

FCC Test Report

Report No.: AGC00429201201FE03

FCC ID	: 2AGA9WD-TWS05
APPLICATION PURPOSE	: Original Equipment
PRODUCT DESIGNATION	: Ture Wireless Earbuds
BRAND NAME	: Compucessory
MODEL NAME	: CCS15156, WD-TWS05
APPLICANT	: HUIZHOU WEIDE Electronics CO.,LTD
DATE OF ISSUE	: Dec. 22, 2020
STANDARD(S)	: FCC Part 15.247
REPORT VERSION	: V1.0

station of G

Any report having not been signed by authorized approver, or having been altered without authorization, or having not been stamped by the Bedicated Pestura/Inspection Stamp" is deemed to be invalid. Copying or excerpting portion of, or altering the content of the report is not permitted without the written aphorization of AGE. The test results presented in the report apply only to the tested sample. Any objections to report issued by AGC should be submitted to AGC within 15day Safter the issues of the test report. Further enquiry of validity or verification of the test report should be addressed to AGC by agc@agc~cert.com.

 Attestation of Global Compliance(Shenzhen)Co., Ltd

 Attestation of Global Compliance(Shenzhen)Std & Tech Co., Ltd

 Tel: +86-755 2523 4088
 E-mail: agc@agc-cert.com

REPORT REVISE RECORD

Rep	ort Version	Revise Time	Issued Date	Valid Version	Notes
	V1.0	. /	Dec. 22, 2020	Valid	Initial Release

Any report having not been signed by authorized approver, or having been altered without authorization, or having not been stamped by the "Dedicated Festive/Inspection Stamp" is deemed to be invalid. Copying or excerpting portion of, or altering the content of the report is not permitted without the writter explorization of AGE" the test results presented in the report apply only to the tested sample. Any objections to report issued by AGC should be submitted to AGC within 15days after the issues of the test report. Further enquiry of validity or verification of the test report should be addressed to AGC by agc@agc-cert.com.

 Attestation of Global Compliance(Shenzhen)Co., Ltd

 Attestation of Global Compliance(Shenzhen)Std & Tech Co., Ltd

 Tel: +86-755 2523 4088
 E-mail: agc@agc-cert.com

TABLE OF CONTENTS

	1. VERIFICATION OF CONFORMITY	5
	2. GENERAL INFORMATION	6
	2.1. PRODUCT DESCRIPTION	6
	2.2. TABLE OF CARRIER FREQUENCYS	
	2.3. RECEIVER INPUT BANDWIDTH	
	2.4. EXAMPLE OF A HOPPING SEQUENCY IN DATA MODE	7
	2.5. EQUALLY AVERAGE USE OF FREQUENCIES AND BEHAVIOUR	7
	2.6. RELATED SUBMITTAL(S) / GRANT (S)	8
	2.7. TEST METHODOLOGY	
	2.8. SPECIAL ACCESSORIES	8
	2.9. EQUIPMENT MODIFICATIONS	8
	2.10. ANTENNA REQUIREMENT	8
	3. MEASUREMENT UNCERTAINTY	9
	4. DESCRIPTION OF TEST MODES	
	5. SYSTEM TEST CONFIGURATION	11
	5.1. CONFIGURATION OF EUT SYSTEM	11
	5.2. EQUIPMENT USED IN TESTED SYSTEM	11
	5.3. SUMMARY OF TEST RESULTS	11
	6. TEST FACILITY	12
	7. PEAK OUTPUT POWER	13
	7.1. MEASUREMENT PROCEDURE	13
	7.2. TEST SET-UP (BLOCK DIAGRAM OF CONFIGURATION)	
	7.3. LIMITS AND MEASUREMENT RESULT	
	8. 20DB BANDWIDTH	
	8.1. MEASUREMENT PROCEDURE	26
	8.2. TEST SET-UP (BLOCK DIAGRAM OF CONFIGURATION)	26
	8.3. LIMITS AND MEASUREMENT RESULTS	
	9. CONDUCTED SPURIOUS EMISSION	33
	9.1. MEASUREMENT PROCEDURE	33
St pr	9.1. MEASUREMENT PROCEDURE	
A	ttestation of Global Compliance(Shenzhen)Co. Ltd	

9.2. TEST SET-UP (BLOCK DIAGRAM OF CONFIGURATION)	
9.3. MEASUREMENT EQUIPMENT USED	
9.4. LIMITS AND MEASUREMENT RESULT	
10. RADIATED EMISSION	46
10.1. MEASUREMENT PROCEDURE	
10.2. TEST SETUP	
10.3. LIMITS AND MEASUREMENT RESULT	
10.4. TEST RESULT	
11. NUMBER OF HOPPING FREQUENCY	
11.1. MEASUREMENT PROCEDURE	
11.2. TEST SETUP (BLOCK DIAGRAM OF CONFIGURATION)	
11.3. MEASUREMENT EQUIPMENT USED	
11.4. LIMITS AND MEASUREMENT RESULT	
12. TIME OF OCCUPANCY (DWELL TIME)	60
12.1. MEASUREMENT PROCEDURE	
12.2. TEST SETUP (BLOCK DIAGRAM OF CONFIGURATION)	
12.3. MEASUREMENT EQUIPMENT USED	
12.4. LIMITS AND MEASUREMENT RESULT	
13. FREQUENCY SEPARATION	
13.1. MEASUREMENT PROCEDURE	
13.2. TEST SETUP (BLOCK DIAGRAM OF CONFIGURATION)	
13.3. MEASUREMENT EQUIPMENT USED	
13.4. LIMITS AND MEASUREMENT RESULT	
APPENDIX A: PHOTOGRAPHS OF TEST SETUP	65
	67

Any report having not been signed by authorized approver, or having been altered without authorization, or having not been stamped by the Bedicated Pesting/Inspection Stamp" is deemed to be invalid. Copying or excerpting portion of, or altering the content of the report is not permitted without the written approver, or having not been stamped by the Bedicated Pesting/Inspection presented in the report apply only to the tested sample. Any objections to report issued by AGC should be submitted to AGC within 15day after the issuerce of the test report. Further enquiry of validity or verification of the test report should be addressed to AGC by agc@agc-cert.com.

1. VERIFICATION OF CONFORMITY

Applicant	HUIZHOU WEIDE Electronics CO.,LTD	
Address	Jimadi Industrial Area, Boluo County, Huizhou, Guangdong, China. 516100	
Manufacturer	HUIZHOU WEIDE Electronics CO.,LTD	
Address	Jimadi Industrial Area, Boluo County, Huizhou, Guangdong, China. 516100	
Factory	HUIZHOU WEIDE Electronics CO.,LTD	
Address	Jimadi Industrial Area, Boluo County, Huizhou, Guangdong, China. 516100	
Product Designation	Ture Wireless Earbuds	
Brand Name	Compucessory	
Test Model	CCS15156	
Series Model	WD-TWS05	
Difference Description	All the same except for the model name.	
Date of test	Dec. 15, 2020 to Dec. 22, 2020	
Deviation	No any deviation from the test method	
Condition of Test Sample	Normal	
Test Result	Pass	
Report Template	AGCRT-US-BR/RF	

We hereby certify that:

The above equipment was tested by Attestation of Global Compliance (Shenzhen) Co., Ltd. The test data, data evaluation, test procedures, and equipment configurations shown in this report were made in accordance with the procedures given in ANSI C63.10 (2013) and the energy emitted by the sample EUT tested as described in this report is in compliance with radiated emission limits of FCC PART 15.247.

Prepared By

Then Hunny

Thea Huang (Project Engineer)

Dec. 22, 2020

Reviewed By

Max Zhang

Max Zhang (Reviewer)

Dec. 22, 2020

Approved By

Forrest in

Forrest Lei (Authorized Officer)

Dec. 22, 2020

Any report having not been signed by authorized approver, or having been altered without authorization, or having not been stamped by the bedicated freshing/inspection Stamp" is deemed to be invalid. Copying or excerpting portion of, or altering the content of the report is not permitted without the written authorization of AGE the test results presented in the report apply only to the tested sample. Any objections to report issued by AGC should be submitted to AGC within 15day after the issuence of the test report. Further enquiry of validity or verification of the test report should be addressed to AGC by agc@agc-cert.com.

Attestation of Global Compliance(Shenzhen)Co., Ltd Attestation of Global Compliance(Shenzhen)Std & Tech Co., Ltd Tel: +86-755 2523 4088 E-mail: agc@agc-cert.com Web: http://cn.agc-cert.com/

2. GENERAL INFORMATION

2.1. PRODUCT DESCRIPTION

The EUT is designed as "Ture Wireless Earbuds". It is designed by way of utilizing the GFSK, π /4-DQPSK and 8DPSK technology to achieve the system operation.

A major technical description of EUT is described as following

Operation Frequency	2.402 GHz to 2.480 GHz	
RF Output Power Left: 7.368dBm (Max); Right: 6.990dBm (Max)		
Bluetooth Version V 5.0		
Modulation	BR ⊠GFSK, EDR ⊠π /4-DQPSK, ⊠8DPSK BLE □GFSK 1Mbps □GFSK 2Mbps	
Number of channels 79		
Hardware Version V1.0		
Software Version V2.0		
Antenna DesignationFPC Antenna (Comply with requirements of the FCC part 15.203)		
Antenna Gain 0.5dBi		
Power Supply	DC 3.7V by battery or DC 5V by adapter	

Note: 1.The EUT doesn't support BLE.

2. The EUT includes left and right channel earphones, the schematic diagram is the same, but the PCB Layout is different. The RF output power of each earphone has been tested and recorded in the report. For other test items, due to the higher power, the correct headset has been tested and recorded in this report, which is the worst case.

2.2. TABLE OF CARRIER FREQUENCYS

Frequency Band	Channel Number	Frequency
6	0	2402 MHz
		2403 MHz
	No.	
200,00	38	2440 MHz
2402~2480MHz	39	2441 MHz
e O o	40	2442 MHz
	77	2479 MHz
	78	2480 MHz

Any report having not been signed by authorized approver, or having been altered without authorization, or having not been stamped by the "Dedicated Perturn/Inspection Stamp" is deemed to be invalid. Copying or excerpting portion of, or altering the content of the report is not permitted without the written authorization of AGC. The test results presented in the report apply only to the tested sample. Any objections to report issued by AGC should be submitted to AGC within 15day after the issues of the test report. Further enquiry of validity or verification of the test report should be addressed to AGC by agc@agc~cert.com.

