RADIO TEST REPORT Report No: STS1607050F01 Issued for XTR S.A.C. Av. Camino Real 1225 Of. 201-A San Isidro, Lima - Perú L A B | Product Name: | Smartphone | |----------------|----------------------| | Brand Name: | EKS | | Model Name: | X4U | | Series Model: | N/A | | FCC ID: | 2AGAK-X4U | | Test Standard: | FCC Part 22H and 24E | Any reproduction of this document must be done in full. No single part of this document must be done in full. No single part of this document may permission from STS, All Test Data Presented in this report is only applicable to presented to presented the permission from STS. Shenzhen STS Test Services Co., Ltd. 1/F., Building B, Zhuoke Science Park, No.190, Chongqing Road, Fuyong Street, Bao'an District, Shenzhen, Guangdong, China TEL: +86-755 3688 6288 FAX: +86-755 3688 6277 E-mail:sts@stsapp.com ## **TEST RESULT CERTIFICATION** | Applicant's name | XIR S.A.C. | |------------------------------|--| | Address: | Av. Camino Real 1225 Of. 201-A San Isidro, Lima - Perú | | Manufacture's Name: | Encorp Limited | | Address: | Room 219, East Building, Jianda Mansion, No.1 Kewei Road, Tech Park, Nanshan District, Shenzhen, China | | Product name: | Smartphone | | Brand name: | EKS | | Model and/or type reference: | X4U | Standards FCC Part 22H and 24E Test procedure ANSI/TIA 603-D (2010) This device described above has been tested by STS and the test results show that the equipment under test (EUT) is in compliance with the FCC requirements. And it is applicable only to the tested sample identified in the report. This report shall not be reproduced except in full, without the written approval of STS, this document may be altered or revised by STS, personal only, and shall be noted in the revision of the document. Testing Engineer : (Tony Liu) Technical Manager Authorized Signatory: (Vita Li) Trong Jung (Bovey Yang) | TABLE OF CONTENTS F | Page | |--|------| | SUMMARY OF TEST RESULTS | 5 | | 1 INTRODUCTION | 6 | | 1.1 TEST FACTORY | 6 | | 1.2 MEASUREMENT UNCERTAINTY | 6 | | 2 PRODUCT INFORMATION | 7 | | 3 TEST CONFIGURATION OF EQUIPMENT UNDER TEST | 8 | | 4 MEASUREMENT INSTRUMENTS | 9 | | 5 TEST ITEMS | 10 | | 5.1 CONDUCTED OUTPUT POWER | 10 | | 5.2 PEAK TO AVERAGE RATIO | 11 | | 5.3 TRANSMITTER RADIATED POWER (EIRP/ERP) | 12 | | 5.4 OCCUPIED BANDWIDTH | 13 | | 5.5 FREQUENCY STABILITY | 14 | | 5.6 SPURIOUS EMISSIONS AT ANTENNA TERMINALS | 15 | | 5.7 BAND EDGE | 16 | | 5.8 FIELD STRENGTH OF SPURIOUS RADIATION MEASUREMENT | 17 | | APPENDIX ATESTRESULT | 19 | | A1 CONDUCTED OUTPUT POWER | 19 | | A2 PEAK-TO-AVERAGE RADIO | 22 | | A3 TRANSMITTER RADIATED POWER (EIRP/ERP) | 23 | | A4 OCCUPIED BANDWIDTH(99% OCCUPIED BANDWIDTH/26DB BANDWIDTH) | 26 | | A5 FREQUENCY STABILITY | 36 | | A6 SPURIOUS EMISSIONS AT ANTENNA TERMINALS | 41 | | A7 BAND EDGE | 49 | | A8 FIELD STRENGTH OF SPURIOUS RADIATION MEASUREMENT | 57 | | APPENDIX BPHOTOS OF TEST SETUP | 65 | # **Revision History** | Rev. | Issue Date | Report NO. | Effect Page | Contents | |------|---------------|---------------|-------------|---------------| | 00 | 27 July. 2016 | STS1607050F01 | ALL | Initial Issue | | | | | | | ## SUMMARY OF TEST RESULTS Test procedures according to the technical standards: The radiated emission testing was performed according to the procedures of ANSI/TIA-603-D: 2010,KDB 971168 D01 v02r02 and KDB 648474 D03 v01r04 | FCC Rules | Test Description | Test Limit | Test Result | Reference | |----------------------------|--|---|-------------|-----------| | 2.1049 | Conducted OutputPower | Reporting Only | PASS | | | 2.0146
24.232 | Peak-to-AverageRatio | < 13 dB | PASS | | | 2.1046
22.913
24.232 | Effective Radiated Pow-
er/Equivalent Isotropic
Radiated Power | < 7 Watts max. ERP(Part 22)
< 2 Watts max. EIRP(Part 24) | PASS | | | 2.1049
22.917
24.238 | Occupied Bandwidth | Reporting Only | PASS | | | 2.1055
22.355
24.235 | Frequency Stability | < 2.5 ppm (Part 22) Emission must remain in band (Part 24) | PASS | | | 2.1051
22.917
24.238 | Spurious Emission at Antenna Terminals | < 43+10log10(P[Watts]) | PASS | | | 2.1053
22.917
24.238 | Field Strength of Spurious Radiation | < 43+10log10(P[Watts]) | PASS | | | 2.1051
22.917
24.238 | Band Edge | < 43+10log10(P[Watts]) | PASS | | #### 1 INTRODUCTION #### 1.1 TEST FACTORY Shenzhen STS Test Services Co., Ltd. Add.: 1/F., Building B, Zhuoke Science Park, No.190, Chongqing Road, Fuyong Street, Bao'an District, Shenzhen, Guangdong, China CNAS Registration No.: L7649; FCC Registration No.: 842334; IC Registration No.: 12108A-1 #### 1.2 MEASUREMENT UNCERTAINTY The measurement uncertainties shown below were calculated in accordance with the requirements of ANSI C63.4-2014. All measurement uncertainty values are shown with a coverage factor of k = 2 to indicate a 95% level of confidence. The measurement data shown herein meets or exceeds the UCISPR measurement uncertainty values specified in CISPR 16-4-2 and, thus, can be compared directly to specified limits to determine compliance. • | No. | Item | Uncertainty | |-----|--|-------------| | 1 | RF power,conducted | ±0.70dB | | 2 | Spurious emissions,conducted | ±1.19dB | | 5 | All emissions,radiated(<1G) 30MHz-200MHz | ±2.83dB | | 6 | All emissions,radiated(<1G) 200MHz-1000MHz | ±2.94dB | | 7 | All emissions,radiated(>1G) | ±3.03dB | | 8 | Temperature | ±0.5°C | | 9 | Humidity | ±2% | #### 2 PRODUCT INFORMATION | Product Designation: | Smartphone | | | |--|--|--|--| | Hardware version number: | N/A | | | | Software version number: | N/A | | | | FCC ID: | 2AGAK-X4U | | | | 1 00 15. | GSM/GPRS/EDGE: | | | | | 850: 824.2 MHz ~ 848.8 MHz | | | | | 1900: 1850.2 MHz ~ 1909.8MHz | | | | Tx Frequency: | WCDMA: | | | | | Band V: 826.4 MHz ~ 846.6 MHz | | | | | Band II: 1852.4 MHz ~ 1907.6 MHz | | | | | GSM/GPRS/EDGE: | | | | | 850: 869.2 MHz ~ 893.8 MHz | | | | D = | 1900: 1930.2 MHz ~ 1989.8 MHz | | | | Rx Frequency: | WCDMA: | | | | | Band V: 871.4 MHz ~ 891.6 MHz | | | | | Band II: 1932.4 MHz ~ 1987.6 MHz | | | | Max RF Output Power: | GSM850:31.44dBm,PCS1900:29.01dBm
GPRS850:31.34dBm,GPRS1900:28.92dBm
EDGE850:31.33dBm,EDGE1900:28.89dBm
WCDMABand V:20.93dBm,WCDMA Band II:21.40dBm | | | | Type of Emission: | GSM(850):318KGXW: GSM(1900):324KGXW
GPRS(850):318KG7W; GPRS(1900):319KG7W
EDGE(850):321KG7W; EDGE(1900):319KG7W
WCDMA850:4M66F9W
WCDMA1900:4M70F9W | | | | SIM Card: | Support single card | | | | Antenna: | PIFA Antenna | | | | At | GSM 850:0 dBi ,PCS 1900:0dBi | | | | Antenna gain: | WCDMA 850:0dBi, WCDMA1900:0dBi | | | | Power Supply: | DC 3.7V by battery | | | | Battery parameter: | Capacity: 1350mAh, Rated Voltage: 3.7V | | | | GPRS/EDGE Class: | Multi-Class12 | | | | Extreme Vol. Limits: | DC3.5 V to 5 V (Nominal DC3.7V) | | | | Extreme Temp. Tolerance | -20℃ to +45℃ | | | | ** Noto: The High Voltage 5 V and Low Voltage 3.5 V was declared by manufacturer. The FLIT | | | | ^{**} Note: The High Voltage 5 V and Low Voltage 3.5 V was declared by manufacturer, The EUT couldn't be operate normally with higher or lower voltage. #### 3 TEST CONFIGURATION OF EQUIPMENT UNDER TEST Antenna port conducted and radiated test items were performed according to KDB 971168 D01 Power Meas. License Digital Systems v02r02 with maximum output power. Radiated measurements were performed with rotating EUT in different three orthogonal test planes to find the maximum emission. Radiated emissions were investigated as following frequency range: - 1. 30 MHz to 10th harmonic for GSM850 and WCDMA Band V. - 2. 30 MHz to 10th harmonic for GSM1900 and WCDMA Band II. All modes and data rates and positions were investigated. Test modes are chosen to be reported as the worst case configuration below: | | TEST MODES | | | |---------------|--------------------------------|--------------------------------|--| | BAND | RADIATED TCS | CONDUCTED TCS | | | GSM 850 | GSM LINK
EDGE CLASS 12 LINK | GSM LINK
EDGE CLASS 12 LINK | | | GSM 1900 | GSM LINK
EDGE CLASS 12 LINK | GSM LINK
