

Shenzhen Toby Technology Co., Ltd.

Report No.: TB-FCC145750 Page: 1 of 49

FCC Radio Test Report FCC ID: 2AGBU-NY10

Original Grant

Report No.		TB-FCC145750
Applicant		MOONSMIMI(Beijing)Co., Ltd
Equipment Und	der Te	st (EUT)
EUT Name		The smart bra
Model No.	3.	NY-1.0
Series No.	:0	N/A
Brand Name	:	MOONSMIMI
Receipt Date	-0	2015-10-20
Test Date	132	2015-10-21 to 2015-11-18
Issue Date		2015-11-19
Standards	100	FCC Part 15, Subpart C (15.247:2015)
Test Method	:	ANSI C63.10: 2013
Conclusions	81	PASS

In the configuration tested, the EUT complied with the standards specified above, The EUT technically complies with the FCC and IC requirements

Test/Witness Engineer

Approved& Authorized

INAN SK fogstoi.

This report details the results of the testing carried out on one sample. The results contained in this test report do not relate to other samples of the same product. The manufacturer should ensure that all products in series production are in conformity with the product sample detailed in the report.

TB-RF-074-1.0

Contents

CON	TENTS	2
1.	GENERAL INFORMATION ABOUT EUT	4
	1.1 Client Information	4
	1.2 General Description of EUT (Equipment Under Test)	4
	1.3 Block Diagram Showing the Configuration of System Tested	
	1.4 Description of Support Units	
	1.5 Description of Test Mode	6
	1.6 Description of Test Software Setting	7
	1.7 Measurement Uncertainty	7
	1.8 Test Facility	8
2.	TEST SUMMARY	9
3.	TEST EQUIPMENT	10
4.	CONDUCTED EMISSION TEST	
	4.1 Test Standard and Limit	
	4.2 Test Setup	
	4.3 Test Procedure	
	4.4 EUT Operating Mode	
	4.5 Test Data	
5.	RADIATED EMISSION TEST	
	5.1 Test Standard and Limit	
	5.2 Test Setup	
	5.3 Test Procedure	
	5.4 EUT Operating Condition	20
	5.5 Test Data	20
6.	RESTRICTED BANDS REQUIREMENT	
	6.1 Test Standard and Limit	
	6.2 Test Setup	
	6.3 Test Procedure	
	6.4 EUT Operating Condition	
	6.5 Test Data	
7.	BANDWIDTH TEST	40
	7.1 Test Standard and Limit	
	7.2 Test Setup	
	7.3 Test Procedure	
	7.4 EUT Operating Condition	40
	7.5 Test Data	
8.	PEAK OUTPUT POWER TEST	43
	8.1 Test Standard and Limit	43
	8.2 Test Setup	

	8.3 Test Procedure	
	8.4 EUT Operating Condition	
	8.5 Test Data	
9.	POWER SPECTRAL DENSITY TEST	
	9.1 Test Standard and Limit	
	9.2 Test Setup	
	9.3 Test Procedure	
	9.4 EUT Operating Condition	
	8.5 Test Data	47
10.	ANTENNA REQUIREMENT	
	10.1 Standard Requirement	
	10.2 Antenna Connected Construction	
	10.3 Result	

1. General Information about EUT

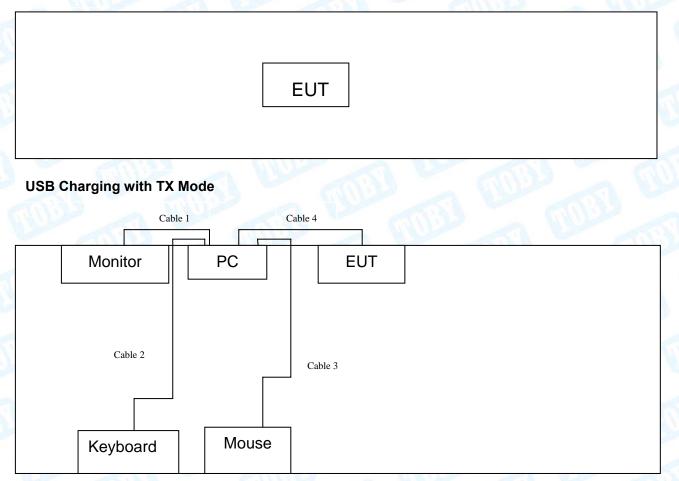
1.1 Client Information

Applicant	. :	MOONSMIMI(Beijing)Co., Ltd
Address	:	17th Floor, Hailong Building, Haidian District, Beijing, PRC
Manufacturer	-	MOONSMIMI(Beijing)Co., Ltd
Address		17th Floor, Hailong Building, Haidian District, Beijing, PRC

1.2 General Description of EUT (Equipment Under Test)

EUT Name	:	The smart bra		
Models No.	:	NY-1.0 N/A		
Model Difference	-			
MADE		Operation Frequency: Bluetooth(BLE):2402~2480MHz		
Developed	5	Number of Channel:	Bluetooth(BLE): 40 channels see Note 3	
Product Description		RF Output Power:	0.093 dBm	
(TOP)		Antenna Gain:	0 dBi Integral Antenna	
		Modulation Type:	GFSK	
CONBL -		Bit Rate of Transmitter:	1Mbps(GFSK)	
Power Supply	:	DC Voltage supplied from DC power by Li-ion Batt	m Host System by USB cable. ery.	
Power Rating	:	DC 5.0V by USB cable. DC 3.7V Li-ion Battery.		
Connecting I/O Port(S)	:	Please refer to the User	's Manual	

Note:


- (1) This Test Report is FCC Part 15.247 for Bluetooth BLE, the test procedure follows the FCC KDB 558074 D01 DTS Meas Guidance v03r03.
- (2) For a more detailed features description, please refer to the manufacturer's specifications or the User's Manual.
- (3) Antenna information provided by the applicant.

(4) Channel List:

	BLE Channel List					
Channel	Frequency (MHz)	Channel	Frequency (MHz)	Channel	Frequency (MHz)	
00	2402	14	2430	28	2458	
01	2404	15	2432	29	2460	
02	2406	16	2434	30	2462	
03	2408	17	2436	31	2464	
04	2410	18	2438	32	2466	
05	2412	19	2440	33	2468	
06	2414	20	2442	34	2470	
07	2416	21	2444	35	2472	
08	2418	22	2446	36	2474	
09	2420	23	2448	37	2476	
10	2422	24	2450	38	2478	
11	2424	25	2452	39	2480	
12	2426	26	2454			
13	2428	27	2456		N.S.	

1.3 Block Diagram Showing the Configuration of System Tested

TX Mode

1.4 Description of Support Units

TOBY

	E	Equipment Inform	nation	
Name	Model	FCC ID/DOC	Manufacturer	Used "√"
LCD Monitor	E170Sc	DOC	DELL	\checkmark
PC	OPTIPLEX380	DOC	DELL	~
Keyboard	L100	DOC	DELL	~
Mouse	M-UARDEL7	DOC	DELL	\checkmark
		Cable Informa	tion	
Number	Shielded Type	Ferrite Core	Length	Note
Cable 1	YES	YES	1.5M	
Cable 2	YES	YES	1.5M	
Cable 3	YES	NO	1.5M	W A V
Cable 4	NO	NO	0.8M	Provided by the applicant

1.5 Description of Test Mode

To investigate the maximum EMI emission characteristics generates from EUT, the test system was pre-scanning tested base on the consideration of following EUT operation mode or test configuration mode which possible have effect on EMI emission level. Each of these EUT operation mode(s) or test configuration mode(s) mentioned follow was evaluated respectively.

	For Conducted Test			
5	Final Test Mode	Description		
1	Mode 1	USB Charging With TX Mode		

For Radiated Test		
Final Test Mode	Description	
Mode 2	USB Charging With TX Mode	
Mode 3	TX Mode (Channel 00/20/39)	

Note:

(1) For all test, we have verified the construction and function in typical operation. And all the test modes were carried out with the EUT in transmitting operation in maximum power with all kinds of data rate.

According to ANSI C63.10 standards, the measurements are performed at the highest,

middle, lowest available channels, and the worst case data rate as follows: Bluetooth BLE Mode: GFSK Modulation Transmitting mode.

- (2) During the testing procedure, the continuously transmitting with the maximum power mode was programmed by the customer.
- (3) The EUT is considered a mobile unit; in normal use it was positioned on X-plane. The worst case was found positioned on X-plane. Therefore only the test data of this X-plane was used for radiated emission measurement test.

1.6 Description of Test Software Setting

During testing channel& Power controlling software provided by the customer was used to control the operating channel as well as the output power level. The RF output power selection is for the setting of RF output power expected by the customer and is going to be fixed on the firmware of the final end product power parameters of RF setting.