Attestation of Global Compliance(Shenzhen)Co., Ltd Attestation of Global Compliance(Shenzhen)Std & Tech Co., Ltd Tel: +86-755 2523 4088 E-mail: agc@agc-cert.com Web: http://cn.agc-cert.com/

2.3. RECEIVER INPUT BANDWIDTH

The input bandwidth of the receiver is 1.3MHz, in every connection one Bluetooth device is the master and the other one is slave. The master determines the hopping sequence. The slave follows this sequence. Both devices shift between RX and TX time slot according to the clock of the master. Additionally, the type of connection (e.g. single of multi slot packet) is set up at the beginning of the connection. The master adapts its hopping frequency and its TX/RX timing according to the packet type of the connection. Also, the slave of the connection will use these settings. Repeating of a packet has no influence on the hopping sequence. The hopping sequence generated by the master of the connection will be followed in any case. That means, a repeated packet will not be send on the same frequency, it is send on the next frequency of the hopping sequence.

2.4. EXAMPLE OF A HOPPING SEQUENCY IN DATA MODE

Example of a hopping sequence in data mode: 40, 21, 44, 23, 04, 15, 66, 56, 19, 78, 07, 28, 69, 55, 36, 45, 05, 13, 43, 74, 57, 35, 67, 76, 02, 34, 54, 63, 42, 11, 30, 06, 64, 25, 75, 48, 17, 33, 58, 01, 29, 14, 51, 72, 03, 31, 50, 61, 77, 18, 10, 47, 12, 68, 08, 49, 20, 00, 73, 09, 16, 60, 71, 41, 24, 53, 38, 26, 46, 37, 65, 32, 70, 52, 27, 59, 22, 62, 39

2.5. EQUALLY AVERAGE USE OF FREQUENCIES AND BEHAVIOUR

The generation of the hopping sequence in connection mode depends essentially on two input values:

1. LAP/UAP of the master of the connection.

2. Internal master clock.

The LAP (lower address part) are the 24 LSB's of the 48 BD_ADDRESS. The BD_ADDRESS is an unambiguous number of every Bluetooth unit. The UAP (upper address part) are the 24MSB's of the 48BD_ADDRESS

The internal clock of a Bluetooth unit is derived from a free running clock which is never adjusted and is never turned off. For behavior action with other units only offset is used. It has no relation to the time of the day. Its resolution is at least half the RX/TX slot length of 312.5us. The clock has a cycle of about one day(23h30). In most case it is implemented as 28 bits counter. For the deriving of the hopping sequence the entire. LAP (24 bits),4LSB's(4bits) (Input 1) and the 27MSB's of the clock (Input 2) are used. With this input values different mathematical procedures (permutations, additions, XOR-operations) are performed to generate the Sequence. This will be done at the beginning of every new transmission.

Regarding short transmissions the Bluetooth system has the following behavior:

The first connection between the two devices is established, a hopping sequence was generated. For Transmitting the wanted data the complete hopping sequence was not used. The connection ended.

Any report having not been signed by authorized approver, or having been altered without authorization, or having not been stamped by the bedicated Pasting/Inspection Stamp" is deemed to be invalid. Copying or excerpting portion of, or altering the content of the report is not permitted without the written authorization of AGE. The test results presented in the report apply only to the tested sample. Any objections to report issued by AGC should be submitted to AGC within 15days after the issues of the test report. Further enquiry of validity or verification of the test report should be addressed to AGC by agc@agc-cert.com.

The second connection will be established. A new hopping sequence is generated. Due to the fact the Bluetooth clock has a different value, because the period between the two transmission is longer (and it Cannot be shorter) than the minimum resolution of the clock(312.5us). The hopping sequence will always differ from the first one.

2.6. RELATED SUBMITTAL(S) / GRANT (S)

This submittal(s) (test report) is intended for **FCC ID: 2AGA9WD-TWS05** filing to comply with the FCC PART 15.247 requirements.

2.7. TEST METHODOLOGY

Both conducted and radiated testing was performed according to the procedures in ANSI C63.10 (2013). Radiated testing was performed at an antenna to EUT distance 3 meters.

2.8. SPECIAL ACCESSORIES

Refer to section 5.2.

2.9. EQUIPMENT MODIFICATIONS

Not available for this EUT intended for grant.

2.10. ANTENNA REQUIREMENT

This intentional radiator is designed with a permanently attached antenna of an antenna to ensure that no antenna other than that furnished by the responsible party shall be used with the device. For more information of the antenna, please refer to the APPENDIX B: PHOTOGRAPHS OF EUT.

Any report having not been signed by authorized approver, or having been altered without authorization, or having not been stamped by the stand resting/inspection Stamp" is deemed to be invalid. Copying or excerpting portion of, or altering the content of the report is not permitted without the written authorization of AGS. The test results presented in the report apply only to the tested sample. Any objections to report issued by AGC should be submitted to AGC within 15day after the issues of the test report. Further enquiry of validity or verification of the test report should be addressed to AGC by agc@agc-cert.com.

3. MEASUREMENT UNCERTAINTY

The reported uncertainty of measurement y \pm U, where expended uncertainty U is based on a standard

uncertainty multiplied by a coverage factor of k=2, providing a level of confidence of approximately 95%.

- Uncertainty of Conducted Emission, Uc = ±3.2 dB
- Uncertainty of Radiated Emission below 1GHz, Uc = ±3.9 dB
- Uncertainty of Radiated Emission above 1GHz, Uc = ±4.8 dB
- Uncertainty of total RF power, conducted, $Uc = \pm 0.8$ dB
- Uncertainty of spurious emissions, conducted, Uc = ±2.7dB
- Uncertainty of Occupied Channel Bandwidth: Uc = ±2 %
- Uncertainty of Dwell Time: Uc = ± 2 %
- Uncertainty of Frequency: $Uc = \pm 2 \%$

Any report having not been signed by authorized approver, or having been altered without authorization, or having not been stamped by the stand resting in section of a stamp. Is deemed to be invalid. Copying or excerpting portion of, or altering the content of the report is not permitted without the written authorization of AGE in the test results presented in the report apply only to the tested sample. Any objections to report issued by AGC should be submitted to AGC within 15day affective for the test report. Further enquiry of validity or verification of the test report should be addressed to AGC by agc@agc~cert.com.

 Attestation of Global Compliance(Shenzhen)Co., Ltd

 Attestation of Global Compliance(Shenzhen)Std & Tech Co., Ltd

 Tel: +86-755 2523 4088
 E-mail: agc@agc-cert.com

4. DESCRIPTION OF TEST MODES

NO.	TEST MODE DESCRIPTION			
1	Low channel GFSK			
2	Middle channel GFSK			
3	High channel GFSK			
4	Low channel π/4-DQPSK			
5	Middle channel π/4-DQPSK			
6	High channel π/4-DQPSK			
7	Low channel 8DPSK			
8	Middle channel 8DPSK			
9	High channel 8DPSK			
10	Hopping mode GFSK			
11	Hopping mode π/4-DQPSK			
12	Hopping mode 8DPSK			

Note:

1. Only the result of the worst case was recorded in the report, if no other cases.

2. For Radiated Emission, 3axis were chosen for testing for each applicable mode.

3. For Conducted Test method, a temporary antenna connector is provided by the manufacture.

Software Setting

COM UART	Port 6 Baudrate=1	15200 V Open Close	💒 REALTEK	
Link Mode Hopping	LE Test Tx Settings Batte	ry Resistance Cal	Hot Key Mode	•]
Channel 0	•	Tx (for Certification) - FW Mode	HCI Re	set
Packet Type 201	15 -	Exec Stop Clear Report	Test Mo	ode
Payload Type PRE	859 💌	Item Value		
Tx Packet Count 0		Tx bits 74333208 Tx Pkt Count 27409		
Whitening Enable	M PHY	TX Report RX Report	Power Trackin	
sage			C OFF	9
ctionControlExcute(Tx (fo nable TRX Thread Mode	a!! pr Certification)) Success!! pr Certification)) Stop!! a!! pr Certification)) Success!!	•	© ON	6

Any report having not been signed by authorized approver, or having been altered without authorization, or having not been stamped by the stead of the test results of the test results are apply only to the tested sample. Any objections to report issued by AGC should be submitted to AGC within 15day affective is not permitted without the written authorization of the test report. Further enquiry of validity or verification of the test report should be addressed to AGC by agc@agc~cert.com.

Attestation of Global Compliance(Shenzhen)Co., Ltd Attestation of Global Compliance(Shenzhen)Std & Tech Co., Ltd Tel: +86-755 2523 4088 E-mail: agc@agc-cert.com Web: http://cn.agc-cert.com/

5. SYSTEM TEST CONFIGURATION

5.1. CONFIGURATION OF EUT SYSTEM

Radiated Emission Configure:

EUT

Conducted Emission Configure:

	0	
EUT		AE

5.2. EQUIPMENT USED IN TESTED SYSTEM

Item	Equipment	Model No.	ID or Specification	Remark
1	Ture Wireless Earbuds	CCS15156	2AGA9WD-TWS05	EUT
2	control board	USB to TTL	N/A	AE

5.3. SUMMARY OF TEST RESULTS

FCC RULES	DESCRIPTION OF TEST	RESULT
15.247 (b)(1)	Peak Output Power	Compliant
15.247 (a)(1)	20 dB Bandwidth	Compliant
15.247 (d)	Conducted Spurious Emission	Compliant
15.209	Radiated Emission	Compliant
15.247 (a)(1)(iii)	Number of Hopping Frequency	Compliant
15.247 (a)(1)(iii) Time of Occupancy		Compliant
15.247 (a)(1)	Frequency Separation	Compliant
15.207	Conducted Emission	Not applicable

Note: The EUT is powered by battery. The EUT can not use the BT function with charging

Any report having not been signed by authorized approver, or having been altered without authorization, or having not been stamped by the bedicated for the formation of the stamp. Stamp" is deemed to be invalid. Copying or excerpting portion of, or altering the content of the report is not permitted without the written authorization of AGC. The test results presented in the report apply only to the tested sample. Any objections to report issued by AGC should be submitted to AGC within 15day after the issuer of the test report. Further enquiry of validity or verification of the test report should be addressed to AGC by agc@agc-cert.com.

