

FCC 47 CFR PART 15 SUBPART C ISED RSS-247 Issue 2

CERTIFICATION TEST REPORT

For

2.4GHz Wi-Fi/ Bluetooth module

MODEL NUMBER: ESP32-C3-WIZ2012

PROJECT NUMBER: 4789839465

REPORT NUMBER: 4789839465-1

FCC ID: 2AGBW-WIZ2012

IC: 20812-WIZ2012

ISSUE DATE: May. 19, 2021

Prepared for

Signify (China) Investment Co., Ltd

Prepared by

UL-CCIC COMPANY LIMITED

No. 2, Chengwan Road, Suzhou Industrial Park, People's Republic of China

Tel: + 86-512-6808 6400 Fax: + 86-512-6808 4099 Website: www.ul.com

Page 2 of 213

Revision History

Rev.	Issue Date	Revisions	Revised By
V0	05/19/2021	Initial Issue	

TABLE OF CONTENTS

1.	ΑT	TESTATION OF TEST RESULTS	4
2.	TE	ST METHODOLOGY	6
3.	FA	CILITIES AND ACCREDITATION	6
4.	CA	LIBRATION AND UNCERTAINTY	7
	4.1.	MEASURING INSTRUMENT CALIBRATION	7
	4.2.	MEASUREMENT UNCERTAINTY	7
5.	EQ	UIPMENT UNDER TEST	8
	5.1.	DESCRIPTION OF EUT	
	5.2.	MAXIMUM OUTPUT POWER	9
	5.3.	CHANNEL LIST	9
	5.4.	TEST CHANNEL CONFIGURATION	10
	5.5.	THE WORSE CASE POWER SETTING PARAMETER	10
	5.6.	DESCRIPTION OF AVAILABLE ANTENNAS	11
	5.7.	THE WORSE CASE CONFIGURATIONS	11
	5.8.	TEST ENVIRONMENT	12
	5.9.	DESCRIPTION OF TEST SETUP	13
	5.10.	MEASURING INSTRUMENT AND SOFTWARE USED	14
6.	ME	ASUREMENT METHODS	15
7.	AN	TENNA PORT TEST RESULTS	16
	7.1.	ON TIME AND DUTY CYCLE	16
	7.2.	6 dB BANDWIDTH	19
	7.3.	CONDUCTED POWER	33
	7.4.	POWER SPECTRAL DENSITY	35
	7.5.	CONDUCTED BANDEDGE AND SPURIOUS EMISSIONS	46
	_	RADIATED TEST RESULTS	
	7.6 7.6		
	7.6	3. RESTRICTED BANDEDGE	99
	7.6	.4. SPURIOUS EMISSIONS	128
8.	AC	POWER LINE CONDUCTED EMISSIONS	210
a	ΔN	TENNA REQUIREMENTS	213

Page 4 of 213

1. ATTESTATION OF TEST RESULTS

Applicant Information

Company Name: Signify (China) Investment Co., Ltd

Address: #204, Block 2, 690 Bibo Road, Zhang Jiang High-Tech Park,

Shanghai, China

Manufacturer Information

Company Name: Signify (China) Investment Co., Ltd

Address: #204, Block 2, 690 Bibo Road, Zhang Jiang High-Tech Park,

Shanghai, China

EUT Description

Product Name: 2.4GHz Wi-Fi/ Bluetooth module

Model Name: ESP32-C3-WIZ2012

Sample Number: 3686975
Data of Receipt Sample: Mar. 08, 2021

Date Tested: Mar. 09, 2021~ May. 18, 2021

APPLICABLE STANDARDS					
STANDARD	TEST RESULTS				
CFR 47 Part 15 Subpart C	PASS				
ISED RSS-247 Issue 2	PASS				
ISED RSS-GEN Issue 5	PASS				

Page 5 of 213

Summary of Test Results						
Clause	Test Items	FCC Rules	Test Results			
1	6db DTS Bandwidth and 99% Bandwidth	FCC 15.247 (a) (2) RSS-247 Clause 5.2 (a) RSS-Gen Clause 6.7	Complied			
2	Conducted Power	FCC 15.247 (b) (3) RSS-247 Clause 5.4 (d) RSS-Gen Clause 6.12	Complied			
3	Power Spectral Density	FCC 15.247 (e) RSS-247 Clause 5.2 (b)	Complied			
4	Conducted Band edge And Spurious emission	FCC 15.247 (d) RSS-247 Clause 5.5 RSS-GEN Clause 6.13	Complied			
5	Radiated Band edges and Spurious emission	FCC 15.247 (d) FCC 15.209 FCC 15.205 RSS-247 Clause 5.5 RSS-GEN Clause 8.9 RSS-GEN Clause 6.13	Complied			
6	Conducted Emission Test For AC Power Port	FCC 15.207 RSS-GEN Clause 8.8	Complied			
7	Antenna Requirement	FCC 15.203 RSS-GEN Clause 6.8	Complied			

Remark:

Prepared By:	Reviewed By:	
Jason Yang	Tom Tang	
Jason Yang Engineer	Tom Tang Project Engineer	
Authorized By:		
Chris Zhong		
Chris Zhong Laboratory Leader		

¹⁾ The measurement result for the sample received is <Pass> according to < ANSI C63.10-2013, FCC CFR 47 Part 2, FCC CFR 47 Part 15C, ISED RSS-GEN, ISED RSS-247> when <Accuracy Method> decision rule is applied.

Page 6 of 213

2. TEST METHODOLOGY

The tests documented in this report were performed in accordance with FCC KDB 558074 D01 15.247 Meas Guidance v05r02, KDB 414788 D01 Radiated Test Site v01r01, ANSI C63.10-2013, FCC CFR 47 Part 2, FCC CFR 47 Part 15, ISED RSS-GEN ISSUE5, ISED RSS-247 ISSUE2.

3. FACILITIES AND ACCREDITATION

Accreditation Certificate	A2LA (Certificate No.: 4829.01) UL-CCIC COMPANY LIMITED has been assessed and proved to be in compliance with A2LA. FCC (FCC Designation No.: CN1247) UL-CCIC COMPANY LIMITED has been recognized to perform compliance testing on equipment subject to the Commission's Declaration of Conformity (DoC) and Certification rules. IC (IC Designation No.: 25056) UL-CCIC COMPANY LIMITED has been recognized to perform compliance testing on equipment subject to the Commission's Declaration of Conformity (DoC) and Certification rules.
------------------------------	--

Note 1: All tests measurement facilities use to collect the measurement data are located at No. 2, Chengwan Road, Suzhou Industrial Park, Suzhou 215122, People's Republic of China

Note 2: For below 30MHz, lab had performed measurements at test anechoic chamber and comparing to measurements obtained on an open field site. These measurements below 30MHz had been correlated to measurements performed on an OFS.

Note 3: The test anechoic chamber in UL-CCIC COMPANY LIMITED had been calibrated and compared to the open field sites and the test anechoic chamber is shown to be equivalent to or worst case from the open field site.

Page 7 of 213

4. CALIBRATION AND UNCERTAINTY

4.1. MEASURING INSTRUMENT CALIBRATION

The measuring equipment utilized to perform the tests documented in this report has been calibrated in accordance with the manufacturer's recommendations, and is traceable to recognized national standards.

4.2. MEASUREMENT UNCERTAINTY

Where relevant, the following measurement uncertainty levels have been estimated for tests performed on the apparatus:

Test Item	Uncertainty
Conduction emission	3.1dB
Radiation Emission test(include Fundamental emission) (9KHz-30MHz)	3.4dB
Radiation Emission test(include Fundamental emission) (30MHz-1GHz)	3.4dB
Radiation Emission test (1GHz to 26GHz)(include Fundamental emission)	3.9dB (1GHz-18Gz)
(1.6.12 to 2001.2)(include 1 direction of the original of the	4.2dB (18GHz-26.5Gz)

Note: This uncertainty represents an expanded uncertainty expressed at approximately the 95% confidence level using a coverage factor of k=2.