Test Software Version	auer	N/A	
Channel	CH 00	CH 20	СН 39
BLE Mode	DEF	DEF	DEF

1.7 Measurement Uncertainty

The reported uncertainty of measurement y \pm U, where expended uncertainty U is based on a standard uncertainty multiplied by a coverage factor of k=2, providing a level of confidence of approximately 95 %.

Test Item	Parameters	Expanded Uncertainty (U _{Lab})
U A V	Level Accuracy:	
Conducted Emission	9kHz~150kHz	±3.42 dB
	150kHz to 30MHz	±3.42 dB
Radiated Emission	Level Accuracy:	. 1 CO dD
Radiated Emission	9kHz to 30 MHz	±4.60 dB
Dedicted Emission	Level Accuracy:	. 1 10 dD
Radiated Emission	30MHz to 1000 MHz	±4.40 dB
Radiated Emission	Level Accuracy:	1 20 dP
Radiated Emission	Above 1000MHz	±4.20 dB

Report No.: TB-FCC145750 Page: 8 of 49

1.8 Test Facility

The testing report were performed by the Shenzhen Toby Technology Co., Ltd., in their facilities located at 1A/F., Bldg.6, Yusheng Industrial Zone, The National Road No.107 Xixiang Section 467, Xixiang, Bao'an, Shenzhen, Guangdong, China. At the time of testing, the following bodies accredited the Laboratory:

CNAS (L5813)

The Laboratory has been accredited by CNAS to ISO/IEC 17025: 2005 General Requirements for the Competence of Testing and Calibration Laboratories for the competence in the field of testing. And the Registration No.: CNAS L5813.

FCC List No.: (811562)

The Laboratory is listed in the United States of American Federal Communications Commission (FCC), and the registration number is 811562.

IC Registration No.: (11950A-1)

The Laboratory has been registered by Certification and Engineering Bureau of Industry Canada for radio equipment testing. The site registration: Site# 11950A-1.

May 22, 2014 certificated by TUV Rheinland(China) Co., Ltd. with TUV certificate No.: UA 50282953 0001 and report No.: 17026822 002. The certificate is valid until the next scheduled audit or up to 18 months, at the discretion of TUV Rhineland.

TOBY

Report No.:TB-FCC145750Page:9 of 49

2. Test Summary

Standa	rd Section	Tast Hann	ludement	Remark
FCC	IC	Test Item	Judgment	
15.203	1	Antenna Requirement	PASS	N/A
15.207	RSS-GEN 7.2.4	Conducted Emission	PASS	N/A
15.205	RSS-GEN 7.2.2	Restricted Bands	PASS	N/A
15.247(a)(2)	RSS 247 5.2 (1)	6dB Bandwidth	PASS	N/A
15.247(b)	RSS 247 5.4 (4)	Peak Output Power	PASS	N/A
15.247(e)	RSS 247 5.2 (2)	Power Spectral Density	PASS	N/A
15.247(d)	RSS 247 5.5	Transmitter Radiated Spurious Emission	PASS	N/A

TOBY

3. Test Equipment

Conducted Emission Test

Equipment	Manufacturer	Model No.	Serial No.	Last Cal.	Cal. Due Date
EMI Test Receiver	Rohde & Schwarz	ESCI	100321	Aug. 07, 2015	Aug. 06, 2016
RF Switching Unit	Compliance Direction Systems Inc	RSU-A4	34403	Aug. 07, 2015	Aug. 06, 2016
AMN	SCHWARZBECK	NNBL 8226-2	8226-2/164	Aug. 07, 2015	Aug. 06, 2016
LISN	Rohde & Schwarz	ENV216	101131	Aug. 07, 2015	Aug. 06, 2016

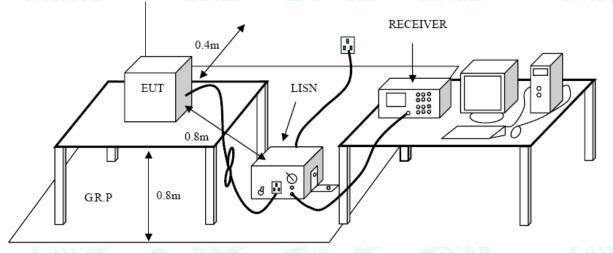
Radiation Emission Test

Equipment	Manufacturer	Model No.	Serial No.	Last Cal.	Cal. Due Date	
Spectrum Analyzer	Agilent	E4407B	MY45106456	Aug. 29, 2015	Aug. 28, 2016	
EMI Test Receiver	Rohde & Schwarz	ESCI	100010/007	Aug. 07, 2015	Aug. 06, 2016	
Bilog Antenna	ETS-LINDGREN	3142E	00117537	Mar. 28, 2015	Mar. 27, 2016	
Bilog Antenna	ETS-LINDGREN	3142E	00117542	Mar. 28, 2015	Mar. 27, 2016	
Horn Antenna	ETS-LINDGREN	3117	00143207	Mar. 28, 2015	Mar. 27, 2016	
Horn Antenna	ETS-LINDGREN	3117	00143209	Mar. 28, 2015	Mar. 27, 2016	
Pre-amplifier	Sonoma	310N	185903	Mar. 28, 2015	Mar. 27, 2016	
Pre-amplifier	HP	8447B	3008A00849	Mar. 28, 2015	Mar. 27, 2016	
Cable	HUBER+SUHNER	100	SUCOFLEX	Mar. 28, 2015	Mar. 27, 2016	
Positioning Controller	ETS-LINDGREN	2090	N/A	N/A	N/A	

4. Conducted Emission Test

- 4.1 Test Standard and Limit
 - 4.1.1Test Standard FCC Part 15.207
 - 4.1.2 Test Limit

Eroquonov	Maximum RF Line Voltage (dBµV)				
Frequency	Quasi-peak Level	Average Level			
150kHz~500kHz	66 ~ 56 *	56 ~ 46 *			
500kHz~5MHz	56	46			
5MHz~30MHz	60	50			


Notes:

(1) *Decreasing linearly with logarithm of the frequency.

(2) The lower limit shall apply at the transition frequencies.

(3) The limit decrease in line with the logarithm of the frequency in the range of 0.15 to 0.50MHz.

4.2 Test Setup

4.3 Test Procedure

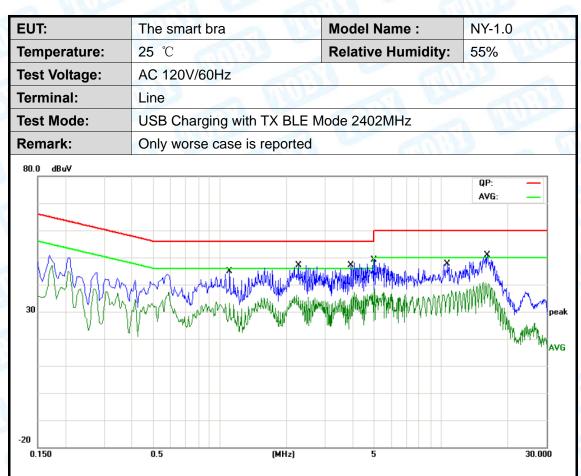
The EUT was placed 0.8 meters from the horizontal ground plane with EUT being connected to the power mains through a line impedance stabilization network (LISN). All other support equipments powered from additional LISN(s). The LISN provide 50 Ohm/ 50uH of coupling impedance for the measuring instrument.

Interconnecting cables that hang closer than 40 cm to the ground plane shall be folded back and forth in the center forming a bundle 30 to 40 cm long.

I/O cables that are not connected to a peripheral shall be bundled in the center. The end of the cable may be terminated, if required, using the correct terminating impedance. The overall length shall not exceed 1 m.

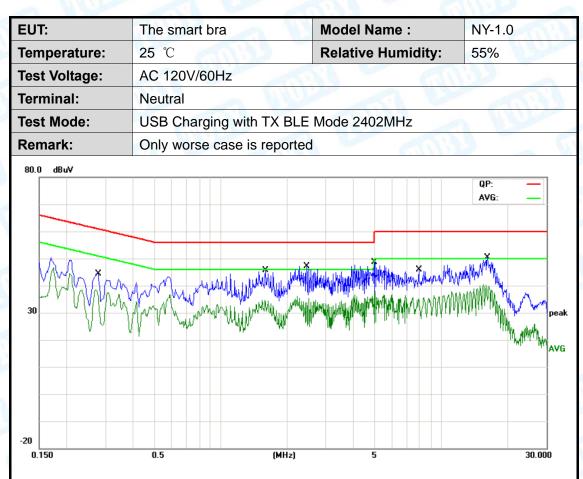
LISN at least 80 cm from nearest part of EUT chassis.