EDGE CLASS 12 LINK | | | WCDMA BAND V | RMC 12.2KBPS LINK | RMC 12.2KBPS LINK | | | WCDMA BAND II | RMC 12.2KBPS LINK | RMC 12.2KBPS LINK | | ## **4 MEASUREMENT INSTRUMENTS** | | | | | I | | |--------------------------------|-----------------------|------------|----------------|------------------|------------------| | Kind of Equipment | Manufacturer | Type No. | Serial No. | Last Calibration | Calibrated Until | | Spectrum Analyzer | Agilent | E4407B | MY50140340 | 2015.10.25 | 2016.10.24 | | Signal Analyzer | Agilent | N9020A | MY49100060 | 2015.11.18 | 2016.11.17 | | Test Receiver | R&S | ESCI | 101427 | 2015.10.25 | 2016.10.24 | | Communication Tester | Agilent | 8960 | MY48360751 | 2015.11.20 | 2016.11.19 | | Communication Tester | R&S | CMU200 | 112012 | 2015.10.25 | 2016.10.24 | | Test Receiver | R&S | ESCI | 102086 | 2015.10.25 | 2016.10.24 | | Bilog Antenna | TESEQ | CBL6111D | 34678 | 2015.11.25 | 2016.11.24 | | Horn Antenna | Schwarzbeck | BBHA 9120D | 9120D-1343 | 2016.03.06 | 2017.03.05 | | Horn Antenna | Schwarzbeck | BBHA 9170 | 9170-0741 | 2016.03.06 | 2017.03.05 | | MXA SIGNAL Analyzer | Agilent | N9020A | MY49100060 | 2015.10.25 | 2016.10.24 | | Bilog Antenna | Sunol Sciences | JB3 | A110714 | 2015.09.03 | 2016.09.02 | | Horn-Antenna | Schwarzbeck | BBHA9120D | 9120D-1266 | 2016.03.06 | 2017.03.05 | | Horn Antenna |
Schwarzbeck | BBHA 9170 | 9170-0741 | 2016.03.06 | 2017.03.05 | | Double Ridge Horn An-
tenna | COM-POWER CORPORATION | AH-840 | AHA-840 | 2016.03.06 | 2017.03.05 | | Low frequency cable | N/A | R01 | N/A | N/A | N/A | | High frequency cable | SCHWARZBECK | AK9515H | SN-96286/96287 | N/A | N/A | | Vector signal generator | Agilent | E8257D-521 | MY45141029 | 2015.10.16 | 2016.10.14 | | Power amplifier | DESAY | ZHL-42W | 9638 | 2015.10.24 | 2016.10.23 | Equipment with a calibration date of "N/A" shown in this list was not used to make direct calibrated measurements. #### **5 TEST ITEMS** #### 5.1 CONDUCTED OUTPUT POWER #### Test overview A system simulator was used to establish communication with the EUT. Its parameters were set to enforce EUT transmitting at the maximum power. The measured power in the radio frequency on the transmitter output terminals shall be reported. #### Test procedures - 1. The transmitter output port was connected to the system simulator. - 2. Set eut at maximum power through the system simulator. - 3. Select lowest, middle, and highest channels for each band and different modulation. - 4. Measure and record the power level from the system simulator. #### Test setup #### 5.2 PEAK TO AVERAGE RATIO #### **TEST OVERVIEW** According to §24.232(d), power measurements for transmissions by stations authorized under this section may be made either in accordance with a commission-approved average power technique or in compliance with paragraph (e) of this section. In both instances, equipment employed must be authorized in accordance with the provisions of §24.51. In measuring transmissions in this band using an average power technique, the peak-to-average ratio (PAR) of the transmission may not exceed 13 db. ## TEST PROCEDURES - 1. The testing follows fcckdb 971168 v02r02 section - 2. The eut was connected to the and peak and av system simulator& spectrum analysis reads - 3. Select lowest, middle, and highest channels for each band and different modulation. - 4. Set the test probe and measure average power of the spectrum analysis #### **TEST SETUP** # 5.3 TRANSMITTER RADIATED POWER (EIRP/ERP) TEST OVERVIEW Effective Radiated Power (ERP) and Equivalent Isotropic Radiated Power (EIRP) measurements are performed using the substitution method described in ANSI/TIA-603-D-2010 with the EUT transmitting into an integral antenna. Measurements on signals operating below 1GHz are performed using vertically polarized tuned dipole antennas. Measurements on signals operating above 1GHz are performed using vertically polarized broadband horn antennas. All measurements are performed as RMS average measurements while the EUT is operating at maximum power, and at the appropriate frequencies. #### TEST PROCEDURE - 1. The testing follows FCC KDB 971168 D01 Section 5.2.1. (for CDMA/WCDMA), Section 5.2.2 (for GSM/GPRS/EDGE) and ANSI / TIA-603-D-2010 Section 2.2.17. - 2. The transmitter was placed on a wooden turntable, and it was transmitting into a non-radiating load which was also placed on the turntable. - 3. The measurement antenna was placed at a distance of 3 meters from the EUT. During the tests, the antenna height and polarization as well as EUT azimuth were varied in order to identify the maximum level of emissions from the EUT. The test was performed by placing the EUT on 3-orthogonal axis. - 4. The frequency range up to tenth harmonic of the fundamental frequency was investigated. - 5. Remove the EUT and replace it with substitution antenna. A signal generator was connected to the substitution antenna by a nonradiating cable. The absolute levels of the spurious emissions were measured by the substitution. - 6. Effective Isotropic Radiated Power (EIRP) was measured by substitution method according to TIA/EIA-603-D. The EUT was replaced by the substitution antenna at same location, and then a known power from S.G. was applied into the dipole antenna through a Tx cable, and then recorded the maximum Analyzer reading through raised and lowered the test antenna. The correction factor (in dB) = S.G. Tx Cable loss + Substitution antenna gain Analyzer reading. Then the EUT's EIRP/ERP was calculated with the correction factor, ERP/EIRP = P.SG + GT LC ERP/EIRP = effective or equivalent radiated power, respectively (expressed in the same units as PMe as, typically dBW or dBm); PMeas(PK) = measured transmitter output power or PSD, in dBm or dBW; GT = gain of the transmitting antenna, in dBd (ERP) or dBi (EIRP); LC = signal attenuation in the connecting cable between the transmitter and antenna, in dB. #### 5.4 OCCUPIED BANDWIDTH #### **TEST OVERVIEW** The occupied bandwidth, that is the frequency bandwidth such that, below its lower and above its upper frequency limits, the mean powers radiated are each equal to 0.5 percent of the total mean power radiated by a given emission shall be measured. The 26 dB emission bandwidth is defined as the frequency range between two points, one above and one below the carrier frequency, at which the spectral density of the emission is attenuated 26 dB below the maximum in-band spectral density of the modulated signal. Spectral density (power per unit bandwidth) is to be measured with a detector of resolution bandwidth equal to approximately 1.0% of the emission bandwidth. All modes of operation were investigated and the worst case configuration results are reported in this section. #### TEST PROCEDURE - 1. The signal analyzer's automatic bandwidth measurement capability was used to perform the 99% occupied bandwidth and the 26dB bandwidth. The bandwidth measurement was not influenced by any intermediate power nulls in the fundamental emission. - 2. RBW = 1 5% of the expected OBW - 3. VBW \geq 3 x RBW - 4. Detector = Peak - 5. Trace mode = max hold - 6. Sweep = auto couple - 7. The trace was allowed to stabilize - 8. If necessary, steps 2 7 were repeated after changing the RBW such that it would be within - 1-5% of the 99% occupied bandwidth observed in Step 7 #### TEST SETUP # 5.5 FREQUENCY STABILITY Test Overview Frequency stability testing is performed in accordance with the guidelines of ANSI/TIA-603-D-2010. The frequency stability of the transmitter is measured by: - a.) Temperature: The temperature is varied from -30°C to +50°C in 10°C increments using an environmental chamber. - b.) Primary Supply Voltage: The primary supply voltage is varied from 85% to 115% of the nominal value for non hand-carried battery and AC powered equipment. For hand-carried, battery-powered equipment, primary supply voltage is reduced to the battery operating end point which shall be specified by the manufacturer. For Part 22, the frequency stability of the transmitter shall be maintained within ±0.00025% (±2.5 ppm) of the center frequency. For Part 24 the frequency stability shall be sufficient to ensure that the fundamental emission stays within the authorized frequency block. #### Test Procedure Temperature Variation - 1. The testing follows fcckdb 971168 D01 section 9.0 - 2. The EUT was set up in the thermal chamber and connected with the system simulator. - 3. With power OFF, the temperature was decreased to -30°C and the EUT was stabilized before testing. Power was applied and the maximum change in frequency was recorded within one minute. - 4. With power OFF, the temperature was raised in 10°C steps up to 50°C. The EUT was stabilized at each step for at least half an hour. Power was applied and the maximum frequency change was recorded within one minute. #### Voltage Variation - 1. The testing follows FCC KDB 971168 D01 Section 9.0. - 2. The EUT was placed in a temperature chamber at 25±5° C and connected with the system simulator. - 3. The power supply voltage to the EUT was varied from 85% to 