Page 8 of 213

5. EQUIPMENT UNDER TEST

5.1. DESCRIPTION OF EUT

Product Name:	2.4GHz Wi-Fi/ Bluetooth module
Model No.:	ESP32-C3-WIZ2012
Operating Frequency:	IEEE 802.11b/g/n(HT20): 2412MHz to 2462MHz IEEE 802.11n(HT40): 2422MHz to 2452MHz BT:2402 MHz to 2480MHz
	This report just for the WIFI part
Type of Modulation:	IEEE for 802.11b: DSSS (CCK, DQPSK, DBPSK) IEEE for 802.11g: OFDM (64QAM, 16QAM, QPSK, BPSK) IEEE for 802.11n (HT20 and HT40): OFDM (64QAM, 16QAM, QPSK, BPSK) BT:GFSK
Channels Step:	Channels with 5MHz step
Test software of EUT:	EspRFTestTool (manufacturer declare)
Antenna Type:	Ceramic antenna
Antenna Gain:	Antenna1: 5.19 dBi
	Remark: This data is provided by customer and our lab isn't responsible for this data

Page 9 of 213

5.2. MAXIMUM OUTPUT POWER

Number of Transmit Chains (NTX)	IEE Std. 802.11	Channel Number	Max AV Conducted Power (dBm)
1	IEEE 802.11B SISO	1-11[11]	19.65
1	IEEE 802.11G SISO	1-11[11]	18.92
1	IEEE 802.11nHT20	1-11[11]	18.01
1	IEEE 802.11nHT40	3-9[7]	17.50

5.3. CHANNEL LIST

	Channel List for 802.11b/g/n (20 MHz)						
Channel	Frequency (MHz)	Channel	Frequenc y(MHz)	Channel	Frequency (MHz)	Channel	Frequency (MHz)
1	2412	4	2427	7	2442	10	2457
2	2417	5	2432	8	2447	11	2462
3	2422	6	2437	9	2452		

	Channel List for 802.11n (40 MHz)						
Channel	Frequency (MHz)	Channel	Frequenc y(MHz)	Channel	Frequency (MHz)	Channel	Frequency (MHz)
3	2422	5	2432	7	2442	9	2452
4	2427	6	2437	8	2447		

Page 10 of 213

5.4. TEST CHANNEL CONFIGURATION

Test Mode	Test Channel	Frequency
WiFi TX(802.11b)	CH 1, CH 6, CH 11	2412MHz, 2437MHz, 2462MHz
WiFi TX(802.11g)	CH 1, CH3, CH 6,	2412MHz, 2422MHz*, 2437MHz,
WIFI 1X(802.11g)	CH9, CH 11	2452MHz*, 2462MHz
WiFi TX(802.11n HT20)	CH 1, CH3, CH 6,	2412MHz, 2422MHz*, 2437MHz,
WIFI 1X(802.1111H120)	CH9, CH 11	2452MHz*, 2462MHz
WiEi TV(902 115 UT40)	CH 3, CH5, CH 6, CH7,CH 9	2422MHz, 2432MHz*, 2437MHz,
WIFT 1A(602.1111 H140)	CH 3, CH3, CH 6, CH7,CH 9	2442MHz*, 2452MHz

Remark (*): Investigation have been performed for conducted power, power spectral density, conducted bandedge, conducted spurious emission and radiated emission test.

5.5. THE WORSE CASE POWER SETTING PARAMETER

The Worse Case Power Setting Parameter under 2400 ~ 2483.5MHz Band								
Test Softw	vare		EspRFtestTool					
	Transmit	Test Channel						
Modulation Mode	Antenna	1	NCB: 20MF	łz	NCB: 40MHz			
Wiode	Number	CH 1	CH 6	CH 11	CH 3	CH 6	CH 9	
802.11b	1	0	0	0				
802.11g	1	12	0	12] /			
802.11n HT20	1	12 0 12						
802.11n HT40	1		/ 12				12	

Remark: The value list above are the setting of att in the software.

Additions testing setting:

The Worse Case Power Setting Parameter under 2400 ~ 2483.5MHz Band							
Test Softw	vare	EspRFtestTool					
	Transmit	Test Channel					
Modulation Mode	Antenna Number	NCB: 2	20MHz	NCB: 40MHz			
IVIOGO		CH 3	CH 9	CH 5	CH 7		
802.11g	1	0	0	,			
802.11n HT20	1	0	0	/			
802.11n HT40	1	/		0	0		

Remark: The value list above are the setting of att in the software.

Page 11 of 213

5.6. DESCRIPTION OF AVAILABLE ANTENNAS

Ant.	Frequency (MHz)	Antenna Type	Antenna Gain (dBi)	
1	2400-2483.5	Ceramic antenna	5.19	

Test Mode	Transmit and Receive Mode	Description
IEEE 802.11b	⊠1TX, 1RX	Antenna1 can be used as transmitting/receiving antenna independently.
IEEE 802.11g	⊠1TX, 1RX	Antenna1 can be used as transmitting/receiving antenna independently.
IEEE 802.11N (HT20)	⊠1TX, 1RX	Antenna1 can be used as transmitting/receiving antenna independently.
IEEE 802.11N (HT20)	⊠1TX, 1RX	Antenna1 can be used as transmitting/receiving antenna independently.

5.7. THE WORSE CASE CONFIGURATIONS

For the product, there two transmission antennas, and pre-testing both of them, only the worse data for the antenna is recorded in the report.

Worst-case data rates as provided by the client were:

802.11b mode: 1 Mbps 802.11b mode: 6 Mbps 802.11n HT20 mode: MCS0 802.11n HT40 mode: MCS0

Page 12 of 213

5.8. **TEST ENVIRONMENT**

Environment Parameter	Selected Values During Tests			
Relative Humidity	55 ~ 65%			
Atmospheric Pressure:	1	025Pa		
Temperature	TN	23 ~ 28°C		
Voltage :	VL	N/A		
	VN	AC 120V		
	VH	N/A		

Note: VL= Lower Extreme Test Voltage

VN= Nominal Voltage

VH= Upper Extreme Test Voltage TN= Normal Temperature

Page 13 of 213

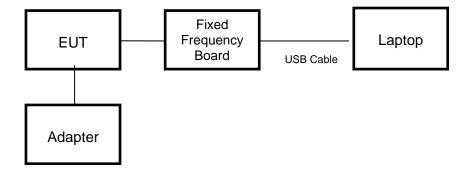
5.9. DESCRIPTION OF TEST SETUP

SUPPORT EQUIPMENT

Item	Equipment	Brand Name	Model Name	Description
1	Laptop	ThinkPad	E550c	N/A
2	Fixed Frequency Board	N/A	N/A	Supply by Customer
3	AC adapter	AC/DA ADAPTER	N/A	INPUT:100-240V~50/60Hz OUTPUT:5V 1A (Supply by UL Lab)

I/O PORT

Cable No	Port	Connector Type	Cable Type	Cable Length(m)	Remarks
1	N/A	N/A	N/A	N/A	N/A


ACCESSORY

Item	Accessory	Brand Name	Model Name	Description
1	USB Cable	NA	NA	100cm Length (Supply by UL Lab)

TEST SETUP

The EUT can work in an engineer mode with a software through a table PC.

SETUP DIAGRAM FOR TESTS

Page 14 of 213

5.10. MEASURING INSTRUMENT AND SOFTWARE USED

3.10. WEASONING INSTRUMENT AND SOFTWARE USED									
Conducted Emissions (Instrument)									
Used	Equipment	Manufacturer	Model No.		Serial No.	Upper Last Cal.	Last Cal.	Next Cal.	
$\overline{\checkmark}$	EMI Test Receiver	R&S	ESR	3	126700	2019-12-12	2020-12-05	2021-12-04	
$\overline{\mathbf{V}}$	Two-Line V-Network	R&S	ENV2	16	126701	2019-12-12	2020-12-05	2021-12-04	
	Artificial Mains Networks	R&S	ENY8	31	126711	2019-12-12	2020-12-05	2021-12-04	
Software									
Used Description Manufacturer Name Version									
\square	Test Software for 0	Conducted distur	bance		R&S	EMC32	Ver. 9.25		
		Ra	diated E	miss	ions (Instrum	ent)			
Used	Equipment	Manufacturer	Model	No.	Serial No.	Upper Last Cal.	Last Cal.	Next Cal.	
\checkmark	Spectrum Analyzer	Keysight	N9010	0B	MY57110128	2020-05-10	2021-05-09	2022-05-08	
$\overline{\checkmark}$	EMI test receiver	R&S	ESR2	26	1267603	2019-12-12	2020-12-05	2021-12-04	
	Receiver Antenna (9kHz-30MHz)	Schwarzbeck	FMZB 1	1513	513-265	N/A	2018-06-15	2021-06-14	
	Receiver Antenna (30MHz-1GHz)	SunAR RF Motion	JB1		177821	N/A	2019-01-28	2022-01-27	
	Receiver Antenna (1GHz-18GHz)	R&S	HF907		126705	2018-01-29	2019-01-28	2022-01-27	
	Receiver Antenna (18GHz-26.5GHz)	Schwarzbeck	BBHA9170		126706	2019-02-06	2020-12-05	2021-12-04	
V	Pre-amplification (To 18GHz)	Compliance Direction System Inc.	PAP-1G ²	18-50	14140-13467	2019-03-18	2020-12-05	2021-12-04	
	Pre-amplification (To 26.5GHz)	R&S	SCU-2	26D	134668	2019-02-06	2020-09-27	2021-09-26	
\	Band Reject Filter	Wainwright	WRCJ' 2350-24 2483.5-25 4083	400- 533.5-	1	2020-05-10	2021-05-09	2022-05-08	
V	Highpass Filter	Wainwright	WHKX 2700-30 18000-4	000-	2	2020-05-10	2021-05-09	2022-05-08	
				Soft	ware				
Used	Desci	ription	Manufac		turer	Name	Version		
V	Test Software for R	adiated disturbar	nce Tonsce		end	JS32	V1.0		
			Oth	er ins	truments				
Used	Equipment	Manufacturer	Model	No.	Serial No.	Upper Last Cal.	Last Cal.	Next Cal.	
	Spectrum Analyzer	Keysight	N9010	0B	MY57110128	2020-05-10	2021-05-09	2022-05-08	
	Power Meter	Keysight	U2021	XA	MY57110002	2020-05-10	2021-05-09	2022-05-08	
			•		•				