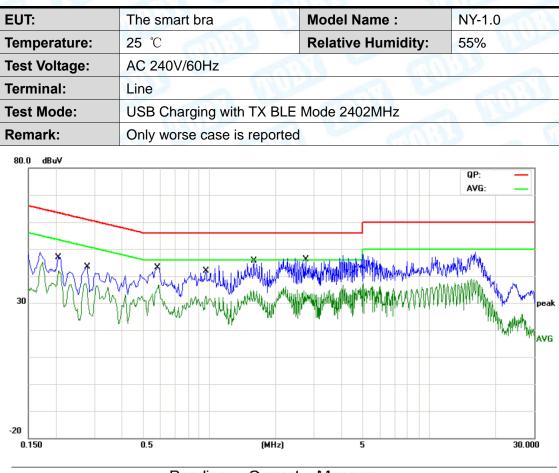
The bandwidth of EMI test receiver is set at 9kHz, and the test frequency band is from 0.15MHz to 30MHz.

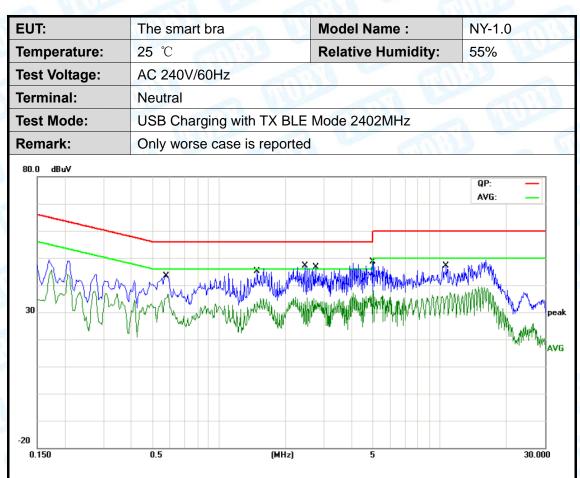

4.4 EUT Operating Mode

Please refer to the description of test mode.

4.5 Test Data


Test data please refer the following pages.


No. Mk.	Freq.	Reading Level	Correct Factor	Measure- ment	Limit	O∨er	
	MHz	dBu∨	dB	dBuV	dBu V	dB	Detector
1	1.1100	31.51	10.06	41.57	56.00	-14.43	QP
2	1.1100	22.35	10.06	32.41	46.00	-13.59	AVG
3	2.2659	31.83	10.05	41.88	56.00	-14.12	QP
4	2.2659	25.34	10.05	35.39	46.00	-10.61	AVG
5	3.9060	32.82	10.00	42.82	56.00	-13.18	QP
6	3.9060	23.64	10.00	33.64	46.00	-12.36	AVG
7	4.9660	35.69	9.96	45.65	56.00	-10.35	QP
8 *	4.9660	27.39	9.96	37.35	46.00	-8.65	AVG
9	10.7020	33.00	10.17	43.17	60.00	-16.83	QP
10	10.7020	25.75	10.17	35.92	50.00	-14.08	AVG
11	16.1540	34.34	10.24	44.58	60.00	-15.42	QP
12	16.1540	24.29	10.24	34.53	50.00	-15.47	AVG


No. Mk.	Freq.	Reading Le∨el	Correct Factor	Measure- ment	Limit	O∨er	
	MHz	dBu∨	dB	dBuV	dBu∨	dB	Detector
1	0.2779	32.60	10.02	42.62	60.88	-18.26	QP
2	0.2779	25.18	10.02	35.20	50.88	-15.68	AVG
3	1.5940	30.14	10.06	40.20	56.00	-15.80	QP
4	1.5940	23.93	10.06	33.99	46.00	-12.01	AVG
5	2.4580	33.91	10.04	43.95	56.00	-12.05	QP
6	2.4580	23.38	10.04	33.42	46.00	-12.58	AVG
7	4.9659	36.18	9.96	46.14	56.00	-9.86	QP
8 *	4.9659	27.92	9.96	37.88	46.00	-8.12	AVG
9	7.9059	31.30	10.09	41.39	60.00	-18.61	QP
10	7.9059	25.50	10.09	35.59	50.00	-14.41	AVG
11	16.1539	34.52	10.24	44.76	60.00	-15.24	QP
12	16.1539	24.31	10.24	34.55	50.00	-15.45	AVG

No.	Mk.	Freq.	Reading Le∨el	Correct Factor	Measure- ment	Limit	O∨er	
		MHz	dBu V	dB	dBu∨	dBu∨	dB	Detector
1		0.2060	38.06	10.02	48.08	63.36	-15.28	QP
2	*	0.2060	35.10	10.02	45.12	53.36	-8.24	AVG
3		0.2779	32.61	10.02	42.63	60.88	-18.25	QP
4		0.2779	25.14	10.02	35.16	50.88	-15.72	AVG
5		0.5820	32.70	10.06	42.76	56.00	-13.24	QP
6		0.5820	26.20	10.06	36.26	46.00	-9.74	AVG
7		0.9660	30.11	10.07	40.18	56.00	-15.82	QP
8		0.9660	23.99	10.07	34.06	46.00	-11.94	AVG
9		1.5940	31.70	10.06	41.76	56.00	-14.24	QP
10		1.5940	25.13	10.06	35.19	46.00	-10.81	AVG
11		2.7500	34.81	10.04	44.85	56.00	-11.15	QP
12		2.7500	25.96	10.04	36.00	46.00	-10.00	AVG

No. Mk.	Freq.	Reading Level	Correct Factor	Measure- ment	Limit	O∨er	
	MHz	dBu∨	dB	dBu∨	dBu∨	dB	Detector
1	0.5780	32.88	10.06	42.94	56.00	-13.06	QP
2	0.5780	25.66	10.06	35.72	46.00	-10.28	AVG
3	1.4940	31.32	10.06	41.38	56.00	-14.62	QP
4	1.4940	24.01	10.06	34.07	46.00	-11.93	AVG
5	2.4580	34.62	10.04	44.66	56.00	-11.34	QP
6	2.4580	24.03	10.04	34.07	46.00	-11.93	AVG
7	2.7500	33.30	10.04	43.34	56.00	-12.66	QP
8	2.7500	24.77	10.04	34.81	46.00	-11.19	AVG
9	4.9660	37.76	9.96	47.72	56.00	-8.28	QP
10 *	4.9660	29.35	9.96	39.31	46.00	-6.69	AVG
11	10.7020	35.20	10.17	45.37	60.00	-14.63	QP
12	10.7020	27.35	10.17	37.52	50.00	-12.48	AVG

5. Radiated Emission Test

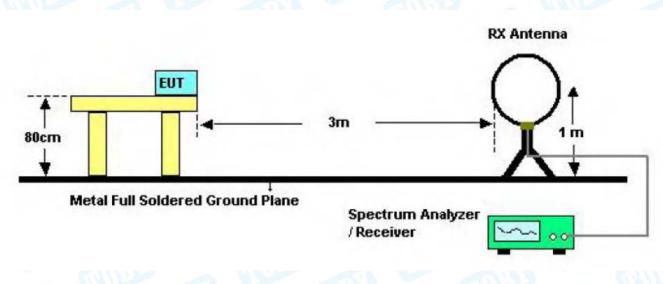
- 5.1 Test Standard and Limit
 - 5.1.1 Test Standard
 - FCC Part 15.209
 - 5.1.2 Test Limit

Radiated Emission Limits (9kHz~1000MHz)

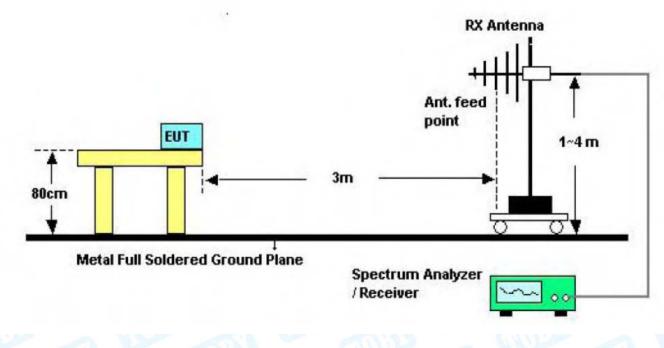
Frequency (MHz	Field Strength (microvolt/meter)	Measurement Distance (meters)
0.009~0.490	2400/F(KHz)	300
0.490~1.705	24000/F(KHz)	30
1.705~30.0	30	30
30~88	100	3
88~216	150	3
216~960	200	3
Above 960	500	3

Radiated Emission Limit (Above 1000MHz)

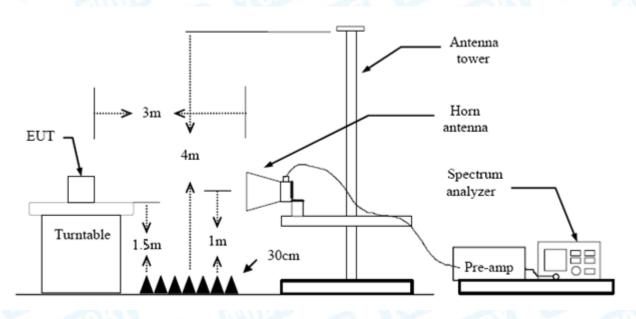
Frequency	Class A (dBuV	/m)(at 3 M)	Class B (dBuV/m)(at 3 M)		
(MHz)	Peak	Average	Peak	Average	
Above 1000	80	60	74	54	


Note:

(1) The tighter limit applies at the band edges.