6. TEST FACILITY

Test Site	Attestation of Global Compliance (Shenzhen) Co., Ltd
Location	1-2/F, Building 19, Junfeng Industrial Park, Chongqing Road, Heping Community, Fuhai Street, Bao'an District, Shenzhen, Guangdong, China
Designation Number	CN1259
FCC Test Firm Registration Number	975832
A2LA Cert. No.	5054.02
Description	Attestation of Global Compliance (Shenzhen) Co., Ltd is accredited by A2LA

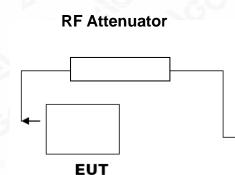
TEST EQUIPMENT OF RADIATED EMISSION TEST

Equipment	Manufacturer	Model	S/N	Cal. Date	Cal. Due
TEST RECEIVER	R&S	ESCI	10096	May 15, 2020	May 14, 2021
EXA Signal Analyzer	Aglient	N9010A	MY53470504	Dec. 07, 2020	Dec.06, 2021
2.4GHz Filter	EM Electronics	2400-2500MHz	N/A	Mar. 23, 2020	Mar. 22, 2022
Attenuator	ZHINAN	E-002	N/A	N/A	N/A
Horn antenna	SCHWARZBECK	BBHA 9170	#768	Sep. 09, 2019	Sep. 08, 2021
Active loop antenna (9K-30MHz)	ZHINAN	ZN30900C	18051	May 22, 2020	May 21, 2022
Double-Ridged Waveguide Horn	ETS LINDGREN	3117	00034609	May 17, 2019	May 16, 2021
Broadband Preamplifier	ETS LINDGREN	3117PA	00225134	Sep. 03,2020	Sep. 02,2022
ANTENNA	SCHWARZBECK	VULB9168	494	Jan. 09, 2019	Jan. 08, 2021
Test software	Tonscend	JS32-RE (Ver.2.5)	N/A	N/A	N/A

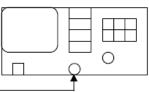
Any report having not been signed by authorized approver, or having been altered without authorization, or having not been stamped by the Bedicated Festing/Inspection Stamp" is deemed to be invalid. Copying or excerpting portion of, or altering the content of the report is not permitted without the writter enthorization of AGC, the test results presented in the report apply only to the tested sample. Any objections to report issued by AGC should be submitted to AGC within 15day after the issuerce of the test report. Further enquiry of validity or verification of the test report should be addressed to AGC by agc@agc-cert.com.

7. PEAK OUTPUT POWER

7.1. MEASUREMENT PROCEDURE


For peak power test:

- 1. Connect EUT RF output port to the Spectrum Analyzer through an RF attenuator
- 2. Span: Approximately five times the 20 dB bandwidth, centered on a hopping channel.
- 3. RBW > 20 dB bandwidth of the emission being measured.
- 4. VBW \geq RBW.
- 5. Sweep: Auto.
- 6. Detector function: Peak.
- 7. Trace: Max hold.


Allow trace to stabilize. Use the marker-to-peak function to set the marker to the peak of the emission. The indicated level is the peak output power, after any corrections for external attenuators and cables.

7.2. TEST SET-UP (BLOCK DIAGRAM OF CONFIGURATION)

PEAK POWER TEST SETUP

RF Cable

Any report having not been signed by authorized approver, or having been altered without authorization, or having not been stamped by the stand in the stand of the stand in the report is not permitted without the written authorization of AGC. The test results presented in the report apply only to the tested sample. Any objections to report issued by AGC should be submitted to AGC within 15day after the issues of the test report. Further enquiry of validity or verification of the test report should be addressed to AGC by agc@agc-cert.com.

7.3. LIMITS AND MEASUREMENT RESULT

The left ear:

PEAK OUTPUT POWER MEASUREMENT RESULT								
	FOR GFSK MOUDULATION							
Frequency (GHz)Peak Power (dBm)Applicable Limits (dBm)Pass or Fail								
2.402	2.701	21	Pass					
2.441	3.999	21	Pass					
2.480	4.329	21	Pass					

Any report having not been signed by authorized approver, or having been altered without authorization, or having not been stamped by the Bedicated Festing/Inspection Stamp" is deemed to be invalid. Copying or excerpting portion of, or altering the content of the report is not permitted without the written exchanged by the Bedicated Festing/Inspection presented in the report apply only to the tested sample. Any objections to report issued by AGC should be submitted to AGC within 15day after the issues of the test report. Further enquiry of validity or verification of the test report should be addressed to AGC by agc@agc-cert.com.

Report No.: AGC00429201201FE03 Page 15 of 83

CH39

CH78

	ectrum Analyzer - Swept SA					
Center F	RF 50 Ω AC		SENSE:INT	ALIGN AUT Avg Type: Log-Pv	Vr TRACE 1 2 3 4 5 6	Frequency
		PNO: Fast ↔ IFGain:Low	 Trig: Free Run Atten: 30 dB 	Avg Hold: 100/100		
10 dB/div Log	Ref 20.00 dBm	1		Mk	r1 2.480 190 GHz 4.329 dBm	Auto Tune
10.0			1			Center Freq 2.480000000 GHz
-10.0						Start Freq 2.477500000 GHz
-20.0						Stop Freq 2.482500000 GHz
-40.0						CF Step 500.000 kHz <u>Auto</u> Man
-60.0						Freq Offset 0 Hz
	180000 GHz				Span 5.000 MHz	
#Res BW	1.5 MHz	#VBN	/ 5.0 MHz		1.000 ms (1001 pts)	
MSG				STA	ITUS	

Any report having not been signed by authorized approver, or having been altered without authorization, or having not been stamped by the Bedicated Pesting/Inspection Stamp" is deemed to be invalid. Copying or excerpting portion of, or altering the content of the report is not permitted without the written authorization of AGC, the test results presented in the report apply only to the tested sample. Any objections to report issued by AGC should be submitted to AGC within 15day Safer the issues of the test report. Further enquiry of validity or verification of the test report should be addressed to AGC by agc@agc-cert.com.

PEAK OUTPUT POWER MEASUREMENT RESULT FOR Π/4-DQPSK MODULATION						
Frequency (GHz)Peak Power (dBm)Applicable Limits (dBm)Pass or Fail						
2.402	6.445	21	Pass			
2.441	7.094	21	Pass			
2.480	7.121	21	Pass			

CH0

Any report having not been signed by authorized approver, or having been altered without authorization, or having not been stamped by the Bedicated Pesting/Inspection Stamp" is deemed to be invalid. Copying or excerpting portion of, or altering the content of the report is not permitted without the written approver, and the test results presented in the report apply only to the tested sample. Any objections to report issued by AGC should be submitted to AGC within 15day after the issuerce of the test report. Further enquiry of validity or verification of the test report should be addressed to AGC by agc@agc-cert.com.

Report No.: AGC00429201201FE03 Page 17 of 83

CH39 NSE:INT Avg Type: Log-Pwr Avg|Hold: 100/100 Frequency Center Freq 2.441000000 GHz Trig: Free Run Atten: 30 dB PNO: Fast IFGain:Low Auto Tune Mkr1 2.441 090 GHz 7.094 dBm Ref 20.00 dBm 10 dB/div **Center Freq** 2.441000000 GHz Start Freq 2.438500000 GHz Stop Freq 2.443500000 GHz CF Step 500.000 kHz <u>Auto</u> Ма **Freq Offset** 0 Hz Center 2.441000 GHz #Res BW 1.5 MHz Span 5.000 MHz Sweep 1.000 ms (1001 pts) #VBW 5.0 MHz STATUS

CH78

Keysight Spectrum Analyzer - Swept SA					
RL RF 50 Ω AC Center Freq 2.48000000	CORREC	SENSE:INT	ALIGN AU Avg Type: Log-P	Wr TRACE 123456	Frequency
	PNO: Fast +++ IFGain:Low	Trig: Free Run Atten: 30 dB	Avg Hold: 100/100		
0 dB/div Ref 20.00 dBm			Mł	r1 2.480 095 GHz 7.121 dBm	Auto Tu
10.0		1			Center Fr 2.480000000 G
					Start Fr 2.477500000 G
0.0					Stop Fi 2.482500000 0
					CF S 500.000 <u>Auto</u>
					Freq Off (
enter 2.480000 GHz				Span 5.000 MHz	
Res BW 1.5 MHz	#VBW :	5.0 MHz		o 1.000 ms (1001 pts) ATUS	

Any report having not been signed by authorized approver, or having been altered without authorization, or having not been stamped by the Bedicated Pesting/Inspection Stamp" is deemed to be invalid. Copying or excerpting portion of, or altering the content of the report is not permitted without the written approver, and the test results presented in the report apply only to the tested sample. Any objections to report issued by AGC should be submitted to AGC within 15day after the issuer of the test report. Further enquiry of validity or verification of the test report should be addressed to AGC by agc@agc-cert.com.

PEAK OUTPUT POWER MEASUREMENT RESULT FOR 8-DPSK MODULATION							
Frequency (GHz)Peak Power (dBm)Applicable Limits (dBm)Pass or Fail							
2.402	6.555	21	Pass				
2.441	7.259	21	Pass				
2.480	7.368	21	Pass				

CH0

Any report having not been signed by authorized approver, or having been altered without authorization, or having not been stamped by the Bedicated Pesting/Inspection Stamp" is deemed to be invalid. Copying or excerpting portion of, or altering the content of the report is not permitted without the written approver, and the test results presented in the report apply only to the tested sample. Any objections to report issued by AGC should be submitted to AGC within 15day after the issuerce of the test report. Further enquiry of validity or verification of the test report should be addressed to AGC by agc@agc-cert.com.

