 4 4 5 6 7 8	SCL		#VBW	300 kHz		Constant of	Stop 25.000 GH 192 ms (40001 pt TION VALUE

11.DUTY CYCLE

11.1. Test Equipment

Item	Туре	Manufacturer	Model No.	Serial No.	Last Cal.	Next Cal.
1.	PXA Signal Analyzer	Agilent	N9030A	MY53120367	2016-05-15	2017-05-14

11.2. Test Results

The measurement of duty cycle is 100%.

CH 25

RF 50 Q DC	SENSELINT	ALIGN AUTO/NO RF	04:37:14 PM Jan 20, 201 TRACE 2 2 4 5
enter Freq 2.475000000 G	PNO: Fast Trig: Free F IFGain:Low #Atten: 20 0	Run	DET P NNNN
Ref Offset 0.8 dB			Mkr1 23.58 G
00			
20			
2			
12			
2			
.2			
2			
.2			
enter 2.475000000 GHz			Span 0 H
es BW 1.0 MHz	#VBW 1.0 MHz	Swe	ep 50.00 ms (1001 pt

12.DEVIATION TO TEST SPECIFICATIONS

[NONE]