(2) Emission Level(dBuV/m)=20log Emission Level(uV/m)

5.2 Test Setup



Below 30MHz Test Setup

Below 1000MHz Test Setup

Above 1GHz Test Setup

5.3 Test Procedure

- (1) The measuring distance of 3m shall be used for measurements at frequency up to 1GHz and above 1 GHz. The EUT was placed on a rotating 0.8m high above ground, the table was rotated 360 degrees to determine the position of the highest radiation.
- (2) Measurements at frequency above 1GHz. The EUT was placed on a rotating 1.5m high above the ground. RF absorbers covered the ground plane with a minimum area of 3.0m by 3.0m between the EUT and measurement receiver antenna. The RF absorber shall not exceed 30cm in high above the conducting floor. The table was rotated 360 degrees to determine the position of the highest radiation.
- (3) The Test antenna shall vary between 1m and 4m, Both Horizontal and Vertical antenna are set to make measurement.
- (4) The initial step in collecting conducted emission data is a spectrum analyzer peak detector mode pre-scanning the measurement frequency range. Significant peaks are then marked and then Quasi Peak detector mode re-measured.
- (5) If the Peak Mode measured value compliance with and lower than Quasi Peak Mode Limit Bellow 1 GHz, the EUT shall be deemed to meet QP Limits and then no additional QP Mode measurement performed. But the Peak Value and average value both need to comply with applicable limit above 1 GHz.
- (6) Testing frequency range below 1GHz the measuring instrument use VBW=120 kHz with Quasi-peak detection.
- (7) Testing frequency range above 1GHz the measuring instrument use RBW=1 MHz and VBW=3 MHz with Peak Detector for Peak Values, and use RBW=1 MHz and VBW=10 Hz with Peak Detector for Average Values.
- (8) For the actual test configuration, please see the test setup photo.

5.4 EUT Operating Condition

The Equipment Under Test was set to Continual Transmitting in maximum power.

5.5 Test Data

Remark: During testing above 1GHz the measuring instrument use RBW=1 MHz and VBW=3 MHz with Peak Detector for Peak Values, and use RBW=1 MHz and VBW=1 kHz with Peak Detector for Average Values.

Test data please refer the following pages.

						-
EUT:	The smart bra		Model:		NY-1.0	
Temperature:	25 ℃	50	Relative H	umidity:	55%	1
Test Voltage:	DC 5V	and in		1100	6.0	
Ant. Pol.	Horizontal				100	
Test Mode:	BLE TX 2402 M	lode	MUD S			
Remark:	Only worse cas	e is reported		COD)		
30		3 Mr. J. J. Market	shuldulalalalala	(RF)FCC 150	C 3M Radiation Margin -6	
30.000 40 50	60 70 80	(MHz)	300	400 500	600 700	1000.000
No. Mk. Fr	Reading eq. Level	Correct Factor	Measure- ment	Limit	O∨er	
M	Hz dBuV	dB/m	dBuV/m	dBuV/m	dB	Detector
1 35.8	746 37.06	-17.60	19.46	40.00	-20.54	peak
2 71.8	320 43.20	-23.56	19.64	40.00	-20.36	peak
3 191.7	7450 47.35	-20.81	26.54	43.50	-16.96	peak
4 336.0	0352 42.02	-15.46	26.56	46.00	-19.44	peak
5 383.9	9318 43.49	-13.87	29.62	46.00	-16.38	peak
6 * 528.2	2458 40.24	-10.14	30.10	46.00	-15.90	peak

EUT:	The smart bra		Model:	NY-	1.0
Temperature:	25 ℃		Relative Humic	lity: 55%	6
Test Voltage:	DC 5V			anis)	
Ant. Pol.	Vertical				SRL.
Test Mode:	BLE TX 2402	Mode	MUDD		and the second s
Remark:	Only worse ca	se is reported		133	
80.0 dBu¥/m					
30 1 2 3 1 2		5 6 X X	(RF	FCC 15C 3M Radiation Margin -6	
30.000 40 50	60 70 80	(MHz)	300 400	500 600 700	1000.000
No. Mk. F	Readin req. Level	g Correct Factor	Measure- ment Lim	it O∨er	
N	1Hz dBu∨	dB/m	dBuV/m dBu	V/m dB	Detector
1 31.	5095 42.78	-14.89	27.89 40.	00 -12.11	peak
2 * 35.0	6240 47.47	-17.45	30.02 40.	00 -9.98	peak
3 49.0	0145 52.88	-23.97	28.91 40.	00 -11.09	peak
	8320 48.14	-23.56	24.58 40.		
		20.00	2		poun
	8295 45.55	-21.67	23.88 43	50 -19.62	neak
5 143.	.8295 45.55 .7450 47.06	-21.67 -20.81	23.88 43 26.25 43		peak peak

EUT:	The sma	art bra	<u>a 19</u>	Model:		NY-1.0	1
Temperature:	25 ℃	Call		Relative H	umidity:	55%	
Test Voltage:	DC 5V	A CONTRACT	-		nn)	32	
Ant. Pol.	Horizon	tal	M.G.			-	
Test Mode:	BLE TX	2442 Mo	de	MILES			Nec -
Remark:	Only wo	orse case	is reported		COD)		~ \
80.0 dBuV/m							
					(RF)FCC 150	3M Radiation	
						Margin -6	ae [
		J			6		
30			4	5 X	×		
1 X 2		3	*			with the patient	mathl
MAM X	1		بال ماس	and when the the the	ha Arana an		
· ~ W \.	My www. Awald Mary	What have a strengther	M (million with the service his	Mar Color and A			
20 30.000 40 50	60 70 80		(MHz)	300	400 500	600 700	1000.000
) a a din a	Correct	Managera			
No. Mk. F		teading Level	Correct Factor	Measure- ment	Limit	O∨er	
	1Hz	dBuV		dBuV/m	dBuV/m	dB	Detecto
			dB/m				
1 35.0	6240	35.21	-17.45	17.76	40.00	-22.24	peal
2 48.8	8429	39.10	-23.91	15.19	40.00	-24.81	peal
3 119.	.8556	38.91	-22.50	16.41	43.50	-27.09	peal
4 191.	.7450	44.28	-20.81	23.47	43.50	-20.03	peal
5 336.	.0352	40.05	-15.46	24.59	46.00	-21.41	peal
6 * 292	004.0	40.00	40.07		40.00	17.01	
6 * 383.	.9318	42.26	-13.87	28.39	46.00	-17.61	peal

EUT:	The smart bra		Model:		NY-1.0	
	25 ℃				55%	
Temperature:			Relative Hu	lmany:	55%	
Test Voltage:	DC 5V	Carlin State		III III		-
Ant. Pol.	Vertical				64	
Test Mode:	BLE TX 2442 Mc		MUP	-		
Remark:	Only worse case	is reported		an bi		~ \
80.0 dBu∀/m						
				(RF)FCC 15C	3M Radiation Margin -6 dl	B [
	3 A Mar Mar Mar Mar Mar Mar Mar Mar Mar Mar	in Julianthe walker	5 6 X X	Northermost of the	n dalayad manari	
	× •	(MHz)	5 6 × •••••••••••••••••••••••••••••••••••	400 500	600 700	1000.000
-20 30.000 40 50	ur Mun Morris	(MHz)	ngh Adding and an and an			
-20 30.000 40 50 No. Mk. Fr	60 70 80 Reading	(MHz) Correct	300 Measure-	400 500	600 700	
-20 30.000 40 50 No. Mk. Fr	60 70 80 Reading req. Level Hz dBu∨	(MHz) Correct Factor	300 Measure- ment	400 500 Limit	600 700 O∨er	1000.000 Detecto
-20 30.000 40 50 No. Mk. Fr	60 70 80 Reading Level Hz dBu∨ 750 46.32	(MH2) Correct Factor dB/m	300 Measure- ment dBuV/m	400 500 Limit dBu√/m	600 700 Over dB	1000.000