Report No.: AGC00429201201FE03 Page 19 of 83

CH39

CH78

Internet of dB Mkr1 2.479 990 GHz Auto 1 10 dB/div Ref 20.00 dBm 7.368 dBm Center 10 dB/div Ref 20.00 dBm 1 2.48000000 00 1 1 1 1 10 dB/div Ref 20.00 dBm 1 1 1 1 10 dB/div Ref 20.00 dBm 1 <th></th> <th></th> <th></th> <th></th> <th></th> <th></th>						
Internation Mitri 2.479 990 GHz Auto 1 10 dB/div Ref 20.00 dBm 7.368 dBm Center 10 dB/div 1 1 1 Center 2.48000000 2.48000000 Start 2.48000000 -200 5 5 5	-40.0					CF Ste 500.000 kH
International and the state Mileri 2.479 990 GHz Auto 1 10 dB/div Ref 20.00 dBm 7.368 dBm Center 10 dB/div 1 1 1 Center 2.480000000 Start 2.477500000 Start						Stop Fre 2.482500000 GF
Instruction Autor 10 dB/div Ref 20.00 dBm 7.368 dBm Autor 10 dB/div Ref 20.00 dBm 7.368 dBm Center 10 dB/div Start Start Start						2.477500000 GF
Instant Low Attent of dB Mkr1 2.479 990 GHz Auto 1 10 dB/div Ref 20.00 dBm 7.368 dBm Center	0.00					Start Fre
IPGain:Low Atten: 50 dB Mkr1 2.479 990 GHz Auto 1 10 dB/div Ref 20.00 dBm 7.368 dBm Auto 1	10.0		1			2.480000000 GF
IFGain:Low Attent 30 dB	10 dB/div Ref 20.00 dBm			 7.3	68 dBm	
PNO: Fast +- Trig: Free Run Avg Hold: 100/100 PPE PNNNNN		IFGain:Low A	tten: 30 dB	 Mkr1 2.479	990 GHz	Auto

Any report having not been signed by authorized approver, or having been altered without authorization, or having not been stamped by the Bedicated Pesting/Inspection Stamp" is deemed to be invalid. Copying or excerpting portion of, or altering the content of the report is not permitted without the written approver, and the test results presented in the report apply only to the tested sample. Any objections to report issued by AGC should be submitted to AGC within 15day after the issuer of the test report. Further enquiry of validity or verification of the test report should be addressed to AGC by agc@agc-cert.com.

The right ear:

	PEAK OUTPUT POWER MEASUREMENT RESULT							
Frequency (GHz)	Pass or Fail							
2.402	2.188	21	Pass					
2.441	3.521	21	Pass					
2.480	3.910	21	Pass					

CH0

Any report having not been signed by authorized approver, or having been altered without authorization, or having not been stamped by the Bedicated Festing/Inspection Stamp" is deemed to be invalid. Copying or excerpting portion of, or altering the content of the report is not permitted without the written exchanged by the Bedicated Festing/Inspection presented in the report apply only to the tested sample. Any objections to report issued by AGC should be submitted to AGC within 15day after the issues of the test report. Further enquiry of validity or verification of the test report should be addressed to AGC by agc@agc-cert.com.

Report No.: AGC00429201201FE03 Page 21 of 83

NSE:INT Avg Type: Log-Pwr Avg|Hold: 100/100 Frequency Center Freq 2.441000000 GHz Trig: Free Run Atten: 30 dB PNO: Fast IFGain:Low Auto Tune Mkr1 2.441 165 GHz 3.521 dBm Ref 20.00 dBm 10 dB/div **Center Freq** 2.441000000 GHz Ø Start Freq 2.438500000 GHz Stop Freq 2.443500000 GHz CF Step 500.000 kHz <u>Auto</u> Ма **Freq Offset** 0 Hz Center 2.441000 GHz #Res BW 1.5 MHz Span 5.000 MHz Sweep 1.000 ms (1001 pts) #VBW 5.0 MHz STATUS

CH39

CH78

	ectrum Analyzer - Swept SA			1		
XI RL Center F	RF 50 Ω AC	00 GHz	SENSE:INT	ALIGN AUTO Avg Type: Log-Pwr	07:20:38 PM Dec 17, 2020 TRACE 1 2 3 4 5 6	Frequency
		PNO: Fast ↔ IFGain:Low	Trig: Free Run Atten: 30 dB	Avg Hold: 100/100		
10 dB/div	Ref 20.00 dBn	n		Mkr1	2.479 895 GHz 3.910 dBm	Auto Tun
10.0						Center Fre 2.480000000 GH
0.00						
-10.0						Start Fre 2.477500000 GF
-20.0						Stop Fre
30.0						CF Ste
50.0						500.000 kl <u>Auto</u> M
60.0						Freq Offs
70.0						
	480000 GHz 1.5 MHz	#VBV	V 5.0 MHz	Sweep 1	Span 5.000 MHz .000 ms (1001 pts)	
MSG				STATU	3	

Compliances Any report having not been signed by authorized approver, or having been altered without authorization, or having not been stamped by the Bedicated Perton Stamp" is deemed to be invalid. Copying or excerpting portion of, or altering the content of the report is not permitted without the written authorization of AGC presented in the report apply only to the tested sample. Any objections to report issued by AGC should be submitted to AGC within 15days after the issues of the requiry of validity or verification of the test report should be addressed to AGC by agc@agc-cert.com. g/Inspection The test results Bf he test report.

PEAK OUTPUT POWER MEASUREMENT RESULT FOR Π/4-DQPSK MODULATION						
Frequency (GHz)Peak Power (dBm)Applicable Limits (dBm)Pass or Fail						
2.402	5.632	21	Pass			
2.441	6.385	21	Pass			
2.480	6.442	21	Pass			


CH0

Any report having not been signed by authorized approver, or having been altered without authorization, or having not been stamped by the Bedicated Pesting/Inspection Stamp" is deemed to be invalid. Copying or excerpting portion of, or altering the content of the report is not permitted without the written approver, and the test results presented in the report apply only to the tested sample. Any objections to report issued by AGC should be submitted to AGC within 15day after the issuerce of the test report. Further enquiry of validity or verification of the test report should be addressed to AGC by agc@agc-cert.com.

Report No.: AGC00429201201FE03 Page 23 of 83

CH39

CH78

Keysight Spectrum Analyzer - Swept SA IM RL RF 50 Ω AC	CORREC	SENSE:INT		LIGN AUTO	07.00.00	4 Dec 17, 2020	
Center Freq 2.48000000	GHz	Trig: Free Run	Avg Type: Avg Hold:	Log-Pwr	TRAC	E 1 2 3 4 5 6 E MWWWW	Frequency
	PNO: Fast +++ IFGain:Low	Atten: 30 dB	Avginoia:	100/100	DE	PNNNNN	
10 dB/div Ref 20.00 dBm				Mkr1	2.479 8 6.4	50 GHz 42 dBm	Auto Tune
10.0		1					Center Fred 2.480000000 GHz
-10.0							Start Fred 2.477500000 GH:
-20.0							Stop Fred 2.482500000 GHz
-40.0							CF Step 500.000 kH: <u>Auto</u> Mar
-60.0							Freq Offse 0 H:
-70.0 Center 2.480000 GHz					Span 5	.000 MHz	
#Res BW 1.5 MHz	#VBW :	5.0 MHz	S			1001 pts)	
MSG				STATUS			

Any report having not been signed by authorized approver, or having been altered without authorization, or having not been stamped by the Bedicated Pesting/Inspection Stamp" is deemed to be invalid. Copying or excerpting portion of, or altering the content of the report is not permitted without the written approver, and the test results presented in the report apply only to the tested sample. Any objections to report issued by AGC should be submitted to AGC within 15day after the issuer of the test report. Further enquiry of validity or verification of the test report should be addressed to AGC by agc@agc-cert.com.

	PEAK OUTPUT POWER MEASU FOR 8-DPSK MODUL		
Frequency (GHz)	Peak Power (dBm)	Applicable Limits (dBm)	Pass or Fail
2.402	5.886	21	Pass
2.441	6.849	21	Pass
2.480	6.990	21	Pass

CH0

Any report having not been signed by authorized approver, or having been altered without authorization, or having not been stamped by the Bedicated Pesting/Inspection Stamp" is deemed to be invalid. Copying or excerpting portion of, or altering the content of the report is not permitted without the written approver, and the test results presented in the report apply only to the tested sample. Any objections to report issued by AGC should be submitted to AGC within 15day after the issuerce of the test report. Further enquiry of validity or verification of the test report should be addressed to AGC by agc@agc-cert.com.

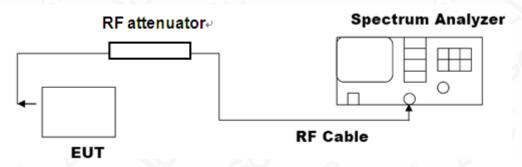
Report No.: AGC00429201201FE03 Page 25 of 83

CH39

CH78

Keysight Spectrum Analyzer - Swept SA					
M RL RF 50 Ω AC Center Freq 2.480000000		SENSE:INT	ALIGN AUTO Avg Type: Log-Pwr Avg Hold:>100/100	07:23:09 PM Dec 17, 2020 TRACE 1 2 3 4 5 6 TYPE MWWWWW	Frequency
	PNO: Fast +++ IFGain:Low	Atten: 30 dB		DET PNNNN	
10 dB/div Ref 20.00 dBm			Mkr1	2.479 965 GHz 6.990 dBm	Auto Tune
10.0		1			Center Fred 2.480000000 GH:
-10.0					Start Free 2.477500000 GH
-20.0					Stop Free 2.482500000 GH:
-40.0					CF Stej 500.000 kH <u>Auto</u> Ma
-60.0					Freq Offse ० म
-70.0 Center 2.480000 GHz				Span 5.000 MHz	
#Res BW 1.5 MHz	#VBW	5.0 MHz		l.000 ms (1001 pts)	
MSG			STATU	5	

Any report having not been signed by authorized approver, or having been altered without authorization, or having not been stamped by the Bedicated Pesting/Inspection Stamp" is deemed to be invalid. Copying or excerpting portion of, or altering the content of the report is not permitted without the written approver, and the test results presented in the report apply only to the tested sample. Any objections to report issued by AGC should be submitted to AGC within 15day after the issuer of the test report. Further enquiry of validity or verification of the test report should be addressed to AGC by agc@agc-cert.com.