115% of the nominal value measured at the input to the EUT. - 4. The variation in frequency was measured for the worst case. #### **TEST SETUP** ## 5.6 SPURIOUS EMISSIONS AT ANTENNA TERMINALS Test Overview The power of any emission outside of the authorized operating frequency ranges must be lower than the transmitter power (P) by a factor of at least 43 + 10 log (P) dB. It is measured by means of a calibrated spectrum analyzer and scanned from 30 MHz up to a frequency including its 10th harmonic. #### Test procedure - 1. The testing follows FCC KDB 971168 D01 v02r02 Section 6.0. - 2. The EUT was connected to the spectrum analyzer and system simulator via a power divider. - 3. The RF output of EUT was connected to the spectrum analyzer by an RF cable and attenuator. The path loss was compensated to the results for each measurement. - 4. The middle channel for the highest RF power within the transmitting frequency was measured. - 5. The conducted spurious emission for the whole frequency range was taken. - 6. The RF fundamental frequency should be excluded against the limit line in the operating frequency band. - 7. The limit line is derived from 43 + 10log(P) dB below the transmitter power P(Watts) - = P(W) [43 + 10log(P)] (dB) - = [30 + 10log(P)] (dBm) [43 + 10log(P)] (dB) - = -13dBm. ### Test Setup #### 5.7 BAND EDGE #### **OVERVIEW** All out of band emissions are measured with a spectrum analyzer connected to the antenna terminal of the EUT while the EUT is operating at maximum power, and at the appropriate frequencies. All data rates were investigated to determine the worst case configuration. All modes of operation were investigated and the worst case configuration results are reported in this section. The minimum permissible attenuation level of any spurious emission is 43 + log10(P[Watts]), where P is the transmitter power in Watts. #### TEST PROCEDURE - 1. Start and stop frequency were set such that the band edge would be placed in the center of the Plot. - 2. The EUT was connected to the spectrum analyzer and system simulator via a power divider. - 3. The RF output of EUT was connected to the spectrum analyzer by an RF cable and attenuator. The path loss was compensated to the
results for each measurement. - 4. The band edges of low and high channels for the highest RF powers were measured. - 5. The RF fundamental frequency should be excluded against the limit line in the operating frequency band. - 6. The limit line is derived from 43 + 10log(P) dB below the transmitter power P(Watts) - = P(W) [43 + 10log(P)] (dB) - = [30 + 10log(P)] (dBm) [43 + 10log(P)] (dB) - = -13dBm. #### TEST SETUP #### 5.8 FIELD STRENGTH OF SPURIOUS RADIATION MEASUREMENT #### Test overview Radiated spurious emissions measurements are performed using the substitution method described in ANSI/TIA-603-D-2010 with the EUT transmitting into an integral antenna. Measurements on signals operating below 1GHz are performed using horizontally and vertically polarized tuned dipole antennas. Measurements on signals operating above 1GHz are performed using vertically and horizontally polarized horn antennas. All measurements are performed as peak measurements while the EUT isoperating at maximum power and at the appropriate frequencies. It is measured by means of a calibrated spectrum analyzer and scanned from 30 MHz up to a frequency including its 10th harmonic. #### Test procedure - 1. The testing follows FCC KDB 971168 D01 Section 5.8 and ANSI/TIA-603-D-2010 Section 2.2.12 - RBW = 100kHz for emissions below 1GHz and 1MHz for emissions above 1GHz - 3. VBW \geq 3 x RBW - 4. Span = 1.5 times the OBW - 5.No. of sweep points > 2 x span/RBW - 6. Detector = Peak - 7. Trace mode = max hold - 8. The trace was allowed to stabilize #### **TEST SETUP** #### For radiated test from 30MHz to 1GHz For radiated test from above 1GHz | Mode | Frequency (MHz) | AVG Power | |---------------------|-----------------|-----------| | | 824.2 | 31.44 | | GSM850 | 836.6 | 31.30 | | | 848.8 | 31.23 | | GPRS850
(1-slot) | 824.2 | 31.34 | | | 836.6 | 31.25 | | | 848.8 | 31.18 | | EDGE850
(1 Slot) | 824.2 | 31.33 | | | 836.6 | 31.21 | | | 848.8 | 31.19 | ## PCS 1900: | Mode | Frequency (MHz) | AVG Power | |----------------------|-----------------|-----------| | / | 1850.2 | 28.60 | | GSM1900 | 1880 | 28.57 | | | 1909.8 | 29.01 | | 0.000 | 1850.2 | 28.51 | | GPRS1900
(1-slot) | 1880 | 28.49 | | (1 0.01) | 1909.8 | 28.92 | | EDGE1900
(1 Slot) | 1850.2 | 28.48 | | | 1880 | 28.44 | | | 1909.8 | 28.89 | ## UMTS BAND V | Mode | Frequency(MHz) | AVG Power | |--------------------|----------------|-----------| | WODAA 050 | 826.4 | 20.93 | | WCDMA 850
RMC | 836.6 | 20.81 | | KIVIC | 846.6 | 20.75 | | HODDA | 826.4 | 20.19 | | HSDPA
Subtest 1 | 836.6 | 20.09 | | Sublest | 846.6 | 19.99 | | HODDA | 826.4 | 19.20 | | HSDPA
Subtest 2 | 836.6 | 19.19 | | Sublest 2 | 846.6 | 19.18 | | HODDA | 826.4 | 18.71 | | HSDPA
Subtest 3 | 836.6 | 18.77 | | Sublest 3 | 846.6 | 18.72 | | HODBA | 826.4 | 18.06 | | HSDPA
Subtest 4 | 836.6 | 18.19 | | Sublest 4 | 846.6 | 18.05 | | HOURA | 826.4 | 19.77 | | HSUPA
Subtest 1 | 836.6 | 19.65 | | Sublest 1 | 846.6 | 19.52 | | HOURA | 826.4 | 18.87 | | HSUPA
Subtest 2 | 836.6 | 18.76 | | Sublest 2 | 846.6 | 18.65 | | HOLIDA | 826.4 | 18.44 | | HSUPA
Subtest 3 | 836.6 | 18.31 | | Sublest 3 | 846.6 | 18.18 | | 1101124 | 826.4 | 17.84 | | HSUPA
Subtest 4 | 836.6 | 17.70 | | Sublest 4 | 846.6 | 17.67 | | 1101.12.4 | 826.4 | 17.30 | | HSUPA
Subtest 5 | 836.6 | 17.05 | | Sublest 5 | 846.6 | 17.10 | ## **UMTS BAND II** | Mode | Frequency(MHz) | AVG Power | |--------------------|----------------|-----------| | VA/ODAAA 4000 | 1852.4 | 21.13 | | WCDMA 1900
RMC | 1880 | 21.40 | | NIVIC | 1907.6 | 21.31 | | | 1852.4 | 20.41 | | HSDPA
Subtest 1 | 1880 | 20.67 | | Sublest | 1907.6 | 20.59 | | 110004 | 1852.4 | 19.49 | | HSDPA
Subtest 2 | 1880 | 19.79 | | Sublest 2 | 1907.6 | 19.66 | | LIODDA | 1852.4 | 19.04 | | HSDPA
Subtest 3 | 1880 | 19.38 | | Sublest 3 | 1907.6 | 19.26 | | LIODDA | 1852.4 | 18.42 | | HSDPA
Subtest 4 | 1880 | 18.76 | | Sublest 4 | 1907.6 | 18.73 | | | 1852.4 | 19.99 | | HSUPA
Subtest 1 | 1880 | 20.21 | | Sublest | 1907.6 | 20.13 | | | 1852.4 | 19.16 | | HSUPA
Subtest 2 | 1880 | 19.30 | | Sublest 2 | 1907.6 | 19.29 | | | 1852.4 | 18.72 | | HSUPA | 1880 | 18.89 | | Subtest 3 | 1907.6 | 18.86 | | | 1852.4 | 18.20 | | HSUPA | 1880 | 18.36 | | Subtest 4 | 1907.6 | 18.19 | | 110115 | 1852.4 | 17.58 | | HSUPA | 1880 | 17.71 | | Subtest 5 | 1907.6 | 17.61 | ## A2 PEAK-TO-AVERAGE RADIO ## PCS 1900: | Mode | Frequency (MHz) | PEAK Power | AVG Power | PAR | |----------|-----------------|------------|-----------|------| | | 1850.2 | 29.29 | 28.60 | 0.69 | | PCS1900 | 1880 | 29.32 | 28.57 | 0.75 | | | 1909.8 | 29.78 | 29.01 | 0.77 | | GPRS1900 | 1850.2 | 29.17 | 28.51 | 0.66 | | (1 Slot) | 1880 | 29.13 | 28.49 | 0.64 | | (1 5.5.) | 1909.8 | 29.65 | 28.92 | 0.73 | | EDCE1000 | 1850.2 | 29.19 | 28.48 | 0.71 | | EDGE1900 | 1880 | 29.05 | 28.44 | 0.61 | | (1 Slot) | 1909.8 | 29.56 | 28.89 | 0.67 | #### UMTS BAND II: | Mode | Frequency (MHz) | PEAK Power | AVG Power | PAR | |------------------------|-----------------|------------|-----------|------| | VA/ODAMA 4000 | 1852.4 | 24.21 | 21.13 | 3.08 | | WCDMA 1900
RMC | 1880 | 24.35 | 21.40 | 2.95 | | RIVIC | 1907.6 | 23.83 | 21.31 | 2.52 | | | 1852.4 | 23.32 | 20.41 | 2.91 | | HSDPA 1900
(1 Slot) | 1880 | 23.47 | 20.67 | 2.80 | | (1 0.00) | 1907.6 | 23.03 | 20.59 | 2.44 | | HSUPA1900
(1 Slot) | 1852.4 | 23.04 | 19.99 | 3.05 | | | 1880 | 23.10 | 20.21 | 2.89 | | | 1907.6 | 22.42 | 20.13 | 2.29 | # A3 TRANSMITTER RADIATED POWER (EIRP/ERP) | | Radiated Power (ERP) for GSM 850 MHZ | | | | | | | | | |----------|--------------------------------------|-------------------------------|---------------|---------------|---------------------|-----------------------------|------------|--|--| | | | | Result | | | | | | | | Mode | Frequency | Substituted
level
(dBm) | Cable
loss | Gain
(dBi) | PMeas
E.R.P(dBm) | Polarization