		•						
		MHz	dBuV	dB/m	dBuV/m	dBuV/m	dB	Detector
1	*	35.3750	46.32	-17.29	29.03	40.00	-10.97	peak
2		39.7146	45.15	-19.98	25.17	40.00	-14.83	peak
3		71.8320	47.82	-23.56	24.26	40.00	-15.74	peak
4		119.8556	41.79	-22.50	19.29	43.50	-24.21	peak
5		239.9874	38.36	-18.59	19.77	46.00	-26.23	peak
6		312.1794	38.69	-16.63	22.06	46.00	-23.94	peak

	-		-	1.1.1			-
EUT:	The sm	art bra	a 13	Model:		NY-1.0	
Temperature:	25 ℃	(and)		Relative I	lumidity:	55%	1 Second
Test Voltage:	DC 5V	120	-		nn.	66	-
Ant. Pol.	Horizor	ntal	M.O.			-	RU
Test Mode:	BLE TX	(2 <mark>480 M</mark> o	de	MUD			
Remark:	Only w	orse case	is reported		Can B		
80.0 dBuV/m							
					(RF)FCC 15C	3M Radiation	
						Margin -6	
30			3	4	5 × 6		
1			×	×	× Î Ă		whe stall
m Å m Å	1				Mr. M. Marland	and the second s	
	. Mund March	mahourduportubile	whilewood	whether and the state of the st			
jev?	where we						
-20							
30.000 40 50	60 70 8	0	(MHz)	300	400 500	600 700	1000.000
	F	Reading	Correct	Measure-			
No. Mk. Fre	∋q.	Level	Factor	ment	Limit	O∨er	
MH	łz	dBu∨	dB/m	dBuV/m	dBuV/m	dB	Detector
1 35.87	746	36.66	-17.60	19.06	40.00	-20.94	peak
2 48.84	429	39.61	-23.91	15.70	40.00	-24.30	peak
3 191.7	450	46.94	-20.81	26.13	43.50	-17.37	peak
4 336.0	352	41.61	-15.46	26.15	46.00	-19.85	peak
5 * 383.9	318	43.05	-13.87	29.18	46.00	-16.82	peak
6 480.5	276	37.45	-11.62	25.83	46.00	-20.17	peak

EUT:	The smart bra		Model:		NY-1.0	
Temperature:	25 ℃	BU T	Relative H	lumidity:	55%	
Test Voltage:	DC 5V			Im		
Ant. Pol.	Vertical				A	RU
Test Mode:	BLE TX 2480	Mode	mile	2		9
Remark:	Only worse ca	se is reported		and		
80.0 dBuV/m		5 M M M M M M M M M M M M M M M M M M M	6 X	(RF)FCC 150	C 3M Radiation Margin -6	
20 30.000 40 50	60 70 80	(MHz)		100 500) 600 700	
55.000 40 30	60 70 80	(MILE)	300	400 500	000 100	1000.000
	Readin eq. Level		Measure- ment	Limit	Over	1000.000
	Readin eq. Le∨el	g Correct	Measure-			1000.000 Detector
No. Mk. Fr	Readin eq. Level ⊣z dBuV	g Correct Factor	Measure- ment	Limit	O∨er	
No. Mk. Fr	Readin eq. Level Hz dBuV 202 40.99	g Correct Factor	Measure- ment dBuV/m	Limit dBuV/m	O∨er dB	Detector
No. Mk. Fr	Readin eq. Level dBu∨ 202 40.99 541 46.66	g Correct Factor dB/m -14.96 -17.83	Measure- ment dBu∀/m 26.03	Limit dBuV/m 40.00	Over dB -13.97	Detector peak
No. Mk. Fr Mi 1 31.6 2 36.2	Readin eq. Level dBu∨ 202 40.99 541 46.66 865 53.60	g Correct Factor dB/m -14.96 -17.83 -24.05	Measurement dBuV/m 26.03 28.83	Limit dBuV/m 40.00 40.00	Over dB -13.97 -11.17	Detector peak peak peak
No. Mk. Fr Mi 1 31.6 2 36.2 3 * 49.1	Readin eq. Level dBuV 202 40.99 541 46.66 865 53.60 320 46.75	g Correct Factor dB/m -14.96 -17.83 -24.05 -23.56	Measure- ment dBuV/m 26.03 28.83 29.55	Limit dBuV/m 40.00 40.00 40.00	Over dB -13.97 -11.17 -10.45	Detector peak peak

EUT	:		The sm	hart bra		Model:		NY-1.0		
Tem	perature	:	25 ℃	Call	20	Relative I	Humidity:	55%		
Test	Voltage	1	DC 5V	1970	-	TOBY TOBY				
Ant.	Pol.		Horizoi	ntal						
Fest	Mode:		BLE M	ode TX 24	402 MHz	600				
Rem	nark:			ort for the bed limit.	emission	which more th	an 10 dB below the			
100.0	dBu¥/m									
							(RF) FCC PAI	RT 15C (PEAK)		
		2 X					(RF) FCC P/	ART 15C (AVG)		
50		1 X								
		Ŷ								
0.0										

No	. Mk	. Freq.	Reading Level		Measure- ment	Limit	Over	
		MHz	dBu∨	dB/m	dBuV/m	dBuV/m	dB	Detector
1	*	4804.462	33.47	13.44	46.91	54.00	-7.09	AVG
2		4804.485	45.01	13.44	58.45	74.00	-15.55	peak

EUT:		The smart bra	Model:	NY-1.0
Temp	perature:	25 ℃	Relative Humidity	: 55%
Test	Voltage:	DC 5V	0	
Ant.	Pol.	Vertical		TOR!
Test	Mode:	BLE Mode TX 2402	2 MHz	2 14
Rema	ark:	No report for the er prescribed limit.	nission which more than 10 dB	below the
100.0	dBuV/m			
			(RF) FCC	PART 15C (PEAK)
	2 X		(BE) FC	C PART 15C (AVG)
50	1			
	×			
0.0				

No	o. Mk	. Freq.	Reading Level	Correct Factor	Measure- ment	Limit	O∨er	
		MHz	dBu∨	dB/m	dBuV/m	dBuV/m	dB	Detector
1	*	4804.027	33.45	13.44	46.89	54.00	-7.11	AVG
2		4804.255	44.24	13.44	57.68	74.00	-16.32	peak

EU1	Γ:		The sma	rt bra		Model:		NY-1.0			
Terr	perature:		25 ℃	Call!		Relative	Humidity:	55%			
ſes	t Voltage:		DC 5V	1000	-	80	1100				
۱nt	. Pol.		Horizont	al	M.A						
es	t Mode:		BLE Mod	de TX 24	42 MHz	MID					
Ren	n ark :		No repor prescribe		emission v	which more th	an 10 dB be	low the			
00.0	dBuV/m										
							(RF) FCC PAR	T 15C (PEAK)			
		1 X					(BF) FCC PA	RT 15C (AVG)			
50		2 X									
		^									
0.0											

No	. Mk	. Freq.	Reading Le∨el		Measure- ment	Limit	O∨er	
		MHz	dBu∨	dB/m	dBuV/m	dBuV/m	dB	Detector
1		4883.537	44.06	13.92	57.98	74.00	-16.02	peak
2	*	4884.255	33.95	13.92	47.87	54.00	-6.13	AVG

EUT	:		The small	art bra		Model	:	NY-1.0		
Гem	perature:		25 ℃	Call	3.5	Relativ	ve Humidity:	55%		
Fest	Voltage:		DC 5V	100	-	20 -	(In)			
Ant.	Pol.		Vertical		110					
ſest	Mode:		BLE Mo	de TX 24	442 MHz	1100				
Rem	nark:		No repo prescrib		emission	which more	e than 10 dB be	elow the		
100.0	dBuV/m									
							(RF) FCC PA	RT 15C (PEAK)		
		2 X					(BF) FCC P/	ART 15C (AVG)		
50		1 X								
		·· ·								
0.0										

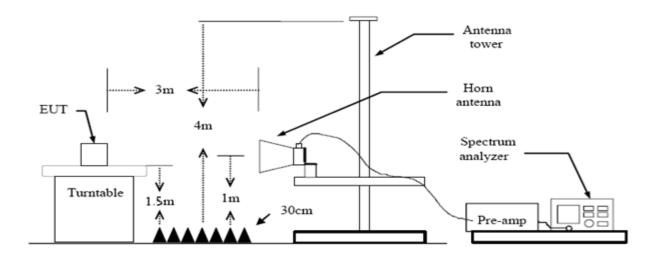
No. Mk.		. Freq.	Reading Level		Measure- ment	Limit	O∨er	
		MHz	dBu∨	dB/m	dBuV/m	dBuV/m	dB	Detector
1	*	4884.086	34.10	13.92	48.02	54.00	-5.98	AVG
2		4884.448	45.12	13.92	59.04	74.00	-14.96	peak