8. 20DB BANDWIDTH

8.1. MEASUREMENT PROCEDURE

- 1. Connect EUT RF output port to the Spectrum Analyzer through an RF attenuator
- 2, Set the EUT Work on the top, the middle and the bottom operation frequency individually.
- 3. Set Span = approximately 2 to 5 times the 20 dB bandwidth, centered on a hoping channel The nominal IF filter bandwidth (3 dB RBW) shall be in the range of 1% to 5% of the OBW and video bandwidth (VBW) shall be approximately three times RBW; Sweep = auto; Detector function = peak
- 4. Set SPA Trace 1 Max hold, then View.

8.2. TEST SET-UP (BLOCK DIAGRAM OF CONFIGURATION)

Any report having not been signed by authorized approver, or having been altered without authorization, or having not been stamped by the stand inspection Stamp" is deemed to be invalid. Copying or excerpting portion of, or altering the content of the report is not permitted without the written authorization of AGC in the test results presented in the report apply only to the tested sample. Any objections to report issued by AGC should be submitted to AGC within 15day after the issues of the test report. Further enquiry of validity or verification of the test report should be addressed to AGC by agc@agc-cert.com.

8.3. LIMITS AND MEASUREMENT RESULTS

MEASUREMENT RESULT FOR GFSK MOUDULATION						
Appliachta Limita	Measurement Result					
Applicable Limits	Test Data	Criteria				
	Low Channel	1.028	PASS			
N/A	Middle Channel	1.026	PASS			
	High Channel	0.967	PASS			

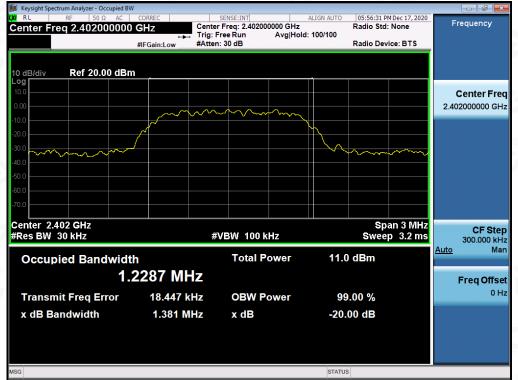
05:48:53 PM Dec 17, 2020 SENSE:INT Center Freq: 2.402000000 GHz Trig: Free Run Avg|Hol #Atten: 30 dB Frequency 102000000 GHz Radio Std: None Avg|Hold: 100/100 #IFGain:Low Radio Device: BTS Ref 20.00 dBm **Center Freq** 2.402000000 GHz Center 2.402 GHz #Res BW 30 kHz Span 3 MHz Sweep 3.2 ms CF Step 300.000 kHz #VBW 100 kHz <u>Auto</u> 9.56 dBm **Occupied Bandwidth Total Power** 901.15 kHz Freq Offset 0 Hz 14.110 kHz **Transmit Freq Error OBW Power** 99.00 % x dB Bandwidth 1.028 MHz x dB -20.00 dB

TEST PLOT OF BANDWIDTH FOR LOW CHANNEL

Any report having not been signed by authorized approver, or having been altered without authorization, or having not been stamped by the bedicated fresh g/inspection Stamp" is deemed to be invalid. Copying or excerpting portion of, or altering the content of the report is not permitted without the written approver, being a standard fresh g/inspection of AGC in the test results presented in the report apply only to the tested sample. Any objections to report issued by AGC should be submitted to AGC within 15days after the issues of the test report. Further enquiry of validity or verification of the test report should be addressed to AGC by agc@agc-cert.com.

TEST PLOT OF BANDWIDTH FOR MIDDLE CHANNEL

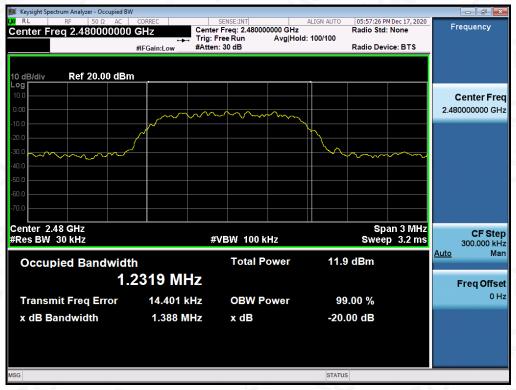
TEST PLOT OF BANDWIDTH FOR HIGH CHANNEL



Any report having not been signed by authorized approver, or having been altered without authorization, or having not been stamped by the Bedicated Pesting/Inspection Stamp" is deemed to be invalid. Copying or excerpting portion of, or altering the content of the report is not permitted without the written aphroization of AGE the test results presented in the report apply only to the tested sample. Any objections to report issued by AGC should be submitted to AGC within 15days after the issuence of the test report. Further enquiry of validity or verification of the test report should be addressed to AGC by agc@agc~cert.com.

MEASURE	MENT RESULT FOR II /4-D	OQPSK MODULATIO	N				
Applicable Limita		Measurement Result					
Applicable Limits	Test Data	Test Data (MHz)					
N/A	Low Channel	1.381	PASS				
	Middle Channel	1.390	PASS				
	High Channel	1.388	PASS				

TEST PLOT OF BANDWIDTH FOR LOW CHANNEL



Any report having not been signed by authorized approver, or having been altered without authorization, or having not been stamped by the strend in the stamp of the test results presented in the report apply only to the tested sample. Any objections to report issued by AGC should be submitted to AGC within 15day after the issue of the test report. Further enquiry of validity or verification of the test report should be addressed to AGC by agc@agc~cert.com.

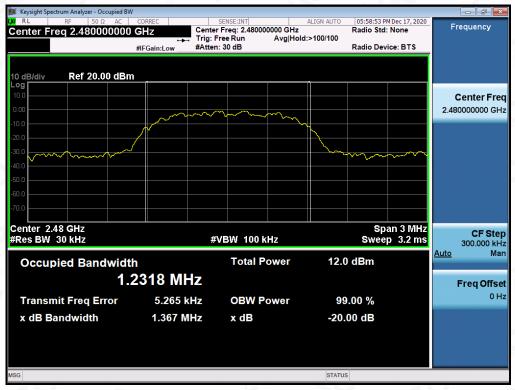
TEST PLOT OF BANDWIDTH FOR MIDDLE CHANNEL

TEST PLOT OF BANDWIDTH FOR HIGH CHANNEL

Any report having not been signed by authorized approver, or having been altered without authorization, or having not been stamped by the Bedicated Pesting/Inspection Stamp" is deemed to be invalid. Copying or excerpting portion of, or altering the content of the report is not permitted without the written approver, be test results presented in the report apply only to the tested sample. Any objections to report issued by AGC should be submitted to AGC within 15days after the issuence of the test report. Further enquiry of validity or verification of the test report should be addressed to AGC by agc@agc~cert.com.

MEASUREMENT RESULT FOR 8-DPSK MODULATION							
Measurement Result							
Applicable Limits	Test Dat	Test Data (MHz)					
	Low Channel	1.362	PASS				
N/A	Middle Channel	1.370	PASS				
	High Channel	1.367	PASS				

TEST PLOT OF BANDWIDTH FOR LOW CHANNEL



Any report having not been signed by authorized approver, or having been altered without authorization, or having not been stamped by the Sedicated Pertog/Inspection Stamp" is deemed to be invalid. Copying or excerpting portion of, or altering the content of the report is not permitted without the written authorization of AGC in the test results presented in the report apply only to the tested sample. Any objections to report issued by AGC should be submitted to AGC within 15da/Cafter the issues of the test report. Further enquiry of validity or verification of the test report should be addressed to AGC by agc@agc-cert.com.

TEST PLOT OF BANDWIDTH FOR MIDDLE CHANNEL

TEST PLOT OF BANDWIDTH FOR HIGH CHANNEL

Any report having not been signed by authorized approver, or having been altered without authorization, or having not been stamped by the Bedicated Pesting/Inspection Stamp" is deemed to be invalid. Copying or excerpting portion of, or altering the content of the report is not permitted without the written approver, be test results presented in the report apply only to the tested sample. Any objections to report issued by AGC should be submitted to AGC within 15days after the issuence of the test report. Further enquiry of validity or verification of the test report should be addressed to AGC by agc@agc~cert.com.

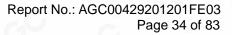
9. CONDUCTED SPURIOUS EMISSION

9.1. MEASUREMENT PROCEDURE

- 1. Connect EUT RF output port to the Spectrum Analyzer through an RF attenuator
- 2. Set the EUT Work on the top, the Middle and the bottom operation frequency individually.
- Set the Span = wide enough to capture the peak level of the in-band emission and all spurious emissions from the lowest frequency generated in the EUT up through the 10th harmonic.
 RBW = 100 kHz; VBW= 300 kHz; Sweep = auto; Detector function = peak.
- 4. Set SPA Trace 1 Max hold, then View.

9.2. TEST SET-UP (BLOCK DIAGRAM OF CONFIGURATION)

The same as described in section 8.2


9.3. MEASUREMENT EQUIPMENT USED

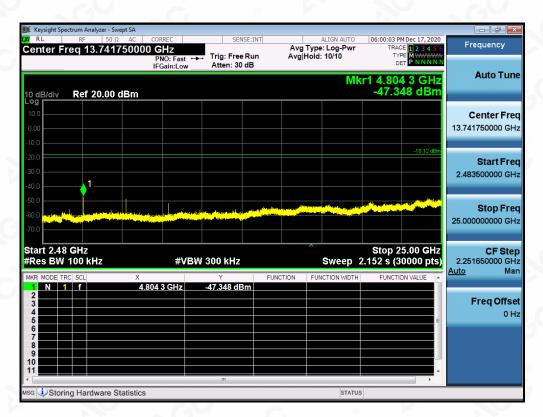
The same as described in section 6

9.4. LIMITS AND MEASUREMENT RESULT

LIMITS AND MEAS	SUREMENT RESULT	
Annlinghta Limita	Measurement Resu	ult
Applicable Limits	Test Data	Criteria
In any 100 kHz Bandwidth Outside the frequency band in which the spread spectrum intentional radiator is operating, the radio frequency	At least -20dBc than the limit Specified on the BOTTOM Channel	PASS
power that is produce by the intentional radiator shall be at least 20 dB below that in 100KHz bandwidth within the band that contains the highest level of the desired power. In addition, radiation emissions which fall in the restricted bands, as defined in §15.205(a), must also comply with the radiated emission limits specified in§15.209(a))	At least -20dBc than the limit Specified on the TOP Channel	PASS

Any report having not been signed by authorized approver, or having been altered without authorization, or having not been stamped by the "Bedicated Festing/Inspection Stamp" is deemed to be invalid. Copying or excerpting portion of, or altering the content of the report is not permitted without the writter approver, of AGC the test results presented in the report apply only to the tested sample. Any objections to report issued by AGC should be submitted to AGC within 15days after the issues of the test report. Further enquiry of validity or verification of the test report should be addressed to AGC by agc@agc~cert.com.