Page 15 of 213

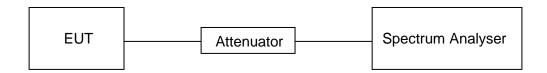
6. MEASUREMENT METHODS

No.	Test Item	KDB Name	Section
1	6dB Bandwidth and 99% Bandwidth	KDB 558074 D01 15.247 Meas Guidance v05r02	8.2
2	Conducted Output Power	KDB 558074 D01 15.247 Meas Guidance v05r02	8.3.1.3/8.3.2.3
3	Power Spectral Density	KDB 558074 D01 15.247 Meas Guidance v05r02	8.4
4	Out-of-band emissions in non-restricted bands	KDB 558074 D01 15.247 Meas Guidance v05r02	8.5
5	Out-of-band emissions in restricted bands	KDB 558074 D01 15.247 Meas Guidance v05r02	8.6
6	Band-edge	KDB 558074 D01 15.247 Meas Guidance v05r02	8.7
7	Conducted Emission Test For AC Power Port	ANSI C63.10-2013	6.2

Page 16 of 213

7. ANTENNA PORT TEST RESULTS

7.1. ON TIME AND DUTY CYCLE


LIMITS

None; for reporting purposes only

PROCEDURE

FCC KDB 558074 Zero-Span Spectrum Analyzer Method

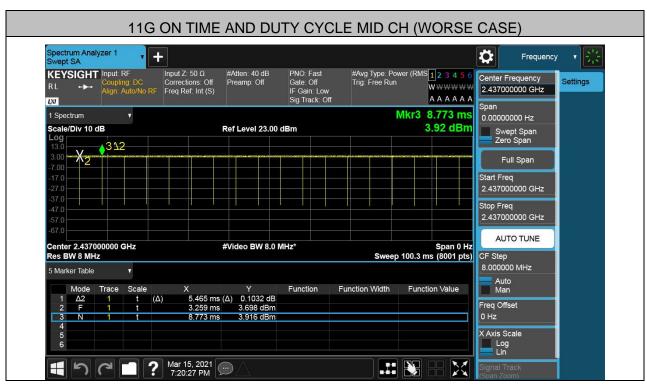
TEST SETUP

TEST ENVIRONMENT

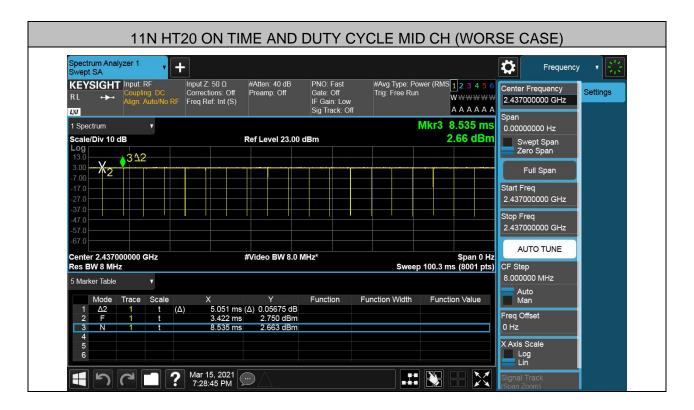
Temperature	22°C	Relative Humidity	56%
Atmosphere Pressure	101kPa	Test Voltage	AC 120V

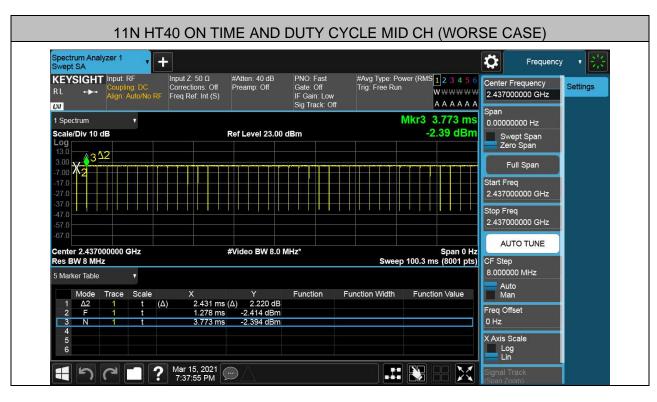
RESULTS

Mode	On Time (msec)	Period (msec)	Duty Cycle x (Linear)	Duty Cycle (%)	Duty Cycle Correction Factor (db)	1/T Minimum VBW (KHz)	Final Minimum VBW (KHz)
11B	32.93	32.98	0.998	99.8	0.009	0.03	1
11G	5.465	5.514	0.991	99.1	0.039	0.18	1
11N HT20	5.051	5.113	0.988	98.8	0.052	0.20	1
11N HT40	2.431	2.495	0.974	97.4	0.114	0.41	1


Note: 1) Duty Cycle Correction Factor=10log(1/x).

2) Where: x is Duty Cycle(Linear)


3) Where: T is On Time (transmit duration)

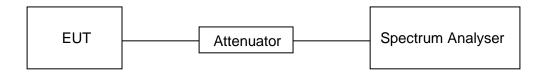


Page 19 of 213

7.2. 6 dB BANDWIDTH

LIMITS

FCC Part15 (15.247) Subpart C, ISED RSS-247 Issue 2					
Section Test Item Limit Frequency Range (MHz)					
FCC 15.247(a)(2)	6dB Bandwidth	>= 500KHz	2400-2483.5		
ISED RSS-Gen Clause 89% Occupied For reporting purposes only. 2400-2483.5					


TEST PROCEDURE

Refer to FCC KDB 558074, connect the UUT to the spectrum analyzer and use the following settings:

Center Frequency	The centre frequency of the channel under test
Detector	Peak
IRRW	For 6dB Bandwidth :100K For 99% Occupied Bandwidth :1% to 5% of the occupied bandwidth
IV/RW/	For 6dB Bandwidth : ≥3 × RBW For 99% Occupied Bandwidth : approximately 3×RBW
Trace	Max hold
Sweep	Auto couple

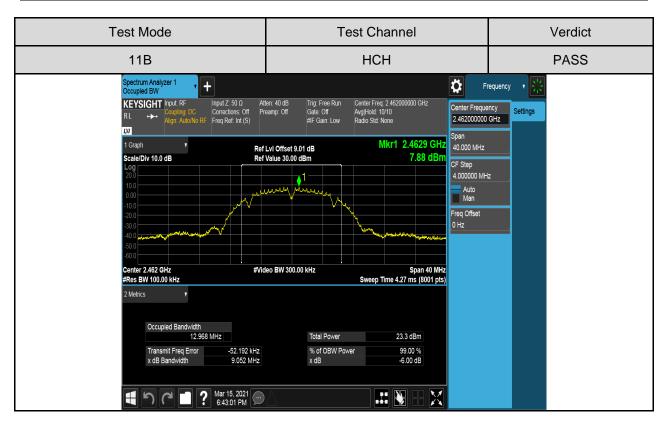
Allow the trace to stabilize and measure the maximum width of the emission that is constrained by the frequencies associated with the two outermost amplitude points (upper and lower frequencies) that are attenuated by 6 dB relative to the maximum level measured in the fundamental emission.