Of Max. ERP | Conclusion | | | | | 824.2 | 23.09 | 0.44 | 6.5 | 29.15 | Horizontal | Pass | | | | | 824.2 | 25.38 | 0.44 | 6.5 | 31.44 | Vertical | Pass | | | | GSM850 | 836.6 | 23.27 | 0.45 | 6.5 | 29.32 | Horizontal | Pass | | | | GSIVIOSU | 836.6 | 25.25 | 0.45 | 6.5 | 31.30 | Vertical | Pass | | | | | 848.8 | 23.17 | 0.46 | 6.5 | 29.21 | Horizontal | Pass | | | | | 848.8 | 25.19 | 0.46 | 6.5 | 31.23 | Vertical | Pass | | | | | 824.2 | 23.35 | 0.44 | 6.5 | 29.41 | Horizontal | Pass | | | | | 824.2 | 25.28 | 0.44 | 6.5 | 31.34 | Vertical | Pass | | | | GPRS | 836.6 | 23.29 | 0.45 | 6.5 | 29.34 | Horizontal | Pass | | | | 850 | 836.6 | 25.20 | 0.45 | 6.5 | 31.25 | Vertical | Pass | | | | | 848.8 | 23.31 | 0.46 | 6.5 | 29.35 | Horizontal | Pass | | | | | 848.8 | 25.14 | 0.46 | 6.5 | 31.18 | Vertical | Pass | | | | | 824.2 | 23.30 | 0.44 | 6.5 | 29.36 | Horizontal | Pass | | | | | 824.2 | 25.27 | 0.44 | 6.5 | 31.33 | Vertical | Pass | | | | EDOE050 | 836.6 | 23.20 | 0.45 | 6.5 | 29.25 | Horizontal | Pass | | | | EDGE850 | 836.6 | 25.16 | 0.45 | 6.5 | 31.21 | Vertical | Pass | | | | | 848.8 | 23.31 | 0.46 | 6.5 | 29.35 | Horizontal | Pass | | | | | 848.8 | 25.15 | 0.46 | 6.5 | 31.19 | Vertical | Pass | | | | | Radiated Power (EIRP) for PCS 1900 MHZ | | | | | | | | |-----------|--|-------------------------|------------|---------------|------------------------|---------------------------|------------|--| | | | | Result | | | | | | | Mode | Frequency | Substituted level (dBm) | Cable loss | Gain
(dBi) | PMeas
E.I.R.P.(dBm) | Polarization Of Max.EIRP. | Conclusion | | | | 1850.2 | 19.03 | 2.41 | 10.35 | 26.97 | Horizontal | Pass | | | | 1850.2 | 20.66 | 2.41 | 10.35 | 28.60 | Vertical | Pass | | | PCS1900 | 1880.0 | 19.03 | 2.42 | 10.35 | 26.96 | Horizontal | Pass | | | PC31900 | 1880.0 | 20.64 | 2.42 | 10.35 | 28.57 | Vertical | Pass | | | | 1909.8 | 19.04 | 2.43 | 10.35 | 26.96 | Horizontal | Pass | | | | 1909.8 | 21.09 | 2.43 | 10.35 | 29.01 | Vertical | Pass | | | | 1850.2 | 18.38 | 2.41 | 10.35 | 26.32 | Horizontal | Pass | | | | 1850.2 | 20.57 | 2.41 | 10.35 | 28.51 | Vertical | Pass | | | GPRS1900 | 1880.0 | 18.28 | 2.42 | 10.35 | 26.21 | Horizontal | Pass | | | GFIX31900 | 1880.0 | 20.56 | 2.42 | 10.35 | 28.49 | Vertical | Pass | | | | 1909.8 | 18.42 | 2.43 | 10.35 | 26.34 | Horizontal | Pass | | | | 1909.8 | 21.00 | 2.43 | 10.35 | 28.92 | Vertical | Pass | | | | 1850.2 | 18.54 | 2.41 | 10.35 | 26.48 | Horizontal | Pass | | | | 1850.2 | 20.54 | 2.41 | 10.35 | 28.48 | Vertical | Pass | | | EDGE1900 | 1880.0 | 18.42 | 2.42 | 10.35 | 26.35 | Horizontal | Pass | | | EDGE 1900 | 1880.0 | 20.51 | 2.42 | 10.35 | 28.44 | Vertical | Pass | | | | 1909.8 | 18.40 | 2.43 | 10.35 | 26.32 | Horizontal | Pass | | | | 1909.8 | 20.97 | 2.43 | 10.35 | 28.89 | Vertical | Pass | | 24 of 65 | Radiated Power (ERP) for WCDMA Band V | | | | | | | | | |---------------------------------------|-----------|-------------------------------|---------------|---------------|----------------------|----------------------------|------------|--| | | | | | Res | ult | | | | | Mode | Frequency | Substituted
level
(dBm) | Cable
loss | Gain
(dBi) | PMeas E.R.P
(dBm) | Polarization
Of Max.ERP | Conclusion | | | | 826.4 | 14.79 | 0.44 | 6.5 | 20.85 | Horizontal | Pass | | | | 826.4 | 14.87 | 0.44 | 6.5 | 20.93 | Vertical | Pass | | | Band V | 836.6 | 14.70 | 0.45 | 6.5 | 20.75 | Horizontal | Pass | | | Бапи у | 836.6 | 14.76 | 0.45 | 6.5 | 20.81 | Vertical | Pass | | | | 846.6 | 14.34 | 0.46 | 6.5 | 20.38 | Horizontal | Pass | | 6.5 20.75 Vertical Pass | | Radiated Power (EIRP) for WCDMA Band II | | | | | | | | |---------|---|-------------------------|--------------------|--------------------------|------------|------------|------|--| | | | | | Res | sult | | | | | Mode | Frequency | Substituted level (dBm) | Cable Gain PMeas F | Polarization Of Max.EIRP | Conclusion | | | | | | 1852.4 | 11.4 | 2.41 | 10.35 | 19.34 | Horizontal | Pass | | | |
1852.4 | 13.19 | 2.41 | 10.35 | 21.13 | Vertical | Pass | | | Band II | 1880.0 | 11.36 | 2.42 | 10.35 | 19.29 | Horizontal | Pass | | | Danu II | 1880.0 | 13.47 | 2.42 | 10.35 | 21.40 | Vertical | Pass | | | | 1907.6 | 11.44 | 2.43 | 10.35 | 19.36 | Horizontal | Pass | | | | 1907.6 | 13.39 | 2.43 | 10.35 | 21.31 | Vertical | Pass | | 14.71 846.6 0.46 # A4 OCCUPIED BANDWIDTH(99% OCCUPIED BANDWIDTH/26DB BANDWIDTH) | | Bandwidth for GSM 850 band | | | | | | | |----------------|--------------------------------------|--------------------|--------------------|--|--|--|--| | Mode | Fraguerov/MHz) | Occupied Bandwidth | Emission Bandwidth | | | | | | Mode | Frequency(MHz) | (99%)(kHz) | (-26dBc)(kHz) | | | | | | Low Channel | 824.2 | 246.21 | 313.7 | | | | | | Middle Channel | 836.6 | 244.37 | 318.3 | | | | | | High Channel | 848.8 | 243.10 | 313.3 | | | | | | | Occupied Bandwidth for GPRS 850 band | | | | | | | | Mode | Frequency(MHz) | Occupied Bandwidth | Emission Bandwidth | | | | | | Iviode | | (99%)(kHz) | (-26dBc)(kHz) | | | | | | Low Channel | 824.2 | 246.73 | 314.7 | | | | | | Middle Channel | 836.6 | 242.73 | 315.2 | | | | | | High Channel | 848.8 | 244.35 | 317.8 | | | | | | | Bandwidth | for EGPRS 850 band | | | | | | | Mode | Fragues av (MHz) | Occupied Bandwidth | Emission Bandwidth | | | | | | Mode | Frequency(MHz) | (99%)(kHz) | (-26dBc)(kHz) | | | | | | Low Channel | 824.2 | 247.93 | 320.3 | | | | | | Middle Channel | 836.6 | 247.19 | 320.6 | | | | | | High Channel | 848.8 | 244.46 | 311.7 | | | | | | Occupied Bandwidth for GSM1900 band | | | | | | | | |-------------------------------------|---------------------------------------|-------------------------|--------------------|--|--|--|--| | Mode | Fraguenov/MHz) | Occupied Bandwidth | Emission Bandwidth | | | | | | iviode | Frequency(MHz) | (99%)(kHz) | (-26dBc)(kHz) | | | | | | Low Channel | 1850.2 | 247.50 | 315.5 | | | | | | Middle Channel | 1880.0 | 246.09 | 324.3 | | | | | | High Channel | 1909.8 | 243.57 | 315.0 | | | | | | | Occupied Bandwidth for GPRS 1900 band | | | | | | | | Mode | Frequency(MHz) | Occupied Bandwidth | Emission Bandwidth | | | | | | | | (99%)(kHz) | (-26dBc)(kHz) | | | | | | Low Channel | 1850.2 | 244.46 | 310.7 | | | | | | Middle Channel | 1880.0 | 245.27 | 318.7 | | | | | | High Channel | 1909.8 | 245.26 | 315.0 | | | | | | | Occupied Band | width for EDGE1900 band | | | | | | | Mode | Fraguerov(MHz) | Occupied Bandwidth | Emission Bandwidth | | | | | | iviode | Frequency(MHz) | (99%)(kHz) | (-26dB)(kHz) | | | | | | Low Channel | 1850.2 | 244.75 | 318.8 | | | | | | Middle Channel | 1880.0 | 243.50 | 315.4 | | | | | | High Channel | 1909.8 | 241.88 | 311.2 | | | | | | Occupied Bandwidth for UMTS band V | | | | | | |------------------------------------|----------------|--------------------|--------------------|--|--| | Mode | Eroguanov(MUz) | Occupied Bandwidth | Emission Bandwidth | | | | Mode | Frequency(MHz) | (99%)(MHz) | (-26dB)(MHz) | | | | Low Channel | 826.4 | 4.0976 | 4.656 | | | | Middle Channel | 836.6 | 4.0992 | 4.651 | | | | High Channel | 846.6 | 4.0742 | 4.647 | | | | Occupied Bandwidth for UMTS band II | | | | | | |-------------------------------------|----------------|--------------------|--------------------|--|--| | Mode | Frequency(MHz) | Occupied Bandwidth | Emission Bandwidth | | | | | Frequency(MHZ) | (99%)(MHz) | (-26dB)(MHz) | | | | Low Channel | 1852.4 | 4.1023 | 4.673 | | | | Middle Channel | 1880 | 4.1032 | 4.688 | | | | High Channel | 1907.6 | 4.1120 | 4.704 | | | #### GSM 850 CH 128 #### GSM 850 CH 190 #### GSM 850 CH 251 #### GPRS 850 CH 128 #### GPRS 850 CH 190 ### GPRS 850 CH 251 #### EDGE 850 CH 128 #### EDGE 850 CH 190 #### EDGE 850 CH 251 #### PCS 1900 CH 512 #### PCS 1900 CH 661 #### PCS 1900 CH 810 #### GPRS 1900 CH 512 #### GPRS 1900 CH 661 #### GPRS 1900 CH 810 #### EDGE 1900 CH 512 #### EDGE 1900 CH 661 #### EDGE 1900 CH 810 #### UMTS BAND V CH 4132 #### UMTS BAND V CH 4183 #### UMTS BAND V CH 4233 #### UMTS BAND II CH 9262 #### UMTS BAND II CH 9400 #### UMTS BAND II CH 9538 ## A5 FREQUENCY STABILITY Normal Voltage = 3.7V.; Battery End Point (BEP) = 3.5 V.; Maximum Voltage = 5 V | | GSM 850 Middle Channel | | | | | | | |---------------------|------------------------|--------------------|---------------------|--------|--------|--|--| | Temperature
(°C) | Voltage
(Volt) | Freq. Dev.
(Hz) | Freq. Dev.
(ppm) | Limit | Result | | | | 50 | | 13.588 | 0.016 | | | | | | 40 | | 26.498 | 0.032 | | | | | | 30 | | 23.624 | 0.028 | | | | | | 20 | | 27.889 | 0.033 | | | | | | 10 | Normal Voltage | 18.236 | 0.022 | | | | | | 0 | | 13.568 | 0.016 | 2.5ppm | PASS | | | | -10 | | 17.340 | 0.021 | | | | | | -20 | | 15.884 | 0.019 | | | | | | -30 | | 16.218 | 0.019 | | | | | | 25 | Maximum Voltage | 19.850 | 0.024 | | | | | | 25 | BEP | 11.664 | 0.014 | | | | | | GPRS 850 Middle Channel | | | | | | |-------------------------|-------------------|--------------------|---------------------|--------|--------| | Temperature (°C) | Voltage
(Volt) | Freq. Dev.