TEST RESULT FOR ENTIRE FREQUENCY RANGE


TEST PLOT OF OUT OF BAND EMISSIONS WITH THE WORST CASE OF 8DPSK MODULATION IN LOW CHANNEL

Any report having not been signed by authorized approver, or having been altered without authorization, or having not been stamped by the Bedicated Festing/Inspection Stamp" is deemed to be invalid. Copying or excerpting portion of, or altering the content of the report is not permitted without the writter authorization of AGC. The test results presented in the report apply only to the tested sample. Any objections to report issued by AGC should be submitted to AGC within 15days after the issues of the test report. Further enquiry of validity or verification of the test report should be addressed to AGC by agc@agc~cert.com.

Report No.: AGC00429201201FE03 Page 35 of 83

Any report having not been signed by authorized approver, or having been altered without authorization, or having not been stamped by the Bedicated Pesting/Inspection Stamp" is deemed to be invalid. Copying or excerpting portion of, or altering the content of the report is not permitted without the written approver, and the test results presented in the report apply only to the tested sample. Any objections to report issued by AGC should be submitted to AGC within 15day after the issuer of the test report. Further enquiry of validity or verification of the test report should be addressed to AGC by agc@agc-cert.com.

 Attestation of Global Compliance(Shenzhen)Co., Ltd

 Attestation of Global Compliance(Shenzhen)Std & Tech Co., Ltd

 Tel: +86-755 2523 4088
 E-mail: agc@agc-cert.com

Web: http://cn.agc-cert.com/

Lt MS SND SND SND SND Frequency Netro Freq 2.4.4100.0000 GHz Frequency Netro Freq 2.4.4100.0000 GHz SND SND <t< th=""><th>©</th><th></th><th>ODULATIO</th><th></th><th></th><th></th></t<>	©		ODULATIO			
Bit Wide	Keysight Spectrum Analyzer - Sv R L RF 50 S		SENSE:INT			Eroquanav(
Production Mikr1 2.440 973 0 GHz 2.978 dBm Auto Turn 2.4400000 GH Center Freq 2.4400000 GHz Start Freq 2.43500000 GHz Start Freq 2.43500000 GHz Nor 1 C 2.440 973 0 GHz Span 3.000 MHz Stop Freq 2.4430000 GHz Span 3.000 MHz Stop Freq 2.4430000 GHz N 1 C 2.440 973 0 GHz 2.978 dBm N 1 C 2.440 973 0 GHz 2.978 dBm Stop Freq 2.44300000 GHz Stop Freq 2.44300000 GHz Stop Freq 2.44300000 GHz Stop Trost X Y Stop Trost X Y <	enter Freq 2.4410		Trig: Free Run		TRACE 1 2 3 4 5 6 TYPE M WWWW	Frequency
Bit Mike T 2:440 973 0 GHz 2:978 GBm 2:978 GBm 2:978 GBm 0 <t< td=""><td></td><td></td><td>Atten: 30 dB</td><td></td><td></td><td>Auto Tup</td></t<>			Atten: 30 dB			Auto Tup
Image: Section of the section of th				Mkr1 2.	440 973 0 GHz	Auto Tuni
Additional of the second of th	dB/div Ref 20.00	dBm			2.978 UBII	
Star Fre 2.43550000 GH stor 2.441000 GHz #VBW 300 kHz WG TRC 2.411000 GHz #VBW 300 kHz #VBW 300 kHz WG TRC 2.41000 GHz Trd 2.440 973 0 GHz 2.4250000 GH Trd 2.440 973 0 GHz 2.4250000 GHz Trd 2.440 973 0 GHz 2.4250000 GHz Trd 2.440 973 0 GHz 2.4250000 GHz Trd 2.4250000 GHz Trd 2.42500000 GHz Trd 2.4250000 GHz Trd 2.450			1			Center Free
Start Freq 2.43950000 GHz SW 100 KHz #VEW 300 KHz Span 3.000 MHz SW 200 KHz #VEW 300 KHz Sweep 2.000 ms (30000 pts) NOE TRC SCL X Y PROF TRC SCL						2.441000000 GH
Start Free Start F						
Stop Freq Stop Freq <t< td=""><td></td><td></td><td></td><td></td><td></td><td></td></t<>						
ter 2.441000 GHz #VEW 300 kHz Sveep 2.000 ms (30000 pts) ter 2.441000 GHz #VEW 300 kHz Sveep 2.000 ms (30000 pts) ter 2.441000 GHz #VEW 300 kHz Sveep 2.000 ms (30000 pts) ter 2.441000 GHz #VEW 300 kHz Sveep 2.000 ms (30000 pts) ter 2.440 973 0 GHz 2.978 dBm Function width Function width ter 1 2.440 973 0 GHz 2.978 dBm Function width Function width ter 1 2.440 973 0 GHz 2.978 dBm Function width Function width ter 1 2.440 973 0 GHz 2.978 dBm Function width Function width ter 1 2.440 973 0 GHz 2.978 dBm Firequency Firequency ter 1 2.978 dBm Auto Tun Firequency Firequency ter 1 Firequency Auto Tun Firequency Auto Tun ter 1 Firequency Auto Tun Firequency Auto Tun ter 1 Firequency Auto Tun Firequency Auto Tun ter 1 Firequency Firequency Auto Tun ter 1 Firequency Firequency Firequency						2.439500000 GH
er 2.442600000 GHz Span 3.000 MHz CF Step BW 100 KHz #VBW 300 KHz Sweep 2.000 ms (30000 pts) Auto DET TICL SC. X Y FUNCTION WDTH FUNCTION WDTH DET TICL SC. X Y FUNCTION FUNCTION WDTH FUNCTION WDTH DET TICL SC. X Y FUNCTION FUNCTION WDTH FUNCTION WDTH FUNCTION WDTH BII Spectrum Analyzer Swept 50 SENSE:INT Auto Trum Freq UBIS Freq UBIS PROT Faint Low Trig: Free Run ArgHidd: 10/10 Avg Type: Log-Pwr ArgHidd: 10/10 Trig: Free Run Cert Mishing Avg Type: Log-Pwr ArgHidd: 10/10 Auto Trum Vity Ref 20.00 dBm Center Free 1215000000 GHZ Center Free Stop Free 300 MHz Sweep 228.0 ms (30000 pts) Stop Free 240000000 GHZ Center Free Stop Free 300 MHz X Y FUNCTION Function WDTH Function WDTH Sweep 228.0 ms (30000 pts) Stop 72.400 GHZ Center Free Stop 791 dBm Free Offsee Stop 731 dBm Stop 731 dBm Fine Offsee Center Free 2400000000 GHZ Center Free 2400						
Pr 2.441000 GHz #VBW 300 kHz Span 3.000 MHz BW 100 kHz #VBW 300 kHz Sweep 2.000 ms (30000 ps) A 1 1 1 2.440 973 0 GHz 2.978 dBm FUNCTION A 1 1 1 2.440 973 0 GHz 2.978 dBm FUNCTION BW 100 kHz Y FUNCTION FUNCTION MDH Freq 0ffse Status Freq 0ffse BW 100 kHz Status Status BW 100 kHz Status Status BW 100 kHz Status Status BW 100 kHz WEW 300 kHz Status BW 100 kHz Y EWBW 300 kHz						
BW 100 kHz #VEW 300 kHz Sweep 2.000 ms (30000 pts) I 1 1 2.440 973 0 GHz Y FUNCTION FUNCTION WOUTH FUNCTION WOUTH FUNCTION WOUTH I 1 1 2.440 973 0 GHz 2.978 dBm FUNCTION FUNCTION WOUTH FUNCTIO						2.442500000 GH
B.W. 100 kHz #VBW 300 kHz Sweep 2.000 ms (30000 pt) Auto Max Cold ThC SCL X Y FUNCTION FUNCTION WALL FUNCTION WALL Image: Sol ThC SCL X Y FUNCTION FUNCTION WALL FUNCTION WALL Image: Sol ThC SCL X Y FUNCTION FUNCTION WALL FUNCTION WALL For Offset Image: Sol ThC SCL X Y FUNCTION FUNCTION WALL For Offset For Offset Image: Sol ThC SCL X Y For Offset For Offset For Offset Image: Sol ThC SCL X Y SENSE.INT ALIGN AUTO PONCTION WALL Frequency Image: Sol ThC SCL X Y SENSE.INT ALIGN AUTO PONCTION WALL Frequency Auto Tun Figligitititititititititititititititititi	or 2 441000 CH	<u> </u>			Spap 2 000 MHz	OF Otos
Alto PRC ScL X Y PUNCTION FUNCTION WOTH FUNCTION VALUE X 2440 973 0 GHz 24778 dBm Freq Offse 0 H Freq Offse 0 H			300 kHz	Sweep 2.0	00 ms (30000 pts)	
Image: Section Analyze - Sweet SA Image: Status Image: Status Image: Status Image: Section Analyze - Sweet SA Image: Status Image: Status Image: Status Image: Section Analyze - Sweet SA Image: Status Image: Status Image: Status Image: Section Analyze - Sweet SA Image: Status Image: Status Image: Status Image: Section Analyze - Sweet SA Image: Status Image: Status Image: Status Image: Section Analyze - Sweet SA Image: Status Image: Status Image: Status Image: Section Analyze - Sweet SA Image: Status Image: Status Image: Status Image: Section Analyze - Sweet SA Image: Status Image: Status Image: Status Image: Section Analyze - Sweet SA Image: Status Image: Status Image: Status Image: Status Image: Section Analyze - Status Image: Status	IODE TRC SCL		Y FU	NCTION FUNCTION WIDTH	FUNCTION VALUE	<u>Auto</u> Mar