EUT	:		The sn	hart bra		Mode	l:	NY-1.0
Temperature:			25 ℃	600		Relat	ive Humidity:	55%
Test	Voltage:		DC 5V	A.	-	12	10	192
Ant.	Pol.		Horizo	ntal			20	-
Fest	Mode:		BLE M	ode TX 2	2480 MHz		Les -	
Remark: No report for the emission which more than 10 dB bel prescribed limit.					elow the			
100.0	dBuV/m							
							(RF) FCC PA	RT 15C (PEAK)
		2 X					(RF) FCC F	ART 15C (AVG)
50		1 X						
0.0								

No. Mk.		. Freq.	Reading Level	Correct Factor	Measure- ment	Limit	O∨er	
		MHz	dBuV	dB/m	dBuV/m	dBuV/m	dB	Detector
1	*	4960.187	33.93	14.36	48.29	54.00	-5.71	AVG
2		4960.297	44.31	14.36	58.67	74.00	-15.33	peak

EUT:		The smart bra	Model:		NY-1.0				
Fempera	ture:	25 ℃	Relative	Humidity:	55%				
Fest Volt	age:	DC 5V		(Ing)	29				
Ant. Pol.		Vertical							
Test Mod	le:	BLE Mode TX 2	2480 MHz		110				
Remark:		No report for the emission which more than 10 dB below the prescribed limit.							
100.0 dBu¥	7m								
				(RF) FCC PA	RT 15C (PEAK)				
	2 X								
50	1			(RF) FCC P.	ART 15C (AVG)				
50	×								
0.0									
1000.000	2550.00 0	5100.00 8650.00 1	1200.00 13750.00 16300.00 1	8850.00 21400.0	0 26500.00 MH				

No. Mk.		. Freq.	Reading Level	Correct Factor	Measure- ment	Limit	Over	
		MHz	dBu∨	dB/m	dBuV/m	dBuV/m	dB	Detector
1	*	4959.520	33.96	14.36	48.32	54.00	-5.68	AVG
2		4959.878	44.67	14.36	59.03	74.00	-14.97	peak



6. Restricted Bands Requirement

- 6.1 Test Standard and Limit
 - 6.1.1 Test Standard
 - FCC Part 15.209 FCC Part 15.205
 - 6.1.2 Test Limit

Restricted Frequency	Class B (dBuV/m)(at 3 M)				
Band (MHz)	Peak	Average			
2310 ~2390	74	54			
2483.5 ~2500	74	54			

6.2 Test Setup

6.3 Test Procedure

- (1) The measuring distance of 3m shall be used for measurements at frequency up to 1GHz and above 1 GHz. The EUT was placed on a rotating 0.8m high above ground, the table was rotated 360 degrees to determine the position of the highest radiation.
- (2) Measurements at frequency above 1GHz. The EUT was placed on a rotating 1.5m high above the ground. RF absorbers covered the ground plane with a minimum area of 3.0m by 3.0m between the EUT and measurement receiver antenna. The RF absorber shall not exceed 30cm in high above the conducting floor. The table was rotated 360 degrees to determine the position of the highest radiation.
- (3) The Test antenna shall vary between 1m and 4m, Both Horizontal and Vertical antenna are set to make measurement.
- (4) The initial step in collecting conducted emission data is a spectrum analyzer peak detector mode pre-scanning the measurement frequency range. Significant peaks are then marked

and then Quasi Peak detector mode re-measured.

- (5) If the Peak Mode measured value compliance with and lower than Quasi Peak Mode Limit Bellow 1 GHz, the EUT shall be deemed to meet QP Limits and then no additional QP Mode measurement performed. But the Peak Value and average value both need to comply with applicable limit above 1 GHz.
- (6) Testing frequency range below 1GHz the measuring instrument use VBW=120 kHz with Quasi-peak detection.
- (7) Testing frequency range above 1GHz the measuring instrument use RBW=1 MHz and VBW=3 MHz with Peak Detector for Peak Values, and use RBW=1 MHz and VBW=10 KHz with Peak Detector for Average Values.
- (8) For the actual test configuration, please see the test setup photo.
- 6.4 EUT Operating Condition

The Equipment Under Test was set to Continual Transmitting in maximum power.

6.5 Test Data

Remark: During testing above 1GHz the measuring instrument use RBW=1 MHz and VBW=3 MHz with Peak Detector for Peak Values, and use RBW=1 MHz and VBW=1kHz with Peak Detector for Average Values.

Test data please refer the following pages.

(1) Radiation Test

3

4

*

Х

		-							
EUT:			The s	smart bra		Model:		NY-1.0	
Temperature:			25 ℃			Relative Hu	Humidity: 55%		
Test	Test Voltage: DC 5V						C.S.		21
Ant.	Pol.		Horizontal						
Test	Mode:		BLE Mode TX 2402 MHz						5
Rem	ark:		N/A		AUDE		3900		20 2
100.0	dBu¥/m								
Γ							4		
-							Ň		
-							(BF) FCC PA	RT 15C (PEAK	a –
50							(RF) FCC P	ART 15C (AVG	0
50						1	1		
-						×			
				·····		2			
0.0									
232	20.000 2330).00 2	340.00	2350.00 236	50.00 2370.00	2380.00 2390.0	0 2400.00) 2	420.00 MHz
				Reading	Correct	Measure-			
N	lo. Mk.	Fr	eq.	Level	Factor	ment ^I	Limit	O∨er	
		М	Hz	dBu∨	dB/m	dBuV/m	dBuV/m	dB	Detector
1		2390	.000	39.86	0.77	40.63	74.00	-33.37	peak
2		2390	.000	27.21	0.77	27.98	54.00	-26.02	AVG

Emission Level= Read Level+ Correct Factor

87.77

93.06

0.82

0.82

88.59

93.88

Fundamental Frequency

Fundamental Frequency

2402.100

2402.200

AVG

peak

EUT:	The smart bra	Model:	NY-1.0
Temperature:	25 ℃	Relative Hu	midity: 55%
Fest Voltage:	DC 5V		6000
Ant. Pol.	Vertical		
Test Mode:	BLE Mode TX 24	l02 MHz	
Remark:	N/A		
100.0 dBu¥/m			
			3 X
			4 X
			(RF) FCC PART 15C (PEAK)
			(RF) FOC PART 15C (AVG)
50			
		1 *	
		2	
	**************************************	A	
0.0			

No	. Mk	. Freq.	Reading Le∨el	Correct Factor	Measure- ment	Limit	O∨er	
		MHz	dBu∨	dB/m	dBuV/m	dBuV/m	dB	Detector
1		2390.000	38.73	0.77	39.50	74.00	-34.50	peak
2		2390.000	27.27	0.77	28.04	54.00	-25.96	AVG
3	Х	2402.100	92.55	0.82	93.37	Fundamental Frequency		peak
4	*	2402.100	85.76	0.82	86.58	Fundamental Frequency		AVG

EUT:	The smart bra	Model:	NY-1.0
emperature:	25 ℃	Relative Humidity:	55%
fest Voltage:	DC 5V		39
Ant. Pol.	Horizontal		
fest Mode:	BLE Mode TX 2480 MH	Iz MID	ALL L
Remark:	N/A		
100.0 dBuV/m			
	1		
	×		
			RT 15C (PEAK)
			TI TOL (PEAK)
	3	(RF) FCC P/	ART 15C (AVG)
50			
······			
0.0			
2460.000 2470.00	2480.00 2490.00 2500.00 2	2510.00 2520.00 2530.00 2540.00	2560.00 MH

No	. Mk	. Freq.	Reading Level	Correct Factor	Measure- ment	Limit	O∨er	
		MHz	dBu∨	dB/m	dBuV/m	dBuV/m	dB	Detector
1	Х	2480.000	90.08	1.15	91.23	Fundamental F	requency	peak
2	*	2480.000	85.13	1.15	86.28	Fundamental F	requency	AVG
3		2483.500	53.50	1.17	54.67	74.00	-19.33	peak
4		2483.500	47.81	1.17	48.98	54.00	-5.02	AVG

Emission Level= Read Level+ Correct Factor

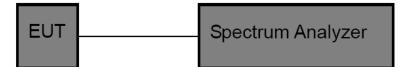
UT:		The	smart bra		Model:		NY-	1.0
empe	rature:	25	°C		Relative	Humidity:	55%	
est V	oltage:	DC	5V		81	(Da)	33	
nt. P	ol.	Vert	ical	UIP .			-	621
est M	ode:	BLE	BLE Mode TX 2480 MHz					W.
lemar	k:	N/A	1 Store	1		2013	51	
00.0 d	BuV/m							
		2						
-		<u> </u>				(RF) FCC PA	rt 15C (Pe	AKJ
		3				(RF) FCC P	ART 15C (A	VG)
50								
			\					
			harmon				······	
0.0								
2460.0	00 2470.00	2480.00	2490.00 25	00.00 2510.00	2520.00 253	30.00 2540.00)	2560.00 M
			Reading	Correct	Measure-			
No.	Mk.	Freq.	Level	Factor	ment	Limit	O∨er	
		MHz	dBuV	dB/m	dBuV/m	dBuV/m	dB	Detecto