(Hz) | Freq. Dev.
(ppm) | Limit | Result | | 50 | Normal Voltage | 13.567 | 0.016 | 2.5ppm | PASS | | 40 | | 26.539 | 0.032 | | | | 30 | | 23.620 | 0.028 | | | | 20 | | 27.949 | 0.033 | | | | 10 | | 18.184 | 0.022 | | | | 0 | | 13.521 | 0.016 | | | | -10 | | 17.417 | 0.021 | | | | -20 | | 15.881 | 0.019 | | | | -30 | | 16.267 | 0.019 | | | | 25 | Maximum Voltage | 19.869 | 0.024 | | | | 25 | BEP | 11.596 | 0.014 | | | | EDGE 850 Middle Channel | | | | | | | | | | | |-------------------------|-------------------|--------------------|---------------------|--------|--------|--|--|--|--|--| | Temperature (°C) | Voltage
(Volt) | Freq. Dev.
(Hz) | Freq. Dev.
(ppm) | Limit | Result | | | | | | | 50 | | 13.508 | 0.016 | | | | | | | | | 40 | | 26.523 | 0.032 | | | | | | | | | 30 | | 23.692 | 0.028 | | PASS | | | | | | | 20 | | 27.898 | 0.033 | | | | | | | | | 10 | Normal Voltage | 18.200 | 0.022 | | | | | | | | | 0 | | 13.561 | 0.016 | 2.5ppm | | | | | | | | -10 | | 17.407 | 0.021 | | | | | | | | | -20 | | 15.904 | 0.019 | | | | | | | | | -30 | | 16.269 | 0.019 | | | | | | | | | 25 | Maximum Voltage | 19.884 | 0.024 | | | | | | | | | 25 | BEP | 11.579 | 0.014 |] | | | | | | | | | GSM 1900 Middle Channel | | | | | | | | | | | |------------------|-------------------------|--------------------|---------------------|--------------------------------|--------|--|--|--|--|--|--| | Temperature (°C) | Voltage
(Volt) | Freq. Dev.
(Hz) | Freq. Dev.
(ppm) | Limit | Result | | | | | | | | 50 | | 19.087 | 0.010 | | | | | | | | | | 40 | | 11.174 | 0.006 | | | | | | | | | | 30 | | 10.300 | 0.005 | | | | | | | | | | 20 | | 22.218 | 0.012 | Within Au-
thorized
Band | PASS | | | | | | | | 10 | Normal Voltage | 14.040 | 0.007 | | | | | | | | | | 0 | | 10.078 | 0.005 | | | | | | | | | | -10 | | 15.400 | 0.008 | | | | | | | | | | -20 | | 20.676 | 0.011 | | | | | | | | | | -30 | | 24.180 | 0.013 | | | | | | | | | | 25 | Maximum Voltage | 12.501 | 0.007 | | | | | | | | | | 25 | BEP | 12.459 | 0.007 | | | | | | | | | | GPRS 1900 Middle Channel | | | | | | | | | | | |--------------------------|-------------------|--------------------|---------------------|------------|--------|--|--|--|--|--| | Temperature (°C) | Voltage
(Volt) | Freq. Dev.
(Hz) | Freq. Dev.
(ppm) | Limit | Result | | | | | | | 50 | | 19.064 | 0.010 | | | | | | | | | 40 | | 11.166 | 0.006 | | | | | | | | | 30 | | 10.249 | 0.005 | | PASS | | | | | | | 20 | | 22.235 | 0.012 | | | | | | | | | 10 | Normal Voltage | 14.063 | 0.007 | Within Au- | | | | | | | | 0 | | 10.031 | 0.005 | thorized | | | | | | | | -10 | | 15.469 | 0.008 | Band | | | | | | | | -20 | | 20.634 | 0.011 | | | | | | | | | -30 | | 24.132 | 0.013 | | | | | | | | | 25 | Maximum Voltage | 12.459 | 0.007 | | | | | | | | | 25 | BEP | 12.462 | 0.007 | | | | | | | | 38 of 65 | EDGE 1900 Middle Channel | | | | | | | | | | | |--------------------------|-------------------|--------------------|---------------------|------------|--------|--|--|--|--|--| | Temperature (°C) | Voltage
(Volt) | Freq. Dev.
(Hz) | Freq. Dev.
(ppm) | Limit | Result | | | | | | | 50 | | 19.036 | 0.010 | | | | | | | | | 40 | | 11.202 | 0.006 | _ | | | | | | | | 30 | | 10.255 | 0.005 | _ | PASS | | | | | | | 20 | | 22.300 | 0.012 | | | | | | | | | 10 | Normal Voltage | 14.116 | 0.008 | Within Au- | | | | | | | | 0 | | 9.986 | 0.005 | thorized | | | | | | | | -10 | | 15.445 | 0.008 | Band | | | | | | | | -20 | | 20.678 | 0.011 | | | | | | | | | -30 | | 24.162 | 0.013 | | | | | | | | | 25 | Maximum Voltage | 12.467 | 0.007 | | | | | | | | | 25 | BEP | 12.461 | 0.007 | | | | | | | | | | WCDMA V Middle Channel | | | | | | | | | | | | |------------------|------------------------|--------------------|---------------------|--------|--------|--|--|--|--|--|--|--| | Temperature (°C) | Voltage
(Volt) | Freq. Dev.
(Hz) | Freq. Dev.
(ppm) | Limit | Result | | | | | | | | | 50 | | 23.868 | 0.029 | | | | | | | | | | | 40 | | 12.777 | 0.015 | | | | | | | | | | | 30 | | 16.898 | 0.020 | | | | | | | | | | | 20 | | 16.726 | 0.020 | | PASS | | | | | | | | | 10 | Normal Voltage | 19.919 | 0.024 | | | | | | | | | | | 0 | | 19.014 | 0.023 | 2.5ppm | | | | | | | | | | -10 | | 17.273 | 0.021 | 7 | | | | | | | | | | -20 | | 11.035 | 0.013 | | | | | | | | | | | -30 | | 25.318 | 0.030 | | | | | | | | | | | 25 | Maximum Voltage | 23.527 | 0.028 | | | | | | | | | | | 25 | BEP | 15.542 | 0.019 | | | | | | | | | | ^{1.} The frequency fundamental emissions stay within the authorized frequency block based on the frequency deviation measured is small. | | WCDMA II Middle Channel | | | | | | | | | | | |------------------|-------------------------|--------------------|---------------------|------------------|--------|--|--|--|--|--|--| | Temperature (°C) | Voltage
(Volt) | Freq. Dev.
(Hz) | Freq. Dev.
(ppm) | Limit | Result | | | | |
| | | 50 | | 14.143 | 0.008 | | | | | | | | | | 40 | | 17.885 | 0.010 | | | | | | | | | | 30 | | 23.709 | 0.013 | | PASS | | | | | | | | 20 | | 21.085 | 0.011 | | | | | | | | | | 10 | Normal Voltage | 10.498 | 0.006 | Within Au- | | | | | | | | | 0 | | 18.525 | 0.010 | thorized
Band | | | | | | | | | -10 | | 16.222 | 0.009 | | | | | | | | | | -20 | | 16.968 | 0.009 | | | | | | | | | | -30 | | 16.486 | 0.009 | | | | | | | | | | 25 | Maximum Voltage | 11.841 | 0.006 | | | | | | | | | | 25 | BEP | 13.295 | 0.007 | | | | | | | | | ^{1.} The frequency fundamental emissions stay within the authorized frequency block based on the frequency deviation measured is small. # A6 SPURIOUS EMISSIONS AT ANTENNA TERMINALS GSM 850 BAND #### **Lowest Channel** #### Middle Channel **Highest Channel** #### **GPRS 850 BAND** #### **Lowest Channel** #### Middle Channel #### **EDGE 850 BAND** #### **Lowest Channel** #### Middle Channel #### GSM1900 BAND(30M-20G) #### **Lowest Channel** #### Middle Channel ## GPRS 1900 BAND(30M-20G) #### **Lowest Channel** #### Middle Channel #### EDGE 1900 BAND(30M-20G) ## **Lowest Channel** #### Middle Channel ## WCDMA Band V (RMC 12.2Kbps) ## **Lowest Channel** #### Middle Channel **Highest Channel** ## WCDMA Band II (RMC 12.2Kbps)(30M-20G) #### **Lowest Channel** #### Middle Channel #### A7 BAND EDGE #### **GSM 850** ## Lowest Band Edge Note:Offset=Cable loss(8.5)+10log(3.2/3)=8.5+0.3=8.8 dB ## Highest Band Edge Note:Offset=Cable loss(8.5)+10log(3.2/3)=8.5+0.3=8.8 dB **GPRS 850** ## Lowest Band Edge Note:Offset=Cable loss(8.5)+10log(3.2/3)=8.5+0.3=8.8 dB ## **Highest Band Edge** Note:Offset=Cable loss(8.5)+10log(3.2/3)=8.5+0.3=8.8 dB **EDGE 850** ## Lowest Band Edge Note:Offset=Cable loss(8.5)+10log(3.2/3)=8.5+0.3=8.8 dB ## **Highest Band Edge** Note:Offset=Cable loss(8.5)+10log(3.2/3)=8.5+0.3=8.8 dB #### GSM 1900 ## Lowest Band Edge Note:Offset=Cable loss(9.5)+10log(3.2/3)=9.5+0.3=9.8 dB #### **Highest Band Edge** Note:Offset=Cable loss(9.5)+10log(3.2/3)=9.5+0.3=9.8 dB #### **GPRS 1900** ## Lowest Band Edge Note:Offset=Cable loss(9.5)+10log(3.2/3)=9.5+0.3=9.8 dB #### **Highest Band Edge** Note:Offset=Cable