Image: Section Analyzer - Sweet SA Image: Section Analyzer - Sweet SA Image: Section Analyzer - Sweet SA Image: Section Analyzer - Sweet SA Image: Section Analyzer - Sweet SA Image: Section Analyzer - Sweet SA Image: Section Analyzer - Sweet SA Image: Section Analyzer - Sweet SA Image: Section Analyzer - Sweet SA Image: Section Analyzer - Sweet SA Image: Section Analyzer - Sweet SA Image: Section Analyzer - Sweet SA Image: Section Analyzer - Sweet SA Image: Section Analyzer - Sweet SA Image: Section Analyzer - Sweet SA Image: Section Analyzer - Sweet SA Image: Section Analyzer - Sweet SA Image: Section Analyzer - Sweet SA Image: Section Analyzer - Sweet SA Image: Section Analyzer - Sweet SA Image: Section Analyzer - Sweet SA Image: Section Analyzer - Sweet SA Image: Section Analyzer - Sweet SA Image: Section Analyzer - Sweet SA Image: Section Analyzer - Sweet SA Image: Section Analyzer - Sweet SA Image: Section Analyzer - Sweet SA Image: Section Analyzer - Sweet SA Image: Section Analyzer - Sweet SA Image: Section Analyzer - Sweet SA Image: Section Analyzer - Sweet SA Image: Section Analyzer - Sweet SA Image: Section Analyzer - Sweet SA Image: Section Analyzer - Sweet SA Image: Section Analyzer - Sweet SA Image: Section Analyzer - Sweet SA <	N 1 f	2.440 973 0 GHz	2.978 dBm			
Image: Status Image: Status<						
Interview Status Interview Status Interview Status Interview Auton Auton Interview Auton Interview Auton Interview Auton Intententview Auton					E	011.
Int Spectrum Analyzer - Swept SA Int Spectrum Analyzer - Swept SA Int Spectrum Analyzer - Swept SA Int SP 50 Q AC CORREC SENSEINT Autor Au						
status spectrum Analyzer - Sweet SA RF 50 Ω AC CORREC SENSE:INT AUG AUTO 06:04:00 PMDet 17, 2020 PNO; Fast → Trig: Free Run Atten: 30 dB Mkr1 2,361 45 GHZ -57,991 dBm -57,991 dB						
STATUS Att Spectrum Analyzer - Swept SA ALION AUTO JOB/09-000 PM Dec 17, 2020 Frequency r Freq 1.215000000 GHz PN0: Fast → IF Gain:Low Trig: Free Run Atten: 30 dB Avg Type: Log-70 Trace Dec 100000 GHz Frequency iv Ref 20.00 dBm Status Mkr1 2.381 45 GHz Gener Freq 1.215000000 GHz iv Ref 20.00 dBm -57.991 dBm -57.991 dBm -57.991 dBm iv Ref 20.00 dBm -57.991 dBm -57.991 dBm -57.991 dBm iv Ref 20.00 dBm -57.991 dBm -57.991 dBm -57.991 dBm iv Ref 20.00 dBm Start Freq 30.0000000 GHz -57.991 dBm -57.991 dBm iv Ref 20.00 dBm -57.991 dBm -57.991 dBm -57.991 dBm iv Ref 20.00 dBm -57.991 dBm -57.991 dBm -57.991 dBm iv Stop 2.400 GHz -57.991 dBm -57.991 dBm -57.991 dBm iv -90 MHz Stop 2.400 GHz -57.991 dBm -57.991 dBm iv -91 Mit - 91 Mit					-	
PE 59.0 met CORPEC SENSE:INT ALIGN AUTO D66:04:00 PM Dec 12, 2020 er Freq 1.215000000 GHz PNO: Fast →→ IFGainLow Trig: Free Run Aren: 30 dB Avg Type: Log-Pwr AvgIHold: 10/10 Trace: P3.4 s arent per PMD: Fast →→ Det PMD: Fast →→ Det PMD: Fast →→ IFGainLow Frequency (div Ref 20.00 dBm 0.0000 GHz 0.0000 GHz 0.000 GHz 0.0000 GHz 0.000 GHz 0.0000 GHz 0.000 GHz 0.0000 GHz 0.000 GHz				STATUS		
ter Freq 1.215000000 GHz PNO: Fast \rightarrow IFGainLow Trig: Free Run Atten: 30 dB Mikr1 2.361 45 GHz -57.991 dBm Center Freq -121500000 GHz -57.991 dBm -121500000 GHz -121500000 GHz -1215000000 GHz -121500000 GHz -1215000000 GHz -121500000 GHz -1215000	sight Spectrum Analyzer - Sv	vept SA				
PNO: Fast + Trig: Free Run Atten: 30 dB Avgrid: 10/10 Trig: Free Run Atten: 30 dB Auto Tune Idiv Ref 20.00 dBm Idiv <			SENSE:INT		TRACE 1 2 3 4 5 6	Frequency
Mkr1 2.361 45 GHz Auto Tune div Ref 20.00 dBm -57.991 dBm Center Free div		PNO: Fast 🔸		Avg Hold: 10/10		
iiv Ref 20.00 dBm -57.991 dBm Iiv Ref 20.00 dBm -57.991 dBm Iiv Iiv Iiv Iiv Iiv Iiv Iiv Iiv Iiv Iiv Iiv Iiv Iiv Iiv Iiv Iiv Iiv Iiv Iiv Iiv Iiv Iiv Iiv				Mkr	2.361 45 GHz	Auto Tune
Image: Start Free Image: Start Free <td>iv Ref 20.00</td> <td>dBm</td> <td></td> <td></td> <td></td> <td></td>	iv Ref 20.00	dBm				
0 MHz Stop Freq 0 MHz Y FIRCI SCL Y 1 1 2.361 45 GHz -57k991 dBm						Center Fred
Start Free 30.000000 MHz Stop Free 2.40000000 GHz 0 MHz W 100 kHz 1 f 2.36145 GHz 2.36145 GHz 1 f 2.36145 GHz 2.57.991 dBm 1 f 2.36145 GHz 2.36145 GHz 2.361						1.215000000 GHz
Start Free 30.000000 MHz Stop Free 2.40000000 GHz SW 100 kHz #VBW 300 kHz 1 f 2.361 45 GHz -57.991 dBm 1 f 2.361 45 GHz -57.991 dBm 2 f 2 f 2 f 2 f 2 f 2 f 2 f 2 f 2 f 2 f					47.02 dBm	
Stop Free 30 MHz Stop 2.400 GHz BW 100 KHz Y BW 300 KHz Function Function width Function value 1 f 2.361 45 GHz -57.991 dBm Image: Stop 2.400 Value Function Value Function Value Image: VBW 300 KHz Function Function Value Function Value Image: VBW 300 KHz Function Function Value Function Value Freq Offset Image: VBW 300 KHz Function Function Value Freq Offset O Hz Image: VBW 300 KHz Function Function Value Freq Offset O Hz Image: VBW 300 KHz Function Function Value Freq Offset O Hz Image: VBW 300 KHz Function Function Value Freq Offset O Hz Image: VBW 300 KHz Function Function Value Freq Offset O Hz Image: VBW 300 KHz Function Function Value Freq Offset O Hz Image: VBW 300 KHz Function Function Function Function Function Value Function						Start Free
2.40000000 GHz 0 MHz W 100 kHz TC Scl X Y FUNCTION						30.000000 MH:
2.40000000 GHz 0 MHz W 100 kHz T CF Step 2.40000000 GHz Sweep 228.0 ms (30000 pts) E TRC SCL X Y FUNCTION FUNCTION WIDTH FUNCTION VALUE T T T T T T T T T T T T T					1	
30 MHz Stop 2.400 GHz BW 100 kHz #VBW 300 kHz Sweep 228.0 ms (30000 pts) DDE TRC SCL X Y FUNCTION FUNCTION WIDTH FUNCTION VALUE 1 1 2.361 45 GHz -57.991 dBm FUNCTION WIDTH FUNCTION VALUE Freq Offse 0 1 1 1 1 1 1 FUNCTION FUNCTION WIDTH FUNCTION VALUE Freq Offse 0 1 1 1 1 1 1 Freq Offse 0 1 1 1 1 1 1 1 1 1 </td <td></td> <td></td> <td></td> <td></td> <td></td> <td>Stop Fred</td>						Stop Fred
3W 100 kHz #VBW 300 kHz Sweep 228.0 ms (30000 pts) 237.00000 MHz Lt Y FUNCTION FUNCTION WIDTH FUNCTION VALUE Auto Mar 1 f 2.361 45 GHz -57.991 dBm Freq Offse 0 Hz Freq Offse 0 Hz - </td <td></td> <td></td> <td></td> <td></td> <td></td> <td>2.40000000 GH:</td>						2.40000000 GH:
3W 100 kHz #VBW 300 kHz Sweep 228.0 ms (30000 pts) 237.00000 MHz DE TRC SCL X Y FUNCTION FUNCTION WIDTH FUNCTION VALUE Auto Mar 1 f 2.361 45 GHz -57.991 dBm Freq Offse 0 Hz Freq Offse 0 Hz					04-m 0 400 011-	
DE TRCI SCL X Y FUNCTION FUNCTION WIDTH FUNCTION VALUE 2.361 45 GHz -57.991 dBm Freq Offse H Fr		#VBW	300 kHz	Sweep 228	3.0 ms (30000 pts)	237.000000 MH
FreqOffse	ODE TRC SCL	X	Y FU	NCTION FUNCTION WIDTH	FUNCTION VALUE	<u>Auto</u> Mar
	N 1 f	2.361 45 GHz	-57.991 dBm			
					=	J H.
					-	
				STATUS	F	

TEST PLOT OF OUT OF BAND EMISSIONS OF 8DPSK MODULATION IN MIDDLE CHANNEL

Any report having not been signed by authorized approver, or having been altered without authorization, or having not been stamped by the Bedicated Festing/Inspection Stamp" is deemed to be invalid. Copying or excerpting portion of, or altering the content of the report is not permitted without the writter authorization of AGE. The test results presented in the report apply only to the tested sample. Any objections to report issued by AGC should be submitted to AGC within 15day after the issues of the test report. Further enquiry of validity or verification of the test report should be addressed to AGC by agc@agc-cert.com.