				GE/TH			
1	*	2480.000	84.19	1.15	85.34	Fundamental Frequency	AVG
2	Х	2480.200	88.99	1.15	90.14	Fundamental Frequency	peak
3		2483.500	53.81	1.17	54.98	74.00 -19.02	peak
4		2483.500	47.40	1.17	48.57	54.00 -5.43	AVG

Emission Level= Read Level+ Correct Factor

(2) Conducted Test

Peak Log 10 dB/ offst 3 dB DI -20.2 dBm DI -20.2 dBm	325 GHz)7 dBm
st Mode: BLE Mode TX 2402MHz / BLE Mode TX 2480MHz smark: The EUT is programed in continuously transmitting mode Agilent Mkr4 2.368 Ref 10 dBm #Atten 25 dB Peak -55.07 10 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 <td>325 GHz)7 dBm</td>	325 GHz)7 dBm
Agilent Mkr4 2.368 Ref 10 dBm #Atten 25 dB -55.0 Peak Log 10 dB/ Offst 3 dB Di -20.19 dBm Center 2.366 GHz Kef 10 kHz Kef 10	325 GHz)7 dBm
Agilent Mkr4 2.368 Ref 10 dBm #Atten 25 dB -55.07 Peak Log 10 dB/ Offst 3 B Display Line -20.19 dBm DI -20.2 dBm Center 2.366 GHz #Res BW 100 kHz #VBW 300 kHz Syan 1 Syan	325 GHz)7 dBm
Mkr4 2.368 Ref 10 dBm #Atten 25 dB -55.07 Peak Log 10 dB/ Offst 3 dB Di -20.19 dBm -20.19 dBm Center 2.366 GHz #Res BW 100 kHz #VBW 300 kHz Span 1 Sweep 10.36 ms (40 Marker Trace Type X Axis Amplitude	07 dBm 100 MHz
Mkr4 2.368 Ref 10 dBm #Atten 25 dB -55.07 Peak Log 10 dB/ Offst 3 dB Di -20.19 dBm -20.19 dBm Center 2.366 GHz #Res BW 100 kHz #VBW 300 kHz Span 1 Sweep 10.36 ms (40 Marker Trace Type X Axis Amplitude	07 dBm 100 MHz
Peak Log 10 dB/ Offst 3 dB DI -20.19 dBm -20.19 dBm -20.2 dBm Center 2.366 GHz #Res BW 100 kHz #Res BW 100 kHz Marker Trace Type X Axis Amplitude	100 MHz
Log 10 dB/ Offst 3 dB Di -20.19 dBm -20.19 dBm -20.29 dBm -20.2 dBm Center 2.366 GHz #Res BW 100 kHz #VBW 300 kHz Sweep 10.36 ms (40 Marker Trace Type X Axis Amplitude	
dB/ Offst 3 dB DI -20.19 dBm -20.2 dBm Center 2.366 GHz #Res BW 100 kHz #Res BW 100 kHz Marker Trace Type X Axis Amplitude	
offst 3 dB DI -20.19 dBm -20.2 dBm Center 2.366 GHz #Res BW 100 kHz #Res BW 100 kHz Marker Trace Type X Axis Amplitude	
DI -20.2 dBm Center 2.366 GHz #Res BW 100 kHz Marker Trace Type X Axis Amplitude	
DI -20.2 dBm Center 2.366 GHz #Res BW 100 kHz Marker Trace Type X Axis Amplitude	
dBm Center 2.366 GHz #Res BW 100 kHz Marker Trace Type X Axis Amplitude	
Center 2.366 GHz Span 1 #Res BW 100 kHz #VBW 300 kHz Sweep 10.36 ms (40 Marker Trace Type X Axis Amplitude	
#Res BW 100 kHz #VBW 300 kHz Sweep 10.36 ms (40 Marker Trace Type X Axis Amplitude	
#Res BW 100 kHz #VBW 300 kHz Sweep 10.36 ms (40 Marker Trace Type X Axis Amplitude	
	01 pts)
2 (1) Freq 2.39000 GHz -56.33 dBm	
3 (1) Freq 2.40000 GHz -53.82 dBm 4 (1) Freq 2.36825 GHz -55.07 dBm	
Agilent	
Mkr1 2.479 Ref 10 dBm #Atten 25 dB -0.62	975 GHz 29 dBm
Peak 1	
Log 10	
dB/	
offst Display Line	
³ _{ав} -20.63 dВm	
-20.6 dBm	
Contor 2 511 GHz Span 1	
Center 2.511 GHz Span 1 #Res BW 100 kHz #VBW 300 kHz Sweep 10.36 ms (40	100 MHz 01 pts)
#Res BW 100 kHz #VBW 300 kHz Sweep 10.36 ms (40 Marker Trace Type X Axis Amplitude	
#Res BW 100 kHz #VBW 300 kHz Sweep 10.36 ms (40 Marker Trace Type X Axis Amplitude 1 (1) Freq 2.47975 GHz -0.629 dBm 2 (1) Freq 2.48350 GHz -56.44 dBm	
#Res BW 100 kHz #VBW 300 kHz Sweep 10.36 ms (40 Marker Trace Type X Axis Amplitude 1 (1) Freq 2.47975 GHz -0.629 dBm 2 (1) Freq 2.48350 GHz -56.44 dBm	
#Res BW 100 kHz #VBW 300 kHz Sweep 10.36 ms (40 Marker Trace Type X Axis Amplitude 1 (1) Freq 2.47975 GHz -0.629 dBm	
#Res BW 100 kHz #VBW 300 kHz Sweep 10.36 ms (40 Marker Trace Type X Axis Amplitude 1 (1) Freq 2.47975 GHz -0.629 dBm 2 (1) Freq 2.48350 GHz -56.44 dBm	



7. Bandwidth Test

- 7.1 Test Standard and Limit
 - 7.1.1 Test Standard
 - FCC Part 15.247 (a)(2)
 - 7.1.2 Test Limit

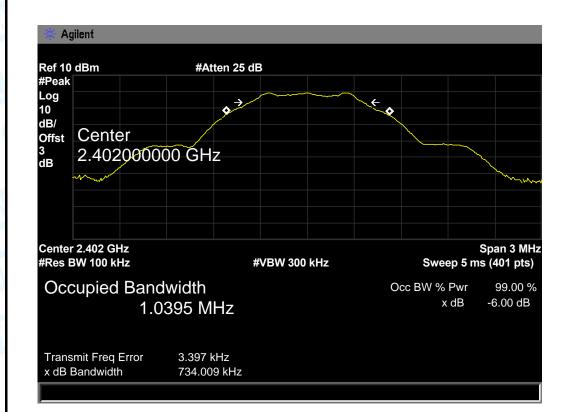
FCC	FCC Part 15 Subpart C(15.247)/RSS-247					
Test Item	Limit	Frequency Range(MHz)				
Bandwidth	>=500 KHz (6dB bandwidth)	2400~2483.5				

7.2 Test Setup

7.3 Test Procedure

- (1) The EUT was directly connected to the spectrum analyzer and antenna output port as show in the block diagram above.
- (2) The bandwidth is measured at an amplitude level reduced 6dB from the reference level. The reference level is the level of the highest amplitude signal observed from the transmitter at the fundamental frequency. Once the reference level is established, the equipment is conditioned with typical modulating signal to produce the worst –case (i.e the widest) bandwidth.
- (3)Measure the channel separation the spectrum analyzer was set to Resolution Bandwidth:100 kHz, and Video Bandwidth:300 kHz, Detector: Peak, Sweep Time set auto.

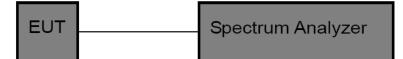
7.4 EUT Operating Condition


The EUT was set to continuously transmitting in each mode and low, middle and high channel for the test.