loss(9.5)+10log(3.2/3)=9.5+0.3=9.8 dB **EDGE 1900** ## Lowest Band Edge Note:Offset=Cable loss(9.5)+10log(3.2/3)=9.5+0.3=9.8 dB ## **Highest Band Edge** Note:Offset=Cable loss(9.5)+10log(3.2/3)=9.5+0.3=9.8 dB #### WCDMA Band V RMC 12.2Kbps ## Lowest Band Edge Note:Offset=Cable loss(10.45)+10log(41/51)=10.45+ (-0.95) =9.5 dB ## **Highest Band Edge** Note:Offset=Cable loss(10.45)+10log(41/51)=10.45+ (-0.95) =9.5 dB #### WCDMA Band II RMC 12.2Kbps ## Lowest Band Edge Note:Offset=Cable loss(10.75)+10log(41/51)=10.75+ (-0.95) =9.8 dB ## **Highest Band Edge** Note:Offset=Cable loss(10.75)+10log(41/51)=10.75+ (-0.95) =9.8 dB 57 of 65 Report No.: STS1607050F01 ## A8 FIELD STRENGTH OF SPURIOUS RADIATION MEASUREMENT GSM 850: (30-9000)MHz | , |)MHZ | GSM | 850: (30-90 |)00)MHz | | | | | | | |--|--------|--------------|-------------|-------------|----------|--------|----------|--|--|--| | | The V | Vorst Test F | · • | | 24.2 MHz | | | | | | | - (111) | signal | A ((151) | | PMea | Limit | Margin | 5 | | | | | Frequency(MHz) | (dBm) | Ant(dBi) | Loss | (dBm) | (dBm) | (dBm) | Polarity | | | | | 1648.46 | -41.30 | 9.40 | 4.75 | -36.65 | -13.00 | -23.65 | Н | | | | | 2472.39 | -40.40 | 10.60 | 8.39 | -38.19 | -13.00 | -25.19 | Н | | | | | 3296.67 | -30.90 | 12.00 | 11.79 | -30.69 | -13.00 | -17.69 | Н | | | | | 1648.06 | -44.13 | 9.40 | 4.75 | -39.48 | -13.00 | -26.48 | V | | | | | 2472.52 | -44.96 | 10.60 | 8.39 | -42.75 | -13.00 | -29.75 | V | | | | | 3296.53 | -42.88 | 12.00 | 11.79 | -42.67 | -13.00 | -29.67 | V | | | | | The Worst Test Results Channel 190/836.6 MHz | | | | | | | | | | | | | signal | A :=4/ -ID:\ | 1 | PMea | Limit | Margin | Dolovitu | | | | | Frequency(MHz) | (dBm) | Ant(dBi) | Loss | (dBm) | (dBm) | (dBm) | Polarity | | | | | 1673.07 | -40.64 | 9.50 | 4.76 | -35.90 | -13.00 | -22.90 | Н | | | | | 2509.87 | -39.56 | 10.70 | 8.40 | -37.26 | -13.00 | -24.26 | Н | | | | | 3345.97 | -32.26 | 12.20 | 11.80 | -31.86 | -13.00 | -18.86 | Н | | | | | 1673.14 | -44.36 | 9.40 | 4.75 | -39.71 | -13.00 | -26.71 | V | | | | | 2509.83 | -45.19 | 10.60 | 8.39 | -42.98 | -13.00 | -29.98 | V | | | | | 3346.37 | -43.71 | 12.20 | 11.82 | -43.33 | -13.00 | -30.33 | V | | | | | | The V | Vorst Test F | Results Cha | annel 251/8 | 48.8 MHz | | | | | | | Fraguanov/MHz) | signal | Ant/dDi) | Loop | PMea | Limit | Margin | Dolority | | | | | Frequency(MHz) | (dBm) | Ant(dBi) | Loss | (dBm) | (dBm) | (dBm) | Polarity | | | | | 1697.51 | -41.08 | 9.60 | 4.77 | -36.25 | -13.00 | -23.25 | Н | | | | | 2546.49 | -39.96 | 10.80 | 8.50 | -37.66 | -13.00 | -24.66 | Н | | | | | 3395.16 | -32.17 | 12.50 | 11.90 | -31.57 | -13.00 | -18.57 | Н | | | | | 1697.48 | -43.53 | 9.60 | 4.77 | -38.70 | -13.00 | -25.70 | V | | | | | 2546.37 | -44.67 | 10.80 | 8.50 | -42.37 | -13.00 | -29.37 | V | | | | | 3394.98 | -43.87 | 12.50 | 11.90 | -43.27 | -13.00 | -30.27 | V | | | | **Note:** (1)Below 30MHz no Spurious found is the worst condition. (2)Above 3.5GHz amplitude of spurious emissions which are attenuated by more than 20dB below the permissible value has. GPRS 850: (30-9000)MHz | GPRS 850: (30-900 | U)IVIHZ | | | | | | | | | | |--|---------|--------------|-------------|-------------|----------|--------|----------|--|--|--| | | | GPRS | 850: (30-9 | 000)MHz | | | | | | | | | The V | Vorst Test F | Results Cha | annel 128/8 | 24.2 MHz | | | | | | | Frequency(MHz) | signal | Ant(dBi) | Loss | PMea | Limit | Margin | Polarity | | | | | r requericy(iviriz) | (dBm) | Ant(abi) | L033 | (dBm) | (dBm) | (dBm) | 1 Olanty | | | | | 1648.11 | -40.50 | 9.40 | 4.75 | -35.85 | -13.00 | -22.85 | Н | | | | | 2472.30 | -40.09 | 10.60 | 8.39 | -37.88 | -13.00 | -24.88 | Н | | | | | 3296.68 | -32.07 | 12.00 | 11.79 | -31.86 | -13.00 | -18.86 | Н | | | | | 1648.39 | -44.64 | 9.40 | 4.75 | -39.99 | -13.00 | -26.99 | V | | | | | 2472.53 | -44.45 | 10.60 | 8.39 | -42.24 | -13.00 | -29.24 | V | | | | | 3296.50 | -42.74 | 12.00 | 11.79 | -42.53 | -13.00 | -29.53 | V | | | | | The Worst Test Results Channel 190/836.6 MHz | | | | | | | | | | | | Fragues av/MII=) | signal | A nt/dDi) | Loop | PMea | Limit | Margin | Dolority | | | | | Frequency(MHz) | (dBm) | Ant(dBi) | Loss | (dBm) | (dBm) | (dBm) | Polarity | | | | | 1673.25 | -40.54 | 9.50 | 4.76 | -35.80 | -13.00 | -22.80 | Н | | | | | 2509.78 | -40.33 | 10.70 | 8.40 | -38.03 | -13.00 | -25.03 | Н | | | | | 3346.26 | -30.97 | 12.20 | 11.80 | -30.57 | -13.00 | -17.57 | Н | | | | | 1673.19 | -44.43 | 9.40 | 4.75 | -39.78 | -13.00 | -26.78 | V | | | | | 2509.44 | -44.43 | 10.60 | 8.39 | -42.22 | -13.00 | -29.22 | V | | | | | 3346.43 | -43.68 | 12.20 | 11.82 | -43.30 | -13.00 | -30.30 | V | | | | | | The V | Vorst Test F | Results Cha | annel 251/8 | 48.8 MHz | | | | | | | Fragues av/MII=) | signal | A nt/dDi) | Loop | PMea | Limit | Margin | Dolovity | | | | | Frequency(MHz) | (dBm) | Ant(dBi) | Loss | (dBm) | (dBm) | (dBm) | Polarity | | | | | 1697.60 | -41.62 | 9.60 | 4.77 | -36.79 | -13.00 | -23.79 | Н | | | | | 2546.10 | -40.51 | 10.80 | 8.50 | -38.21 | -13.00 | -25.21 | Н | | | | | 3395.11 | -31.97 | 12.50 | 11.90 | -31.37 | -13.00 | -18.37 | Н | | | | | 1697.50 | -44.04 | 9.60 | 4.77 | -39.21 | -13.00 | -26.21 | V | | | | | 2546.15 | -44.60 | 10.80 | 8.50 | -42.30 | -13.00 | -29.30 | V | | | | | 3395.21 | -43.60 | 12.50 | 11.90 | -43.00 | -13.00 | -30.00 | V | | | | Note: (1)Below 30MHz no Spurious found is the worst condition. (2)Above 3.5GHz amplitude of spurious emissions which are attenuated by more than 20dB below the permissible value has. EDGE 850: (30-9000)MHz | EDGE 850: (30-90 | EDGE 850: (30-9000)MHz | | | | | | | | | | |------------------|------------------------|-------------|------------|----------|-------------|--------|--------|----------|--|--| | | | EG | SPRS 850: | (30-9000 |)MHz | | | | | | | | Th | e Worst Te | est Result | s Channe | I 128/824.2 | 2 MHz | | | | | | Eroguanov/MHz) | S G.Lev | Ant(dBi) | Loop | A Dol | PMea | Limit | Margin | Dolority | | | | Frequency(MHz) | (dBm) | Ant(ubi) | Loss | ARpl | (dBm) | (dBm) | (dBm) | Polarity | | | | 1648.22 | -40.13 | 9.40 | 4.75 | -4.65 | -35.48 | -13.00 | -22.48 | Н | | | | 2472.52 | -39.16 | 10.60 | 8.39 | -2.21 | -36.95 | -13.00 | -23.95 | Н | | | | 3296.54 | -30.85 | 12.00 | 11.79 | -0.21 | -30.64 | -13.00 | -17.64 | Н | | | | 1648.37 | -43.14 | 9.40 | 4.75 | -4.65 | -38.49 | -13.00 | -25.49 | V | | | | 2472.24 | -43.95 | 10.60 | 8.39 | -2.21 | -41.74 | -13.00 | -28.74 | V | | | | 3296.79 | -42.49 | 12.00 | 11.79 | -0.21 | -42.28 | -13.00 | -29.28 | V | | | | | Th | e Worst Te | est Result | s Channe | I 190/836.6 | 6 MHz | | | | | | Frequency(MHz) | S G.Lev | A :=4(=1D:) | Loss | ARpl | PMea | Limit | Margin | Delevity | | | | | (dBm) | Ant(dBi) | L033 | Αιτρι | (dBm) | (dBm) | (dBm) | Polarity | | | | 1673.06 | -36.46 | 9.50 | 4.76 | -4.74 | -31.72 | -13.00 | -18.72 | Н | | | | 2509.50 | -43.02 | 10.70 | 8.40 | -2.30 | -40.72 | -13.00 | -27.72 | Н | | | | 3346.18 | -38.11 | 12.20 | 11.80 | -0.40 | -37.71 | -13.00 | -24.71 | Н | | | | 1673.22 | -37.50 | 9.40 | 4.75 | -4.65 | -32.85 | -13.00 | -19.85 | V | | | | 2509.60 | -31.80 | 10.60 | 8.39 | -2.21 | -29.59 | -13.00 | -16.59 | V | | | | 3346.30 | -36.66 | 12.20 | 11.82 | -0.38 | -36.28 | -13.00 | -23.28 | V | | | | | Th | e Worst Te | est Result | s Channe | I 251/848.8 | 3 MHz | | | | | | Frequency(MHz) | S G.Lev | Ant(dBi) | Loss | ARpl | PMea | Limit | Margin | Polarity | | | | Frequency(MHZ) | (dBm) | Ant(ubi) | L088 | ARPI | (dBm) | (dBm) | (dBm) | Polarity | | | | 1697.51 | -36.23 | 9.60 | 4.77 | -4.83 | -31.40 | -13.00 | -18.40 | Н | | | | 2546.56 | -43.13 | 10.80 | 8.50 | -2.30 | -40.83 | -13.00 | -27.83 | Н | | | | 3395.17 | -38.14 | 12.50 | 11.90 | -0.60 | -37.54 |