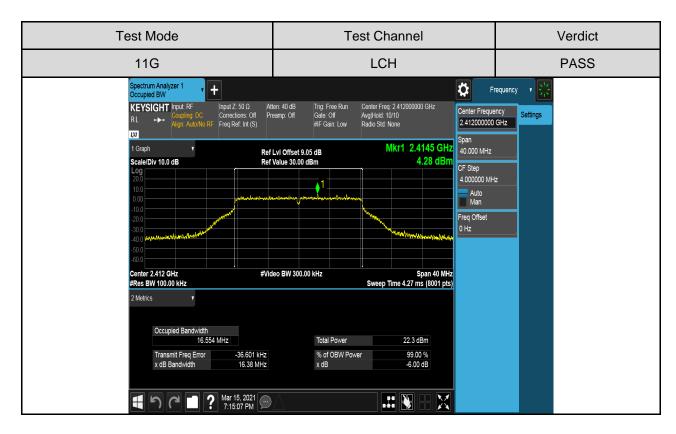
TEST SETUP

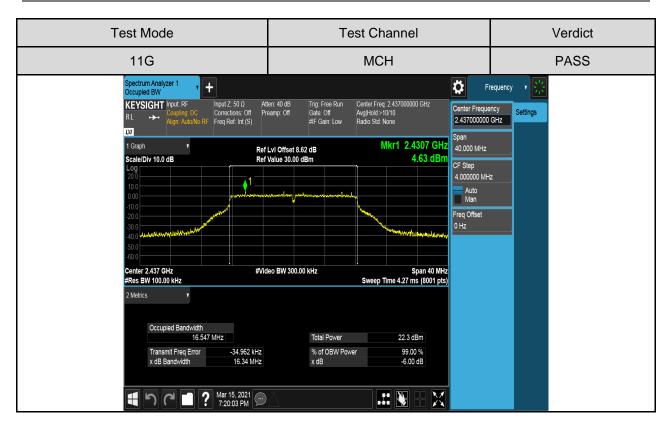
Page 20 of 213

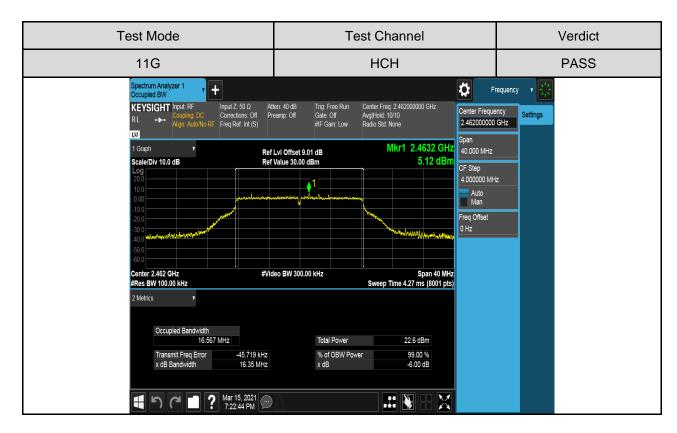
RESULTS

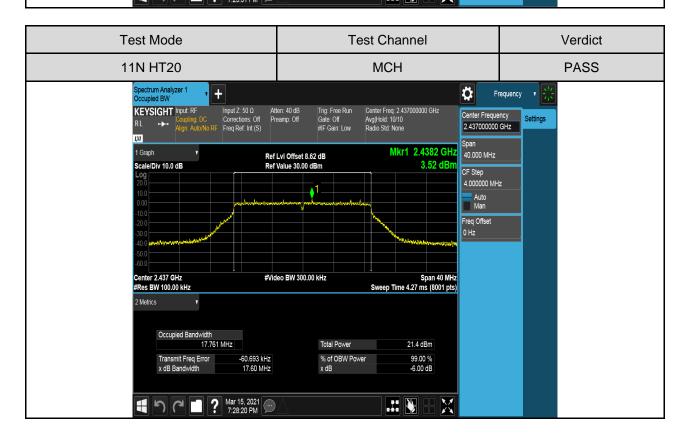
Test Mode	Test Channel	6dB bandwidth (MHz)	99% bandwidth (MHz)	Result
	LCH	9.078	13.010	Pass
11B	MCH	9.072	13.003	Pass
	HCH	9.052	13.009	Pass
11G	LCH	16.38	16.826	Pass
	MCH	16.34	16.790	Pass
	HCH	16.35	16.906	Pass
	LCH	17.60	17.960	Pass
11N HT20	MCH	17.60	17.932	Pass
	HCH	17.62	17.949	Pass
11N HT40	LCH	34.98	35.400	Pass
	MCH	33.87	35.339	Pass
	HCH	34.05	35.302	Pass


Test Graphs

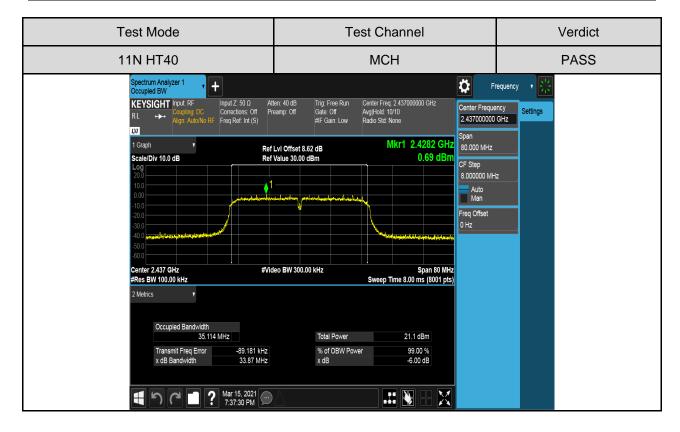

For 6dB Bandwidth part:

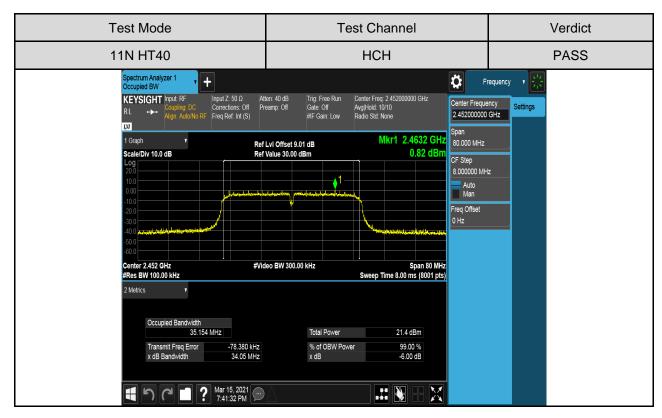


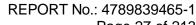




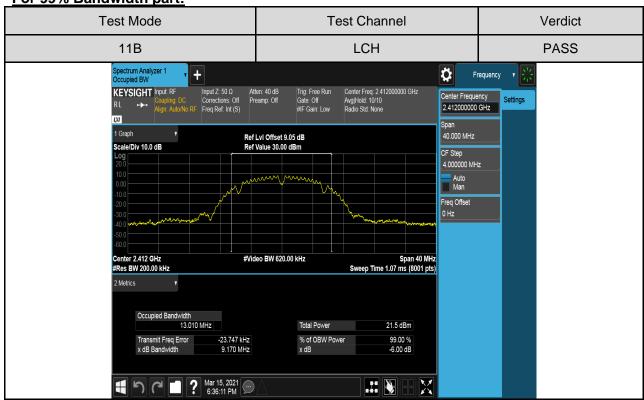
Test Mode Test Channel Verdict LCH **PASS** 11N HT20 Spectrum Analyzer 1 Occupied BW Ö Frequency Input RF Input Z: 50 Ω
Coupling DC Corrections: Off
Align: Auto/No RF Freq Ref. Int (S) Atten: 40 dB Preamp: Off Center Freq: 2.412000000 GHz Avg|Hold: 10/10 Radio Std: None Trig: Free Run Gate: Off #IF Gain: Low KEYSIGHT Input RF Center Frequency Settings 2.412000000 GHz L)XI 1 Graph Mkr1 2.4169 GHz 40.000 MHz Ref LvI Offset 9.05 dB 3.53 dBr Scale/Div 10.0 dB Ref Value 30.00 dBm CF Step 4.000000 MHz Auto Man Freq Offset 0 Hz Span 40 MHz Sweep Time 4.27 ms (8001 pts) Center 2.412 GHz #Res BW 100.00 kHz #Video BW 300.00 kHz 2 Metrics Occupied Bandwidth 17.774 MHz Total Power 21.4 dBm % of OBW Power -46.592 kHz 17.60 MHz 99.00 % -6.00 dB Transmit Freq Error x dB (Mar 15, 2021) 7:25:31 PM