7.5 Test Data

EUT:	The smart bra		Model:	NY-1.0				
Temperature:	25 ℃		Relative Humidity:	55%				
Test Voltage:	DC	5V	TUP					
Test Mode:	BLE TX Mode							
Channel frequency		6dB Bandwidth	99% Bandwidth	Limit				
(MHz)		(kHz)	(kHz)	(kHz)				
2402	2 734.009		1039.50					
2442		733.457	1037.20	>=500				
2480		735.953	1045.60					
	BLE Mode							

2402 MHz



8. Peak Output Power Test

- 8.1 Test Standard and Limit
 - 8.1.1 Test Standard
 - FCC Part 15.247 (b)
 - 8.1.2 Test Limit

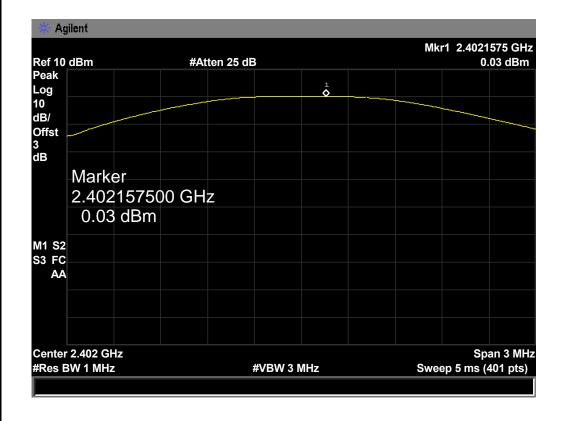
FCC Part 15 Subpart C(15.247)/RSS-247					
Test Item	Limit	Frequency Range(MHz			
Peak Output Power	1 Watt or 30 dBm	2400~2483.5			

8.2 Test Setup

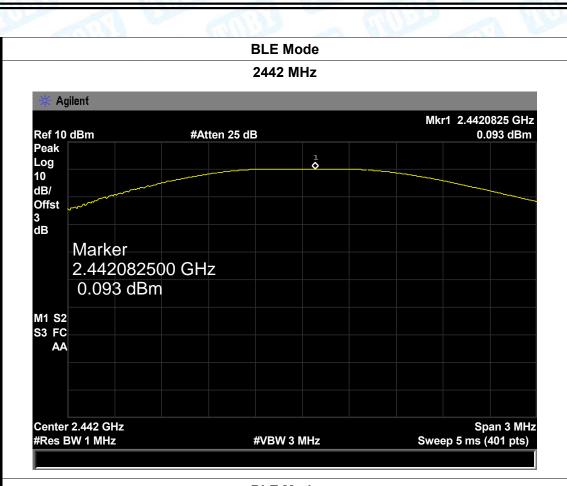
8.3 Test Procedure

The EUT was directly connected to the Spectrum Analyzer and antenna output port as show in the block diagram above. The measurement is according to section 9.1.1 of KDB 558074 D01 DTS Meas Guidance v03r03.

- (1) Set the RBW≥DTS Bandwidth
- (2) Set VBW≥3*RBW
- (3) Set Span≥3*RBW
- (4) Sweep time=auto
- (5) Detector= peak
- (6) Trace mode= maxhold.
- (7) Allow trace to fully stabilize, and then use peak marker function to determine the peak amplitude level.


8.4 EUT Operating Condition

The EUT was set to continuously transmitting in the max power during the test.



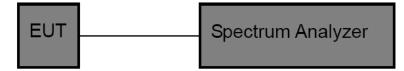
8.5 Test Data

EUT:	The smar	t bra	Model:	NY-1.0
Temperature:	25 ℃		Relative Humidity:	55%
Test Voltage:	DC 5V	ein ein	MUL	
Test Mode:	BLE TX M	lode	any.	
Channel frequency (MHz)		Test Result (dBm) Lii	nit (dBm)
2402		0.030		
2442		0.093		30
2480		-0.419		
		BLE Mod	e	
		2402 MH	Z	

BLE Mode

2480 MHz

		_	Mkr1 2.4	4801125 GH		
Ref 10 dBm	#Atten 25 c	B		-0.419 dBm		
Peak		1				
-og 0						
IB/	~~~~~					
Offst						
3 1						
B						
Marker						
2.480112	500 GHz					
-0.419 dB						
-0.419 00						
M1 S2						
S3 FC						
AA						
Center 2.48 GHz				Span 3 MH		
#Res BW 1 MHz		#VBW 3 MHz	Sweep 5 r	Sweep 5 ms (401 pts)		



9. Power Spectral Density Test

- 9.1 Test Standard and Limit
 - 9.1.1 Test Standard
 - FCC Part 15.247 (e)
 - 9.1.2 Test Limit

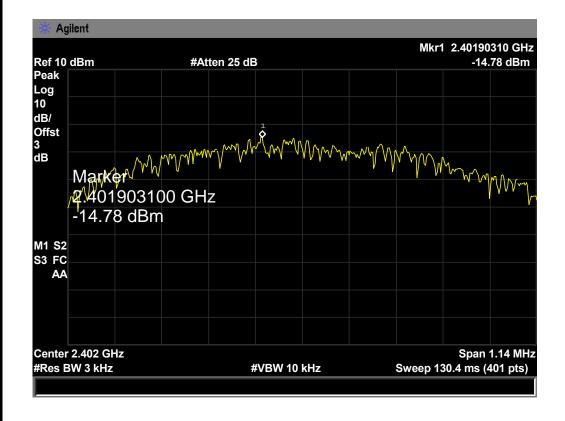
FCC Part 15 Subpart C(15.247)					
Test Item	Limit	Frequency Range(MHz)			
Power Spectral Density	8dBm(in any 3 kHz)	2400~2483.5			

9.2 Test Setup

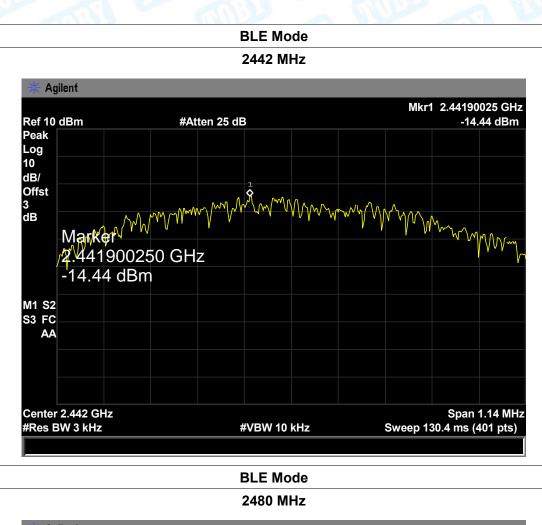
9.3 Test Procedure

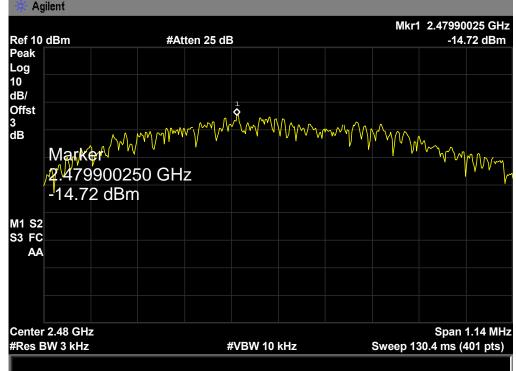
The EUT was directly connected to the Spectrum Analyzer and antenna output port as show in the block diagram above. The measurement according to section 10.2 of KDB 558074 D01 DTS Meas Guidance v03r03.

- (1) The EUT was directly connected to the spectrum analyzer and antenna output port as show in the block diagram above.
- (2) Set analyser center frequency to DTS channel center frequenyc.
- (3) Set the span to 1.5 times the DTS bandwidth.
- (4) Set the RBW to: 3 kHz
- (5) Set the VBW to: 10 kHz
- (6) Detector: peak
- (7) Sweep time: auto
- (8) Allow trace to fully stabilize. Then use the peak marker function to determine the maximum amplitude level.


9.4 EUT Operating Condition

The EUT was set to continuously transmitting in each mode and low, Midle and high channel for the test.




8.5 Test Data

EUT:	The smar	The smart bra			NY-1.0
Temperature:25 °C			Relative Humidity:		55%
Test Voltage:	DC 5V		2		0133
Test Mode:	BLE TX N	lode	- ONU		
Channel Frequency		Power Density			Limit
(MHz)		(3 kHz/dBm)			(dBm)
2402	2402		-14.78		
2442		-14.44			8
2480		-14.72			
		BLE	E Mode		
		240	02 MHz		

10. Antenna Requirement

10.1 Standard Requirement

10.1.1 Standard

FCC Part 15.203

10.1.2 Requirement

An intentional radiator shall be designed to ensure that no antenna other than that furnished by the responsible party shall be used with the device. The use of a permanently attached antenna or of an antenna that uses a unique coupling to the intentional radiator shall be considered sufficient to comply with the provisions of this Section. The manufacturer may design the unit so that a broken antenna can be replaced by the user, but the use of a standard antenna jack or electrical connector is prohibited.

10.2 Antenna Connected Construction

The directional gains of the antenna used for transmitting is 0 dBi, and the antenna de-signed with permanent attachment and no consideration of replacement. Please see the EUT photo for details.

10.3 Result

The EUT antenna is a Integral Antenna. It complies with the standard requirement.

Antenna Type	
2	Permanent attached antenna
	□ Unique connector antenna
(TEI)	Professional installation antenna