-13.00 | -24.54 | Н | | | | 1697.36 | -37.56 | 9.60 | 4.77 | -4.83 | -32.73 | -13.00 | -19.73 | V | | | | 2546.08 | -31.77 | 10.80 | 8.50 | -2.30 | -29.47 | -13.00 | -16.47 | V | | | | 3395.04 | -36.54 | 12.50 | 11.90 | -0.60 | -35.94 | -13.00 | -22.94 | V | | | Note: (1)Below 30MHz no Spurious found is the worst condition. (2)Above 3.5GHz amplitude of spurious emissions which are attenuated by more than 20dB below the permissible value has. PCS 1900: (30-20000)MHz | PCS 1900: (30-20 | UUU)IVINZ | | | | | | | | | |--|-----------|-------------|------------|------------|------------|--------|--------|------------|--| | | | DO | CS 1900: (| (30-20000) | MHz | | | | | | | The | Worst Test | t Results | for Chann | el 512/185 | 0.2MHz | | | | | Frequency(MHz) | S G.Lev | Apt(dDi) | Loss | A Dol | PMea | Limit | Margin | Polority | | | Frequency(Min2) | (dBm) | Ant(dBi) | LUSS | ARpl | (dBm) | (dBm) | (dBm) | Polarity | | | 3700.36 | -33.64 | 12.60 | 12.93 | 0.33 | -33.97 | -13.00 | -20.97 | Н | | | 5550.41 | -35.34 | 13.10 | 17.11 | 4.01 | -39.35 | -13.00 | -26.35 | Н | | | 7400.81 | -32.80 | 11.50 | 22.20 | 10.70 | -43.50 | -13.00 | -30.50 | Н | | | 3700.51 | -34.88 | 12.60 | 12.93 | 0.33 | -35.21 | -13.00 | -22.21 | V | | | 5550.33 | -34.26 | 13.10 | 17.11 | 4.01 | -38.27 | -13.00 | -25.27 | V | | | 7400.58 | -33.14 | 11.50 | 22.20 | 10.70 | -43.84 | -13.00 | -30.84 | V | | | The Worst Test Results for Channel 661/1880.0MHz | | | | | | | | | | | | S G.Lev | A 4(-ID:) | 1 | A Dl | PMea | Limit | Margin | Delevite | | | Frequency(MHz) | (dBm) | Ant(dBi) | Loss | ARpl | (dBm) | (dBm) | (dBm) | - Polarity | | | 3760.12 | -33.73 | 12.60 | 12.93 | 0.33 | -34.06 | -13.00 | -21.06 | Н | | | 5640.22 | -34.00 | 13.10 | 17.11 | 4.01 | -38.01 | -13.00 | -25.01 | Н | | | 7520.29 | -32.46 | 11.50 | 22.20 | 10.70 | -43.16 | -13.00 | -30.16 | Н | | | 3760.29 | -34.58 | 12.60 | 12.93 | 0.33 | -34.91 | -13.00 | -21.91 | V | | | 5640.33 | -35.18 | 13.10 | 17.11 | 4.01 | -39.19 | -13.00 | -26.19 | V | | | 7519.81 | -32.72 | 11.50 | 22.20 | 10.70 | -43.42 | -13.00 | -30.42 | V | | | | The | Worst Test | t Results | for Chann | el 810/190 | 9.8MHz | | | | | [| S G.Lev | Λ :=4/=ID:\ | 1 | A Drail | PMea | Limit | Margin | Dalaritu | | | Frequency(MHz) | (dBm) | Ant(dBi) | Loss | ARpl | (dBm) | (dBm) | (dBm) | Polarity | | | 3819.59 | -33.46 | 12.60 | 12.93 | 0.33 | -33.79 | -13.00 | -20.79 | Н | | | 5729.18 | -34.46 | 13.10 | 17.11 | 4.01 | -38.47 | -13.00 | -25.47 | Н | | | 7639.07 | -33.45 | 11.50 | 22.20 | 10.70 | -44.15 | -13.00 | -31.15 | Н | | | 3819.60 | -34.56 | 12.60 | 12.93 | 0.33 | -34.89 | -13.00 | -21.89 | V | | | 5729.27 | -34.31 | 13.10 | 17.11 | 4.01 | -38.32 | -13.00 | -25.32 | V | | | 7639.19 | -32.24 | 11.50 | 22.20 | 10.70 | -42.94 | -13.00 | -29.94 | V | | **Note:** (1)Below 30MHz no Spurious found is the worst condition. (2)Above 8GHz amplitude of spurious emissions which are attenuated by more than 20dB below the permissible value has. GPRS 1900: (30-20000)MHz | GPRS 1900: (30-20 | J000)MHz | | | | | | | | | |--|----------|------------|-----------|-----------|------------|--------|--------|----------|--| | | | GF | PRS1900: | (30-20000 |)MHz | | | | | | | The | Worst Test | t Results | for Chann | el 512/185 | 0.2MHz | | | | | Eroguanov/MHz) | S G.Lev | Ant(dBi) | Loop | A Dol | PMea | Limit | Margin | Dolority | | | Frequency(MHz) | (dBm) | Ani(ubi) | Loss | ARpl | (dBm) | (dBm) | (dBm) | Polarity | | | 3700.39 | -34.09 | 12.60 | 12.93 | 0.33 | -34.42 | -13.00 | -21.42 | Н | | | 5550.60 | -34.27 | 13.10 | 17.11 | 4.01 | -38.28 | -13.00 | -25.28 | Н | | | 7400.81 | -32.8 | 11.50 | 22.20 | 10.70 | -43.50 | -13.00 | -30.50 | Н | | | 3700.51 | -34.97 | 12.60 | 12.93 | 0.33 | -35.30 | -13.00 | -22.30 | V | | | 5550.46 | -33.97 | 13.10 | 17.11 | 4.01 | -37.98 | -13.00 | -24.98 | V | | | 7400.94 | -31.93 | 11.50 | 22.20 | 10.70 | -42.63 | -13.00 | -29.63 | V | | | The Worst Test Results for Channel 661/1880.0MHz | | | | | | | | | | | Frequency(MHz) | S G.Lev | A ((ID') | 1 | A D. a.l. | PMea | Limit | Margin | Delevity | | | | (dBm) | Ant(dBi) | Loss | ARpl | (dBm) | (dBm) | (dBm) | Polarity | | | 3760.02 | -33.6 | 12.60 | 12.93 | 0.33 | -33.93 | -13.00 | -20.93 | Н | | | 5640.15 | -34.26 | 13.10 | 17.11 | 4.01 | -38.27 | -13.00 | -25.27 | Н | | | 7520.23 | -33.1 | 11.50 | 22.20 | 10.70 | -43.80 | -13.00 | -30.80 | Н | | | 3759.92 | -34.98 | 12.60 | 12.93 | 0.33 | -35.31 | -13.00 | -22.31 | V | | | 5640.13 | -34.15 | 13.10 | 17.11 | 4.01 | -38.16 | -13.00 | -25.16 | V | | | 7519.98 | -32.11 | 11.50 | 22.20 | 10.70 | -42.81 | -13.00 | -29.81 | V | | | | The | Worst Test | t Results | for Chann | el 810/190 | 9.8MHz | | | | | Erocuono (MIII-) | S G.Lev | A mt/dDi) | Loop | A Dod | PMea | Limit | Margin | Dolovity | | | Frequency(MHz) | (dBm) | Ant(dBi) | Loss | ARpl | (dBm) | (dBm) | (dBm) | Polarity | | | 3819.68 | -33.8 | 12.60 | 12.93 | 0.33 | -34.13 | -13.00 | -21.13 | Н | | | 5729.11 | -34.03 | 13.10 | 17.11 | 4.01 | -38.04 | -13.00 | -25.04 | Н | | | 7638.98 | -33.31 | 11.50 | 22.20 | 10.70 | -44.01 | -13.00 | -31.01 | Н | | | 3819.73 | -34.84 | 12.60 | 12.93 | 0.33 | -35.17 | -13.00 | -22.17 | V | | | 5729.07 | -34.44 | 13.10 | 17.11 | 4.01 | -38.45 | -13.00 | -25.45 | V | | | 7638.99 | -32.18 | 11.50 | 22.20 | 10.70 | -42.88 | -13.00 | -29.88 | V | | **Note:** (1)Below 30MHz no Spurious found is the worst condition. (2)Above 8GHz amplitude of spurious emissions which are attenuated by more than 20dB below the permissible value has. EDGE 1900: (30-20000)MHz | EDGE 1900: (30-2 | 20000) | | | | | | | | | |--|---------|------------|-----------|------------|------------|--------|--------|----------|--| | | | EG | PRS 1900 | : (30-2000 | 0)MHz | | | | | | | The | Worst Tes | t Results | for Chann | el 512/185 | 0.2MHz | | | | | Frequency(MHz) | S G.Lev | Ant(dBi) | Loss | ARpl | PMea | Limit | Margin | Polarity | | | 1 requency(wiriz) | (dBm) | Ant(ubi) | L055 | Althi | (dBm) | (dBm) | (dBm) | Folality | | | 3700.32 | -33.97 | 12.60 | 12.93 | 0.33 | -34.30 | -13.00 | -21.30 | Н | | | 5550.43 | -34.15 | 13.10 | 17.11 | 4.01 | -38.16 | -13.00 | -25.16 | Н | | | 7400.90 | -32.28 | 11.50 | 22.20 | 10.70 | -42.98 | -13.00 | -29.98 | Н | | | 3700.51 | -35.6 | 12.60 | 12.93 | 0.33 | -35.93 | -13.00 | -22.93 | V | | | 5550.38 | -34.31 | 13.10 | 17.11 | 4.01 | -38.32 | -13.00 | -25.32 | V | | | 7400.53 | -33.12 | 11.50 | 22.20 | 10.70 | -43.82 | -13.00 | -30.82 | V | | | The Worst Test Results for Channel 661/1880.0MHz | | | | | | | | | | | - (MIL) | S G.Lev | A (/ ID') | | PMea | Limit | Margin | D 1 '' | | | | Frequency(MHz) | (dBm) | Ant(dBi) | Loss | 5 ARPI | (dBm) | (dBm) | (dBm) | Polarity | | | 3759.89 | -33.84 | 12.60 | 12.93 | 0.33 | -34.17 | -13.00 | -21.17 | Н | | | 5639.82 | -34.52 | 13.10 | 17.11 | 4.01 | -38.53 | -13.00 | -25.53 | Н | | | 7520.13 | -32.39 | 11.50 | 22.20 | 10.70 | -43.09 | -13.00 | -30.09 | Н | | | 3760.10 | -35.95 | 12.60 | 12.93 | 0.33 | -36.28 | -13.00 | -23.28 | V | | | 5639.99 | -34.57 | 13.10 | 17.11 | 4.01 | -38.58 | -13.00 | -25.58 | V | | | 7519.94 | -32.69 | 11.50 | 22.20 | 10.70 | -43.39 | -13.00 | -30.39 | V | | | | The | Worst Tes | t Results | for Chann | el 810/190 | 9.8MHz | | | | | | S G.Lev | A 4 (-ID:) | 1 | A D I | PMea | Limit | Margin | Delevite | | | Frequency(MHz) | (dBm) | Ant(dBi) | Loss | ARpl | (dBm) | (dBm) | (dBm) | Polarity | | | 3819.66 | -33.67 | 12.60 | 12.93 | 0.33 | -34.00 | -13.00 | -21.00 | Н | | | 5729.29 | -35.06 | 13.10 | 17.11 | 4.01 | -39.07 | -13.00 | -26.07 | Н | | | 7638.97 | -33.33 | 11.50 | 22.20 | 10.70 | -44.03 | -13.00 | -31.03 | Н | | | 3819.32 | -35.34 | 12.60 | 12.93 | 0.33 | -35.67 | -13.00 | -22.67 | V | | | 5729.30 | -34.39 | 13.10 | 17.11 | 4.01 | -38.40 | -13.00 | -25.40 | V | | | 7639.18 | -31.95 | 11.50 | 22.20 | 10.70 | -42.65 | -13.00 | -29.65 | V | | **Note:** (1)Below 30MHz no Spurious found is the worst condition. (2)Above 8GHz amplitude of spurious emissions which are attenuated by more than 20dB below the permissible value has. ## UMTS band V(30-9000)MHz | UMTS band V(30-9000)MHz | | | | | | | | | | | | |--|---------|------------|-----------|----------|----------|--------|--------|----------|--|--|--| | WCDMA Band V: (30-9000)MHz | | | | | | | | | | | | | The wost testresults channel 4132/826.4MHz | | | | | | | | | | | | | Frequency(MHz) | S G.Lev | Apt(dDi) | Loss | ARpl | PMea | Limit | Margin | Polarity | | | | | | (dBm) | Ant(dBi) | | | (dBm) | (dBm) | (dBm) | | | | | | 1652.10 | -41.16 | 9.40 | 4.75 | -4.65 | -36.51 | -13.00 | -23.51 | Н | | | | | 2479.40 | -39.69 | 10.60 | 8.39 | -2.21 | -37.48 | -13.00 | -24.48 | Н | | | | | 3305.62 | -32.00 | 12.00 | 11.79 | -0.21 | -31.79 | -13.00 | -18.79 | Н | | | | | 1652.03 | -43.84 | 9.40 | 4.75 | -4.65 | -39.19 | -13.00 | -26.19 | V | | | | | 2479.29 | -44.14 | 10.60 | 8.39 | -2.21 | -41.93 | -13.00 | -28.93 | V | | | | | 3305.47 | -43.15 | 12.00 | 11.79 | -0.21 | -42.94 | -13.00 | -29.94 | V | | | | | The Worst Test Results Channel 4183/836.6MHz | | | | | | | | | | | | | Frequency(MHz) | S G.Lev | Ant/dDi) | Loss | ARpl | PMea | Limit | Margin | Polarity | | | | | | (dBm) | Ant(dBi) | | | (dBm) | (dBm) | (dBm) | | | | | | 1672.97 | -41.58 | 9.50 | 4.76 | -4.74 | -36.84 | -13.00 | -23.84 | Н | | | | | 2509.48 | -39.99 | 10.70 | 8.40 | -2.30 | -37.69 | -13.00 | -24.69 | Н | | | | | 3345.97 | -31.88 | 12.20 | 11.80 | -0.40 | -31.48 | -13.00 | -18.48 | Н | | | | | 1672.97 | -44.56 | 9.40 | 4.75 | -4.65 | -39.91 | -13.00 | -26.91 | V | | | | | 2509.48 | -43.97 | 10.60 | 8.39 | -2.21 | -41.76 | -13.00 | -28.76 | V | | | | | 3346.27 | -43.04 | 12.20 | 11.82 | -0.38 | -42.66 | -13.00 | -29.66 | V | | | | | | Th | e Worst Te | st Result | s Channe | 4233/846 | .6MHz | | | | | | | Frequency(MHz) | S
G.Lev | Λ mt/dD:) | Logo | ARpl | PMea | Limit | Margin | Polarity | | | | | | (dBm) | Ant(dBi) | Loss | | (dBm) | (dBm) | (dBm) | | | | | | 1693.32 | -41.12 | 9.60 | 4.77 | -4.83 | -36.29 | -13.00 | -23.29 | Н | | | | | 2539.30 | -39.32 | 10.80 | 8.50 | -2.30 | -37.02 | -13.00 | -24.02 | Н | | | | | 3386.16 | -31.93 | 12.50 | 11.90 | -0.60 | -31.33 | -13.00 | -18.33 | Н | | | | | 1693.58 | -44.18 | 9.60 | 4.77 | -4.83 | -39.35 | -13.00 | -26.35 | V | | | | | 2539.54 | -44.15 | 10.80 | 8.50 | -2.30 | -41.85 | -13.00 | -28.85 | V | | | | | 3385.95 | -43.87 | 12.50 | 11.90 | -0.60 | -43.27 | -13.00 | -30.27 | V | | | | Note: (1)Below 30MHz no Spurious found is the worst condition. (2)Above 3GHz amplitude of spurious emissions which are attenuated by more than 20dB below the permissible value has. UMTS band II(30-20000)MHz | JMTS band II(30-2 | 0000)MHz | - | | | | | | | | | | |---|----------|-------------------|-----------|-------------|------------|---------|--------|----------|--|--|--| | | | WCD | MA Band | II: (30-200 | 000)MHz | | | | | | | | The Worst Test Results for Channel 9262/1852.4MHz | | | | | | | | | | | | | Frequency(MHz) | S G.Lev | Ant/dDi) | Loss | ARpl | PMea | Limit | Margin | Polarity | | | | | | (dBm) | Ant(dBi) | | | (dBm) | (dBm) | (dBm) | | | | | | 3704.31 | -33.59 | 12.60 | 12.93 | 0.33 | -33.92 | -13.00 | -20.92 | Н | | | | | 5557.35 | -34.44 | 13.10 | 17.11 | 4.01 | -38.45 | -13.00 | -25.45 | Н | | | | | 7409.72 | -32.16 | 11.50 | 22.20 | 10.70 | -42.86 | -13.00 | -29.86 | Н | | | | | 3704.04 | -35.84 | 12.60 | 12.93 | 0.33 | -36.17 | -13.00 | -23.17 | V | | | | | 5557.67 | -35.23 | 13.10 | 17.11 | 4.01 | -39.24 | -13.00 | -26.24 | V | | | | | 7409.69 | -32.77 | 11.50 | 22.20 | 10.70 | -43.47 | -13.00 | -30.47 | V | | | | | The Worst Test Results for Channel 9400/1880MHz | | | | | | | | | | | | | Frequency(MHz) | S G.Lev | Λ :=4/=ID:\ | Loss | ARpl | PMea | Limit | Margin | Polarity | | | | | | (dBm) | Ant(dBi) | | | (dBm) | (dBm) | (dBm) | | | | | | 3760.01 | -34.85 | 12.60 | 12.93 | 0.33 | -35.18 | -13.00 | -22.18 | Н | | | | | 5640.18 | -34.67 | 13.10 | 17.11 | 4.01 | -38.68 | -13.00 | -25.68 | Н | | | | | 7520.15 | -33.07 | 11.50 | 22.20 | 10.70 | -43.77 | -13.00 | -30.77 | Н | | | | | 3760.01 | -34.94 | 12.60 | 12.93 | 0.33 | -35.27 | -13.00 | -22.27 | V | | | | | 5640.10 | -34.68 | 13.10 | 17.11 | 4.01 | -38.69 | -13.00 | -25.69 | V | | | | | 7519.89 | -32.67 | 11.50 | 22.20 | 10.70 | -43.37 | -13.00 | -30.37 | V | | | | | | The V | Vorst Test | Results f | or Channe | el 9538/19 | 07.6MHz | | | | | | | Frequency(MHz) | S G.Lev | Ant(dBi) | Loss | ARpl | PMea | Limit | Margin | Polarity | | | | | | (dBm) | | | | (dBm) | (dBm) | (dBm) | | | | | | 3815.35 | -34.5 | 12.60 | 12.93 | 0.33 | -34.83 | -13.00 | -21.83 | Н | | | | | 5722.15 | -34.28 | 13.10 | 17.11 | 4.01 | -38.29 | -13.00 | -25.29 | Н | | | | | 7630.18 | -32.44 | 11.50 | 22.20 | 10.70 | -43.14 | -13.00 | -30.14 | Н | | | | | 3815.38 | -34.68 | 12.60 | 12.93 | 0.33 | -35.01 | -13.00 | -22.01 | V | | | | | 5722.27 | -35.08 | 13.10 | 17.11 | 4.01 | -39.09 | -13.00 | -26.09 | V | | | | | 7630.09 | -32.18 | 11.50 | 22.20 | 10.70 | -42.88 | -13.00 | -29.88 | V | | | | **Note:** (1)Below 30MHz no Spurious found is the worst condition. (2)Above 6GHz amplitude of spurious emissions which are attenuated by more than 20dB below the permissible value has. #### APPENDIX BPHOTOS OF TEST SETUP #### RADIATED SPURIOUS EMISSION *****END OF THE REPORT***