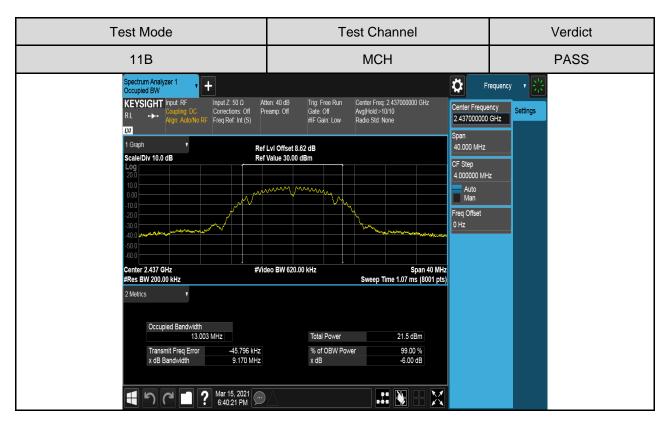






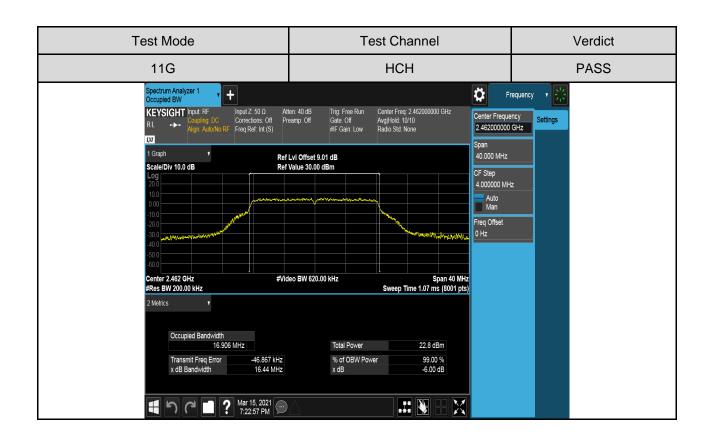
Page 26 of 213

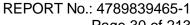


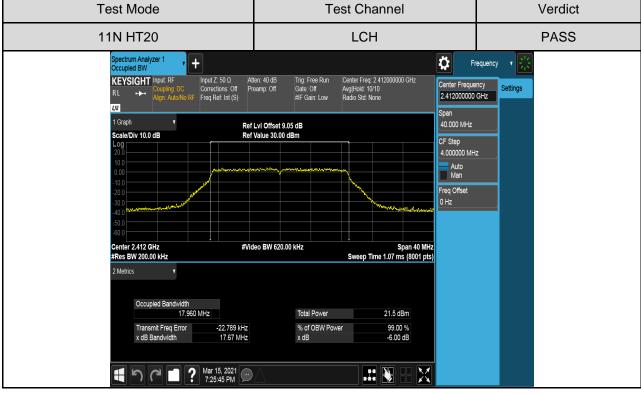


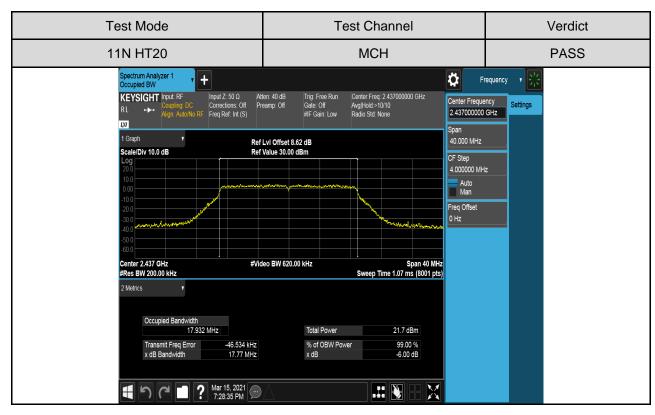
Page 27 of 213

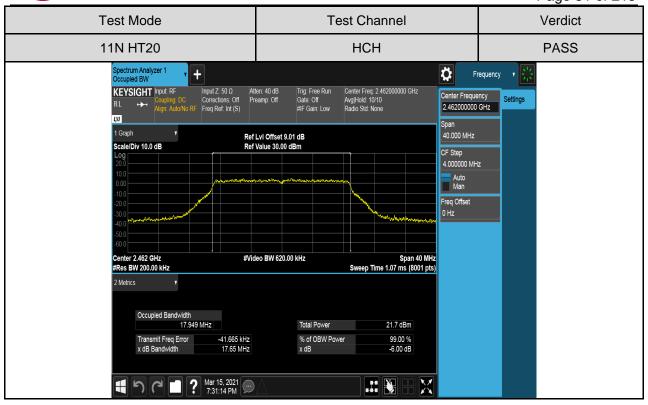

For 99% Bandwidth part:

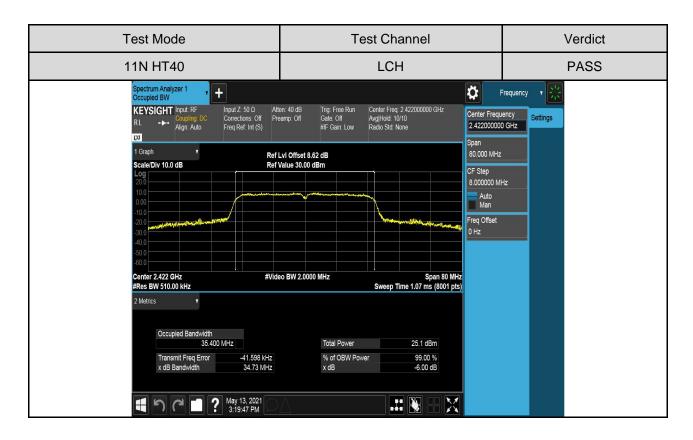

REPORT No.: 4789839465-1 Page 28 of 213

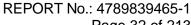



Test Mode Test Channel Verdict **MCH PASS** 11G Spectrum Analyzer 1 Occupied BW Ö Frequency Input: RF Input Z: 50 Ω
Coupling: DC Corrections: Off
Align: Auto/No RF Freq Ref. Int (S) Atten: 40 dB Preamp: Off Center Freq: 2.437000000 GHz Avg|Hold: 10/10 Radio Std: None Trig: Free Run Gate: Off #IF Gain: Low KEYSIGHT Input RF Center Frequency 2.437000000 GHz Settings L)XI 1 Graph 40.000 MHz Ref LvI Offset 8.62 dB Scale/Div 10.0 dB Ref Value 30.00 dBm CF Step 4.000000 MHz Auto Man Freq Offset Span 40 MHz Sweep Time 1.07 ms (8001 pts) Center 2.437 GHz #Res BW 200.00 kHz #Video BW 620.00 kHz 2 Metrics Occupied Bandwidth 16 790 MHz Total Power 22.3 dBm -31.534 kHz 16.39 MHz % of OBW Power 99.00 % -6.00 dB Transmit Freq Error x dB Mar 15, 2021 7:20:17 PM

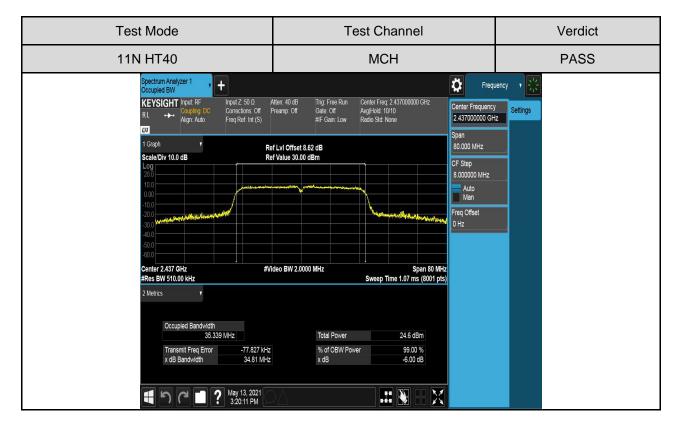


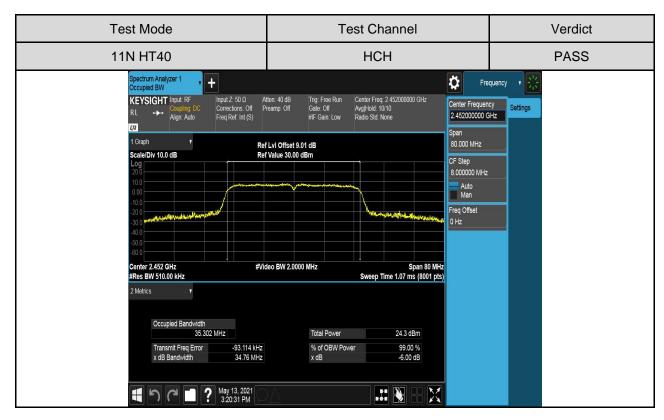

Page 30 of 213 Test Channel Verdict





REPORT No.: 4789839465-1 Page 31 of 213





Page 32 of 213

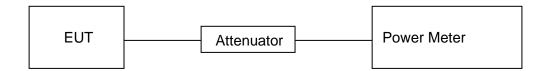
Page 33 of 213

7.3. CONDUCTED POWER

LIMITS

FCC Part15 (15.247) Subpart C, , ISED RSS-247 ISSUE 2				
Section Test Item Limit Frequency Range (MHz)				
FCC 15.247(b)(3) ISED RSS-247 5.4 (d) RSS-Gen Clause 6.12	Output Power	1 watt or 30dBm	2400-2483.5	

TEST PROCEDURE


Place the EUT on the table and set it in the transmitting mode.

Remove the antenna from the EUT and then connect a low loss RF cable from the antenna port to the Power sensor.

Measure the power of each channel.

AVG Detector use for AVG result.