Report No.: AGC00429201201FE03 Page 37 of 83

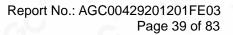
🊺 Key	ysight Spe	ectrum /	Analyzer	r - Swepf	t SA											
LXI RL		RF			AC	CORREC		SEN	NSE:INT	A		IGN AUTO		M Dec 17, 2020		Frequency
Cen	ter Fr	req	13.74	4175	000	0 GHz	ast 🔸	Trig: Free	e Run	Avg T Avg H		Log-Pwr 10/10	TY	DE 12345 PE MWWW	₩	(induction)
						IFGain:L		Atten: 30					DI	ET P NNNN		
												Mk	r1 7.32	3 2 GH		Auto Tune
10 dE	Bídiy	Re	f 20.0	00 dE	Зm									00 dBm		
Log																
10.0																Center Freq
0.00																13.741750000 GHz
-10.0																
-20.0														-17.02 dBr		
																Start Freq
-30.0					<u>1</u>											2.483500000 GHz
-40.0				١												
-50.0										din.		line and the	and the large states the	an a		Oton From
-60.0	Nove Have	all and the local	a de Alphala	and so the	and shares	and the second second	Phy Dens				and the second		and the second state			Stop Freq
-70.0	and the second	أتتظ	and the second second	التشت		Station of Station										25.00000000 GHz
	t 2.48											^	Stop 2	5.00 GHz	z	CF Step
#Re:	s BW	100	kHz				#VBW	/ 300 kHz			S	weep 2	2.152 s (3	0000 pts)	2.251650000 GHz
MKR N	MODE TR	RC SCL		_	х	_		Y	FUN	CTION	FUNC	TION WIDTH	FUNCTI	ON VALUE	- 4	<u>Auto</u> Man
	N 1	f			7.	323 2 GH	z	-44.300 dE	3m	أكمي						
2	- F															Freq Offset
4	22	i s					کھ									0 Hz
5	 -													-		
7																
8	ي ک						کک		<u>کا ک</u>							
9 10																
11															-	
∢ [m								
MSG												STATUS	\$			

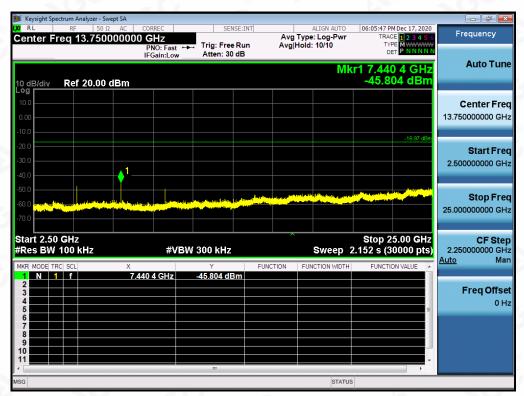
Any report having not been signed by authorized approver, or having been altered without authorization, or having not been stamped by the "Dedicated Festive/Inspection Stamp" is deemed to be invalid. Copying or excerpting portion of, or altering the content of the report is not permitted without the writter explorization of AGC, the test results presented in the report apply only to the tested sample. Any objections to report issued by AGC should be submitted to AGC within 15days after the issues of the test report. Further enquiry of validity or verification of the test report should be addressed to AGC by agc@agc-cert.com.

 Attestation of Global Compliance(Shenzhen)Co., Ltd

 Attestation of Global Compliance(Shenzhen)Std & Tech Co., Ltd

 Tel: +86-755 2523 4088
 E-mail: agc@agc-cert.com


Web: http://cn.agc-cert.com/


	UF ODF Sh	INODULA	TION IN HIGH C	HAININEL	8
Keysight Spectrum Analyz RL RF		SENSE:INT		06:05:13 PM Dec 17, 2020	
Center Freq 2.48	30000000 GHz		Avg Type: Log-Pwr	TRACE 1 2 3 4 5 6	Frequency
	PNO: Wide • IFGain:Low	➡ Trig: Free Run Atten: 30 dB	Avg Hold: 10/10		
			Mkr1 2	480 107 1 GHz	Auto Tu
10 dB/div Ref 20	.00 dBm			3.031 dBm	
10.0					Center Fr
0.00		~~~~~			2.480000000 G
-10.0					
-20.0					Start Fr
-30.0					2.478500000 G
-40.0					
-50.0					Stop Fr
-70.0					2.481500000 G
Center 2.480000 (#Res BW 100 kHz		300 kHz	Sween 2.0	Span 3.000 MHz 00 ms (30000 pts)	CF St 300.000 k
MKR MODE TRC SCL	X	Y	FUNCTION FUNCTION WIDTH	FUNCTION VALUE	Auto N
1 N 1 f	2.480 107 1 GHz	3.031 dBm	Force of the second sec		
2					Freq Offs
4 5				E	0
6 7					
8					
10					
•		III		1	
MSG			STATUS		
Keysight Spectrum Analyz RL RF	er - Swept SA 50 Ω AC CORREC	SENSE:INT	ALIGN AUTO	06:05:22 PM Dec 17, 2020	
Center Freq 1.21	15000000 GHz		Avg Type: Log-Pwr Avg Hold: 10/10	TRACE 123456 TYPE MWWWW DET PNNNN	Frequency
	PNO: Fast • IFGain:Low	Atten: 30 dB		DET P NNNN	Auto Tu
			Mkr	1 2.166 78 GHz	Auto Tu
10 dB/div Ref 20	.00 dBm			-56.372 dBm	
10.0					Center Fr
0.00					1.215000000 G
-10.0				-16.97 dBm	
-20.0					Start Fr
-30.0					30.000000 M
-40.0				1	
-60.0	والمراقع والمراجع				Stop Fr
-70.0 -70.0			LA VELICIA A CONTRACTOR AND A DESCRIPTION OF THE DE	a an	2.400000000 G
Start 30 MHz				Stop 2.400 GHz	05.04
start 30 MHz #Res BW 100 kHz	#VB	W 300 kHz	Sweep 22	Stop 2.400 GHz 8.0 ms (30000 pts)	CF St 237.000000 M
MKR MODE TRC SCL	X	Y	FUNCTION FUNCTION WIDTH	FUNCTION VALUE	<u>Auto</u> N
1 N 1 f	2.166 78 GHz	-56.372 dBm			
3 4					Freq Offs 0
				E	0
5					
5 6 7					
5 6 7 8 9					
5 6 7 8					
5 6 7 8 9 10		m	STATUS	•	

TEST PLOT OF OUT OF BAND EMISSIONS OF 8DPSK MODULATION IN HIGH CHANNEL

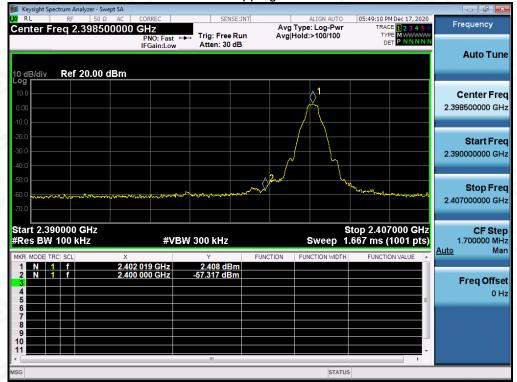
Any report having not been signed by authorized approver, or having been altered without authorization, or having not been stamped by the bedicated for the formation of the stamp. Stamp" is deemed to be invalid. Copying or excerpting portion of, or altering the content of the report is not permitted without the written authorization of AGC. The test results presented in the report apply only to the tested sample. Any objections to report issued by AGC should be submitted to AGC within 15day after the issuer of the test report. Further enquiry of validity or verification of the test report should be addressed to AGC by agc@agc-cert.com.

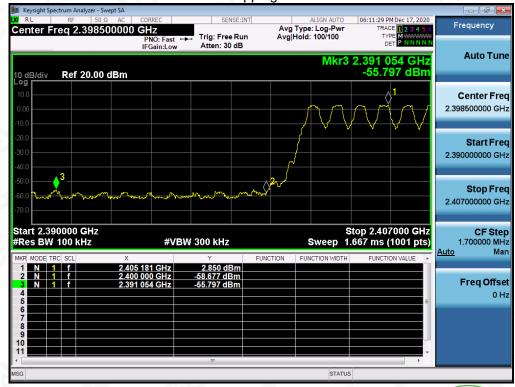
Note: The 8DPSK modulation is the worst case and only those data recorded in the report.

Any report having not been signed by authorized approver, or having been altered without authorization, or having not been stamped by the Bedicated Pesting/Inspection Stamp" is deemed to be invalid. Copying or excerpting portion of, or altering the content of the report is not permitted without the writter aphrorization of AGC, the test results presented in the report apply only to the tested sample. Any objections to report issued by AGC should be submitted to AGC within 15day Safter the issues of the test report. Further enquiry of validity or verification of the test report should be addressed to AGC by agc@agc-cert.com.

 Attestation of Global Compliance(Shenzhen)Co., Ltd

 Attestation of Global Compliance(Shenzhen)Std & Tech Co., Ltd


 Tel: +86-755 2523 4088
 E-mail: agc@agc-cert.com


TEST RESULT FOR BAND EDGE

GFSK MODULATION IN LOW CHANNEL

Hopping off

Hopping on

Any report having not been signed by authorized approver, or having been altered without authorization, or having not been stamped by the "Dedicated Figure/Inspection Stamp" is deemed to be invalid. Copying or excerpting portion of, or altering the content of the report is not permitted without the written approver, be test results presented in the report apply only to the tested sample. Any objections to report issued by AGC should be submitted to AGC within 15days after the issuence of the test report. Further enquiry of validity or verification of the test report should be addressed to AGC by agc@agc~cert.com.