TEST SETUP

RESULTS

For Normal Testing Part:

Test Mode	Test Channel	Maximum Conducted Output Power (AV)	Result
		dBm	
	LCH	19.44	Pass
11B	MCH	19.47	Pass
	HCH	19.65	Pass
11G	LCH	16.18	Pass
	MCH	18.92	Pass
	HCH	16.53	Pass
	LCH	15.38	Pass
11N HT20	MCH	18.01	Pass
11120	HCH	15.84	Pass
11N HT40	LCH	14.28	Pass
	MCH	17.50	Pass
	HCH	15.31	Pass

Remark:

1) For all the test results has been adjusted the duty cycle factor.

2) For Correction Factor is refer to the result in section 7.1

For Additions Testing Part:

Test Mode	Test Channel	Maximum Conducted Output Power (AV)	Result
		dBm	
11G	2422	18.96	Pass
116	2452	19.65	Pass
11N	2422	17.93	Pass
HT20	2452	18.82	Pass
11N HT40	2432	17.45	Pass
	2442	17.81	Pass

Remark:

1) For all the test results has been adjusted the duty cycle factor.

2) For Correction Factor is refer to the result in section 7.1

Page 35 of 213

7.4. POWER SPECTRAL DENSITY

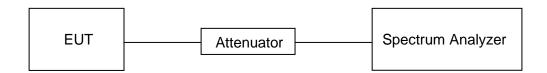
LIMITS

FCC Part15 (15.247) Subpart C, ISED RSS-247 ISSUE 2				
Section Test Item Limit Frequency Range (MHz)				
FCC §15.247 (e) ISED RSS-247 5.2 (b)	Power Spectral Density	8 dBm in any 3 kHz band	2400-2483.5	

TEST PROCEDURE

Refer to FCC KDB 558074, connect the UUT to the spectrum analyser and use the following settings:

Center Frequency	The centre frequency of the channel under test	
Detector	Peak	
RBW	3 kHz ≤ RBW ≤100 kHz	
VBW	≥3 × RBW	
Span	1.5 x DTS bandwidth	
Trace	Max hold	
Sweep time	Auto couple.	


Allow trace to fully stabilize and use the peak marker function to determine the maximum amplitude level within the RBW.

If measured value exceeds limit, reduce RBW (no less than 3 kHz) and repeat.

TEST ENVIRONMENT

Temperature	22°C	Relative Humidity	56%
Atmosphere Pressure	101kPa	Test Voltage	AC 120V

TEST SETUP

Page 36 of 213

RESULTS

For Normal Testing Part:

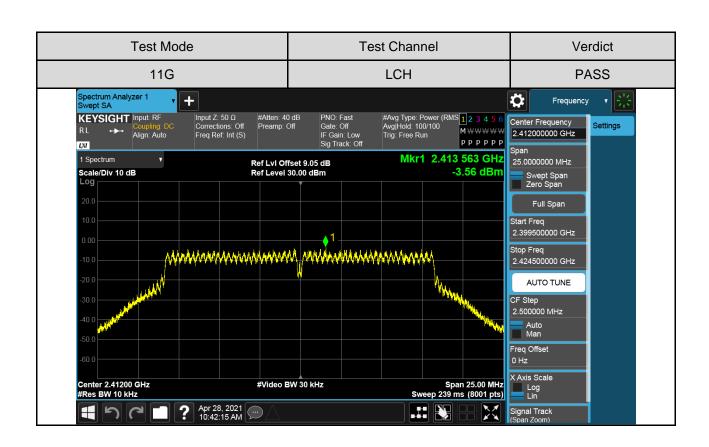
Test Mode	Test Channel	Maximum Peak power spectral density (dBm/10kHz)	Result
	LCH	2.21	Pass
11B	MCH	1.17	Pass
	HCH	3.04	Pass
	LCH	-3.56	Pass
11G	MCH	-0.21	Pass
	HCH	-3.66	Pass
	LCH	-2.84	Pass
11N HT20	MCH	-1.12	Pass
	HCH	-2.41	Pass
	LCH	-7.04	Pass
11N HT40	MCH	-4.29	Pass
	HCH	-6.11	Pass

For Additions Testing Part:

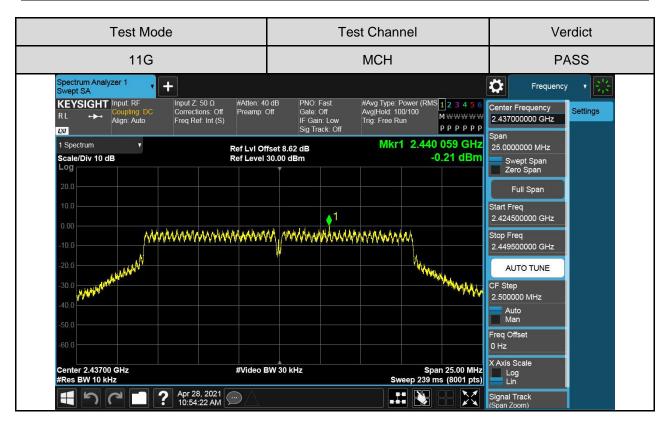
Test Mode	Test Channel	Maximum Peak power spectral density (dBm/10kHz)	Result
440	2422	-0.30	Pass
11G	2452	0.53	Pass
44N LITOO	2422	-0.15	Pass
11N HT20	2452	-0.92	Pass
44NLUT40	2432	-3.92	Pass
11N HT40	2442	-3.38	Pass

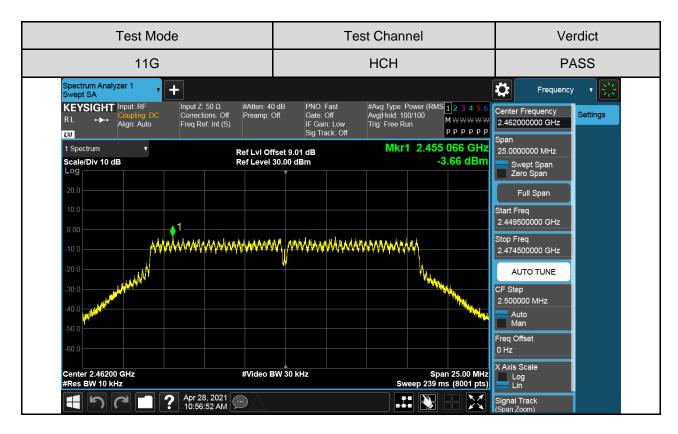
Test Graphs:

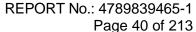
For Normal Testing Part:


Res BW 10 kHz

? Apr 28, 2021 10:39:18 AM


Test Mode Test Channel Verdict 11B **HCH PASS** Spectrum Analyzer 1 Swept SA + ø Frequency KEYSIGHT Input: RF #Avg Type: Power (RMS 1 2 3 4 5 6 Avg|Hold: 100/100 Trig: Free Run Input Z: 50 Ω #Atten: 40 dB Center Frequency Gate: Off IF Gain: Low Sig Track: Off Settings Corrections: Off Freq Ref: Int (S) Preamp: Off Align: Auto MWWWW 2.462000000 GHz PPPPPP ĻXI Span Mkr1 2.462 638 GHz Ref LvI Offset 9.01 dB Ref Level 30.00 dBm 16.0000000 MHz 3.04 dBm Scale/Div 10 dB Swept Span Zero Span Full Span Start Freq 2.454000000 GHz Stop Freq 2.470000000 GHz **AUTO TUNE** 1.600000 MHz Auto Man Freq Offset Center 2.462000 GHz #Video BW 30 kHz Span 16.00 MHz Log Lin


Sweep 153 ms (8001 pts)


Signal Track

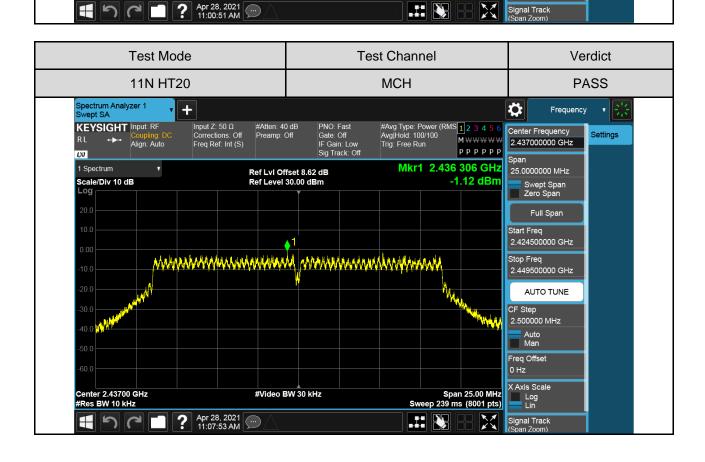
Freq Offset

X Axis Scale

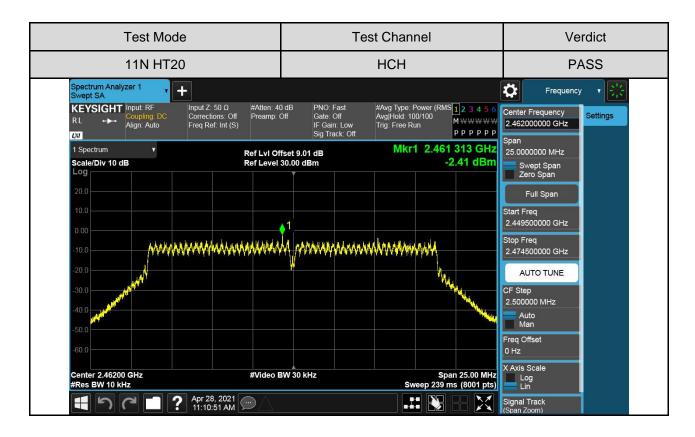
Log Lin

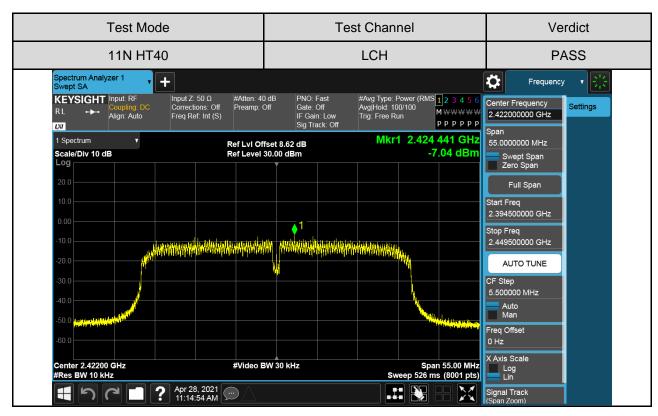
Span 25.00 MHz

Sweep 239 ms (8001 pts)

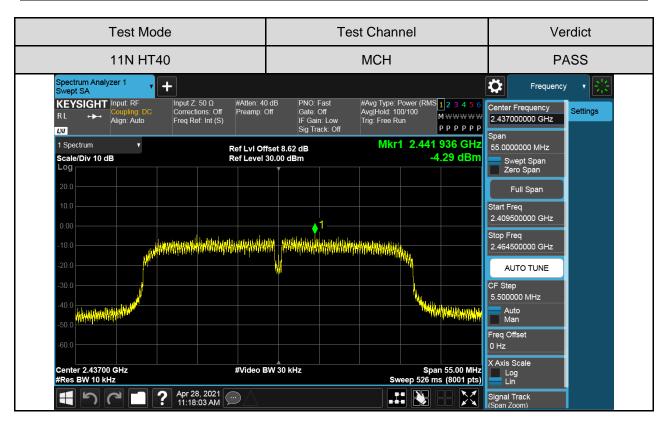


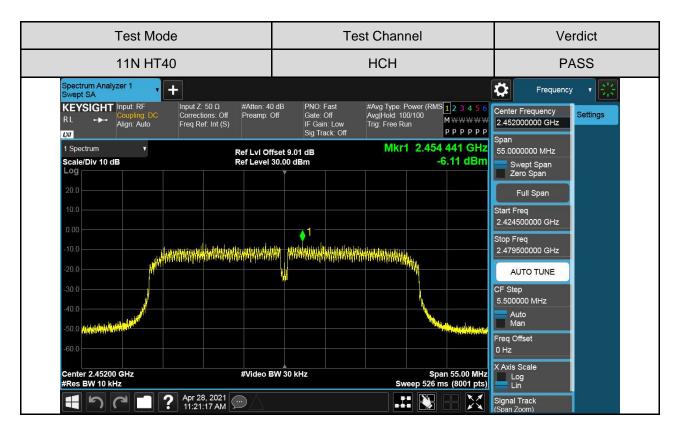
Center 2.41200 GHz

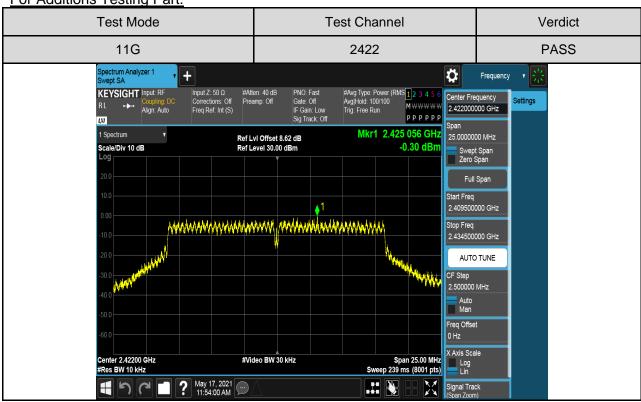

#Res BW 10 kHz

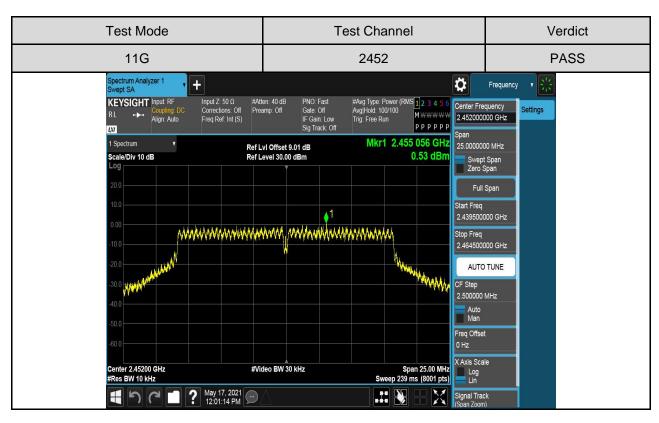

Test Mode Test Channel Verdict 11N HT20 LCH **PASS** Spectrum Analyzer 1 Swept SA + Ö Frequency Input Z: 50 Ω Corrections: Off Freq Ref: Int (S) #Atten: 40 dB Preamp: Off #Avg Type: Power (RMS 1 2 3 4 5 6 Avg|Hold: 100/100 Trig: Free Run KEYSIGHT Input: RF PNO: Fast Center Frequency Gate: Off IF Gain: Low Settings MWWWW Align: Auto 2.412000000 GHz PPPPPP LXI Mkr1 2.411 316 GHz 1 Spectrum Ref LvI Offset 9.05 dB 25.0000000 MHz -2.84 dBm Scale/Div 10 dB Ref Level 30.00 dBm Swept Span Zero Span Full Span Start Freq 2.399500000 GHz Stop Freq ~^^**/**^^/\\\\\\ 2.424500000 GHz **AUTO TUNE** CF Step 2.500000 MHz Auto Man

#Video BW 30 kHz

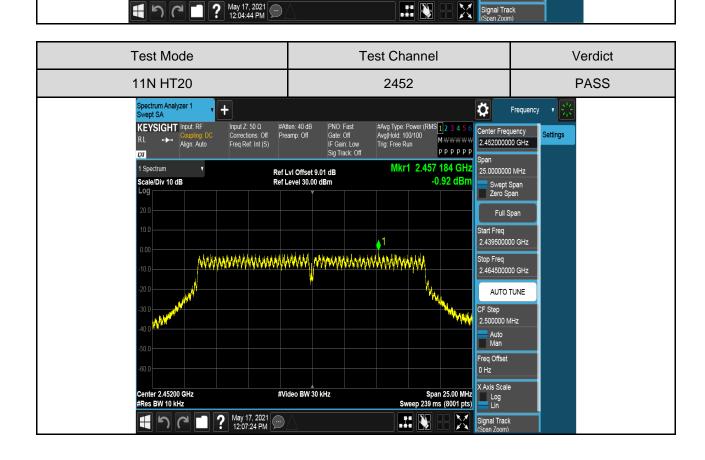


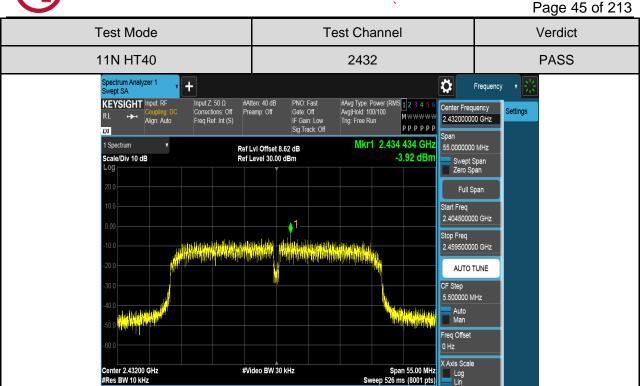


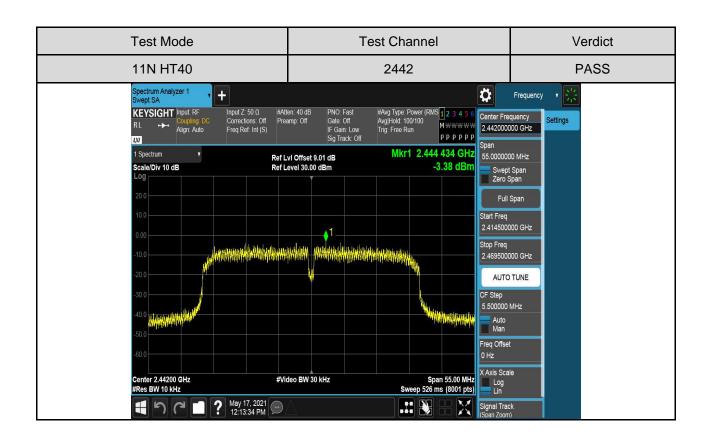




Page 43 of 213


For Additions Testing Part:




Test Mode Test Channel Verdict 11N HT20 2422 **PASS** Spectrum Analyzer 1 Swept SA Ö Frequency Input Z: 50 Ω Corrections: Off Freq Ref: Int (S) PNO: Fast Gate: Off IF Gain: Low #Avg Type: Power (RMS 1 2 3 4 5 6 Avg|Hold: 100/100 Trig: Free Run KEYSIGHT Input: RF #Atten: 40 dB Settings Align: Auto M₩₩₩₩ 2.422000000 GHz PPPPPP ĻXI 1 Spectrum Mkr1 2.421 309 GHz Ref Lvl Offset 8.62 dB 25.0000000 MHz Scale/Div 10 dB Ref Level 30.00 dBm -0.15 dBm Swept Span Zero Span Full Span Start Freq 2.409500000 GHz photographic and a property for the property of the property o 2.434500000 GHz AUTO TUNE CF Step 2.500000 MHz Auto Man Freq Offset 0 Hz X Axis Scale #Video BW 30 kHz Span 25.00 MHz Center 2.42200 GHz #Res BW 10 kHz Sweep 239 ms (8001 pts)

4961

7.5. CONDUCTED BANDEDGE AND SPURIOUS EMISSIONS

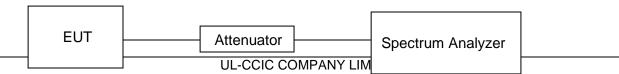
LIMITS

FCC Part15 (15.247) Subpart C, ISED RSS-247 ISSUE 2				
Section Test Item Limit		Limit		
FCC §15.247 (d) RSS-247 Clause 5.5 RSS-GEN Clause 6.13	Conducted Bandedge and Spurious Emissions	At least 30 dB below that in the 100 kHz bandwidth within the band that contains the highest level of the desired power		

TEST PROCEDURE

Refer to FCC KDB 558074, connect the UUT to the spectrum analyser and use the following

Center Frequency	The centre frequency of the channel under test		
Detector	Peak		
RBW	100K		
VBW	≥3 × RBW		
Span	1.5 x DTS bandwidth		
Trace	Max hold		
Sweep time	Auto couple.		


settings:

Use the peak marker function to determine the maximum PSD level.

Span	Set the center frequency and span to encompass frequency range to be measured
Detector	Peak
RBW	100K
VBW	≥3 x RBW
measurement points	≥span/RBW
Trace	Max hold
Sweep time	Auto couple.

Use the peak marker function to determine the maximum amplitude level.

TEST SETUP

This report shall not be reproduced except in full, without the written approval of UL-CCIC COMPANY LIMITED.

Page 47 of 213

TEST ENVIRONMENT

Temperature	22°C	Relative Humidity	56%
Atmosphere Pressure	101kPa	Test Voltage	AC 120V

Page 48 of 213

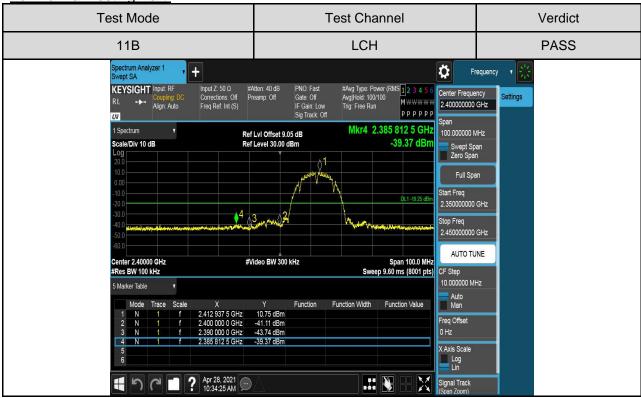
Part I: Conducted Bandedge

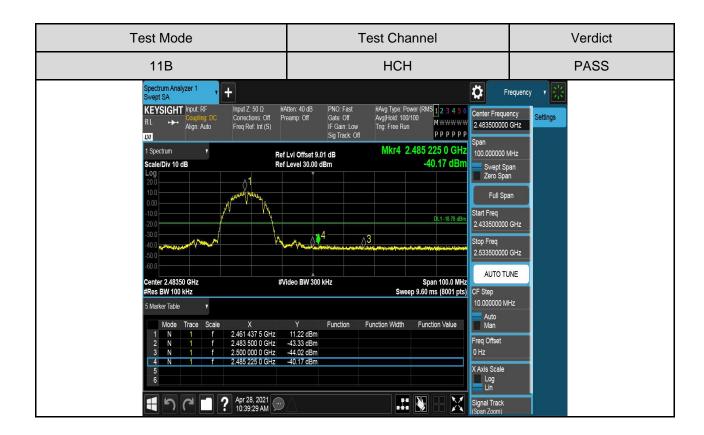
RESULTS TABLE

For Normal Testing Part:

Test Mode	Test Channel	Carrier Power[dBm]	Max. Spurious Level [dBm]	Limit [dBm]	Verdict
11B	LCH	10.75	-39.37	-19.25	PASS
	HCH	11.22	-40.17	-18.78	PASS
11G	LCH	4.118	-38.64	-25.88	PASS
	HCH	4.435	-34.82	-25.57	PASS
11N HT20	LCH	3.610	-39.14	-26.39	PASS
	HCH	3.264	-39.02	-26.74	PASS
11N HT40	LCH	0.372	-38.91	-29.63	PASS
	HCH	1.150	-38.40	-28.85	PASS

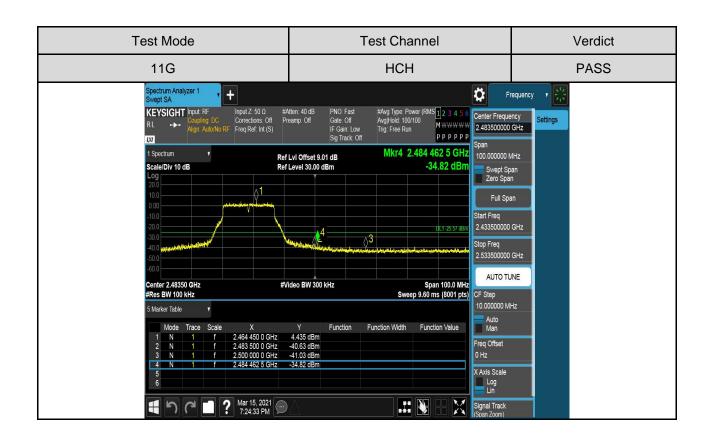
For Additions Testing Part:


Test Mode	Test Channel	Carrier Power[dBm]	Max. Spurious Level [dBm]	Limit [dBm]	Verdict
11G	2422	8.049	-39.47	-21.95	PASS
	2452	8.599	-38.86	-21.40	PASS
11N HT20	2422	6.647	-39.30	-23.35	PASS
	2452	7.520	-39.14	-22.48	PASS
11N HT40	2422	3.348	-37.12	-26.65	PASS
	2452	4.156	-36.41	-25.84	PASS



Page 49 of 213

TEST GRAPHS


For Normal Testing Part:

Test Channel Test Mode Verdict LCH **PASS** 11G Spectrum Analyzer 1 Swept SA Ö Frequency KEYSIGHT Input RF Input Z: 50 Ω #Avg Type: Power (RMS 1 2 3 4 5 Center Frequency Gate: Off IF Gain: Low Sig Track: Off Coupling: DC Corrections: Off Align: Auto/No RF Freq Ref: Int (S) Settings MWWWW 2.400000000 GHz PPPPPP Mkr4 2.388 087 5 GHz Ref LvI Offset 9.05 dB Ref Level 30.00 dBm 100.000000 MHz -38.64 dBn Scale/Div 10 dB Full Span Start Freq 2.350000000 GHz Stop Freq 2.450000000 GHz AUTO TUNE enter 2.40000 GHz #Video BW 300 kHz Span 100.0 MH Res BW 100 kHz Sweep 9.60 ms (8001 pts) 10.000000 MHz Auto Man Trace Scale Function Function Width Function Value 2.418 187 5 GHz 2.400 000 0 GHz 2.390 000 0 GHz 4.118 dBm -32.10 dBm -40.11 dBm Freq Offset -38.64 dBm X Axis Scale Log Lin Mar 15, 2021 7:16:29 PM Signal Track (Span Zoom)

